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Hidden Impact of Hardware Technologies on Throughput:
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Abstract
The Web has shifted towards a mobile-first ecosystem with tools,
frameworks, and forums explicitly discussing and catering for the
mobile users, both mobile apps and mobile web-pages. Unfortu-
nately much of the studies and designs are often based on analysis
and findings from developed regions (e.g., N. America and Europe)
or based on user-generated data (introducing bias). In this paper,
we present one of the first studies to understand the interplay
between hardware characteristics (e.g., cellular and mobile) on ex-
pected network and application level performance in Brazil (the
largest developing region in S. America). We analyze more than
170 million measurement sessions collected from within the net-
work of one of the largest Mobile Network Operators in Brazil. Our
findings (1) illustrate limitations of existing crowdsourced measure-
ments and inaccuracies in assumptions about adoption patterns
and performance in the global south, (2) highlight the differences
between recommendations made by standardization bodies and
real world performance, (3) disclose a significant change pre- and
post-pandemic, and (4) quantify the benefits of using both client
side and network data for analysis.

Context and Scope. We analyze how device and infrastructure
factors impact mobile network performance in Brazil, emphasizing
the need for data that reflects local conditions rather than relying
on findings from developed regions. This is crucial for optimizing
the mobile Web experience of users in diverse global contexts. We
use a statistical ensemble to study network data from a mobile
provider, identifying features that correlate with throughput and
quantifying their impact. We use our dataset to identify, quantify,
and detect differences between reality of the Brazilian infrastructure
and standards/recommendations/crowdsourced measurements.

1 Introduction
Studies [7, 10, 24, 30, 44] project that the number of mobile users
far exceeds nonmobile, e.g. desktop users, and that mobile con-
nectivity is crucial to enabling upward mobility through digital
services (studies show cell infrastructure improve GDP up to 12%
in developing regions [41]). This importance has only skyrocketed
with the COVID-19 pandemic and its acceleration of the adoption
of digital services. Although the importance of mobile connectiv-
ity to the Web is undeniable, the designs, recommendations, and
standardization often ignore the global south (e.g., S. America and
Africa) and are defined by empirical characterizations of mobile
performance and usage in developed countries [5, 21, 37]. Even
worse, when they do include the global south they often use anti-
quated data. Moreover, many studies often focus on crowdsourced
data which introduces several different types of sampling bias as

Conference’17, July 2017, Washington, DC, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

noted by others [33]. This bias is even greater in developing regions
where users must pay for the data used for these measurements.

In short, there is a digital divide within network protocol de-
signs and analysis due to the lack of representative data and the
overheads associated with collecting these data that bias network
analysis, protocol design, and standards. This bias is particularly
problematic, as the mobile user experience is heavily affected by
both the capabilities of the user devices and by the underlying in-
frastructure [27], thus designs on incorrect empirical data lead to
significantly suboptimal performance.

In this work, we take a first step towards shedding light on these
mismatches and closing the protocol digital divide by analyzing
randomly-sampled measurements from of one of the largest mobile
network operators in Brazil. We use a dataset with measurements
collected over more than 7 million devices from 2023 and also 2020.
Our dataset, and thus study, is distinguished from prior work [6, 11,
51] by several important factors: First, our dataset captures both pre-
and post-pandemic time scales which allows us to understand the
evolution of the performance in Brazil and quantify how the digital
divide is changing. Second, our study is conducted using randomly
collected sample across the country using carrier designed protocol
which frees us from the bias of crowdsourced measurements. Third,
our study captures data from both the client base and the cell
network allowing us to make greater inferences and analysis than
prior works which are limited to just one set (either client [53] or
cell network [22]).

To conduct our study, we introduce a statistical ensemble which
provides principled methods for understanding which variables
are correlated with performance and estimating their impact in a
manner that avoids conflating factors. Our pipeline also identifies
meaningful changes in performance patterns. Our framework uses
a combination of traditional statistical frameworks (e.g., Spearman)
and machine learning (e.g, GradiantBoost peered with SHAP analy-
sis) to identify correlation and estimate their impact. Our ensemble
is tailored both to our domain and to our scale – for example, our use
of covariate matching pairs to eliminate conflating factors hinges
on the scale of our dataset, whereas the feature engineering for the
GradientBoost is rooted in our domain (e.g., knowledge of the cell
network characteristics).

Using our statistical ensemble we study the digital protocol di-
vide along several dimensions: First, we estimate the impact of
client and network variables on download throughput and per-
form an individual analysis of each feature to understand how it
correlates with the outcome. Then, we perform a longitudinal anal-
ysis to quantify how the divide has changed over the pandemic in
Brazil. Finally, we analyze the differences from the aggregated data
available from Brazil (e.g., Speedtest) and from fine-grained data or
data from the global north (N. America/Europe), both to highlight
differences and potential biases.
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Table 1: Summary of results.

Ref Findings and Descriptions Implications

Tab 6 In post-pandemic Brazil, the average mobile device is 25% faster with 75% more
memory and a majority of them are now on 4G or 5G.

Post-pandemic Brazilian mobile ecosystem has leap-frogged ahead to be
comparable to several European countries but still falls short of many
other countries in the global north.

Fig 4b A third of 4G (i.e., LTE) measurements recorded throughput similar to the top
18% of 3G (specifically, HSPA+) measurements

Connection generation does not predict performance, by itself, instead
specific technology (e.g., HSPA+) and other features must be considered.

Fig 3,
Fig 4c,
Fig 5

Client features (phone CPU clock speed) and internal MNO features (presence
of hand over and base station load) are important metrics in understanding
throughput.

