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Abstract

We present MMCOMET, the first multimodal001
commonsense knowledge graph (MMKG) that002
integrates physical, social, and eventative003
knowledge. This new resource addresses a ma-004
jor limitation of existing MMKGs in supporting005
complex reasoning tasks like image caption-006
ing and storytelling. MMCOMET extends the007
ATOMIC2020 knowledge graph to include a008
visual dimension, through an efficient image009
retrieval process, resulting in over 900K triples.010
Through a standard visual storytelling experi-011
ment, we show that our holistic approach en-012
ables generating richer and more contextually013
aware stories.014

1 Introduction015

Commonsense knowledge graphs (KG) are multi-016

relational graphs that consist of statements about017

everyday concepts (e.g., dinner party, coffee ma-018

chine). Each statement in the graph is usually en-019

coded as a < head, relation, tail > relation-020

ship, where head is a concept, tail is either a con-021

cept or a natural language phrase, and relation is022

an informative label describing how the head and023

tail are related. Recently, KGs have been widely024

applied to various downstream applications, rang-025

ing from information retrieval (Guu et al., 2020)026

to natural language generation (NLG) tasks, such027

as image captioning (Zhou et al., 2019), visual028

question answering (Gardères et al., 2020) and sto-029

rytelling (Wang et al., 2024). Applications that inte-030

grate KGs into their framework typically query an031

external existing KG to search for concepts related032

to the model’s input prompt. This extra informa-033

tion is then injected into the model as an additional034

feature to help improve commonsense reasoning035

and contextual understanding (Chang et al., 2020;036

Xu et al., 2022; Sun et al., 2022; Zou et al.). For037

such applications, the model’s output quality is di-038

rectly linked to the quality of the main source of039

knowledge (Razniewski et al., 2024). Therefore,040

Figure 1: Automated visual storytelling:
Baseline: Family members enjoyed leisurely moments
together. Grandpa shared memories during the trip;
Ours: Family spent the day relaxing in the boat, enjoy-
ing beer. Grandpa took grandson on his lap as he drove,
with grandson’s parents watching nearby.
More examples in Table 7.

there is a need for the KGs to have high expressive 041

power, large coverage over a variety of information 042

and the knowledge retrieved needs to be directly 043

aligned with the downstream task. 044

Most existing prominent commonsense KGs, 045

such as ConceptNet (Liu and Singh, 2004), focuses 046

on hypernymy (Hertling and Paulheim, 2017) re- 047

lations (e.g. < chocolate cake, IsA, cake >) or 048

physical information about a given concept (e.g. 049

< cake, MadeOf, flour >). While these relations 050

are useful for basic information retrieval tasks, such 051

knowledge is insufficient for more complex tasks, 052

such as storytelling, which require reasoning about 053

real-world social situations and activities. In image 054

captioning, using current commonsense properties 055

about physical objects lacks the nuanced under- 056

standing to interpret the social context. This has 057

motivated other works to construct KGs focusing 058

on eventive and social commonsense knowledge. 059

One prominent example is ATOMIC2020 (Hwang 060

et al., 2021), a KG containing commonsense infor- 061

mation about human interactions, reactions, and 062

desires that specific events could trigger. 063

Previous research, particularly on NLG tasks like 064
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dialogue generation (Cai et al., 2023) and visual sto-065

rytelling (Wang et al., 2024), that have incorporated066

such commonsense into their frameworks have067

achieved richer and more diverse outputs. How-068

ever, one key limitation remains prevalent: knowl-069

edge acquisition fundamentally involves multiple070

modalities and is not just limited to text. This has071

brought attention to multimodal knowledge graphs072

(MMKG), with several existing MMKGs exploit-073

ing visual data to express KG concepts (Ferrada074

et al., 2017; Alberts et al., 2021). However, these075

MMKGs are again, limited to describing simple076

factual relationships which are not highly informa-077

tive for tasks that require comprehensive social rea-078

soning. For instance, in the story segment shown079

in Figure 1, our method tells a more engaging and080

context-aware story. Instead of just saying that the081

family enjoyed their time together, our story (i)082

specifies that they were relaxing in the boat and083

enjoying beer, which paints a clearer picture of the084

setting and activities (physical knowledge), (ii)085

includes a specific event, namely that Grandpa tak-086

ing his grandson on his lap as he drove, which087

makes the scene more dynamic (eventive knowl-088

edge), and (iii) acknowledges the social aspect by089

mentioning that the grandson’s parents were watch-090

ing nearby, which hints at family relationships091

(social knowledge). By capturing these details,092

our MMKG enables the storytelling model to pro-093

vide a fuller sense of the scene, the people involved,094

and their interactions.095

In this work, we construct MMCOMET, the first096

MMKG that combines physical, eventive, and so-097

cial commonsense knowledge into a single large-098

scale graph, covering both the natural language099

and visual modalities. Specifically, we build our100

graph by expanding ATOMIC2020, which contains101

1.33M commonsense statements related to social,102

physical, and event-driven concepts. We enhance103

our KG with a rich visual dimension by retrieving104

highly relevant images from existing high-quality105

datasets (for physical concepts) and using web106

search (for social and eventive concepts). This re-107

sults in the first holistic multi-modal commonsense108

knowledge graph with over 900K tuples 1.109

A summary of our main contributions: 1) We110

present the first multimodal commonsense knowl-111

edge graph covering social interactions, physical at-112

tributes, and eventive aspects of everyday concepts.113

2) For searching for the matching visual modality114

1MMCOMET can be found at: URL (upon acceptance).

