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Abstract

Combining reinforcement learning with language grounding is challenging as the agent needs
to explore the environment while simultaneously learning multiple language-conditioned
tasks. To address this, we introduce a novel method: the compositionally-enabled rein-
forcement learning language agent (CERLLA). Our method reduces the sample complexity
of tasks specified with language by leveraging compositional policy representations and a
semantic parser trained using reinforcement learning and in-context learning. We evaluate
our approach in an environment requiring function approximation and demonstrate com-
positional generalization to novel tasks. Our method significantly outperforms the previous
best non-compositional baseline in terms of sample complexity on 162 tasks designed to
test compositional generalization. Our model attains a higher success rate and learns in
fewer steps than the non-compositional baseline. It reaches a success rate equal to an oracle
policy’s upper-bound performance of 92%. With the same number of environment steps,
the baseline only reaches a success rate of 80%.

1 Introduction

An important goal of reinforcement learning (RL) is the creation of agents capable of generalizing to novel
tasks. Natural language provides an intuitive way to specify a variety of tasks, and natural language has
important properties: its structure is compositional and often mirrors the compositional structure of the
tasks being described.

∗Equal contribution.
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In-Context Examples
pick up a red object or a ball → Symbol_0 | Symbol_7 

pick up a red ball → Symbol_0 & Symbol_7 

pick up a green ball → Symbol_0 & Symbol_2 
...
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Figure 1: Pipeline diagram of the learning process for the CERLLA agent. The agent takes in a BabyAI
language mission command and a set of 10 in-context examples that are selected using the BM25 search
retrieval algorithm (Robertson et al., 2009). The agent produces 10 candidate Boolean expressions. These
expressions specify the composition of the base compositional value functions. Each compositional value
function is instantiated in the environment and the policy it defines is evaluated over 100 rollouts. If the
success rate in reaching the goal is greater than 92%, the expression is considered a valid parse of the language
instruction and is added to the set of in-context examples.

While previous works have attempted to use natural language to specify tasks for RL agents (Ahn et al.,
2023; Blukis et al., 2020), here we exploit the compositional nature of language along with compositional
policy representations to demonstrate improvements in sample complexity and generalization in solving novel
tasks.

Previous approaches to mapping language to behaviors use policies learned using imitation learning (Silva
et al., 2021; Ahn et al., 2023; Blukis et al., 2020). In this work, we instead focus on the setting where the
agent does not have access to supervised demonstrations and instead learns to ground language to specified
behaviors with RL. The challenge in this approach is the significantly higher sample complexity of RL-
based methods when grounding behaviors. Agents must map a variety of potential language instructions to
unknown corresponding behaviors. Pretraining and transfer learning offers one possible solution. In natural
language processing, pretraining language models such as BERT (Devlin et al., 2019) and GPT-4 (OpenAI,
2023) have enabled substantial reductions in sample complexity of solving novel NLP tasks. However, in RL
there is a lack of pretrained policy representations that can be fine-tuned using novel examples in few-shot
settings.

In CERLLA RL policy learning, “pretraining” instead involves learning representations that can be com-
posed to solve novel tasks (Todorov, 2009; Nangue Tasse et al., 2020). For instance, Nangue Tasse et al.
(2020) demonstrate zero-shot task solving using compositional value functions and Boolean task algebra.
The value functions are composed using Boolean operators to produce new complex behaviors. But these
methods require manual specification of the Boolean expressions that describe value function composition,
thus limiting their application to novel tasks. We overcome this and use RL to learn to compose the value
functions, given a task description in natural language.

Our method uses these compositional value functions and pretrained language models to solve a large number
of tasks using RL while not relying on curricula, demonstrations, or other external aids to solve novel
tasks. Leveraging compositionality is essential to solving large numbers of tasks with shared structure. The
sample complexity of learning a large number of tasks using RL is often prohibitive unless methods leverage
compositional structure (Mendez-Mendez & Eaton, 2023).