Most datasets used for prediction and many prior studies on MNO
performance often overlook one or more of these key features – thus,
providing partially complete results.

Table 6 Developer referencematerials (e.g., Android orW3C recommendations) for mobile
networks (technology and signal quality) are not aligned with current Brazil.

Developers require new reference standards to develop effective mobile
apps and web pages – We provide an updated reference Table (Table 6).

Sec 8.3 Crowd sourced throughput metrics (e.g., Speedtest) overestimate the mobile
download average for Brazil due to sampling bias unique to the global south (e.g.,
per-byte data plans versus unlimited data plans).

Most open datasets for the developing regions are crowd sourced and
thus over-estimate performance. Care must be taken when using these
datasets to represent developing regions.

Fig 7a Throughput degrades during non-business hours, especially from 6 to 10pmwhich
is different from the after hour degradation observed by others [9] ( 4- 8pm).

This minor shift highlights a broader set of configuration changes that
need to be made when porting operational and management tools to
the global south.

More broadly, our analysis has implications (listed in Table 1)
for the operational aspect, diagnostic dimensions, and applica-
tion/framework design of the mobile Internet. In particular, on
the operational level, we observe a mismatch between usage pat-
terns in Brazil and other countries, which implies a careful analysis
of management frameworks before porting them to Brazil. Sim-
ilarly, at the diagnostic level, we observe that traditional client
active measurement methodologies are unable to capture crucial
aspects of the cell infrastructure which impact performance. More
broadly, crowd-source datasets and recommendations often used
for application/protocol design are misaligned with current Brazil
and will be unable to aide in design of techniques to further close
the digital divide.

2 Related work
Characterizing network impact on throughput: Previous work
on 5G [26, 50, 52] analyzed bandwidth and latency, identifying
various forms of inefficiencies that lead to under-utilization of the
technology optimal capacity. Our work differs in that we analyze
data from a large-scale Brazilian deployment to understand network
behavior.

In contrast, the significant body of work on 4G measurements
[1, 8, 9, 14, 17, 32, 39, 47, 49, 51] highlights key challenges and
characteristics of 4G networks generally in N. America or Europe.
Although there is work that focuses on the Brazilian context [25,
35, 42, 43, 48], we differ from them in terms of scale and breadth:
prior work has only focused exclusively on 4G or 3G or in specific
technologies, whereas we explore three technologies at a larger
scale over a longer period with access to richer performance data,
thus allowing for broader characterizations and analysis.

There are a few studies on wireless network performance on dif-
ferent regions of the world. The most relevant previous studies that
are related to our work [9, 16, 17, 22, 31, 32, 49, 53] are summarized
in Appendix A. We observe that a fundamental difference is that
our work is, to our knowledge, the first to present a comprehensive
analysis of network variables and hardware characteristics (e.g.,
cellular and mobile) on expected network and application level
performance using a real dataset obtained from one of the largest
MNOs in Brazil.

Ensuring quality of user experience: Several works have
studied various subsets of network variables and their implications
for application performance [2, 4, 18, 20, 45, 48, 51]; we differ from
prior work in several ways: first, we study many variables both
from the cell provider and the client while prior work often focuses
on a subset; second, we utilize measurements from a random sample
of the MNO’s entire client base; and third, we compare our results
with other measurement methodologies and studies.

3 Background
Next we provide an overview of traditional cellular networks. A cel-
lular or mobile network is one in which the end nodes are connected
by a cellular wireless link. A set of physical base stations provide
cellular connectivity to a geographical area called cell. Each base
station can divide its radius into multiple cells, and it is common
to have a base station that spans six cells in newer technologies.
In addition, there are certain scenarios where cells from multiple
base stations may overlap in a geographical location. To simplify
our terminology, we refer to a single cell ID as corresponding to a
single base station, even if in practical terms the physical structure
may serve many cells.

Client connections use different technologies, such as LTE or
New Radio, to communicate the device with the base station. Phys-
ical base stations can support multiple technologies, and are con-
nected to the Mobile Network Operator (MNO)’s backbone network
via optical fiber or radio links. The cellular network contains other
components, e.g., the EPC, which we do not discuss because of a
lack of direct relevance to our work. To provide context, our dataset
(Section 4) comprises measurements taken from Android smart-
phones (connected to the MNO’s cellular network) to measurement
servers (colocated within the mobile’s network through optic fiber
cables). The measurement traffic does not pass through the public
Internet, as both ends are inside the MNO’s infrastructure. This is
done to reduce the influence of the network path on the studied
variables. An illustration of the system is at Fig 1.

4 Cellular Network and Dataset
Our data set consists of measurement sessions collected from 2023
(Jan-1 to Aug-30) and 2020 (Jan 1-31), from one of the largest mobile

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Hidden Impact of hardware technologies Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: Summary of the dataset.

Devices Base station cells Brands Models Measurements

7,606,173 860,799 307 4,292 176 million

Table 3: Technology distribution, per million (M) of samples.

5G 4G 3G 2G
NR LTE_CA LTE HSPA+ HSUPA HSPA UMTS EDGE

1.7 M 32 M 122 M 17 M 1.4 M 1.3 M 0.14 M 0.017 M

network operators (MNO) in Brazil. The data was collected via an
active measurementas system which is briefly described below.