to the commonsense textual statements, we pro- 115

pose a novel computationally efficient approach 116

using existing image datasets. Our approach uses 117

approximately 60 times fewer similarity-matching 118

calculations per sample than standard brute-force 119

searches. 3) We propose a new baseline model to 120

exploit text and image modalities using social- and 121

event-specific commonsense relations. 4) We con- 122

duct extensive experiments using our knowledge 123

graph on a standard multimodal downstream task, 124

namely visual storytelling, and show the clear ad- 125

vantage of using MMCOMET to generate higher 126

quality stories. 127

2 Related Work 128

2.1 Text-only Knowledge Graphs 129

Basic Shared Knowledge. The aspiration to 130

automate commonsense knowledge (CSK) has 131

been a longstanding goal in AI (Lenat, 1995; Mc- 132

Carthy, 1959), aiming to equip machines with 133

structured knowledge about everyday concepts. 134

These structured collections, known as common- 135

sense knowledge graphs (CSKG) or common- 136

sense knowledge bases (CSKB), include projects 137

like ConceptNet (Liu and Singh, 2004; Speer 138

and Havasi, 2013; Speer et al., 2017), which 139

leverages human crowdsourcing to collect com- 140

monsense statements across predefined relations 141

(e.g., IsA, UsedFor, CapableOf). Other projects, 142

such as WebChild (Tandon et al., 2014, 2017), 143

Quasimodo (Romero et al., 2019; Romero and 144

Razniewski, 2020), TupleKB (Mishra et al., 2017), 145

and Ascent (Nguyen et al., 2022), use auto- 146

mated methods based on handcrafted extraction 147

patterns or open information extraction (Niklaus 148

et al., 2018) from large text corpora like QA fo- 149

rums, books, image tags, and the Web. Tran- 150

sOMCS (Zhang et al., 2020) applies statistical 151

methods and neural-based learning to assess the 152

plausibility of extracted statements. ATOMIC (Sap 153

et al., 2019) collects inferential CSK via large- 154

scale crowdsourcing, while ATOMIC2020 (Hwang 155

et al., 2021) leverages generative AI (Vaswani et al., 156

2017). Using COMET (Bosselut et al., 2019), 157

ATOMIC2020 generates commonsense tuples from 158

subject-relation pairs derived from ConceptNet and 159

ATOMIC, expanding relations to cover social, even- 160

tative, and physical categories (see Table 5). The 161

COMET-ATOMIC2020 framework (Hwang et al., 162

2021) demonstrates that training smaller models 163

like BART (Lewis et al., 2019) on high-quality 164
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Multimodal Knowledge Graph Domain or Focus Size Multimodal Image Source
IMGpedia (Ferrada et al., 2017) Encyclopedic 442M Entity, Relation WMC
ImageGraph (Oñoro-Rubio et al., 2017) Encyclopedic 560K Entity WSE
MMKG (Liu et al., 2019) Encyclopedic 814K Entity WSE
Richpedia (Wang et al., 2020) Encyclopedic, Geographic 172M Entity, Relation WSE, WP
VisualSem (Alberts et al., 2021) Encyclopedic, Multilingual 1.5M Entity WP, ImageNet
MMEKG (Ma et al., 2022) CS (Event) 934M Entity, Tuples imSitu
TIVA-KG (Wang et al., 2023) CS (Physical) 1.4M Entity, Tuples WSE
MMpedia (Wu et al., 2023) Encyclopedic 19M Entity WSE, WP
AspectMMKG (Zhang et al., 2023) Encyclopedic 645K Entity WSE, WP
MMCOMET (ours) CS (Social, Physical, Eventive) 989K Entity, Relation WSE, OID

Table 1: An overview of existing MMKGs, compared to ours. CS: Commonsense; WSE: Web Search Engine; WP:
Wikipedia; WMC: Wikimedia Commons; OID: open-source image datasets from captioning/storytelling tasks.

CSK can outperform larger LLMs, such as GPT-165

3 (Brown et al., 2020), in generating plausible166

commonsense statements. Special Commonsense167

Knowledge. One special commonsense project168

integrates data from 7 sources to construct a hyper-169

relational CSKG for joint usage (Ilievski et al.,170

2021). Candle (Nguyen et al., 2023) focuses on171

scaling cultural commonsense knowledge, while172

Uncommonsense (Arnaout et al., 2022) and AN-173

ION (Jiang et al., 2021) emphasize compiling lists174

of salient negative commonsense statements.175

Unlike text-only CSKGs, our multimodal graph176

incorporates visual knowledge, expanding the177

scope of commonsense understanding and enabling178

a wider variety of downstream tasks, such as image179

captioning and visual storytelling.180

2.2 Multimodal Knowledge Graphs181

While text-only KGs support AI applications like182

question answering, multimodal knowledge graphs183

(MMKGs) enhance understanding by integrating184

diverse data types, enabling richer representations185

and broader applications such as visual reasoning.186

Encyclopedic Multimodal Knowledge. Most187

existing MMKGs focus on general knowledge188

(e.g., < France, HasCapital, Paris >), featur-189

ing prominent entities from various classes like190

people, countries, and books. IMGpedia (Ferrada191

et al., 2017) uses images from Wikipedia Commons192

and statements from DBpedia Commons. Image-193

Graph (Oñoro-Rubio et al., 2017) is based on Free-194

Base15K (Bordes et al., 2013), combining Convo-195

lutional neural networks (CNNs) and KG embed-196

dings (KGE) methods to answer visual-relational197

queries. The numerical and visual MMKG (Liu198

et al., 2019) links entities from FB15K, DBpe-199

dia15K, and YAGO15K (Suchanek et al., 2007),200

enriching them with images and numeric literals.201

Richpedia (Wang et al., 2020) focuses on geo- 202

graphic information from Wikidata, linked to de- 203

scriptions and images. VisualSem (Alberts et al., 204

2021) emphasizes multilinguality with images and 205

descriptions in up to 14 languages. MMpedia (Wu 206

et al., 2023) combines textual statements from DB- 207

pedia and curated images. AspectMMKG (Zhang 208

et al., 2023) enhances entity understanding by in- 209

corporating aspect-related images. While these 210

MMKGs focus on documented facts, our goal is 211

to capture everyday commonsense that humans im- 212

plicitly use but rarely verbalize. 213

Commonsense Multimodal Knowledge. Few 214

projects focus on mining multi-modal common- 215

sense knowledge, with MMEKG (Ma et al., 2022) 216

being a notable example. It integrates textual and 217

visual information about events using an efficient 218

extraction pipeline and induction strategy, organiz- 219

ing millions of concept events with relations like 220

temporal, causal (e.g., Co-occur), and hierarchi- 221

cal (e.g., SubclassOf). It utilizes imSitu (Yatskar 222

et al., 2016) for visual knowledge on human ac- 223

tivities. TIVA-KG (Wang et al., 2023) covers text, 224

audio, images, and video modalities, with text rep- 225

resented by word embeddings 2, video and image 226

encoded with ResNet (He et al., 2016), and audio 227

using VGGish (Hershey et al., 2017). 228

While TIVA-KG 3 focuses on physical concepts 229

and MMEKG on event concepts; our proposed 230

MMCOMET contains information about physical, 231

eventive, and social concepts. This allows a holistic 232

understanding of the nuances and subtleties of real- 233

world social interactions. An overview comparing 234

different existing MMKGs with ours is in Table 1. 235

2https://github.com/commonsense/
conceptnet-numberbatch

3Note that while TIVA-KG also contains eventative and
social concepts, the majority of its tuples are about the physical
commonsense domain (more than 75%).
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Figure 2: A tiny subset of MMCOMET(top) and its
Construction Pipeline(bottom).