This work builds on the Boolean compositional value function representations of Nangue Tasse et al. (2020)
to construct a system for learning compositional policies for following language instructions. Our insight is
that language commands reflect the compositional structure of the environment, but without compositional
RL representations, this structure cannot be used effectively. Language, therefore, unlocks the utility of
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compositional RL, allowing us to not only compose base policies but also negate specific behaviors to solve
tasks such as “Don’t start the oven.” These language-conditioned compositional RL policies can be used as
pretrained general-purpose policies, and novel behaviors can be added as needed when solving new tasks.
Moreover, the composed policies themselves are interpretable as we can inspect the base policies from which
they are composed.

Our primary contributions are as follows:

1. We present a novel approach for solving RL tasks specified using language. The policies for the
tasks are represented as conjunctions, disjunctions, and negations of pretrained compositional value
functions.

2. We combine in-context learning with feedback from environment rollouts to improve the semantic
parsing capabilities of an LLM. To our knowledge, our method is the first to learn a semantic parser
using only in-context learning with feedback from environment rollouts.

3. We solve 162 unique tasks within an augmented MiniGrid-BabyAI domain (Chevalier-Boisvert et al.,
2023; 2019) which, to our knowledge, is the largest set of simultaneously-learned language-RL tasks.

4. Our method significantly outperforms the previous best non-compositional baseline in terms of
sample complexity. Our compositional model attains a success rate equal to an oracle policy’s
upper-bound performance of 92%. With the same number of environment steps, the baseline only
reaches a success rate of 80%.

2 Background

BabyAI Domain

Because we build on the compositional value function representations of Nangue Tasse et al. (2020), our
method is applicable to any environment with goal-reaching tasks, the ability to learn value functions through
RL, and language instructions. To evaluate our method, we select the BabyAI MiniGrid domain (Chevalier-
Boisvert et al., 2019), an easily extensible test-bed for compositional language-RL tasks used in many recent
language-RL works including (Carta et al., 2022; Li et al., 2022). It has language commands, image-state
observations, a discrete action space, and objects with both color and type attributes. We augment BabyAI
with 162 compositional tasks specified using intersection, disjunction, and negation. The appendix provides
a full list of task attributes available in the environment and the grammar of the Boolean expressions. Table 1
provides examples of the types of tasks our method learns. The environment is initialized with one or more
goal objects and distractor objects that are randomly placed.

For each episode in the BabyAI environment, the agent is provided with two forms of input as observations:
a task instruction formulated in natural language and a 56 × 56 × 3 RGB image representing the state of the
environment at each time-step. The objective for the agent is to correctly identify and pick up a specific goal
object, which is described by the task instruction. The goal objects are defined by their attributes: three
shapes and six colors. The combination of these attributes results in 18 unique goal objects that the agent
can pick up. In each episode, the environment contains at least one correct goal object and four additional
“distractor” objects, which are sampled randomly.

We consider the case of an agent required to solve a series of related tasks. Each task is formalized as a
Markov decision process (MDP) ⟨S, A, p, r⟩, where S is the state space and A is the set of actions available
to the agent. The transition dynamics p(s′|s, a) specify the probability of the agent entering state s′ after
executing action a in state s, while r(s, a, s′) is the reward for executing a in s. We further assume that r is
bounded by [rMIN, rMAX]. We focus here on goal-reaching tasks, where an agent is required to reach a set of
terminal goal states G ⊆ S.

Tasks are related in that they differ only in their reward functions. Specifically, we first define a background
MDP M0 = ⟨S0, A0, p0, r0⟩. Then, any new task τ is characterized by a task-specific reward function rτ that
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Figure 2: Example of a task in the BabyAI domain (Chevalier-Boisvert et al., 2019). The agent (red triangle)
needs to complete the mission – “pick up the red key”. Solving this task with compositional value functions
requires using the conjunction of the pickup “red object” and “key” value functions.

is non-zero only for transitions entering g in G. Consequently, the reward function for the resulting MDP is
given by r0 + rτ .

We implement this reward function with a penalty of r0 = −0.1 for each step taken. If the agent chooses the
pickup action upon reaching an object, it observes the picked object, and the episode ends. If the selected
object matches the correct goal as per the task instruction, the agent receives a reward of rτ = +2.

