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Abstract001

Aligning Large Language Models (LLM) to002
address subjectivity and nuanced preference003
levels requires adequate flexibility and con-004
trol, which can be a resource-intensive and005
time-consuming procedure. Existing training-006
time alignment methods require full re-training007
when a change is needed and inference-time008
ones typically require access to the reward009
model at each inference step. We intro-010
duce MEAV, an inference-time model-editing-011
based LLM alignment method that learns en-012
coded representations of preference dimen-013
sions, called Alignment Vectors (AV). These014
representations enable dynamic adjusting of015
the model behavior during inference through016
simple linear operations. Here, we focus on017
three gradual response levels across three spe-018
cialized domains: medical, legal, and financial,019
exemplifying its practical potential. This new020
alignment paradigm introduces adjustable pref-021
erence knobs during inference, allowing users022
to tailor their LLM outputs while reducing the023
inference cost by half compared to the prompt024
engineering approach. Additionally, we find025
that AVs are transferable across different fine-026
tuning stages of the same model, demonstrat-027
ing their flexibility. AVs also facilitate multido-028
main, diverse preference alignment, making the029
process 12x faster than the retraining approach.030

1 Introduction031

Aligning LLMs is crucial for adapting them to032

meet human preferences. Standard training-time033

alignment methods, such as RLHF (Ouyang et al.,034

2022) and DPO (Rafailov et al., 2024), are con-035

ducted during model training. However, making nu-036

anced preference adjustments during inference with037

these approaches necessitates retraining, which re-038

quires substantial amounts of time, preference data039

and computational resources. Inference-time LLM040

alignment, by contrast, delays the alignment pro-041

cess until inference (Wang et al., 2024). While042

preference alignment can be achieved through 043

training-time methods or targeted prompting, fine- 044

grained control over preferences at inference re- 045

mains largely unexplored in current State-of-the- 046

Art (SOTA) works (Sahoo et al., 2024; Guo et al., 047

2024). This research introduces an inference-time 048

model editing technique via Alignment Vectors 049

(AV), offering users dynamic preference adjust- 050

ments without additional computational overhead. 051

Due to their extensive capabilities, LLMs are 052

now employed in different fields, but the diverse 053

needs of a broad customer base require that LLM 054

outputs be carefully refined. For instance, while a 055

healthcare provider might need detailed medical re- 056

sponses for professional use, a public health forum 057

may prefer more generalized information to avoid 058

misinterpretation. Although prompt engineering 059

can temporarily address these needs, it becomes 060

costly when scaled (Li et al., 2023). 061

Furthermore, managing multiple alignment ob- 062

jectives can be complex. Consider an insurance 063

company that needs expert legal responses, generic 064

financial answers, and to avoid medical responses; 065

balancing these demands poses a significant chal- 066

lenge. A joint training with targeted preference 067

levels can resolve the problem, however, it lacks 068

flexibility, and training can be resource inten- 069

sive. Hence, at present, there is no work that ad- 070

dresses such preference flexibility in the inference 071

time. Thus, developing flexible, inference-time 072

adjustable model alignment to manage costs and 073

maintain efficiency in the long term remains a ma- 074

jor research gap. 075

Preference dimensions like helpfulness, harm- 076

lessness, and honesty are well-studied, with some 077

work exploring their controllability via numeri- 078

cal levels (Bai et al., 2022; Ji et al., 2024; Guo 079

et al., 2024). However, specialized dimensions of- 080

fer finer granularity, enabling better control during 081

inference. To enhance preference tunability, we 082

focus on proficiency levels in specialized domains 083
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while also demonstrating tunability in a general do-084