3 Method236

3.1 MMCOMET Graph Construction237

We describe the method used for constructing238

MMCOMET. MMCOMET’s basic topology is239

extracted from the ATOMIC2020 (Hwang et al.,240

2021) commonsense knowledge graph, a ‘text-only’241

KG covering social, physical, and eventive aspects242

of everyday inferential knowledge. The graph con-243

tains 23 commonsense relations of which there244

are 7 physical-entity relations, 9 social-interaction245

relations and 7 event-centred relations relating to246

common everyday human experiences. Descrip-247

tions and corresponding examples of each rela-248

tion are presented in Table 5 (Appendix G). In249

total, ATOMIC2020 has ∼1.33 million tuples (in250

the form of < head, relation, tail >), whereby251

a small subset of 172K commonsense reflecting252

qualitative human experiences was integrated from253

ConceptNet (Liu and Singh, 2004) via manual elim-254

ination. The remaining tuples which focus more on255

social-interaction and event-centered knowledge256

are annotated by human workers.257

To incorporate visual modality into258

ATOMIC2020, we collect matching images259

for the head and tail phrase for each tuple.260

Two methods are proposed for automatic image261

collection: 1) Similarity Matching through com-262

paring the head/tail phrase textual embedding263

with the candidate images’ embeddings from264

existing datasets, and 2) via a Web Search using265

the head/tail phrase as the input prompt. The266

former approach is utilised more for physical267

relations (e.g. ObjectUse, AtLocation), which268

usually involves finding images depicting certain269

objects or tangible entities. Conversely, web search270

is more suitable for collecting images related 271

to social and event-centered knowledge (e.g. 272

xWant, xReact) as such knowledge is typically 273

more abstract and requires depictions of human 274

interactions. Therefore, we utilise the large corpora 275

of images available on the Web to search for these 276

cases. The overall pipeline is visualised in Fig- 277

ure 2 and the two methods are described as follows. 278

279

Similarity Matching (Retrieving salient 280

physical MMCSK): In this approach, we use 281

images from captioning and visual storytelling 282

datasets. Firstly, we leverage CLIP (Radford 283

et al., 2021) to convert the commonsense head or 284

tail phrase to a textual embedding. Images in 285

the corpus are also each converted to an image 286

embedding with CLIP. For each commonsense 287

phrase, we then find the top-n matching images by 288

searching for the image embeddings that obtain the 289

highest cosine similarity score with the common- 290

sense phrase embedding. However, performing 291

an exhaustive search to compute similarity scores 292

between each commonsense embedding with all 293

image embeddings is computationally inefficient 294

and does not scale well to large image corpora. 295

As such, we additionally utilise the image 296

captions and employ a part-of-speech tagger to tag 297

nouns from the captions. This step was motivated 298

by the idea that nouns can be seen as representative 299

of the image’s overall theme (Wang et al., 2024). 300

Then, we collect the images corresponding to 301

each noun tag to create a dictionary as follows: 302

{Noun1 : {image1, image2, ..}, Noun2 : 303

{image3, image4, ...}, ...}. Here, it is noted that 304

an image can belong to multiple noun keys in the 305

dictionary. We found 37,219 unique nouns with 306

each noun tag containing on average 347 images. 307

Next, the CLIP textual embeddings of the unique 308

noun tags are computed. Finally, for the image 309

retrieval process, we first obtain the top matching 310

noun tags by comparing the similarity score 311

between the commonsense phrase embedding and 312

all noun embeddings. Then, we obtain the image 313

subset corresponding to the matching noun tags 314

and only search the image embeddings from this 315

image subset to find the top 10 matching images 316

corresponding to the head/tail phrase. 317

318

Web Search (Retrieving salient social and 319

eventative MMCSK): For commonsense 320

head/tail phrases that contain more abstract 321

terms (like emotions and feelings) which are more 322
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challenging to visually ground, we utilise web323