Measurement system: The system (Figure 1) comprises three
modules. The agent which is a software package, i.e, MNO Android
App, that runs on the users cell phone and periodically wakes-up to
run a set of active measurements against a dedicated server while
simultaneously reporting hardware metrics about the cellphone
and the base station. The MS which is a measurement server that
acts as an endpoint and reflects the measurement traffic sent by
an agent. In Brazil, the MNO deploys approximately one MS per
state, or multiple MSes for regions with high population density. Fi-
nally, the MNOmaintains a storage infrastructure, called the Admin
module, which stores the measurement data and provides a UI for
the administrator to control the system and monitor performance
indicators.

A measurement data point is collected using the following work-
flow: first, the agent requests a test agenda to the Admin module.
The agent then sends a request to the MS containing the parameters
for the test. The MS sends a burst of measurement data to the agent.
After receiving it, the agent will respond with symmetric traffic
to test the upload channel and send the result metrics for the first
burst. Upon receiving the entire reply, the MS can compute the
resulting metrics of the session and report it back to the admin.
The system implements the guidelines for active IP measurements
established by the IETF’s IP Performance Metrics (IPPM) RFC [13].

Collected data: We collected 176 million measurement data
points from more than 7 million unique devices (Table 2 and Table
3). The selection of devices follows a proportional stratified random
sampling logic, aiming to maximize the geographic coverage of
measurements, and to carry out moremeasurements in regions with
high population density. Each measurement data point consists of

MNO Access/core

Internet

Measurement
Servers

Cell coverage

Measurement path
Internet path

Figure 1: Infrastructure of an agent on a cellular network
connected to a measurement server. The measurement ses-
sion path is entirely within the MNO network.

a timestamp, the state of the connection during the session, the
state of the device during the session, measured download, upload,
latency and other metrics outside the scope of this study.

Ethical and privacy concerns: The data presented in this paper
do not expose sensitive information about the subscriber’s device
and any characteristic or identifier that could otherwise be used
for fingerprinting is anonymized. Additionally, the system does
not analyze, collect nor has access to any user traffic that occurs
outside of the performance measurement scope. The ISP provides
its customers with an optional Android app1 that allows them to
manage their subscription and the measurement tool is included in
this app. The use of data for measurement purposes is written in
Terms and Conditions.

5 Statistical Ensemble
Our goals are (1) to understand and empirically identify the at-
tributes that correlate with network performance, and (2) to identify
the fundamental differences behind the characteristic of cellular
networks in Brazil compared to widely available aggregate results.
In this analysis, a crucial challenge is to ensure that there is a direct
correlation due to the attributes being analyzed and not due to hid-
den attributes or factors not captured by our measurement system.
Given that our measurements are performed in an uncontrolled
environment, not only do all variables studied act simultaneously,
but the result may also be influenced by other hidden variables and
biases unknown to our dataset. Figure 2 presents ours statistical
ensemble which consist of methods to identify features that are cor-
related with performance, to predict their impact, and to analyzing
them over time to indicate fundamental changes in their behavior.

Correlation Analysis (§ 6.2-§ 6.6): In performing correlation,
our goal is to identify the set of features on which are correlated
with throughput while avoiding confounding features (recall, con-
founding features are features other than the independent features
that are potentially associated with the outcome (dependent) fea-
ture).

We select our statistical method for correlation by identifying
method that match the properties of our dataset. Namely, the re-
lationships between the variables and the outcome which is not
necessarily linear or independent, and that we deal with either
continuous or ordinal data. Given these properties, we select, Spear-
man’s Rank, a non-parametric test for our analysis over others (e.g.
Pearson, Phi, Cramer’s V).

To account for confounding features, we take advantage of the
size of our data set and select theMatched pairs experimental design
over alternative designs such as Propensity Score Matching and
Inverse Probability Weighting. Matched Pair design requires few
assumptions about the relationship between confounding features
and outcome, however it is heavily dependent on the size of the
dataset to find high-quality matched pairs. Specifically, Matched
pair works by dividing the dataset in two groups, 𝐴 and 𝐵, then
matching each point in 𝐴 with a point in 𝐵 that has similar con-
founding values. This results in a group of pairs, such that each pair
has similar characteristics with the exception of the independent
variable we are interested in studying. Therefore, confounding are

1Apple devices are not considered in this study because the MNO’s measurement
system is based on Android.
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Figure 2: Statistical Ensemble.

neutralized and we can better understand the effect of the inde-
pendent variable on the throughput. We match data points close
to each other according to the Euclidean distance. With a pair in
hands, we can compute the difference between the independent
variable of the two data points: Δ𝑋𝑖 = 𝑋𝑖A − 𝑋𝑖B and likewise for
our dependent variable Δ𝑌𝑖 = 𝑌𝑖A −𝑌𝑖B. These differences can then
be used to compute correlation coefficients.

Estimating Impact (of various properties) (§ 6.1): We es-
timate the impact of each variable by training an ML prediction
task for throughput and then studying the prediction with SHAP
analysis [29], a technique that computes the average contribution
of each variable to the predicted value. Specifically, we train a re-
gression task on a Gradient Boosting model to predict download
throughput given network and device variables as input. The set of
best-performing hyperparameters was chosen applying Grid Search
to a subset of training data. The resulting model has an R-squared
value of 0.233 and a Cross-Validation Root mean square error of 15.8
with standard deviation of 0.4. We expect the mean square error to
be high as throughput has a lot of variance even accounting for all
our input set variables, nevertheless this performance is enough to
capture the effects of the feature set on the output value.

Time Series Analysis (§ 6.7):We also apply Fourier Transform
for time series data with multiple decreasing or increasing patterns
in the same time segment. Fourier Transform decomposes the un-
derlying components of a time series into a series of sine waves.
By analyzing the frequency and amplitude of those sine waves we
identify recurring patterns in our data, and use ANOVA test to
determine if these patterns are statistically significant.