main, such as safety. Since existing literature lacks085

domain-specific preference alignment datasets, we086

generate synthetic Query-Response pairs by deriv-087

ing queries from the PersonaHub dataset (Chan088

et al., 2024) and augmenting them with novel per-089

sonas created via LLM-generated prompts.090

In addition, to achieve inference time preference091

tunability, we propose a simple technique called092

Model Editing via Alignment Vector (MEAV),093

which is based on the concept of Task Arithmetic (Il-094

harco et al., 2023). AVs can be obtained by directly095

subtracting the base model parameters from the096

aligned model, and can be added in the inference097

time. Hence, our first research question (RQ1) Are098

alignment vectors valid representation of the pref-099

erence dimensions? To address this question, we100

systematically integrate the alignment vector into101

the base model with varying weights, both positive102

and negative, and analyze the resulting changes in103

model behavior. Our second research question is104

posed as (RQ2) Can we calibrate different align-105

ment vectors to achieve diverse multi-domain pref-106

erence? We address RQ2 through different domain-107

specific AV-integration strategy.108

The key contribution of this work are:109

• We frame LLM alignment in single and multi-110

ple domains as a model editing problem and111

introduce an inference-time tunable mecha-112

nism, which allows flexible adjustment of113

generation output along the preference dimen-114

sion.115

• We generate a synthetic dataset with a total of116

38k queries, each paired with responses cate-117

gorized into three levels of specialized subject118

matter proficiency across three specialized do-119

mains: Medical, Financial, and Legal. The120

dataset will be available through this link.121

• By adjusting the merging coefficients, we122

achieve diverse, multidomain behaviors effi-123

ciently, saving time and resources. Unlike124

joint training, which requires pD adjustments125

for D domains and p preference levels, our126

method only requires D training runs, reduc-127

ing resource usage by a factor of pD/D.128

2 Related Works129

While prompt engineering techniques are effective130

in aligning LLM responses to user queries during131

inference time, the incur high inference costs and132

rely heavily on user expertise on prompting (Rad- 133

ford et al., 2019; Meskó, 2023; Oppenlaender et al., 134

2023). 135

Li et al. introduced an inference-time tech- 136

nique that identifies a sparse set of attention heads 137

for a target task and shifts their activation along 138

task-correlated directions during inference time (Li 139

et al., 2024). A similar approach was explored to 140

learning Safety Related Vectors, to steer harmful 141

model outputs towards safer alternatives (Wang 142

et al., 2024). However, these methods were tar- 143

get domain-specific and not controllable. Huang 144

et al. introduced DeAl, an alignment method that 145

treats alignment as a heuristic-guided search pro- 146

cess (Huang et al., 2024). Liu et al. studied regu- 147

larization strength between aligned and unaligned 148

models to have control over generation (Liu et al., 149

2024). Although closely related to our work, their 150

method lacks clarity on whether fine-grained pref- 151

erence levels can be achieved. Researchers con- 152

trolled attributes of generated contents by adding 153

control token in the prompt (Guo et al., 2024; Dong 154

et al., 2023). Despite its effectiveness, this method 155

requires training LLMs with a particular data for- 156

mat, which restricts the flexibility of control during 157

inference. 158

Rame et al.’s work is closely related to our multi- 159

domain preference alignment where they merge 160

multiple fully fine-tuned models (each trained on 161

a different reward) into a single “soup,” typically 162

yielding a fixed blend (Rame et al., 2023). In con- 163

trast, MEAV obtains a single difference vector per 164

domain or preference dimension and adds it to the 165

base model at inference time, allowing a smooth, 166

continuous controllability for alignment. As a re- 167

sult, Rewarded Soups requires training multiple 168

models upfront, whereas MEAV simply reuses one 169

base model with tunable additive vectors. As for 170

the comparison, it is not clear how the controlla- 171

bility objective (which is our main focus) can be 172

achieved in the rewarded soup model. Similarly, 173

while Jang et al. address personalized preference 174

alignment and post-hoc merging, our approach pro- 175

vides a unique capability: preference level adjust- 176

ment (Jang et al., 2023). 177

Yang et al. used a multi-objective training ap- 178

proach that encodes multiple reward signals within 179

a single model, adjusting preferences via special- 180

ized prompts or latent context (Yang et al., 2024). 181

In contrast, MEAV learns a distinct additive vector 182

per domain or preference dimension, which can be 183

applied to a base model at inference time for con- 184
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tinuous, fine-grained control, without re-training.185