search to enhance the matching images. This324

is particularly useful for social and event-based325

commonsense. Specifically for each phrase,326

we extract the unique words after removing327

stopwords and lemmatisation. A numerical score328

for each lemmatised word is then obtained from a329

crowdsourced dataset that contains concreteness330

ratings for 40K most common lemmas (Brysbaert331

et al., 2014). Here, the concreteness score is a332

rating given to a word where a higher rating means333

that the word’s concept refers to something that334

exists in reality which one can directly experience335

through their senses. Higher ratings tend to be336

associated with tangible nouns (e.g. ‘computer’,337

‘flower’), whereas more abstract terms (e.g.338

‘justice’, ‘honour’) will have lower scores. After339

obtaining the concreteness for each unique word340

in the commonsense head/tail, the average of341

scores across all words is taken to compute a final342

concreteness score for each commonsense phrase.343

We then adopt web search to find the top 10 images344

from Google Images 4 for the commonsense345

phrases that produced a concreteness score lower346

than a pre-determined threshold of 4. This347

threshold was chosen as the average concreteness348

score of the social and event-centric relations was349

found to be less than this value (see Table 4). In350

total, ∼415K commonsense phrases required web351

search, approximately 72% of the total number of352

unique commonsense phrases in ATOMIC2020.353

To obtain the most relevant results, we make354

slight adjustments to the commonsense phrases355

when web searching. Specifically, for social and356

event-based commonsense, we add the word ‘per-357

son’ in front of the search phrase (if the phrase did358

not already contain that word) to ensure that the359

retrieved image depicted a person or people. More-360

over, we find that the search engine sometimes361

returns images that only contain text, particularly362

for more abstract phrases. As Google allows filter-363

ing out images containing a specific term by adding364

‘-term’ to the query, we also append ‘-text’ to fil-365

ter out such images. For instance, searching the366

phrase ‘person assesses the business strategy’ does367

not give useful results, whereas adjusting the query368

to ‘person assesses the business strategy -text’ re-369

turns images of people in a business setting.370

Lastly, we combine the web-matched images371

with the images found from the open source cap-372

4https://images.google.com/

tioning and storytelling datasets. Specifically, for 373

each commonsense head/tail phrase that utilised 374

web search, we find the CLIP embeddings of the 375

web images and filter out any that have a low 376

similarity score with the commonsense phrase us- 377

ing a threshold of 0.15. Then, all the retained 378

web images plus the images from the caption- 379

ing/storytelling datasets are combined and the top 380

15 images were retained. Sample multimodal com- 381

monsense statements are shown in Appendix K. 382

4 Experimental Setup5 383

4.1 Datasets 384

Conceptual Captions (Sharma et al., 2018): com- 385

prises of approximately ∼3.3 million images anno- 386

tated with captions. Captions and images are web- 387

crawled and cover various topics and domains. 388

Visual Storytelling Dataset (Huang et al., 2016): 389

contains ∼81K unique images obtained from Flickr. 390

Each album contains image sequences comprising 391

5 photos and 5 human-written stories, and each 392

story usually comprises one sentence per image. 393

The unique number of stories is ∼50K. About 67% 394

of the images also have matching human-written 395

captions. We used the story sentences and captions 396

to create the noun tag dictionary. 397

COCO Captions (Lin et al., 2014): contains 398

∼164K images paired with 5 human-annotated cap- 399

tions. We use the training and validation set as the 400

matching captions for the test set are not in public. 401

Flickr30K (Young et al., 2014): has 31K images 402

collected from Flickr, each with 5 reference cap- 403

tions provided by human annotators. 404

Concreteness Ratings 40K (Brysbaert et al., 405

2014): presents concreteness ratings for ap- 406

proximately 40K most common English lem- 407

mas/expressions, crowdsourced from over 4000 408

participants. Concreteness measures how much a 409

word relates to something tangible and perceptible. 410

4.2 Human Evaluation: MMCOMET Quality 411

We conduct a human evaluation to check whether 412

the collected images closely match the common- 413

sense phrase. For this, 60 commonsense phrases 414

(20 heads, 40 tails) were randomly sampled for 415

each of the 19 relations, resulting in 1140 common- 416

sense phrases being manually checked. The 1140 417

samples were divided among 3 annotators, and for 418

5Implementation details can be found in Appendix A

5

https://images.google.com/


each sample, the annotator was given the top 7 im-419

ages corresponding to the commonsense head/tail420

phrase. Out of the 7 images, they recorded how421

many of the images ‘fully’ and partially’ matched422

the phrase. A ‘full match’ means that all concepts423

mentioned and implied by the commonsense phrase424

are present in the image, whereas a ‘partial match’425

means that some important concept mentioned in426

the commonsense phrase is absent from the im-427

age (however, the overall theme of the image is428

still related to the phrase). Specific examples of429

fully and partially matched images are presented430

in Appendix D. For this study, we also ensure that431

50% of the sampled commonsense utilised web432

search. Furthermore, we ask annotators to rate the433

concreteness level of the commonsense phrase as434

either ‘Low’, ‘Medium’ or ‘High’ where ‘High’435

means that the commonsense phrase can be easily436

visually grounded whereas ‘Low’ means that the437

phrase contains abstract/intangible terms, thus mak-438

ing it harder to visualise. As each 1140 samples439

was presented with 7 images, the annotators anal-440

ysed 7980 commonsense-image pairs altogether.441

After the study, we computed the proportion of442

samples with more than 5 out of 7 fully and par-443

tially matched images.444

4.3 Downstream Task: Visual Storytelling445

Method: Visual storytelling (VST) requires a446

model to generate a human-like and visually447

grounded story given a sequence of 5 images448

(Huang et al., 2016). We explore whether using the449

images from MMCOMET can improve common-450

sense reasoning in VST models. Specifically, we451

perform experiments with SCO-VIST (Wang et al.,452

2024), a social-interaction commonsense-enhanced453

VST framework that employs external knowledge454

relating to socially-triggered situations and reac-455

tions to generate high quality stories. The 3 stages456

of SCO-VIST are outlined in detail in Appendix B.457

For our experiments, we adopt the same approach458

as SCO-VIST but enhance the story graph by con-459

verting it into a ‘multi-modal’ graph. In SCO-VIST,460

each node in the graph only has a textual modal-461

ity (e.g. a caption description or commonsense462

phrase). We incorporate image features into the463

story graph by using the generated commonsense464

phrase to query MMCOMET to find the matching465

image. For simplicity, if the commonsense phrase466

is not found in MMCOMET, we just delete the467

node from the story graph. The CLIP features of468

the top found image is then concatenated with the469

textual features for the commonsense nodes in the 470

story graph while for the caption nodes, we directly 471

use the image features from the image sequence 472

prompt. The story graph edge weights are then 473

recalculated by taking the cosine similarity of ad- 474

jacent nodes and the following steps in Stage 3 475

remain the same to obtain the storyline. We experi- 476

ment decoding the story with large vision language 477

models and feed in the MMCOMET and VIST im- 478

ages in addition to the textual storyline. Appendix 479

E provides a visual depiction of the framework. 480

Evaluation Metrics: We follow Wang et al. (2024) 481

and use RoViST (Wang et al., 2022), an unrefer- 482

enced metric set for visual storytelling consisting 483

of 3 scores that target visual grounding (RoViST- 484

VG), language coherence (RoViST-C) and repeti- 485

tion (RoViST-NR). Moreover, we consider other 486

unreferenced NLG metrics such as Perplexity and 487

UNION (Guan and Huang, 2020). For analysing 488

semantic similarity, SPICE (Anderson et al., 2016), 489

BLEURT (Sellam et al., 2020) and MoverScore 490

(Zhao et al., 2019) is further adopted. 491

5 Results 492

5.1 Human Evaluation Study 493

Table 2 displays the results of the human evaluation 494

study. We show the percentage of commonsense 495

cases with high concreteness that achieved at least 496

5 fully matched plus partial matched (FM+PM) 497

and fully matched (FM) images across the samples 498

using only web search (WSE), only open-source 499

data (OID) as well as across both image sources 500

(Both). Firstly, when considering both image 501

sources, FM+PM was 90.7% and FM was 77.5% 502

for all relations. While the FM score may seem 503

relatively low, we emphasise that FM+PM which 504

considers partially matched images is still quite 505

high. Moreover, we note that partially matched im- 506

ages are still highly relevant to the commonsense 507

phrase and may be useful when applied to a down- 508

stream task (as shown in examples of Figure 3). To 509

assess the level of agreement between the 3 annota- 510

tors, the intraclass correlation was also computed 511

on a random sample of 50 cases. This was found 512

to be 0.76 and 0.82 for FM+PM and FM respec- 513

tively, indicating a very good level of agreement. 514

Secondly, analysing the percentage differences be- 515

tween WSE and OID, we find that web search has 516

greater matching accuracy compared to when us- 517

ing similarity matching with images from caption- 518

ing/storytelling datasets. This is unsurprising given 519

6



Web (WSE) Open-source Data (OID) Both
Physical FM+PM FM FM+PM FM FM+PM FM

ObjectUse 100 73 96 76 98 74.5
AtLocation 100 92.9 100 100 100 96.4
MadeUpOf 100 100 89.3 89.3 94.1 94.1
HasProperty 92.6 92.6 88.5 84.6 90.6 88.7
CapableOf 95.8 87.5 95.8 70.8 95.8 79.2

Desires 100 95.7 100 72 100 83.3
NotDesires 100 92.6 88 72 94.2 82.7

Event FM+PM FM FM+PM FM FM+PM FM
isAfter 91.3 69.6 77.3 45.5 84.4 57.8

HasSubEvent 96.3 92.6 92.9 71.4 94.5 81.8
isBefore 87.5 62.5 88.9 63 88.2 62.7

HinderedBy 86.7 73.3 76.2 42.9 80.6 55.6
Causes 96.2 96.2 87.5 79.2 92 88
Reason 100 92 83.3 75 91.8 83.7
Social FM+PM FM FM+PM FM FM+PM FM
Need 90.5 81 85.7 71.4 88.1 76.2
Attr 92 80 89.5 78.9 90.9 79.5

Effect 95 90 61.9 42.9 78 65.9
React 90.9 86.4 61.1 55.6 77.5 72.5
Want 80.8 73.1 86.4 50 83.3 62.5
Intent 95 80 88.2 58.9 91.9 70.3