6 Understanding Network Performance
We first estimate the impact that each feature has on throughput
(§ 6.1), and then analyze individually the feature set to understand
their correlation with download throughput (§ 6.2-§ 6.7), summa-
rized in Table 4. We note that while we performed a time series
analysis of the different features, we only found significant results
in the “hour” feature which we expand on this analysis in § 6.7. The
more fundamental longitudinal analysis of the other features is in
the post and pre-pandemic differences (§ 7).

6.1 Estimating Feature Impact
To measure the impact of each variable on download throughput,
we employ our model interpretability technique (Section 5) on the
subset of features in our dataset that are statistically correlated
with throughput, specifically: CPU clock speed, memory size and
utilization, battery level, signal strength, connection technology,

handovers, number of devices under the base station and time of
day.

Figure 3: Feature set ranked (top to bottom) by decreasing
feature importance to the output value.

Figure 3 presents the results of our analysis with variables ranked
by impact. A “SHAP value” is the impact of a variable on the output
(measured by the unit of the output, in our case it is throughput in
Mbps) for a given datapoint. Each point in the figure shows the im-
pact of a single datapoint. The main contributors to the prediction
are Connection technology and signal with a mean impact of 6 and
4 Mbps, respectively, which is unsurprising because connection and
signal both determine the performance range (as we show shortly).
Next is handover with an impact of 1.5 Mbps, which creates a dis-
ruption in the connection. We see that, when a handover happens,
the impact on throughput can be anywhere from -2 to -9 Mbps.

Next is CPU clock speed, a client-side metric, which has an
impact of 0.97. We note that CPU clock speed has a high impact re-
gardless of the cellular technology. Naturally, CPU speed impacts an
application’s ability to fetch and process data, and is correlated with
other hardware characteristics (Appendix D). This has a broader
impact for interpreting measurement results. Interestingly, memory
has significantly less impact – on average, memory has a SHAP
value of 0.22.

Takeaway: Our analysis further reinforces the role of hidden fac-
tors in introducing bias on online crowdsourced and client-side data
available for analysis. In particular, we quantify the impact of bias
for handover and we show that client-side information (e.g, device
CPU), which is often not exposed, is just as important as network level
metrics.

6.2 Connection Technology
We begin by analyzing cellular connectivity technology (or gen-
eration) and unsurprisingly it has a major impact on throughput.
In Figure 4a we observe that on average, each generation has 4
times the download speed of the previous generation – 4G is 4
times faster than 3G, and 5G is 4 times faster than 4G. We note
that the shape of the 5G violin in Fig 4a differs from the others:
in 5G, a large portion of measurements recorded speeds closer to
the peak of 550 Mbps, while the peak of previous generations is
far from the bulk of measurements. For upload speed, the biggest
improvement is from 3 to 4G connections, as it went from 1.7 Mbps
average throughput with HSPA+ (3G) to 8.9 Mbps on LTE and 14
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(a) Download Throughput per Generation (b) Download and Upload per Conn Tech (c) CDF of Avg. Signal Strength by Station

Figure 4: Overview of throughput and signal strength under different network settings.

Table 4: Spearman’s correlation coefficients for unmatched
and matched pairs by feature and throughput.

Correlation Matched Pair
Features Download Upload Download Upload

Connection Technology +0.47 +0.43 +0.37 +0.38
Signal Strength -0.19 -0.19 +0.17 +0.24
Base Station Load -0.29 -0.22 -0.17 -0.10
CPU Clock Speed +0.12 +0.06 +0.03 +0.02
Memory Size +0.15 +0.05 +0.04 +0.01

Memory Utilization -0.03 -0.01 -0.02 -0.03
Battery Level +0.005 +0.005 +0.03 +0.02

Mbps on LTE with Carrier Aggregation (4G). From 4 to 5G it went
from 14 Mbps to 36.5 Mbps on New Radio (5G).

These values can vary a lot. The standard deviation for LTE
download speed is 13.32 Mbps, while the standard deviation for
UMTS and HSUPA are 4.06 and 3.74. 3G and 4G can vary so much
that the bottom third of 4G measurements have worse (< 6.8 Mbps)
recorded download throughput than the top 18% percent of 3G
measurements, as shown in Figure 4b. Upload throughput exhibits
similar relationship. That is, in certain situations a 3G connection
can record better throughput than a 4G connection.

We order each unique connection technology from oldest no
newest and assign an integer to each position2. From now on, we
always define the null hypothesis𝐻0 as that there is no relationship
between the two variables. Spearman’s rank coefficient (Table 4 –
row 1) reports a positive correlation and rejects the null hypoth-
esis thus statistically supporting our claim about the correlation
between throughput and connection type. When we apply Matched
pair (Table 4 – row 1) to account for confounding variables, we
observe that the correlation is a little weaker however this is not
surprising because there are implicit dependencies (for example, de-
vices without LTE capabilities likely have smaller RAM and slower
CPUs).

Takeaway:Newer connection generations are around 4 times faster
than previous generations. However, 4G connections can exhibit simi-
lar throughput to 3G connections quite frequently. About a third of
measured 4G connections had a throughput similar to 3G averages
and were slower than the fastest 18% of 3G connections.

2Computing correlation coefficients require our variables to be numeric. As such, we
use Ordinal Encoding to transform each connection technology into a numeric value.

(a) Average download through-
put per base station decile

(b) Average 4G download and up-
load throughput

Figure 5: Throughput (Mbps) per base station decile.