The agent aims to learn an optimal policy π, which specifies the probability of executing an action in a given
state. The value function of policy π is given by V π(s) = Eπ [

∑∞
t=0 r(st, at)] and represents the expected

return after executing π from s. Given this, the optimal policy π∗ is that which obtains the greatest expected
return at each state: V π∗(s) = V ∗(s) = maxπ V π(s) for all s ∈ S. Closely related is the action-value function,
Qπ(s, a), which represents the expected return obtained by executing a from s, and thereafter following π.
Similarly, the optimal action-value function is given by Q∗(s, a) = maxπ Qπ(s, a) for all (s, a) ∈ S × A.

Logical Composition of Tasks using World Value Functions (WVFs)

Recent work (Nangue Tasse et al., 2020; 2022) has demonstrated how logical operators such as conjunction
(∧), disjunction (∨) and negation (¬) can be applied to value functions to solve semantically meaningful
tasks compositionally with no further learning. To achieve this, the reward function is extended to penalise
the agent for attaining goals it did not intend to:

r̄(s, g, a) =
{

r̄MIN if g ̸= s ∈ G
r(s, a) otherwise,

(1)

where r̄MIN is a large negative penalty. The agent receives the unmodified reward r(s, a) for all steps except
where it reaches a different goal state than intended: g ̸= s ∈ G. Given r̄, the related value function,
termed world value function (WVF), can be written as: Q̄(s, g, a) = r̄(s, g, a) +

∫
S V̄ π̄(s′, g)p(s′|s, a)ds′,

where V̄ π̄(s, g) = Eπ̄ [
∑∞

t=0 r̄(st, g, at)].

These value functions are intrinsically compositional since if a task can be written as a logical expression
over previous tasks, then the optimal value function can be similarly derived by composing the learned
WVF’s. For example, consider the PickUpObject environment shown in Figure 1. Assume the agent
has separately learned the task of collecting red objects (task R) and keys (task K). Using these value
functions, the agent can immediately solve the tasks defined by their union (R ∨ K), intersection (R ∧ K),
and negation (¬R) as follows: Q̄∗

R∨K = Q̄∗
R ∨ Q̄∗

K := max{Q̄∗
R, Q̄∗

K}, Q̄∗
R∧K = Q̄∗

R ∧ Q̄∗
K := min{Q̄∗

R, Q̄∗
K},

and Q̄∗
¬R = ¬Q̄∗

R :=
(
Q̄∗

MAX + Q̄∗
MIN

)
− Q̄∗

R, where Q̄∗
MAX and Q̄∗

MIN are the world value functions for the
maximum and minimum tasks respectively.1

1The maximum task is defined by the reward function r = rMAX for all G. Similarly, the minimum task has reward function
r = rMIN for all G.

4



Published in Transactions on Machine Learning Research (12/2024)

3 Methods

We propose a two-step process for training an RL agent to solve Boolean compositional tasks with language.
During an initial pretraining phase, a set of WVFs are learned which can later be composed to solve new
tasks in the environment. This set forms a task basis that can express any task which can be written as a
Boolean algebraic expression using the WVFs.

In a second phase, an LLM learns to semantically parse language instructions into the Boolean compositions
of WVFs using RL and in-context learning. The parser learns this mapping from abstract symbols to WVFs
using RL by observing language instructions and interacting with the environment. Notably, our method
does not require the semantic parser to have access to any knowledge of the underlying basis tasks that the
WVFs represent, and instead regards the WVFs as abstract symbols which can be composed to solve tasks.
Since the semantic parser does not have access to any information about what task a WVF represents, our
method can be applied in principle to any basis of tasks.

Tasks like “pickup the red key” can be represented by taking the intersection of the WVFs for picking up
“red” objects and “key” objects: red ∧ key. Our method also supports negation and disjunction—we can
specify tasks like “pick up a red object that is not a ball”: red ∧ ¬ball. We augment this domain with
additional tasks. For further examples of tasks, see Table 1, which lists the complete set of tasks created
using the attributes yellow and key. We implement the model from Chevalier-Boisvert et al. (2019) as a
non-compositional baseline. This model does not have a pretraining phase for its RL representations, and
in our experiments we account for this discrepancy in training steps by penalizing our agent by the number
of training steps needed to learn the WVFs.