All Relations 94.5 85.2 87 69.7 90.7 77.5

Table 2: Results from the human evaluation study anal-
ysed across the relations showing the proportion of com-
monsense phrases successfully matched with the col-
lected images. First column (WSE) shows cases that
used web search as the image source, second columns
(OID) shows cases that used the Similarity Matching
approach with open-source image datasets and last col-
umn show all analyzed commonsense phrase samples.
FM means ‘Full Match’ and PM means ‘Partial Match’.
Only commonsense annotated with a ‘High’ concrete-
ness level are considered here (897 samples).

that the search engine is sensitive to mentions of520

exact terms in the commonsense phrase, resulting521

in images that can closely match the input query.522

In particular, for WSE, the FM+PM and FM rate523

for all relations was over 94% and 85% respec-524

tively, compared to 87% and 69% for OID. It is525

noted that while the matching rate for OID images526

is lower, the majority (∼ 72%) of commonsense in527

MMCOMET utilises web search.528

Lastly, considering the results across different529

relation categories, we discover that physical rela-530

tions have a higher matching rate than social and531

event-based commonsense relations. Considering532

both image sources, on average, the FM+PM rate533

for the physical, event and social relations was534

96.1%, 88.4% and 85%, respectively. Addition-535

ally, the FM rate is on average 10.5%, 17%, and536

13.8% lower than the FM+PM rate respectively for537

physical, event and social relations. Physical re-538

lations being the easiest to match is unsurprising539

as these commonsense usually consist of single540

words which are tangible nouns (e.g. ‘cat’, ‘cof-541

fee’). However, event and social commonsense542

tend to be longer phrases containing subtleties re-543

lating to human emotions and behaviours that are544

hard to visually capture. Specifically, based on 545

FM+PM, when considering both image sources, 546

React and Effect seem to be the most challeng- 547

ing with a matching rate of ∼77% . These relations 548

also have low concreteness (see Table 4). 549

5.2 Visual Storytelling Results 550

Table 3 shows the results of the VST experiments. 551

The first 2 rows are obtained from the SCO-VIST 552

paper (Wang et al., 2024) and were chosen as base- 553

lines as they achieved the highest RoViST and 554

R+S+B+M+U score. Here, SRL-pmi calculates the 555

story graph weights by adopting Point Mutual Infor- 556

mation (PMI) between adjacent nodes, and TGCN- 557

SRL-cos utilises a TGCN (Temporal Graph Neural 558

Network) to first extract the story graph node em- 559

beddings and their cosine similarities are then used 560

to refine the story graph weights. For both models, 561

BART (Lewis et al., 2019) was employed as the 562

story decoder. The last 4 rows are our experiments, 563

which predominately follow the same method as 564

the original SCO-VIST framework (as described 565

in Section 4.3). Specifically, VILT-pmi/cosine uses 566

PMI/cosine similarity to obtain the graph weights, 567

replaces BART with the VILT vision-language 568

(V-L) transformer (Kim et al., 2021) and further, 569

feeds the 5 VIST images as inputs in addition to 570

the textual storyline. Meanwhile, the LLaVa ex- 571

periments are like the VILT experiments but re- 572

place VILT with the LLaVA V-L transformer (Liu 573

et al., 2024) and incorporate knowledge from MM- 574

COMET. Specifically, LLaVA-cos-MMCOMETS 575

enriches the story graph with MMCOMET image 576

embeddings and the input into the LLaVA story de- 577

coder is the storyline obtained from the multimodal 578

story graph + 5 VIST images. And finally, LLaVA- 579

cos-MMCOMETS+I additionally feeds the MM- 580

COMET images along with the MMCOMET en- 581

riched storyline and the 5 VIST images. Com- 582

paring the VILT experiments with the SCO-VIST 583

experiments, we observe that using V-L models 584

slightly improves the RoViST score to 79∼80 with 585

most of the improvement attributed to RoViST- 586

C (coherency) and RoViST-NR (non-redundancy). 587

Despite this, when considering the overall metric 588

R+S+B+M+U, the VILT experiments still do not 589

yield a higher score than the baselines with the best 590

VILT experiment giving an overall score of 261.8, 591

1.6 points lower than the best baseline. However, 592

when incorporating MMCOMET images into the 593

story graph for storyline extraction (LLaVA-cos 594

MMCOMETS), we observe a significant improve- 595
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Model R-VG R-C R-NR RoViST (R) SPICE (S) BLEURT (B) MoverScore (M) UNION (U) Perplexity R+S+B+M+U Story L.

SRL-pmi 70.4 72.8 91.6 78.3 11.5 34.7 56.0 75.9 14.7 256.3 51.2
TGCN-SRL-cos 70.3 72.3 90.5 77.7 10.9 34.9 56.0 84.0 14.9 263.4 52.3
VILT-pmi 71.3 76.4 92.1 79.9 10.2 35.1 54.4 82.2 13.2 261.8 51.2
VILT-cos 70.2 76.3 94.2 80.2 9.3 34.3 52.1 83.3 12.1 259.2 50.1
LLaVA-cos-MMCOMETS 73.3 78.4 95.8 82.5 9.9 35.2 54.2 82.6 10.8 264.4 50.8
LLaVA-cos-MMCOMETS+I 75.2 79.1 96.2 83.5 10.2 36.7 57.4 84.2 11.2 272.9 53.4

Table 3: Automatic metrics and average story length (Story L.) for the 2 baselines (SRL-pmi and TGCN-SRL-cos)
versus our experiments (bottom 4 rows). For Perplexity, a lower score is better. R+S+B+M+U is the sum of RoViST,
SPICE, BLEURT, MoverScore and UNION. R- represents RoVist.