6.3 Signal Strength
In our dataset, signal strength is the device signal strength value
during the measurement session. It is measured by dBm (decibels
(dB) relative to 1 milliwatt (mW)). Values range from -120 dBM to
0. High dBm values are usually labeled as excellent signal strength,
lower values often trigger the OS to change to a slower connec-
tion. The average signal strength in the dataset is -93 dBm, with a
standard deviation of 13.5.

The correlation (Table 4 – row 2) between signal strength and
download throughput shows an interesting results: it reports a
negative correlation and indicates a counter intuitive results that a
worse signal is correlated with a better throughput. This is where
matched pairs prove their usefulness. When we apply Matched
pair (Table 4 row 2), we observe that the correlation becomes posi-
tive. That is, when accounting for confounding features, a higher
signal strength is correlated with a better throughput. Figure 4c
helps understanding why the correlation changed when accounting
for confounding features. From this figure, we observe that faster
generations work on lower signal strength, despite having better
throughput. When this characteristic goes unnoticed, it may seem
that low signal strength itself results in better throughput.

Takeaway: Signal strength has a positive correlation with through-
put. Each generation has a distinct optimal dBm range, so comparing
dBm values introduces bias in correlations if the connection generation
covariate is not neutralized.

6.4 Base Station Load (# of Attached Devices)
We use the number of devices measured under a cell ID on the same
month as a proxy for traffic load. This number does not necessarily
mean the devices were active or measuring at the same time on
that base station, but instead that they were active within a 30-day
window on the same base station. The average number of devices
under a cell ID is 21. However, since most measurements happen on
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cell IDs with many devices, this means that a measurement session
takes place on a cell ID that has 116 devices connected to it on
average and the standard deviation is 34.63.

In analyzing the correlation (Table 4 (row 3), we observe that
download throughput has a strong correlation with load while
upload through has a much weaker correlation. We observe that
this correlations decreases slightly while account for confounding
factors, it remains strong. A possible explanation would be that
devices in urban centers use faster connection technologies, have
better signal strength or are newer phone models.

Next, in Figure 5a, we try to analyze the how base station load
impacts network performance. We observe that the top 20% of
loaded base stations (top 2 deciles) have 81 devices on average, and
record 15.3 Mbps of average download throughput. The bottom
20% of loaded base stations (bottom 2 deciles) have 11.2 devices on
average and record 23.5 Mbps average download throughput. This
is an increase of 53% in throughput compared to the top loaded
base stations. We also note that the effect of load on throughput
seems to be stronger on download throughput. In Figure 5b, while
both download and upload decreases when the number of devices
increase, the average download throughput decreases much faster
than upload. This indicates that the overload caused by the number
of devices is disproportionately affecting the downlink, likely due
to client devices downloading much more data than uploading it,
therefore increasing interference that results in packet loss.

Takeaway: The number of devices under a base station is nega-
tively correlated with throughput. In the worst case scenario, a crowded
base station records almost half of the throughput measured on under-
utilized base stations.

6.5 CPU clock speed and memory
Wenow analyse the correlation between throughput and the phone’s
hardware specs (Table 4 rows 4-7). First, we analyze CPU and ob-
serve a small but noticeable correlation which decreases when we
account for confounding factors. Next, we analyze maximum mem-
ory utilization (in % of total memory), we observe an insignificant
monotonic relationship. Eliminating confounding features influ-
ence suggests that CPU speed on throughput (identified in § 6.1)
is probably a result of its correlation with other hardware metrics,
e.g., newer phone models with faster CPU speeds have a better
network interface or are owned by people who have access to faster
connection technology.

Takeaway: CPU speed and memory size are positively correlated
with throughput. Memory utilization shows no significant monotonic
correlation to throughput.

6.6 Horizontal Handover
We now study the horizontal handover effect on download and
upload speed. Horizontal handover is the process of transferring
a data session from one cell to another, without a change in the
session’s connection technology.When a handover does not happen
throughout the measurement session, the average download and
upload speed are 24 Mbps and 11.9 Mbps, respectively. When a
handover happens during the session these values drop to 18.3Mbps
of download speed and 10.5 Mbps of upload speed, a decrease of 26%
and 12%, respectively. That makes the presence of handover one

of the top indicators of throughput degradation from all variables
considered. The decrease in download throughput reaches averages
of 30% on 4G and 5G connections, while 3G connections are less
affected by it with an average of 10%.

Takeaway: Handovers greatly reduce throughput on average 26%
for download and 12% for upload.

6.7 Time influence on throughput
Each data point in the dataset contains a timestamp of the moment
the measurement session started. The measurements were carried
between 10AM and 10PM. Now, we analyze time of day to identify
patterns that could affect throughput. Figure 7a shows a 1-minute
average of download throughput, for all minutes between 10AM
and 10PM. The averages seem to follow a pattern throughout the
day. Earlier in the morning it stays between 22 and 24 Mbps. From
11:30pm to 1:30am it decreases to 20 Mbps at its lowest point. In
the afternoon, it rises back closer to 23 Mbps and falls again after
5pm. These timestamps follow business hours in Brazil: from 8am
to 12pm is the first shift, from 12pm to 1:30pm a lunch break and
the second shift goes from 1:30pm to 6pm. The throughput decrease
is similar to a study [9] in the US but shifted two hours later (11am
vs 1pm).

We would like to determine if this pattern is statistically sig-
nificant. We can infer from Figure 7a that the variables are not
monotonic or linearly correlated, so we should avoid using Spear-
man correlation coefficient. We use ANOVA, a test to determine if
there are any statistically significant differences between the means
of independent groups.