3.1 Pretraining World Value Functions

During pretraining, a set of WVFs is learned which can later be composed to solve any task in the BabyAI
environment. Each WVF takes as input a 56 × 56 × 3 RGB image observation of the environment and
outputs |G| × |A| = 18 × 7 values for accomplishing one of the basis tasks (by maximising over the goal-
action values). As there are nine object attributes (three object type attributes and six color attributes
as listed in the appendix) we train nine WVFs. Each WVF is a value function for the policy of picking
up objects that match one of the nine attributes. However, our method does not require knowledge of the
underlying semantics of the value functions (i.e. the names of the underlying task attributes). We therefore
assign each WVF a random identifier, denoted as Symbol_0 through Symbol_8. While we refer to the
WVFs by their color and object type in the paper, our model does not have access to this information and
only represents the WVFs by their unique identifiers.

Each WVF is implemented using |G| = 18 CNN-DQN (Mnih et al., 2015) architectures. The WVF pre-
training takes nineteen million steps. This is done by first training Q̄∗

MIN (s, g, a) for one million steps
and Q̄∗

MAX(s, g, a) for eighteen million steps (one million steps per goal in the environment). Each ba-
sis WVF Q̄∗

B(s, g, a) is then generated from Q̄∗
MIN (s, g, a) and Q̄∗

MAX(s, g, a) by computing Q̄∗
B(s, g, a) =

Q̄∗
MAX(s, g, a) if rB(g, a) = rMAX else Q̄∗

MIN (s, g, a). This yielded a 98% success rate for each basis WVF.
For more details on WVF pretraining see Sec. 2 and Nangue Tasse et al. (2022), and see the appendix for a
full list of hyperparameters used in WVF training.

3.2 Compositionally Enabled RL Language Agent (CERLLA)

We assume the downstream tasks are distinct from the basis tasks. During downstream task learning, the
pretrained WVFs are composed to solve novel tasks specified in language. To solve BabyAI language-specified
tasks, the agent must interpret the input language command and pick up an object of an allowed type. To
accomplish this, the semantic parser maps from language to a Boolean expression specifying the composition
of WVFs. These Boolean expressions are then composed using a fixed pipeline that takes as input the set
of WVFs and the Boolean expression. This pipeline parses the Boolean expression and returns a composed
WVF. The agent then acts in the environment under the policy of the WVF by taking the action with the
greatest value at each step. If the Boolean expression is not syntactically correct, it cannot be instantiated
as a WVF and the episode terminates unsuccessfully.
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Table 1: Example language instructions and corresponding Boolean expressions for the yellow and box
attributes

Language Instruction Ground Truth Boolean Expression
pick up a yellow box yellow & box

pick up a box that is not yellow ∼ yellow & box
pick up a yellow object that is not a box yellow & ∼ box

pick up an object that is not yellow and not a box ∼ yellow & ∼ box
pick up a box or a yellow object yellow | box

pick up a box or an object that is not yellow ∼ yellow | box
pick up a yellow object or not a box yellow | ∼ box

pick up an object that is not yellow or not a box ∼ yellow | ∼ box
pick up a box box

pick up an object that is not a box ∼ box
pick up a yellow object yellow

pick up an object that is not yellow ∼ yellow

3.2.1 In-Context Semantic Parsing with RL

Table 2: The prompting strategy for the CERLLA semantic parsing module.

Role Content

System “We are going to map sentences to Boolean expressions. The Boolean expression variable
Symbols are numbered 0 to 8, e.g. Symbol_0, Symbol_1... The operators are and : &, or
: |, not : ~. I will now give a new sentence and you will come up with an expression. Now
wait for a new sentence command. Respond with a list of 10 candidate Boolean expressions.
Respond only with the list of Boolean expressions. Never say anything else.”