Similarly, Yu et al. absorbed additional capabilities186

from models with the same architecture by merging187

their parameters, effectively accruing new skills as188

a “free lunch” (Yu et al., 2024). While MEAV also189

uses a form of parameter combination (subtracting190

and adding AVs), MEAV targets preference align-191

ment at inference time, not transferring new tasks192

or knowledge.193

3 Methodology194

MEAV starts with deriving the AVs, followed by195

the dynamic weighted integration of these AVs with196

the unaligned model.197

3.1 Obtaining Alignment Vector198

To obtain the AVs, we first perform alignment199

through the DPO algorithm, using an ‘ipo’ loss200

function to create a domain-specific aligned model201

(Rafailov et al., 2024; Azar et al., 2024). We get202

AVs by subtracting the weights of an unaligned203

model from the weights of the same model after204

alignment on a task. If θaligned denotes the model205

parameter after aligning on a preference dimension,206

then the AV can be obtained by the following:207

θAV = θaligned − θunaligned (1)208

3.2 Single Domain Alignment209

To enable preference tunability across different do-210

mains, we perform a weighted integration of the211

AVs into the base (or unaligned) model, where the212

weights can be both positive and negative. We hy-213

pothesize that this gradual integration will result in214

a corresponding gradual increase or decrease in the215

model’s proficiency. This process is governed by216

the following equation.217

θaligned = θunaligned + λ ∗ θAV (2)218

By adjusting the value of λ, we aim to control219

the proficiency of the model’s generated responses.220

Assuming when λ = 0, the model remains unal-221

tered and functions as the base, unaligned model. If222

the θAV encodes the expert behavior in a certain do-223

main, as λ increases towards 1, the model becomes224

increasingly aligned, achieving full proficiency at225

λ = 1.226

We further hypothesize that when λ takes on227

negative values, the model’s behavior tends to re-228

verse the preference ranking. For instance, if the229

base model typically generates generic responses230

and the aligned model is designed for expert-level 231

responses, moving λ in the negative direction will 232

shift the model towards avoidance behavior. There- 233

fore, to control the proficiency of the responses, 234

adjusting λ is sufficient, eliminating the need to 235

train the model with a new preference configura- 236

tion. 237

3.3 Multidomain Alignment 238

When dealing with multiple domains simultane- 239

ously, the interaction between these domains can 240

present a significant challenge. While individ- 241

ual preference vector encodes domain-specific at- 242

tributes, they also embed proficiency levels which 243

can easily generalize and negatively affect multido- 244

main diverse behavior. This complexity can make 245

it difficult to integrate multiple domains effectively. 246

Our goal is to achieve a diverse multidomain 247

preference, which we approach by using the fol- 248

lowing equation: 249

θmultidom_aligned = αθAV _dom1 + βθAV _dom2 250

+ γθAV _dom3 (3) 251

In this equation, α, β and γ represent the inte- 252

gration coefficients for the domains in question, 253

respectively. By identifying different sets of these 254

coefficients, we aim to achieve varying levels of 255

preference across the three domains. 256

4 Synthesizing Specialized Preference 257

Data 258

To gather data for preference tuning on response 259

proficiency levels, we employ two methods to col- 260

lect queries: “PersonaHub” (Chan et al., 2024) 261

and “CreatePersona.” Figure 1 provides a detailed 262

overview of the process. Notably, all generated 263

persona, queries, responses, and the prompts used 264

are in English. 265

4.1 Query Generation 266

We initiate the generation with a hierarchical pro- 267

cess called “CreatePersona.” We begin by ran- 268

domly generating a few persona-query pairs by 269

prompting Claude-3-Sonnet (Anthropic, 2024). To 270

preserve diversity, we limit the initial set to five 271

pairs, as we found generating too many at the out- 272

set reduces variation. From each initial persona, we 273

recursively generate additional persona-query pairs 274

that are relevant to the root persona. We randomize 275

this process three times. 276
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PersonaHub: 
Direct Query 
from Persona 

+
CreatePersona:

Persona to
Persona, and

query from the 
persona

LLM

Sorry, I
cannot…

In 
general,…

As an 
expert…

Instruction: 
Avoid

Instruction: 
Expert

Instruction:
Generic

Human 
Evaluation 

and IAA 
computation

Figure 1: The process of data collection. Personas are sourced from both the PersonaHub dataset and the
CreatePersona method. These personas are then fed to an LLM to generate queries. The LLM is prompted
with specific instructions to produce responses across three proficiency levels. Following this, human evaluation is
conducted to ensure the accuracy and quality of the generated response levels.

To further diversify the dataset, we supplement277

our generated personas by randomly sampling an278

equal number from the PersonaHub dataset (Chan279

et al., 2024), licensed as cc-by-nc-sa-4.0. Us-280

ing these selected personas, we prompt Claude-281

3-Sonnet (Anthropic, 2024) to generate specialized282

domain queries.283

We chose Claude-3-Sonnet over GPT-4 for two284

main reasons: First, Claude-3-Sonnet has consis-285

tently demonstrated performance on par with GPT-286

4, often ranking among the best foundational mod-287

els. Second, we opted to use GPT-4 as an indepen-288

dent evaluator and sought to mitigate the known289

bias where evaluators tend to favor their own out-290

puts over those generated by other models (Zheng291

et al., 2024; Anthropic, 2024).292

After a thorough clean-up, involving truncation,293

and reformatting, we obtained 13,000 personas for294

the medical domain, 12,374 personas for the fi-295

nancial domain, and 12,867 personas for the legal296

domain. Each persona is accompanied by queries297

pertinent to their respective specialized domains.298

4.2 Response Generation299

We generate the response from the queries into300

three distinct levels: avoidance of response (Avd),301

generic response (Gen), and expert response (Exp).302

Detailed instructions are provided to the LLM to303

facilitate the generation of these responses (see304

Appendix C). Furthermore, we observe a progres-305

sive increase in response length from the avoidance306

level to the expert level. To mitigate potential bias307

associated with response length, we instructed the308

LLM to produce responses of random lengths.309

To assess the correctness of responses, we con-310

ducted a 50-sample experiment per domain using 311

GPT-4o (OpenAI, 2025a) and GPT-o3-mini (Ope- 312

nAI, 2025b) to rate expert responses on a 10-point 313

correctness scale, and both models consistently 314

gave high scores (above 8.5), indicating strong fac- 315

tual alignment (table 1). 316

Domain GPT-4o GPT-o3-mini
Medical 9.10 9.74
Financial 8.62 9.42
Legal 8.62 9.66

Table 1: Domain-specific average factuality scores (out
of 10) on Claude generation, judged by GPT-4o and
GPT-o3-mini