We divide the day into four sections: morning (10am-12pm),
lunch (12pm-1:30pm), second shift (1:30pm-6pm) and night (6pm-
10pm). The null hypothesis 𝐻0 is that there is no significant differ-
ence between the mean of each section. We perform the ANOVA
test for these sections. The result is an 𝐹 = +452.13 and 𝑝 = 10𝑒−314.
The P-Value is extremely low, allowing us to reject the null hypoth-
esis and consider that the means in fact differ above random chance.
This pattern does not appear if we filter the data to include only
weekends, which implies this effect is a consequence of workday
schedule.

Having investigated the daily changes in throughput, we can use
a Fourier Transform to identify other recurring patterns in our data.
By decomposing the daily average throughput from January to
August of 2023 into a series of frequencies, we analyze the resulting
positive power spectrum. We found a peak closer to 0 Hz, which
indicates the download throughput does not changes drastically in
the 8-month period, as expected. We have another peak at 0.14 (or
1/7), which indicates that there is a recurring pattern on a weekly
basis. We plot this pattern in Fig 7b. We can see that the through-
put is slightly higher during the weekends, and decreases 8% in
weekdays to an average of about 23.1 Mbps.

Takeaway: Throughput is affected by daily and weekly patterns
related to workday schedule.

7 Post-Pandemic Evolution
Using our 2020 dataset, we perform a pre and post-pandemic anal-
ysis of the infrastructure and the clients. In particular, we aim to
quantify how the divide has changed post-pandemic.
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(a) CDF of download throughput (b) Device CPU clock speed (c) Device RAM size

Figure 6: Comparison of pre (2020) and post-pandemic (2023) metrics. ECQ refers to Excellent Consistent Quality and CCQ to
Core Consistent Quality, thresholds from [46].

(a) Daily Download Throughput (b) Sunday to Saturday

Figure 7: 1-minute throughput (Mbps) averages throughout
different time periods. A line represents the daily average.

Infrastructure Changes: The network underwent several sig-
nificant changes compared to January 2020: first, the adoption and
implementation of 5G. Second, a shift of about 35.4% connections
from 3G to 4G. Third, 2G went from a very small share of 1% in 2020
to a non-significant percentage in 2023. Finally, despite significantly
more connections using 4G, we observed major improvements in
4G (65% improvement in throughput) due to the implementation of
the LTE Carrier Aggregate (as confirmed by the operator). In Fig 6a
we see the distribution of throughput in the pre- and post-pandemic
datasets. We note that in 2020, 20% of measurements failed to meet
the download throughput threshold for core web use-cases and 46%
for emerging use-cases (e.g. live video streaming). In 2023, these
percentages dropped to 5% and 16%.

Client-Side Changes: The dataset contains 4,292 phone mod-
els from around 300 smartphone brands. In analyzing hardware
characteristics of these devices, we find that the average CPU clock
speed went from 1.4 to 1.75 Ghz (as shown in Fig 6b) and RAM size
went from 1.94 GB to 3.4 GB (Fig 6c). 48% of devices have at least
4 GB of RAM, against the global percentage of 66% according to
a mobile market study [36]. In terms of connectivity, in 2020 the
percentage of devices capable of 5G was negligible, whereas in 2023
10% of devices supported 5G.

Takeaway: Taken together, we observe significant improvement in
the mobile web ecosystem (MNO infrastructure and end user mobile
devices) and its ability to support emerging applications.

8 Performance Comparison
In this section, we compare our results with MNOs in the global
north to quantify the digital divide (§ 8.1), with other MNOs in
Brazil to illustrate generality at the aggregate level (§ 8.2), with
crowdsourced results to illustrate unrepresentativeness of their

data (§ 8.3), and then conclude with the limitations of standards
and recommendations (§ 8.4).

8.1 Characterizing the Global Digitial Divide
Next, we compare against recent studies using test devices across
8 European and American cities [23] reported uplink throughput
values for 4 and 5G connections. While not as extensive as ours, a
comparison allows us to understand broad differences. Our com-
parison shows that modern Brazilian networks3 are comparable to
cities such as Madrid and Porto and Bay Area, while falling behind
Berlin, Oslo and Turin metrics. A country-wide 5G study on the US
with test devices [31] reported significantly (about 50%) higher 5G
NSA downlink performance than our study.

Comparable study [38] on 4G (LTE) performance in the global
south using test devices in Malaysia, Singapore, and Thailand re-
ported average video download speed ranging from 1.9 to 9.8 Mbps,
which is about 63% lower than the averages reported on our dataset.

Takeaway: We observe that post-pandemic Brazil shows remark-
able performance compared to other areas in the global south (e.g.,
Asia-Pacific) and comparable to some Western European cities.

8.2 Other performance studies in Brazil
We compare our data against OpenSignal’s measurements study
of 4G and 5G across all major Brazilian MNOs in Brazil [34]. Our
data, from the first half of 2023, shows a significant improvement
in 5G metrics and a slight improvement in 4G metrics, as Table 5
illustrates. The comparison of our dataset with the local Brazilian
averages shows that our data (coming from one of the largest local
MNOs) has the performance at least equal to the average of all
Brazilian MNOs. However, this performance is still significantly
slower than what speedtest platforms report for the country, as we
detail in the next section.