User (Example) “pick up a red ball”
Assistant “Symbol_0 &Symbol_7”

[Additional in-context examples]

User (Command) “pick up a red object that is not a ball”
Assistant “Symbol_0 & Symbol_1 & ∼ Symbol_2”

“Symbol_3 & ∼ Symbol_4”
“Symbol_5 & Symbol_6 & ∼ Symbol_7”
[Additional candidate expressions]

To implement the semantic parser, we utilize state-of-the-art large language models: GPT 4 (OpenAI, 2023)
and GPT 3.5.2 Our method builds on the work of Shin et al. (2021) which builds a semantic parser using
LLMs and few-shot learning, and Toolformer (Schick et al., 2023) which learns an LLM semantic parser
from weak supervision. Our method is distinct from these approaches in that it utilizes in-context examples
combined with an environment rollout RL signal. At the start of learning, the agent has no in-context
examples of valid mappings from language to Boolean expressions (see Figure 1). At each episode, our agent
is prompted with general instructions defining the semantic parsing task, the input language command, and
up to 10 previously-acquired in-context examples selected using the BM25 retrieval algorithm (Robertson
et al., 2009).

During training, the LLM is sampled with a temperature of 1.0 and produces a beam of 10 semantic parses
(Boolean expressions) of the input language command. Together the temperature and beam width control
the exploitation-exploration trade-off of the semantic parsing model. Each candidate Boolean expression is
parsed using a fixed pipeline and instantiated as a WVF. The policy defined by the WVF is evaluated in
the environment over 100 episode rollouts. If the success rate across these episodes in reaching the specified

2https://platform.openai.com/docs/models/gpt-3-5
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goals is greater than or equal to 92%, the language instruction and Boolean expression are added to the list
of in-context examples. Multiple Boolean expressions may attain high reward for any given task. To counter
this we add a form of length-based regularization. If the agent already has an in-context example with the
same language instruction, the length of the Boolean expressions is compared and only the shorter of the
two expressions is retained as an in-context example. We thereby favor shorter Boolean expressions that
attain high reward in the environment. For more details of the prompting strategy, see Table 2.

3.3 Baselines

The baseline is a joint language and vision model which learns a single action-value function for all tasks
based on the architecture used in the original BabyAI paper (Chevalier-Boisvert et al., 2019). We explore two
baseline models: an LM Baseline that utilizes pretrained language representations for embedding mission
commands from a frozen “all-mpnet-base-v2” model from the SentenceTransformers library (Reimers &
Gurevych, 2019) based on the MPNet model (Song et al., 2020) and an ablated Baseline which does not
use pretrained language representations. This pretrained sentence embedding model is trained on diverse
corpora of sentence embedding tasks.

4 Results

Figure 3: Results for learning all 162 tasks simultaneously. The mean episode success rate is plotted against
the number of environment steps. Learning curves are presented for CERLLA and the non-compositional
baseline agents. The Oracle agent is given the ground-truth Boolean expressions and upper bounds the
attainable success rate in the environment, denoted by the dashed line at 92%. Our method is initialized at
19 million steps to reflect the number of training steps used in pretraining the compositional value functions.
Note the change in steps scale at 19 million steps. Means and 95% confidence intervals are reported over 10
trials, 5 trials for the LM Baseline.

We conduct experiments across four agent types and two settings. The first experiment evaluates sample
complexity (Figure 3). We learn all 162 tasks simultaneously and plot the mean success rate against the
number of environment steps. The second experiment divides the task set in half, and measures the ability
of the agents to generalize to held-out novel tasks while learning from a fixed set of tasks (Figure 5).

We evaluate our method implemented using both GPT-4 and GPT-3.5. We compare our method to the
baseline agents, but penalize our method by the number of environment steps required to learn the pretrained
WVFs. As an upper limit on the performance of our method, we compare to an Oracle Agent which has
a perfect semantic parsing module. It has access to the ground-truth mappings from language to Boolean
expressions and its performance is limited only by the accuracy of the pretrained policies and randomness
in the environment.
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4.1 Simultaneous Learning of 162 Tasks

In this experiment, at each episode a random task is sampled from the set of 162 language tasks. The
baseline agents learn for 21 million steps, and CERLLA learns for 2 million steps. Because our agent
pretrains the WVFs, we penalize our agent by starting it at 19 million steps (Figure 3). Note that this
disadvantages our method, as the WVF pretraining phase does not include language information and its
only exposure to language-task data is over the following two million steps. Our method therefore has access
to less information about the tasks structure than the baseline agents during the first 19 million steps. For
CERLLA, due to the latency and cost of invoking the LLM, we only evaluate on one randomly selected
task every 5, 000 environment steps, computing the average performance over 100 episodes. For the baseline
agents we evaluate all 162 tasks every 50, 000 timesteps. This results in higher variance for our method in
the plots.