4.3 Human Evaluation of multi-level response 317

generation 318

To evaluate the quality of the generated responses, 319

we conduct a small experiment involving three an- 320

notators, and compute the Inter-Annotator Agree- 321

ment (IAA). Each annotator is asked to categorize 322

a set of LLM-generated responses into one of three 323

categories: Avd, Gen, and Exp. We provide the an- 324

notators with clear definitions of these categories. 325

Each annotator reviews 30 queries along with their 326

three-level responses, with at least 15 examples 327

shared between every pair of annotators. This al- 328

lows us to compute the average Cohen’s kappa 329

score, which is found to be 0.84 (Cohen, 1960), 330

indicating substantial agreement among the anno- 331

tators. 332

We also calculate the average annotation agree- 333

ment for each annotator with the LLM genera- 334

tion. Responses generated with the Avoidance 335

instruction have the fewest disagreements or mis- 336
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classifications. However, some Gen and Exp re-337

sponses are occasionally misclassified from one an-338

other. We observe that certain responses, although339

aligned with the expert spectrum, are misidenti-340

fied as generic due to their tone, and vice versa.341

Additionally, a few avoidance responses provide342

basic information, leading to their misclassification343

as Gen responses. These findings suggest that the344

levels may represent a continuous spectrum rather345

than distinct categories, highlighting the need for346

further research to more precisely define these pro-347

ficiency levels.348

5 Experiments349

5.1 Evaluation Metric350

To assess the performance after alignment, we use a351

metric called preference accuracy (pref. acc). This352

metric reports the accuracy at each alignment level.353

To calculate it, we first compute the token-level354

mean log-probability (MLP ) for each of the three355

response levels across all queries for the aligned356

model. Then, for each sample in the validation set,357

we determine which alignment level has the high-358

est log-probability. For example, in proficiency359

level alignment, it can be among Exp, Gen, and360

Avd. Finally, we report the percentage of sam-361

ples where each alignment level had the highest362

log-probability in the validation set. A higher pref-363

erence accuracy in an alignment spectrum indicate364

the dominant behavior of that level.365

To illustrate, for a query q ∈ Q, the mean log-366

probability for response r ∈ R, where R can be367

different alignment levels, is computed for model368

Mλ as:369

MLP(r, q,Mλ) =
1

Tr(q)

Tr(q)∑
i=1

logP (ti | ctx,Mλ)

(4)

370

where Tr(q) is the response length, ti is the ith371

token and ctx is the previously processed context.372

The preferred alignment level is:373

r∗(q) = argmax
r∈R

MLP(r, q,Mλ).374

The preference accuracy for level r is:375

Pref. Acc(r) =
1

|Q|
∑
q∈Q

1[r∗(q) = r],376

where 1[r∗(q) = r] is the indicator function. 377

Higher Pref. Acc(r) indicates the dominant behav- 378

ior of the preference alignment level r. A similar 379

approach was also used in pairwise preference ac- 380

curacy computation in (Stiennon et al., 2020). 381

Additionally, we use an auxiliary metric as 382

“GPT-4 judged generation accuracy”, where we gen- 383

erate the responses from queries in a sample, and 384

ask GPT-4 to annotate it as one of the three levels 385

(Zheng et al., 2024). After that, we simply report 386

the percentage of each annotated alignment level. 387

5.2 Baseline Approaches 388

Since existing model-editing methods lack 389

inference-time controlled alignment, we use 390

‘prompting’ as a baseline, instructing the LLM 391

to generate responses at predefined proficiency 392

levels. Unlike model editing, this enables discrete 393

levels rather than a spectrum. Our second baseline, 394

‘Joint Training,’ combines multidomain data to 395

align responses across proficiency levels, offering 396

insights despite being a training-time method. We 397

also report the model’s ‘default’ performance, 398

where queries are prompted without additional 399

instructions or edits. 400

5.3 Model and Training Configuration 401

We define three main preference levels:“expert,” 402

“generic,” and “avoidance” for specialized domain 403

proficiency and use DPO training with a fixed beta 404

of 0.1, where “expert” is preferred over “generic,” 405

and “generic” over “avoidance.” To demonstrate 406

preference tunability, we vary λ in increments of 407

0.1, capturing significant behavioral shifts. As a 408

base model, we use Mistral-7B-Instruct-v0.3 (Jiang 409

et al., 2023) (licensed apache-2.0), training on 410

NVIDIA A100 GPUs with an 80/20 train/test split, 411

and 3% for validation. We run one epoch at a batch 412

size of 4 and stop training when validation loss 413

converges. 414

Apart from the special domain dataset, we also 415

use the PKU-SafeRLHF dataset (licensed cc-by-nc- 416

4.0) for safety and helpfulness alignment experi- 417

ments (Ji et al., 2024). 418

6 Results and Discussion 419

6.1 Single Domain Preference Tuning 420

We use the AV derived by aligning the model to gen- 421

erate responses at an expert-level within a given do- 422

main. It facilitates model editing which introduces 423

a tunable parameter, allowing the user to control 424
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(a) (b) (c)
Figure 2: By changing λ in the MEAV, we achieve different alignment objectives. In (a), when λ > 0.3, we find the
model aligning with expert answers to medical queries by prefering expert responses over the others. However,
when λ < −0.8, we see the model prefers avoidance of responses. In between these points, we observe the model
answering generically to medical queries. (b) and (c) demonstrates this behavior for financial and legal domains
respectively. λ acts as a tunable knob to adjust model behavior.