8.3 Analyzing Bias in Crowdsourced
Measurements

Next, we compare our data against a popular dataset for network
analysis – Ookla. The Ookla speedtest platform publishes mobile
speed averages for each country [40] which are based on crowd-
sourced measurements. We compare the results of our study with
their data on Brazilian Internet performance from March to August

3The values shown in our study (a median/75th LTE upload of 9/19 Mbps and 5G
upload of 24/55 Mbps).
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Table 5: Network metric averages from OpenSignal 2022 [34]

Throughput
(Mbps)

OpenSignal
Global Top 41

(2022)

OpenSignal
Brazil
(2022)

Our study
(2023)

4G Download 39.6 21.6 23.5
4G Upload 11.4 8.5 12.3
5G Download 187.1 51.7 130.5
5G Upload Speed 25.1 18.3 36.5

of 2023. The comparison between our dataset and the averages for
Brazil shows that upload values are roughly the same.4 However,
we observe some difference for downloads: the average download
speed for all mobile technologies recorded by our data is 18 Mbps
and the speedtest results show 43.03 Mbps, more than two times
higher. These differences can be attributed to bias in the nature of
crowdsourced measurements as highlighted by prior works [12, 33].

Moreover, the comparison of OpenSignal’s Brazilian averages
(§ 8.2) suggest that the difference between our results and speedtest
averages is not a phenomenon exclusive to the MNO being studied
but rather an observation that generalizes to the whole country, as
the recorded averages are similar. We hypothesize this difference is
partly explained bymeasurement bias in crowdsourced experiments.
A subset of users, which are inmany cases hard to reach and analyze
(e.g. casual internet users, or with low familiarity with technology),
can represent a large portion of a country’s population. Additionally,
there are contexts covered by our dataset on which users will likely
not initiate a speedtest (e.g. while driving or under movement).
We can try to remove the effect of those conditions: 18% of our
measurements have handover; 30% have many devices at the tower;
41% have devices that are somewhat outdated (below 2Ghz clock
speed). If we remove all these variables, the throughput median
goes from 18Mbps to 27 Mbps, a closer value to the speedtest report.
The remaining difference suggests there are other environmental
and situational factors that can impact throughput beyond the
network’s and client’s inherent technological capacity, e.g., location
and dispensible income.

Takeaway: Although crowdsourced open-data sets provide valu-
able data, they have fundamental bias that cause them to overhead
network performance.

8.4 Mismatch Between Network
Recommendations and Brazil

Given a lack of data, developers and designers often turn to stan-
dards and recommendations. Next, we identify mismatches between
the recorded throughput and the reference values and guidelines
currently available and the reality of today’s infrastructure in Brazil.
We also explain the bias which introduce these mismatches.

Firstly, there exists an assumption that developing regions have
much worse connectivity, to the point that many common Internet
use cases would not function properly. As we show in Section 7,
post-pandemic infrastructure is fundamentally different from pre-
pandemic with a dramatic decrease in 2G and 3G connections.
As such, recommendations, e.g., Android developers guidelines [3]

4The speedtests report an average of 12.09 Mbps against 11.93 Mbps of our dataset.

from 2023, which claim that half of the world will use 2G connection
are increasingly becoming antiquated. In fact, our dataset shows
that only less than 0.1% of the connections use 2G.

The second bias is that the throughput of each connection tech-
nology is much lower than the theoretical reference values. For
example, W3C’s Network Information API [15] table of the maxi-
mum download speed for each connection technology shows 4G
maximum download speed to be of 100 Mbps while we observe
that only 8% of measurements of this study are above half this
speed, at 50 Mbps. To illustrate the broader differences, Table 6
quantifies the gap between our measurements and the standards. In
some cases, the technology (e.g., HSPA) has multiple releases and
multiple vendor-specific enhancements, which increase the theo-
retical limit. Thus, the standards do not include the newer releases
or vendor-specific enhances which creates another mismatch.

Finally, crowdsourced measurements, often used as a reference,
are highly dependent on the specific methodology and context
on which they were recorded. As we discussed in Section 8.3, the
region on which the measurements were recorded, the biases in
crowdsourced data and the measurement test methodology could
all greatly influence the measured values. The complexity of large
scale cellular infrastructures warrant further investigation on the
factors that skew performance away from the reference values.
Table 6: Theoretical limit (from [15]) vs. real-life aver-
ages of throughput, download (d) and upload (u) speeds
in Mbps. Threshold is a strong signal value cuttoff.

Tech Theoretical
Limit

Strong Signal
throughput

Poor Signal
throughput

Threshold
(dBm)

NR 20000(d) 158.3 (d) 45.1 (u) 91.6 (d) 14.1 (u) > -100
LTE 100 (d) 26.89 (d) 18.82 (u) 17.00 (d) 5.69 (u) > -100

HSPA+ 42 (d) 4.98 (d) 1.74 (u) 3.34 (d) 0.99 (u) > -85
HSUPA 14.4 (d) 5.12 (d) 1.74 (u) 3.76 (d) 1.10 (u) > -85
HSPA 3.6 (d) 5.15 (d) 1.99 (u) 3.35 (d) 1.31 (u) > -85
UMTS 2 (d) 3.53 (d) 1.35 (u) 2.98 (d) 1.01 (u) > -85
GPRS 0.237 (d) 1.78 (d) 1.34 (u) 1.52 (d) 1.12 (u) > -90

Takeaway: There is a significant gap between recommendations
fromweb organizations (Android, W3C) and the current infrastructure
landscape of Brazil.