ment in all RoViST metrics, ultimately yielding596

an overall RoViST of 82.5, implying that better597

storylines can be extracted with a multimodal story598

graph. While SPICE, BLEURT, MoverScore and599

UNION remain similar with the VILT models, Per-600

plexity outperforms significantly at 10.8. Finally,601

we observe the largest improvement in the LLaVA-602

cos-MMCOMETS+I experiment which adds MM-603

COMET images to the input of the V-L model.604

In particular, RoViST-VG, C and NR improve605

by 1.9, 0.7 and 0.4, respectively, when compared606

with LLaVA-cos-MMCOMETS. BLEURT, Mover-607

Score and UNION also outperformed the baselines608

and other experiments, resulting in the highest over-609

all R+S+B+M+U of 272.9, thus illustrating the ef-610

fectiveness of incorporating multimodal common-611

sense from MMCOMET.612

5.3 Qualitative Analysis613

To further illustrate the effect of using MMCOMET614

in visual storytelling, we show a selection of615

story frames in Table 7 (from Appendix J) with616

the outputs of the baseline model (SRL-pmi) and617

ours (LLaVA-cos-MMCOMETS+I ). The exam-618

ples highlight how the storyteller model leverages619

MMCOMET’s holistic commonsense, and pro-620

duces more engaging narratives. Across all ex-621

amples, the baseline provides simple descriptions622

lacking specificity and emotional depth. In contrast,623

our method generates stories with detailed context.624

For instance, in the handmade goods example, the625

baseline states “Merchants set up their booths”,626

while our method enhances this by specifying that627

the booths were “vibrant” and filled with “hand-628

made goods”, capturing both the visual richness629

and the nature of the items being sold (physical630

knowledge). Similarly, in the dad joke example,631

the baseline provides the generic sentence “A father632

told a humorous joke”. While this description is633

accurate, it lacks any emotional depth. Our version634

adds social nuance by describing the joke as “one635

of his typical, good-natured jokes”. It recognizes636

the other individuals in the scene and their facial 637

emotion, “that had everyone in stitches” (physical 638

and social knowledge). In the family gathering 639

frame (third example), the baseline only notes “It 640

was a family gathering”, whereas our method sit- 641

uates the event “in a restaurant where everyone 642

enjoyed various delicacies”. This added detail not 643

only describes the physical setting but also suggests 644

cultural or social practices associated with family 645

gatherings, such as sharing meals (eventive and 646

social knowledge). Another compelling example 647

is the birthday scenario. The baseline provides 648

a factual, but flat, statement: “Celebrated with a 649

birthday cake”. Conversely, our method enriches 650

the narrative by describing a common birthday 651

ritual: “Blowing out the candles of her birthday 652

cake, she made a wish for happiness and adven- 653

ture”. This reflects an understanding of the event 654

and the emotional aspirations tied to such moments 655

(eventive and emotional knowledge). These ex- 656

amples demonstrate how our method integrates all 657

types of commonsense knowledge to produce more 658

context-rich narratives. By going beyond mere ob- 659

ject and event recognition, our model captures the 660

subtleties of human experiences, making the stories 661

more engaging and authentic. 662

6 Conclusion 663

We introduced MMCOMET, the first multimodal 664

commonsense knowledge graph that integrates 665

physical, social, and eventive knowledge to en- 666

hance complex reasoning tasks like visual story- 667

telling. By extending ATOMIC2020 with a visual 668

dimension and over 900K triples, MMCOMET 669

addresses key limitations of existing KGs and 670

MMKGs, enabling richer, more contextually aware 671

outputs. Experiments show significant perfor- 672

mance improvements, with our model producing 673

more detailed, coherent, and human-like narratives. 674

MMCOMET sets a new foundation for multimodal 675

reasoning, with future work aimed at expanding to 676

additional modalities and applications. 677
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7 Limitations678

Cultural bias in visual data: While our work fo-679

cuses on offering context-aware data, the image680

retrieval process may introduce cultural biases, af-681

fecting the diversity and fairness of the knowledge682

graph. For this, augmenting MMCOMET with683

cultural commonsense knowledge (Nguyen et al.,684

2023) is a much needed next step.685

Contextual limitations due to KG incomplete-686

ness: Due the incompleteness of existing com-687

monsense knowledge graphs (because of the open-688

world assumption (Razniewski et al., 2024)) and689

potentially highly nuanced or context-specific sce-690

narios, our method might struggle with instances691

that require deeper world knowledge beyond the692

existing triples.693

Ambiguity in visual data interpretation: Inter-694

pretation of visual data can be inherently subjective,695

with different observers potentially deriving differ-696

ent meanings from the same image. This poses697

a challenge for incorporating certain visual data698

into commonsense models. In scenarios where699

the visual context is highly complex or ambiguous,700

the model might produce reasoning that potentially701

misinterpret the underlying intent.702
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A Implementation Details1009