the proficiency level of the generated responses in a425

continuum. Consequently, one alignment vector is426

established for each domain, enabling the model to427

navigate and produce output across varying spectra428

of proficiency. This, in turn, also addresses RQ1.429

Table 2 shows that simply adding instructions for430

specific expertise (i.e., prompting) does not signifi-431

cantly improve preference accuracy, while nearly432

doubles inference cost. Notably, the base model433

achieves high expert-level accuracy even with434

prompts from a different LLM (Claude-3-Sonnet),435

though it performs poorly in generic (0.31) and436

avoidance (0.15) categories. For MEAV, adding the437

AV at different λ values shifts the model’s likeli-438

hood of generating expert responses: negative λ439

reduces expertise (with avoidance at λ = −1.2),440

while in the medical domain, λ = −0.7 yields441

generic behavior and λ = 0.5 produces full exper-442

tise.443

Figure 2 illustrates the tunable nature of the pref-444

erence expertise spectrum across all three domains.445

Notably, at λ = 0, the model predominantly gener-446

ates expert responses in all domains. In the medical447

domain, the model reaches the higher end of the448

expertise spectrum when λ exceeds 0.3. Between449

λ = −0.4 and λ = −0.8, the model exhibits vary-450

ing degrees of generic behavior and beyond that,451

the model starts behaving with topic avoidance.452

Next, we investigate if the gradual model edit-453

ing method also impacts the performance in the454

other domains. Our findings indicate that the spe-455

cialized behavior is indeed reflected across various456

domains, even when the AV is extracted for a spe-457

cific domain. For instance, Table 3 demonstrates458

that the addition of a medical AV with λ = 0.5 also459

enhances the model’s expertise in the financial do-460

main. Similarly, we observed that with λ = -1.2 the461

model exhibits avoidance behavior in both the legal462

and financial domains. This pattern is consistent 463

when using other specialized domain vectors as 464

well (see Appendix D). 465

Effect on General Alignment We also examine 466

whether MEAV for controllable proficiency lev- 467

els influences the general domain preference (i.e., 468

‘helpfulness’ and ‘safety’). Notably, we do not ob- 469

serve any regression in the safety domain; however, 470

the model becomes increasingly helpful as λ in- 471

creases. With the rise in λ, the model provides 472

more detailed and specific guidance, which aligns 473

with human preferences for helpfulness. Con- 474

versely, decreasing λ causes the model to avoid an- 475

swering, which is perceived as unhelpful. Notably, 476

the range of change in general domain preference 477

accuracy is ±11% for helpfulness and ±1% for 478

safety, indicating that MEAV does not lead to sig- 479

nificant regression in general domain performance. 480

6.2 Multi Domain Preference Tuning 481

We observe distinct behaviors across different do- 482

mains by adjusting specific configurations. Since, 483

we have three proficiency levels, accuracy higher 484

than 33% and the highest among the three levels 485

can be considered as the “dominant” proficiency 486

level. For example, as shown in Table 4, we find 487

that an AV-based editing coefficient of -1, -1, and 488

0.6 for the Medical, Financial, and Legal domains, 489

respectively, results in avoidance being the dom- 490

inant behavior in the Medical and Financial do- 491

mains, with accuracies of 0.46 and 0.42, respec- 492

tively, and expertise being dominant in the Legal 493

domain, with an accuracy of 0.78. Therefore, it 494

indicates multi-level expertise across domains, and 495

we address RQ2 as well. 496

There are 27 possible domain–behavior combi- 497

nations (three domains × three spectrums), and a 498

grid search reveals 22 where the desired behavior 499
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Domain Technique Target
behavior Pref. Acc. GPT-4 judged

gen. acc
Exp Gen Avd Exp Gen Avd

Default .75 .25 0 .90 .05 .05

M
ed

ic
al

Prompting
Exp .78 .22 0 .90 .05 .05
Gen .69 .31 0 .50 .50 0
Avd .60 .25 .15 .15 .55 .30

Exp (.5) .95 0 .05 1.0 0 0
Ours: MEAV Gen (-.7) .26 .44 .30 0 .60 .40

Avd (-1.2) .03 .13 .84 .05 .20 .75
Default .81 .19 0 .85 .15 0

Fi
na

nc
ia

l

Prompting
Exp .84 .16 0 .95 .05 0
Gen .57 .43 0 .75 .25 0
Avd .35 .49 .16 .20 .60 .20

Exp (.3) .85 .15 0 1.0 0 0
Ours: MEAV Gen (-.4) .30 .42 .28 .35 .50 .15

Avd (-1.4) .07 .20 .73 0 .15 .85
Default .78 .22 0 .85 .15 0

Fi
na

nc
ia

l

Prompting
Exp .79 .21 0 1.0 0 0
Gen .59 .41 0 .65 .35 0
Avd .41 .30 .29 .15 .40 .45

Exp (.3) 1.0 0 0 1.0 0 0
Ours: MEAV Gen (-.7) .23 .39 .38 o .65 .35

Avd (-1.4) 0 .20 .80 0 .05 .95

Table 2: How MEAV performs to steer different domain expertise response level. The Default behavior indicates
λ = 0, i.e., the model with no alignment. Tuning Lambda to different values with our MEAV approach leads to
varying levels of proficiency responses. As such, we observe Exp, Gen, and Avd behavior just by aligning one
model.