We also plot the number of in-context training examples added to CERLLA’s set in Figure 4. This is
equivalent to the number of training tasks successfully solved at that step. The Oracle Agent solves the
overwhelming majority of tasks during their first occurrence and is limited only by the small amount of noise
in the policies and environment.

4.2 Held-out Task Generalization

This experiment (Figure 5) measures the generalization performance of each method on held-out tasks. We
compare the performance of CERLLA to the baseline agents. In this setting, the set of tasks is randomly
split into two halves at the start of training. At each episode, a random task from the first set is selected.
During evaluation of our agent, one random task from each set is selected and the agent is evaluated over
100 episodes. The baseline agents are evaluated over all 81 tasks in each set.

Figure 4: The mean number of tasks solved is plotted against the number of environment steps. This
quantity is equal to the total number of in-context examples present in CERLLA’s in-context example set
at that step. Because the Oracle Agent has access to the ground truth Boolean expressions for each task,
it solves tasks immediately. The population of tasks remains constant, so the number of unsolved tasks
decreases over time, leading to a logistic learning curve and an exponential decay in the rate at which new
tasks are solved for the Oracle Agent. Means and 95% confidence intervals are reported over 10 trials.

5 Discussion

In both experiments CERLLA attains a significantly higher success rate in fewer total samples than the
baselines. Figure 3 shows our method attains a 92% success rate (matching the performance upper bound
of the Oracle Agent) after only 600k environment steps, a small fraction of the steps of the baseline. The
baseline agents are not able to generalize to all 162 tasks and only reach a success rate of ≈ 80% after 21
million steps. Note that while the WVF pretraining for our method requires 19 million steps, the pretraining
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Figure 5: Generalization performance for learning on 81 randomly selected tasks (train) and evaluating on
the held-out 81 tasks (test). Learning curves are presented for our method and the baseline agents. The
dashed and solid lines represent performance on the training and test sets respectively. The x-axis represents
the fraction of the total training steps completed: 1 million for the CERLLA and 21 million for the LM
Baseline agent. The dashed line denotes the success rate for considering the environment solved at 92%.
Means and 95% confidence intervals are reported over 15 trials, 5 trials for the LM Baseline.

objective does not include any language instructions and is distinct from the downstream task objective.
The baseline learns the downstream tasks and language for its first 19 million training steps and still does
not solve the 162 tasks. Even though the baseline agent is given access to the language commands and
reward structure for the entire duration of its training, the compositional agent is still able to outperform
the baseline. These results show the necessity of compositional representations for being able to learn large
numbers of compositional tasks in a sample efficient manner.

Figure 5 demonstrates that our method is able to generalize well to held-out tasks. The performance of the
agent on training tasks and held-out tasks is very similar. This is expected given the ability to generalize
compositionally in both the policy and language spaces. The LM Baseline agent cannot generalize well
between the training and held-out tasks as it lacks the necessary compositional representations. Note that
this experiment trains the CERLLA and LM Baseline agent for fewer steps than the 162 task experiment:
one million and 21 million steps respectively. There is a significant generalization gap for this agent even
after 21 million steps, significantly more steps than our method, even accounting for WVF pretraining steps

In the 162 task learning experiment, CERLLA using GPT-3.5 does not exceed the performance of the
baselines even after two million steps indicating poor compositional generalization. Confirming this, Figure
4 shows the mean number of tasks solved, which is the same as the number of total number of potential
in-context examples that can be selected from during inference. Despite a weaker version of CERLLA solving
most of the tasks, this does not transfer to a high evaluation success rate in Figure 3. The variance of the
CERLLA using GPT 3.5 is higher than with GPT-4. This is caused by relatively worse generalization from
available in-context examples than GPT-4. This indicates that more powerful language models are likely to
improve the performance of CERLLA, up to the limit of the oracle agent. Highlighting the interpretability of
our language-RL learning framework, we provide a qualitative analysis of the cause of the GPT-3.5 agent’s
lower performance in the technical appendix.