We filter out any tuples from ATOMIC2020 where1010

the head or tail phrase was missing. Additionally,1011

we remove the isFilledBy relations, whereby this1012

tuple typically consisted of a head phrase with a1013

blank space (e.g. ‘PersonX connects ___ together’)1014

and the annotator was required to fill in the blank1015

with an entity (such as ‘lego’, ‘wires’). As it would1016

be difficult to adequately find a matching image1017

for the head phrase due to the blank space, we1018

decided to not include this relation type in MM-1019

COMET. After filtering, MMCOMET consists of1020

989K commonsense tuples with 578K unique com-1021

monsense phrases over 19 relations. We used the1022

NLTK toolkit’s part-of-speech tagger (Bird et al.,1023

2009) to tag the nouns from the human written im-1024

age descriptions, to filter out stopwords and also for1025

lemmatising the words. The ‘clip-vit-base-patch32’1026

version of the CLIP model (Radford et al., 2021)1027

was used as the text and image embedder. For com-1028

monsense phrases requiring web search, we used1029

Serper’s Search Engine Scraping API 6 to scrape1030

top 10 images from the Google search engine, en-1031

abling autocorrect. Each commonsense phrase has1032

10-15 images (phrases using web search will tend1033

to have more).1034

B SCO-VIST Visual Storytelling1035

Framework1036

The 3 stages of SCO-VIST (Wang et al., 2024) are1037

outlined are follows: 1) Given an image sequence1038

prompt, the framework starts by using a pretrained1039

captioning model to generate a caption for each1040

image which serves as a literal description of the1041

event depicted in the image. Comet-ATOMIC20201042

(Hwang et al., 2021), a language model trained1043

on the ATOMIC2020 graph is then used to obtain1044

additional social and event-based commonsense.1045

Given a head/source phrase and relation (e.g. eat a1046

cake Intent), Comet-ATOMIC2020 is capable of1047

producing a tail phrase on-demand (e.g. celebrate1048

birthday). To query Comet-ATOMIC2020, the im-1049

age captions are used as the head phrase to generate1050

several commonsense tails relating to events that1051

could potentially occur before and after the event1052

represented in the current caption. In Stage 2), the1053

generated commonsense phrases and image cap-1054

tions are then organised in a temporal weighted1055

story graph where each node in the graph repre-1056

sents a possible plot point and the edge weights1057

6https://serper.dev/

represent the likelihood of transitioning from one 1058

plot point to another. Finally in Stage 3), a shortest 1059

path searching algorithm is employed to identify 1060

the optimal storyline, which is subsequently fed 1061

into an NLG model for story decoding. 1062

C Concreteness by Relation Type 1063

We analyze the average concreteness scores per 1064

relation type and show the results in the first sub- 1065

table of Table 4. As expected, the physical rela- 1066

tions (blue highlighted) yield higher mean concrete- 1067

ness scores than the social-interaction (green) and 1068

eventive (orange) relation types with the exception 1069

of isBefore and isAfter. In particular, the so- 1070

cial relations on average produced lower scores, 1071

most likely due to these commonsense containing 1072

more abstract terms. For instance, examining the 1073

relations with the lowest concreteness scores, the 1074

React relations typically involve human emotion 1075

descriptions (curious, honoured) while Attr con- 1076

sists of mostly adjective mentions (irresponsible, 1077

unethical). In the middle and right sub-table, we ad- 1078

ditionally report the proportion of head/tail com- 1079

monsense phrases per relation type that required 1080

web search based on the concreteness threshold. 1081

Generally, the trend is similar with social and even- 1082

tive relations requiring more web searches as at- 1083

tributed to their lower average concreteness scores. 1084

However, the trend is less apparent for the tail 1085

phrases with physical relations like HasProperty, 1086

NotDesires/Desires reporting over 70%, whilst 1087

their head counterpart yielded relatively low pro- 1088

portions. This is perhaps unsurprising as relations 1089

like HasProperty, and NotDesires/Desires typ- 1090

ically mention a tangible noun entity in the head 1091

phrase, resulting in higher concreteness score for 1092

the head, whereas the tail phrase will often con- 1093

sist of a more abstract description. For example, 1094

for the NotDesires/Desires relations, desires are 1095

derived from human emotions and therefore, the 1096

tail commonsense phrase may sometimes be sim- 1097

ilar in nature to social-interaction commonsense 1098

e.g. < student, Desires, ask a question >. 1099

Moreover, we find that HasProperty which aims 1100

to describe an entity’s general characteristic will 1101

sometimes mention adjectives in the tail (e.g. < 1102

panda, HasProperty, quiet >, thus making it 1103

harder to visually ground. 1104
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Relation Avg. Concreteness Relation % Heads Searched Relation % Tails Searched
React (94228) 2.95 NotDesires 2.82 AtLocation 25.52
Attr (115815) 2.98 Desires 2.85 MadeUpOf 36.47
Causes (376) 3.29 AtLocation 18.78 isAfter 48.98
Intent (49312) 3.40 MadeUpOf 20.03 isBefore 53.50
Effect (113494) 3.53 HasProperty 22.77 CapableOf 59.55
Reason (334) 3.55 CapableOf 23.98 HinderedBy 64.72
HasSubEvent (12845) 3.58 ObjectUse 25.26 ObjectUse 67.65
Want (110831) 3.58 Reason 50.90 HasProperty 71.46
Need (89391) 3.65 Intent 51.76 HasSubEvent 73.03
HinderedBy (106647) 3.80 Need 54.11 NotDesires 74.03
HasProperty (5617) 3.80 React 54.85 Need 75.94
Desires (2737) 3.88 Effect 54.85 Reason 76.35
ObjectUse (165590) 3.90 isAfter 55.96 Effect 76.54
isBefore (23208) 3.91 isBefore 56.07 Causes 77.93
NotDesires (2838) 3.91 Want 56.15 Desires 79.65
isAfter (22453) 3.94 HinderedBy 56.19 Want 80.92
CapableOf (7968) 3.96 Attr 57.13 Intent 90.35
MadeUpOf (3345) 4.08 HasSubEvent 60.19 Attr 98.82
AtLocation (20221) 4.15 Causes 65.96 React 99.48

Table 4: The left sub-table shows the average concreteness scores for each commonsense relation (sample size
in brackets) sorted in ascending order. The second and third sub-table shows the proportion of heads and tail
phrases across each relation that required web search sorted in ascending order. Green, orange and blue highlighting
indicates social, event and physical relations respectively.

D Fully vs. Partially Matched Images1105

Figure 3 shows examples of what we consider a1106

full versus partial match for an image. An image1107

is a full match if all the actions and concepts in1108

the commonsense phrase are presented in the im-1109

age. On the other hand, it is a partial match if1110

some aspect is missing but the overall theme of the1111

image still matches the commonsense phrase and1112

will therefore still be useful if applied to the down-1113

stream task. In the first (‘PersonX gets in the car’)1114

and third example (‘PersonX eats sandwiches for1115

lunch’), the left image is considered a full match1116

as the images clearly show the action of a person1117

entering a car and eating a sandwich respectively.1118

Conversely, the images on the right are considered1119

partial matches as for the first example, the image1120

on the right just shows a person in the car but the1121

action of ‘getting into the car’ is missing. Likewise,1122

for the third example, the image on the right sim-1123

ply depicts sandwiches but the action of ‘eating’1124

is absent. For the second (‘PersonX gives toys for1125

Christmas’) and fourth example (‘PersonX loves to1126

garden’), an important noun or concept is missing1127

from the partially matched images. Specifically, for1128

the second example, although the action of ‘giving’1129

is present in the image on the right, the tangible1130

noun ‘toys’ is not visually captured whereas the left1131

image of a child holding a toy bear heavily implies1132

she had received it from another person. Similarly,1133

the image on the right in the fourth example is miss- 1134

ing the important entity ‘person’ whereas the left 1135

image is a full match as it clearly depicts a person 1136

happy in his garden. 1137

Figure 3: Examples of a fully matched image (left)
and partially matched image (right) for each 4 different
commonsense phrases.
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E Multimodal Commonsense Enhanced1138

Visual Storytelling1139

Figure 4 depicts how SCO-VIST’s storygraph is1140

enhanced with multimodal information from MM-1141

COMET. Textual commonsense from the original1142

story graph is used to query MMCOMET to find the1143

matching visual modality. The visual embedding1144

and text embedding is conatenated to create the1145

multimodal story graph. Following SCO-VIST, the1146

graph edge weights are computed by calculating1147

cosine similarity of adjacent nodes, and the story-1148

line is then extracted from the multimodal graph1149

via a shortest path searching algorithm. The textual1150

storyline plus the MMCOMET and VIST images1151

are finally fed into a V-L model (LLaVA) for story1152

generation.1153

Figure 4: SCO-VIST framework enhanced with MM-
COMET knowledge.

F Error Analysis1154

We analyze common errors that occurred in the pro-1155

cess of finding matching images for the common-1156

sense phrase. The 3 main types of errors and visual1157

examples are depicted in Figure 5. One challeng-1158

ing issue that remains is finding matching images1159

for non-visually grounding commonsense. For in-1160

stance, the first 2 commonsense examples in Figure1161

5, ‘rhetoric’ and ‘leap year’ are very abstract terms1162

and hence, difficult to visually ground even when1163

employing web search. Consequently, the images1164

obtained usually contains text or quotes as with the1165

case for the matched images found for ‘rhetoric’.1166

In other cases, the retrieved images may sometimes1167

be related to movies or media where the title of1168

the media is similar to the commonsense phrase1169

such as with the case of ‘leap year’ which seems1170

to have retrieved images related to a movie that has 1171

the same name as the commonsense phrase. 1172

Figure 5: Examples of retrieved images for 3 different
error cases found during the image collection stage.