Lambda
Fin pref. Acc Leg pref. Acc General Pref. Acc

Safety Helpfulness
Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful

0 .81 19 0 .78 .22 0 .58 .42 .60 .40
0.5 1.0 0 0 1.0 0 0 .58 .42 .66 .34
-0.7 .59 .40 .01 .58 .32 .10 .57 .43 .58 .42
-1.2 .03 .20 .77 .08 .18 .74 .57 .43 .49 .51

Table 3: Out of Domain (special and general) preference accuracy for Medical domain responses. Here, we gradually
add the in-domain AV with the base model, and observe the performance for out-of-domain proficiency levels. We
find that steering the proficiency levels in one domain also generalizes across other domains.

is dominant. Joint training achieves near-perfect500

accuracy but requires 27 separate trainings, nine501

times more than the three needed for single-domain502

DPO runs. Each training job takes about 72 hours503

on an A100 GPU, totaling 1,944 hours for all 27.504

By contrast, a grid search of 21 coefficient values505

per domain (9,261 evaluations at roughly 60 sec-506

onds each) takes about 155 hours, or 12 times faster.507

However, continuous multi-domain tunability re-508

mains challenging, as single-domain edits often509

over-generalize and compromise domain-specific510

precision.511

6.3 Can AV be extensible for General512

Domain?513

To explore the generalizability of MEAV across514

various domains, we focus on the safety alignment515

as a test case. We start by aligning our base model516

Figure 3: Controlling safety by MEAV

towards the safe dimension by obtaining the safety 517

AV and gradually integrating it with the base model. 518

For the safety alignment, we sample the examples 519

where chosen response is labeled safe, and the re- 520

jected response is labeled unsafe (Ji et al., 2024). 521

We compute the pref. acc in the same way de- 522

scribed in 5.1, where R = {safe, unsafe}. 523

Figure 3 illustrates that the model exhibits mixed 524

safety accuracy initially when λ = 0 with a safety 525
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Baseline: Joint training Ours: MEAV editing coefMed Fin Leg Med Fin Leg
Avd (100%) Avd (99%) Exp (98%) Avd (46%) Avd (42%) Exp (78%) [-1, -1, .6]
Avd (100%) Exp (91%) Exp (94%) Avd (43%) Exp (44%) Exp (80%) [-1, .8, .6]
Avd (100%) Exp (90%) Avd (90%) Avd (57%) Exp (56%) Avd (36%) [-.4, .4, -.8]
Exp (99%) Avd (100%) Exp (97%) Exp (88%) Avd (44%) Exp (87%) [.2, -.8, -.2]

Table 4: Multidomain expertise can be achieved by MEAV. In the baseline joint training approach, we find
near-perfect performance, however, we need to perform separate training for each specific configuration. On the
contrary, once trained on domain specific expertise, we can perform inference time adjustment and obtain specific
configuration to behave in different way in each of the domain.

(a) (b) (c)

Figure 4: Visualizing the transferability of the MEAV process. We observe the effect of proficiency-level-encoded
AV integration with a safety-aligned model in the (a) Medical domain (b) Financial Domain (c) Legal Domain
proficiency control. For all domains within the range of -1 to 0.7, we donot see any regression of safety, indicating
the robustness of MEAV.