Overall, our method solves a challenging set of 162 language-RL tasks, which to our knowledge is the largest
set of simultaneously-learned language-RL tasks. In the real world, many tasks share compositional structure,
and language has inherent compositional structure. Therefore, its important to develop methods which
leverage this shared compositionality to reduce the sample complexity of acquiring new behaviors. This is
critical for reinforcement learning problems that already have high sample complexity due to the inefficiency
of learning from RL feedback. We address these challenges using a novel semantic parsing method, which uses
in-context and environment feedback to learn to map natural language instructions to Boolean expressions
specifying the composition of value functions. Our method significantly outperforms a non-compositional
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baseline approach, demonstrating the importance of methods that can generalize compositionally in terms
of both language and RL representations.

6 Related Work

Our work is situated within the paradigm of RL, where novel tasks are specified using language and the agent
is required to solve the task in the fewest possible steps. BabyAI (Chevalier-Boisvert et al., 2019) explores a
large number of language-RL tasks, however it learns far fewer tasks simultaneously and their tasks do not
involve negation. Another compositional RL benchmark CompoSuite (Mendez et al., 2022) does not include
language, and has fewer tasks than our 162 task benchmark when accounting for the number of unique goal
conditions that could be specified in language.

Previous approaches have solved this problem using end-to-end architectures that are learned or improved
using RL and a set of demonstrations (Anderson et al., 2018; Blukis et al., 2020; Chaplot et al., 2018).
A problem with such approaches is a lack of compositionality in the learned representations. For example,
learning to navigate to a red ball provides no information to the agent for the task of navigating to a blue
ball. Moreover, demonstrations are hard to collect especially when users cannot perform the desired behavior.
Some approaches demonstrate compositionality by mapping to a symbolic representation and then planning
over the symbols (Dzifcak et al., 2009; Williams et al., 2018; Gopalan et al., 2018). However, these works do
not learn the semantics of these symbols or the policies to solve the tasks.

Compositional representation learning has been demonstrated in the computer vision and language process-
ing tasks using Neural Module Networks (NMN) (Andreas et al., 2016; Hu et al., 2018), but we explicitly
desire compositional representations both for the RL policies and the language command. Kuo et al. (2021)
demonstrate compositional representations for policies, but they depend on a pre-trained parser and demon-
strations to learn this representation. On the other hand, we use large language models (Raffel et al., 2020)
and compositional policy representations to demonstrate compositionality in our representations and the
ability to solve novel unseen instruction combinations.

Compositional policy representations have been developed using value function compositions, as first demon-
strated by Todorov (2007) using the linearly solvable MDP framework. Moreover, zero-shot disjunc-
tion (Van Niekerk et al., 2019) and approximate conjunction (Haarnoja et al., 2018; Van Niekerk et al.,
2019; Hunt et al., 2019) have been shown using compositional value functions. Nangue Tasse et al. (2020)
demonstrate zero-shot optimal composition for all three logical operators—disjunction, conjunction, and
negation—in the stochastic shortest path problems. These composed value functions are interpretable be-
cause we can inspect intermediate Boolean expressions that specify their composition. Our approach extends
ideas from Nangue Tasse et al. (2020) to solve novel commands specified using language.

Recent works like SayCan use language models and pretrained language-conditioned value functions to solve
language specified tasks using few-shot and zero-shot learning (Ahn et al., 2023). Shridhar et al. (2021)
use pretrained image-text representations to perform robotic pick-and-place tasks. Other work incorporates
learning from demonstration and language with large-scale pretraining to solve robotics tasks (Driess et al.,
2023; Brohan et al., 2022). However, these works use learning from demonstration as opposed to RL.
Furthermore, these approaches do not support negations of pre-trained value functions that our method
allows. More importantly, their methodology is unsuitable for continual learning settings where both the RL
value functions and language embeddings are improved over time as novel tasks are introduced.