The second issue found was that sometimes the 1173

relationship between people and concepts in the 1174

commonsense phrase is not sufficiently captured by 1175

the image. This typically occurs when the phrase 1176

mentions two people - ‘PersonX’and ‘PersonY’. 1177

For instance, the matching images found from ‘Per- 1178

sonX loves PersonY’s car’ either solely focus on 1179

the idea of ‘love’ as in the left image or the concept 1180

of ‘car’ as in the image on the right. However, the 1181

complex relationship between the first concept of 1182

a ‘person loving’ and the second concept, ‘another 1183

person’s car’, is much more difficult to capture. 1184

Finally, there are cases where the commonsense 1185

phrase mentions violent or inappropriate topics. In- 1186

evitably, these images are most likely blocked by 1187

Google’s web search engine such that the images 1188
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Relation Description Example (<head, relation, tail>)
ObjectUse describes everyday affordances or uses of objects bread ObjectUse make french toast
AtLocation spatially describes the where an entity is likely to be found bread AtLocation pantry
MadeUpOf describes a part, portion or makeup of an entity bread MadeUpOf dough
HasProperty describes entities’ general characteristics bread HasProperty nice to eat
CapableOf describe abilities and capabilities of everyday living entities baker CapableOf coat cake with icing
Desires desire of sentient entity baker Desires quality ingredients
NotDesires non-desire of sentient entity baker NotDesires bad yeast
isAfter events that can follow an event X runs out of steam isAfter X exercises in the gym
HasSubEvent provides the internal structure of an event X runs out of steam HasSubEvent become tired
isBefore events that can precede an event X runs out of steam isBefore X hits the showers
HinderedBy hindrances that obstruct the natural path of an event X runs out of steam HinderedBy drinks too much coffee
Causes causal relation between two events or entities X runs out of steam Causes takes a break
xReason provides a post-fact explanation of the cause of an event X runs out of steam xReason did not eat breakfast
xNeed describes a precondition for an agent to achieve the event X runs out of steam xNeed do something tiring
xAttr describes personas or attributes perceived by others given an event X runs out of steam xAttr old
xEffect actions that happen to agent X that may occur after the event X runs out of steam xEffect drinks some water
oEffect actions that happen to agent Y that may occur after the event X votes for Y oEffect receives praise
xReact emotional reactions of agent X in an event X runs out of steam xReact tired
oReact emotional reactions of agent Y in an event X votes for Y xReact grateful
xWant agent X’s postcondition desires after an event X runs out of steam xWant to get some energy
oWant agent Y’s postcondition desires after an event X votes for Y xWant thank X
xIntent defines the likely intent of an agent X votes for Y xIntent to give support

Table 5: Different Relations in Comet-ATOMIC2020 and corresponding examples. Examples and definitions taken
from the official Comet-ATOMIC2020 paper (Hwang et al., 2021).

obtained may not fully match the search phrase.1189

For example, for the commonsense phrase ‘com-1190

mit murder’, we again obtained images related to1191

movies/television shows as shown in the left image.1192

At best, we tend to obtain images that are partial1193

matches such as in the image on the right where1194

the action is not explicitly shown but is implied.1195

G Comet-ATOMIC2020 Relation Types1196

Table 5 shows the different relations and their defi-1197

nitions, as well as corresponding examples in the1198

original Comet-ATOMIC2020 graph. Green, or-1199

ange and blue highlighting indicates social, event1200

and physical relations respectively. Note that for1201

simplicity, in this paper, we refer to xEffect and1202

oEffect as Effect, xReact and oReact as React,1203

and xWant and oWant as Want. The x prepended1204

in front of the relation name is also removed for1205

consistency e.g. xNeed is referred to as Need.1206

H Graph Statistics1207

Table 6 shows the number of unique nodes, total1208

edges, unique web searched images, unique im-1209

ages acquired from open-source datasets and total1210

unique images for each relation, and across all re-1211

lations.1212

I Human Evaluation Information1213

We conducted our annotation process with three an-1214

notators: a PhD student, a Postdoctoral researcher,1215

and an Associate Professor. These annotators were 1216

recruited based on their expertise in the relevant 1217

research to ensure high-quality annotations. Our 1218

annotators come from diverse geographical back- 1219

grounds—Asia, Australia, and Europe—reflecting 1220

a broad perspective in the annotation process. The 1221

human evaluation was conducted on a voluntary ba- 1222

sis, and no monetary compensation was provided. 1223

Before participation, we provided clear instructions 1224

explaining the purpose of the evaluation and how 1225

the collected data would be used. The annotators 1226

were informed that their feedback would contribute 1227

to the assessment and refinement of our system’s 1228

performance, and they participated with full aware- 1229

ness and consent. 1230

Relation # Nodes # Edges # WSE Images # OID Images # Total Images
ObjectUse 137,144 165,590 767,124 242,211 1,009,335
AtLocation 11,216 20,221 35,204 62,730 97,934
MadeUpOf 3,464 3,345 11,047 24,651 35,698
HasProperty 6,123 5,617 32,233 35,738 67,971
CapableOf 8,872 7,968 45,005 44,675 89,680

Desires 2,832 2,737 18,750 14,911 33,661
NotDesires 2,991 2,838 18,312 15,602 33,914

isAfter 36,181 22,453 162,312 97,386 259,698
HasSubEvent 10,670 12,845 67,522 42,541 110,063

isBefore 37,482 23,208 175,957 96,981 272,938
HinderedBy 103,844 106,647 588,983 164,975 753,958

Causes 531 376 3,299 3,471 6,770
Reason 441 334 2,622 2,888 5,510
Need 80,575 89,391 490,672 136,668 627,340
Attr 29,650 115,815 175,477 73,072 248,549

Effect 90,983 113,494 567,801 134,982 702,783
React 35,537 94,228 228,856 77,635 306,491
Want 107,268 152,989 689,798 146,314 836,112
Intent 45,771 49,312 292,494 92,549 385,043

All 571,404 989,408 3,476,098 435,695 3,911,793

Table 6: Graph statistics for MMCOMET showing total
unique nodes, edges, web-searched images, open-source
dataset images and total images across the different
relations.
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J Qualitative Anlaysis: Visual Storytelling with MMCOMET 1231

Image Baseline (SRL-pmi) Ours (LLaVA-cos-MMCOMETS+I )

Merchants set up their booths.
Merchants set up vibrant booths filled
with handmade goods.

A father told a humorous joke.
Dad then shared one of his typical,
good-natured jokes that had everyone
in stitches.

It was a family gathering.
It was a family gathering in a restau-
rant where everyone enjoyed various
delicacies.

Celebrated with a birthday cake.
Blowing out the candles of her birth-
day cake, she made a wish for hap-
piness and adventure.

Seating provided a close-up perspec-
tive.

We were lucky enough to get to the
game early, and our seats were mag-
nificent.

He longed for an outing on his new
bicycle.

He planned to take a leisurely ride
on his new bike while enjoying the
serene views of the lake.

We later enjoyed a meal together, sa-
voring the wine.

We all sat together at a long table to
enjoy the meal and wine.

Table 7: Selected story frames and their associated text to showcase the effect of MMCOMET in visual story telling.
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K MMCOMET Qualitative Examples1232

Figure 6 and 7 show examples of several relations, each with 3 matching image examples for each of the1233

head and tail are shown. Blue, orange and green arrows indicate physical, eventive and social interaction1234

relations respectively. Images with red borders indicate images obtained from opensource datasets while1235

images with blue borders indicate web searched images.1236

Figure 6: Examples of retrieved images for each head/tail for several relations.

18



Figure 7: Examples of retrieved images for each head/tail for several relations.
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