preference accuracy of 0.53 and an unsafe prefer-526

ence of 0.47. As λ increases, the model progres-527

sively aligns more with safety, achieving a safety528

preference accuracy of 0.93 at λ=1. However,529

when λ is adjusted negatively, the safety scores530

become inconsistent and mixed. Notably, even at531

large negative λ values, beyond -0.25, the model532

does not become fully “unsafe”.533

In constructing the response proficiency levels,534

we intentionally maintain three distinct spectrums.535

In contrast, the PKU-SafeRLHF dataset does not536

follow this structure, as it lacks any specific grada-537

tion in safety levels.538

6.4 Analyzing the Transferability of539

Alignment Vector540

Next, we explore whether AVs derived from a spe-541

cific alignment objective can be effectively applied542

to a pre-aligned model. As a case study, we select a543

safety-aligned version of the base model, to assess544

the transferability of these alignment vectors. Us-545

ing a similar approach to single-domain MEAV, we546

gradually integrate the AVs into our target model,547

which is safety-aligned.548

Figure 4 presents the model’s performance as λ549

is varied. Our findings indicate that when λ is ad-550

justed from -1 to +1, the model’s behavior related551

to safety, which is its primary control objective, re-552

mains relatively stable. For instance, in the medical553

domain (Figure 4(a)), varying λ within this range554

results in a minimal change in safety preference555

accuracy, with a difference of only 0.11 between 556

the lowest and highest accuracy points. In contrast, 557

the accuracy of medical expert response prefer- 558

ences improves significantly, with an increase of 559

0.81—over seven times greater than the change in 560

safety preference accuracy. Hence, the AV obtained 561

by our method is trasferable to models aligned on 562

other orthogonally aligned objectives as well, prov- 563

ing the transferability of MEAV. 564

7 Conclusion 565

We address inference-time preference alignment 566

tunability through a novel model editing technique 567

called MEAV. We build a synthetic dataset designed 568

to represent three levels of response proficiency 569

across three specialized domains. Our approach 570

enables single-domain preference tunability at in- 571

ference time without incurring additional costs or 572

resource usage. This allows users to select differ- 573

ent response proficiency levels without the need 574

for extra training. Furthermore, our method offers 575

tailored configurations for diverse multidomain be- 576

haviors, significantly reducing both training time 577

and resource demands. In future work, we will 578

explore preference tunability in more open-source 579

models like Llama and Qwen (Touvron et al., 2023; 580

Bai et al., 2023). Furthermore, we want to explore 581

the transferability of alignment vectors across dif- 582

ferent LLMs. 583

8



Limitations584

Our work has several limitations and areas for fu-585

ture exploration.586

• We did not evaluate the correctness of the587

specialized domain responses. While the au-588

thors manually fact-checked a subset of the589

responses, we do not recommend using these590

synthetic LLM-generated responses without591

expert validation. Researchers found a 4.6%592

rate of hallucinations in Claude-generated re-593

sponse (Vectara, 2025). However, how the594

hallucinations might impact the special do-595

main responses, is left for future research.596

• We used a basic approach (AV) for obtaining597

alignment vectors, which was simple and ef-598

fective for our use-case. However, whether599

the AVs are also capturing noise outside the600

preference dimension, is not explored in our601

work. To that end, more advanced techniques602

like parameter thresholding, zeroing, or SVD-603

based separation will be explored (Yadav et al.,604

2024; Gao et al., 2024) in our future work.605

• Our method is currently applicable only to606

LLMs with the same architecture and parame-607

ter count. As new models with diverse archi-608

tectures and varying parameter sizes continue609

to emerge, this constraint may limit the gener-610

alizability of our approach. We aim to extend611

our methodology to support cross-architecture612

and cross-parameter adaptation in future.613

• We tested our approach only on Mistral-7b, so614

validation with other open-source LLMs and615

SLMs is necessary.616

• We relied on an extensive grid search for mul-617

tidomain alignment, which, while more ef-618

ficient than full retraining, remains compu-619

tationally intensive. A more optimized or620

strategic search approach could significantly621

reduce the parameter search space and further622

enhance efficiency.623

Ethical Implication and Broader Impact624

The introduction of MEAV offers a transformative625

approach to LLM alignment, enabling dynamic,626

inference-time preference adjustments while sig-627

nificantly reducing computational costs. This flex-628

ibility allows LLMs to be more adaptable across629

different specialty domains, such as medical, legal,630

and financial, without the need for retraining. How- 631

ever, there are also some concerns with this, and 632

we discuss this below: 633

• A model originally fine-tuned for safety- 634

aligned behavior could be easily modified at 635

inference time using adversarially crafted AVs 636

to produce harmful, deceptive, or unsafe out- 637

puts. 638

• The expert responses may encode cultural bias 639

in all medical, legal, and financial domains. 640

• The ability to dynamically adjust model be- 641

havior raises concerns about accountability, 642

as users can shift LLM responses in ways that 643

deviate from the ethical constraints originally 644

intended. 645
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A Data generation and Annotation details806