Shin et al. (2021) utilize LLMs to learn semantic parsers using few-shot learning with in-context examples
and Schick et al. (2023) uses an LLM to learn a semantic parser in a weakly supervised setting. Our method
is distinct as we use policy rollouts in an environment as the supervision with in-context learning.

7 Limitations and Future Work

One limitation of our method is the need for a pretraining phase where a curriculum is required to learn the
basis set of WVFs. In future work, we plan on addressing this through experiments that simultaneously learn
both the underlying WVFs and the language-instruction semantic parser using only environment rollouts on
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randomly selected tasks. This is a challenging optimization problem as the WVF models and the semantic
parser must be optimized simultaneously to ensure that the WVFs form a good basis for the space of language
tasks.

Our future work will also investigate our method’s performance in simulated and real-world compositional
RL tasks including vision and language navigation (VLN) and robotic pick-and-place tasks. The current
environment has a discretized action space (although it utilizes images for state information); while this
might limit the method’s applicability to some real-world RL tasks, both VLN and pick-and-place tasks
have been pursued in discretized forms (Anderson et al., 2018; Zeng et al., 2020). Both of these tasks could
benefit from our method, as they require solving goal-reaching tasks which often have compositional language
and task attributes. As one example, pick-and-place tasks are often compositional in terms of object type
and locations for placing objects.

8 Conclusion

We introduce a method that integrates pretraining of compositional value functions with large language
models to solve language tasks using RL. Our method rapidly solves a large space of RL tasks specified in
language more effectively than previous approaches. Demonstrating efficacy across 162 tasks with reduced
sample requirements, our findings also further differentiate the capabilities of more powerful language models
from weaker ones in the task of semantic parsing using an environment policy rollout signal. The combination
of compositional RL with language models provides a novel framework for reducing the sample complexity
of learning RL tasks specified in language.
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A Appendix

Language Instruction Boolean Expression
pick up a ball or Symbol_0 | Symbol_4

a grey object
pick up a box that ∼ Symbol_4 & Symbol_2

is not grey
pick up a grey ball Symbol_0 & Symbol_4
pick up a ball or an (Symbol_0 | Symbol_1) |

object that is not grey ∼ Symbol_4
pick up a ball that Symbol_0 & ∼ Symbol_4

is not grey
pick up a grey object or (Symbol_0 & Symbol_4) | ∼ Symbol_0

not a ball
pick up a grey object ∼ Symbol_0 & Symbol_4

that is not a ball
pick up a grey object or (Symbol_0 & Symbol_1) |

not a key (∼ Symbol_2 & Symbol_4) | ∼ Symbol_5
pick up an object that (Symbol_0 & Symbol_1) | ∼ Symbol_4

is not grey
pick up an object that ∼ Symbol_4 & ∼ Symbol_0

is not grey and not a ball

Table 3: Subset of the in-context examples that the GPT-3.5 agent has accumulated at the end of 2 million
steps of learning the 162 tasks. As shown, many of these expressions are not consistent or needlessly
complicated. This helps to explain the relatively poorer performance of the GPT-3.5 agent which produces
much noisier semantic parses and thus has much higher variance and lower performance than the GPT-4
agent. Reducing the sampling temperature during learning leads to better expressions, but at the cost of
slower exploration and learning.

Table 4: Task attributes and Boolean grammar. The symbols uniquely identify each learned WVF.

Task Attributes Boolean Grammar
Colors Objects Symbols Operators

red, purple, grey key, ball, box Symbol_0, Symbol_1,. . . ,Symbol_8 AND: &
green, yellow, blue OR: |, NOT: ∼
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Table 5: Hyperparameters for the LLM Agent.

LLM Agent Hyperparameters
LLM GPT-4 and GPT 3.5
Beam Width 10
Rollouts 100 episodes
In-Context Examples 10
Training Temperature 1.0
Evaluation Temperature 0.0

Table 6: Hyperparameters for world value function pretraining. The Adam optimizer was introduced by
Kingma & Ba (2015).

WVF Learning Hyperparameters
Optimizer Adam
Learning rate 1e-4
Batch Size 32
Replay Buffer Size 1e3
ϵ init 0.5
ϵ final 0.1
ϵ decay steps 1e6
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