Table 5 shows the breakdown of the total amount807

of data collected.808

Table 6 shows the annotation accuracy for the809

human volunteers.810

B Synthetic Data Generation: How did811

we arrive at the reported numbers of812

generated data?813

We evaluated the validity of persona-query pairs814

by manually reviewing a sample of 50 entries. Our815

analysis confirmed that Claude-3-sonnet reliably816

adhered to the instructions outlined in our prompt.817

To determine the dataset size, we initially generated818

15,000 queries across all domains, as described in819

Section 4.1.820

During preprocessing, we identified and re-821

moved 1–3% of the queries and responses that were822

truncated due to timeout or quota limit issues. Ad-823

ditionally, queries in non-English languages were824

excluded to ensure linguistic uniformity. We fur-825

ther filtered for completeness, retaining only those826

entries that contained a full set of persona-query827

responses across the three proficiency levels. Con-828

sequently, a small number of incomplete entries829

were discarded.830

Next, we examined the dataset for query repe-831

tition. Although some personas were repetitive,832

we found no significant repetition in the queries833

themselves. Following this rigorous cleaning and834

filtering process, we finalized the dataset with the835

following distributions: 13,000 personas for the836

medical domain, 12,374 personas for the financial837

domain, and 12,867 personas for the legal domain.838

C Persona and Query Generation 839

Prompts 840

The following prompts are used to generate Per- 841

sonas and Queries: 842

C.1 CreatePersona 843

In the CreatePersona method, we generate a ran- 844

dom root persona, and from that other persona are 845

generated. Here is the prompt used: 846

Prompt: Based on the given persona, generate 847

5 persona, that can be closely or remotely related 848

to the given persona...generate a one-paragraph fi- 849

nancial query in first person... 850

Given Persona: A patient coordinator with ex- 851

cellent interpersonal skills and a knack for digital 852

scheduling systems 853

Claude-3-Sonnet generated query: 854

"persona1": "A recent college graduate with stu- 855

dent loans and a entry-level job" 856

"query1": "Hello, I’m Alex, a 22-year-old who 857

just graduated ...marketing position at a local firm, 858

earning $45,000 per year. However, I have accumu- 859

lated $32,000 in student loans ...financial situation 860

and long-term objectives?" 861

"persona2": "A single mother juggling multiple 862

part-time jobs and struggling to make ends meet" 863

"query2": "My name is Emily, and I’m a 32- 864

year-old single mom working two part-time jobs 865

to support my 6-year-old son....have accumulated 866

over $15,000 in credit card debt...increase my in- 867

come or reduce expenses?" 868

C.2 PersonaHub 869

We generate queries directly from a given persona: 870

Prompt: Based on the persona described below, 871

generate a one-paragraph medical query in first per- 872

son, that the person fitting the persona can ask to an 873

online medical/health portal. Make sure the query 874

is clear and very specific with nitty-gritty details 875

like names, numbers etc, but brief. It should also in- 876

clude relevant context, concerns, and other details 877

to help the advisor or expert answer properly. 878

Persona: A retired coach known for their strate- 879

gic approach to training and injury prevention 880

Claude-3-Sonnet generated query: As a re- 881

tired coach ...I have a concerning issue that requires 882

professional medical guidance. Over the past few 883

weeks, I’ve been experiencing persistent discom- 884

fort and stiffness in my left knee, particularly ... 885

to regain full mobility and continue enjoying an 886
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Domain Method of Curation TotalPersonaHub CreatePersona
Medical 5904 6096 13,000
Financial 6909 5465 12,374

Legal 5952 6915 12,867
Total curated data 38,241

Table 5: Full curated data amount

GT Prediction
Exp Gen Avd

Exp 82.96% 17.04% 0%
Gen 17.04% 81.70% 1.26%
Avd 0% 1.26% 98.73%

Table 6: Average annotation accuracy for three annota-
tors

active retirement without compromising my long-887

term joint health.888

D Out-of-domain performance889

We report the Out-of-domain performance for all890

three domains, i.e., medical, financial and legal.891

E Experimental details892

• We used python3.11893

• All experiments are done using pytorch 2.0894

• Transformers version 4.43.0 was used895

F How Annotators were recruited896

We asked our authors (except for the first author)897

to volunteer as annotators. Each annotators were898

given detailed instructions with definitions of each899

response proficiency levels. The task was to select900

the responses for their respective levels.901

F.1 How instructions are provided to the902

Annotators903

Human Evaluation of Generated904

Text905

We have provided you with the following special-906

ized domain query-response pairs. Your tasks are907

as follows:908

909

Task: Rank the generated responses in the910

expertise level according to the level definitions.911

912

We generated three levels of re- 913

sponses—Avoidance, Generic, and Expert—for 914

each query, by providing instructions based on the 915

definitions below. 916

917

Definitions: 918

(Level 1) Avoidance: The response completely 919

avoids providing any advice, information, or sug- 920

gestions. It does not answer the question directly 921

or indirectly. Instead, it politely informs to be 922

unable to assist with the inquiries and recommends 923

consulting an expert professional. Furthermore, the 924

responder refrains from engaging in any discussion 925

or providing any related resources or opinions 926

regarding the issues specific to the domain in 927

question. 928

929

(Level 2) Generic: The response represents 930

general, non-specific information that can help 931

guide the user but does not offer detailed advice. It 932

offers general knowledge that is commonly known 933

and easily accessible. The response is informative 934

yet cautious. It emphasizes the importance of 935

consulting an expert professional for accurate 936

information and help and encourages users to seek 937

advice from a qualified professional or institution 938

for specific concerns. 939

940

(Level 3) Expert: The response is detailed, with 941

expert-level advice and information. It thoroughly 942

assesses the situations or context described and 943

offers precise explanations and guidance tailored 944

to the specific situation. The response reflects 945

the depth and accuracy expected from an expert 946

professional, and also the advice is not overly 947

generic. Instead, it is comprehensive and nuanced, 948

addressing the user’s specific circumstances. 949

Finally, it offers clear, evidence-based recommen- 950

dations and ensures the guidance is actionable and 951

comprehensive. 952
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Lambda Med pref. acc Leg pref. acc Gen pref. acc
Safety Helpfulness

Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful
0 .75 .25 0 .78 .22 0 .58 .42 .60 .40

.30 .97 .02 .01 .98 .02 0 .57 .43 .59 .41
-.40 .61 .37 .02 .57 .35 .08 .59 .41 .57 .43
-1.4 .18 .40 .42 .19 .52 .29 .55 .45 .51 .49

(b) Out of Domain (special and general) preference accuracy for Financial domain responses

Lambda Med pref. acc Fin pref. acc Gen pref. acc
Safety Helpfulness

Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful
0 .75 .25 0 .81 .19 0 .58 .42 .60 .40

.30 1.0 0 0 1.0 0 0 .53 .47 .59 .41
-.70 .30 .57 .13 .32 .56 .12 .56 .44 .53 .47
-1.4 .20 .58 .22 .13 .50 .37 .49 .51 .51 .49

(c) Out of Domain (special and general) preference accuracy for Legal domain responses

953

Instruction: You will be given three responses954

for each query. You need to provide the ranking of955

each response separated by commas. For example,956

if you think Response 1 is Generic (level 2),957

Response 2 is Expert (level 3), and Response 3 is958

Avoidance (level 1), you should only answer: 2,3,1.959

960

You can also add a note if you want to notify us961

of something.962

963

You will be provided with a spreadsheet with all964

these columns.965
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