9 Conclusion
In this paper, we analyze a dataset of measurements collected over
7.6 million client devices from a major MNO in Brazil. We take
a deeper look at network and device variables and find that base
station load, handovers and signal strength are among the top
variables affecting the download and upload throughput alongside
the connection technology being used. In addition, we compare
network performance results with the numbers published by other
network performance studies. We find that, while some numbers
remain the same, the speedtest results could be overestimating the
performance of the country’s region and the same observation could
apply to other regions. We also study the country’s connectivity
throughout 2023 and compare it with pre-pandemic levels, showing
a significant reduction in the mobile digital divide.
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A Comparison with Previous Studies
Table 7 shows a summary of similar performance studies on cellular
networks. We make the following observations: (a) the studies are
either done on a selected subset of test devices with custom mea-
surement software tested on different network conditions; or done
using data from speedtest platforms or other services independent
from an MNO; (b) the existing body of work lacks comprehensive
studies done on Latin American networks and has insufficient stud-
ies on the global south; (c) Research tend to focus on a limited
subset of network variables and conditions, which makes it dif-
ficult to generalize findings to the entire client base of a cellular
network. Our work addresses these issues presenting an alternative
measurement methodology and analysis.

B Brazilian Network Characterization
Our dataset contains over 7 million real user devices distributed in
860 unique cell sectors. Next, we provide a general characterization
to highlight diversity and heterogeneity, which allows us to draw
general conclusions throughout the country.

Client Distribution Mirrors Population: In analyzing the
distribution of mobile devices between towers, it is unsurprising
that we observe that these devices are not uniformly distributed be-
tween stations. This naturally highlights differences in population
densities. To validate this observation, we used the LAC informa-
tion (i.e., Region) from each measurement session’s base station to
map the client to LAC: LAC is a two-digit number that identifies the
67 regions in Brazil. The LAC allows us to map devices to regions
via the base station, which are assigned LAC codes. We observe
that the relative number of measurements in each LAC matches
its population density according to the latest population Census
[19]. More information validating this observation is in Appendix C.
Areas with high device density also have high population density.
With a large sample size and similar geographical distribution, we
are able to generalize insights on this dataset to the entire country.

Cell Tower Characterization: 4G is the most commonly used
technology across the territory, having significant usage on 66% of
the base stations. Although 3G is only used in around 40% of the cell
towers, most 3G measurements are concentrated in a small number
of base stations (15% of the total) withmany devices recorded, which
indicates that they happen on areas with high population density.
This distribution implies that 3G is also heavily used in urban areas
and not only on rural or remote areas. 5Gmeasurements are present
in very few base stations: 2.9% of the total. This is likely a result of
the fact that the 5G infrastructure was not widely deployed at the
time the data was collected because it requires different technology
and has a different footprint than 3G/4G towers.

Next, we delve into connection technologies within each gen-
eration. Most (83%) connections use LTE and LTE with Carrier
Aggregation (4G) technology. Next are HSPA+ (3G), and New Radio
(5G) with 14% and 1%, respectively. The remaining are alternative
3G technologies (UMTS, HSDPA) and 2G measurements, which
make up less than 0.02% of the total.

B.1 5G Adoption
5G was utilized in just over 1% of total connections in 2023. 4G and
3G technologies remain mostly stable throughout 2023 as the most

10

https://doi.org/10.1109/TNET.2013.2256431
https://doi.org/10.1109/TNET.2013.2256431
https://doi.org/10.1016/j.rineng.2024.102691
https://doi.org/10.1145/2398776.2398808
https://www.speedtest.net/global-index
https://ssrn.com/abstract=1250082
https://doi.org/10.1109/WCNC.2011.5779279
https://doi.org/10.1109/GLOCOM.2016.7842022
https://doi.org/10.1109/GLOCOM.2016.7842022
https://doi.org/10.1145/2940136.2940139
https://www.tutela.com/blog/comparing-mobile-experience-throughout-brazil
https://www.tutela.com/blog/comparing-mobile-experience-throughout-brazil
https://www.tutela.com/consistent-quality
https://doi.org/10.1109/LCOMM.2016.2601087
https://doi.org/10.1109/LCOMM.2016.2601087
https://doi.org/10.1016/j.comnet.2020.107737
https://doi.org/10.1109/NOMS.2018.8406261
https://doi.org/10.1109/NOMS.2018.8406261
https://doi.org/10.1145/3387514.3405882
https://doi.org/10.1145/3387514.3405882
https://doi.org/10.1145/1993744.1993777
https://doi.org/10.1145/1993744.1993777
https://doi.org/10.1145/3544216.3544237
https://doi.org/10.1145/3544216.3544219
https://doi.org/10.1145/3544216.3544219


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Hidden Impact of hardware technologies Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Summary of related studies on cellular network performance.

Ref Location Dataset Technology Variables Indicators

[32] US, India, S. Korea,
Europe

Volunteer speedtests on an internal
Google Android application

2G, 3G, 4G technology, carrier, location,time of day, network
path, signal strength

RTT, throughput, error rate
and loss

[22] US, Spain, France,
Italy, Germany

Mobile measurements with selected
devices and dedicated speedtest
servers

5G MNO, channel bandwidth, MIMO configuration,
MCS values, UE-tower distance

Physical-layer throughput
and latency, bitrate, buffering,
video quality

[31] United States Mobile measurements with selected
devices

4G, 5G UE-Server distance, handover, signal strength, lo-
cation, frequency band, ABR algorithms

Energy consumption, through-
put, bitrate, RTT, page load
time

[16] United States Mobile measurements under user
movement with custom software
and equipment

4G, 5G Frequency band, user mobility, handover, Connec-
tion technology

Latency, packet loss, bitrate, %
dropped frames, Throughput

[53] China Set of measurements from a live
streaming platform

4G, 5G, Connection technology, Handovers, carrier, access
density, bitrate, network hops

Throughput, RTT, energy con-
sumption

[49] Finland Mobile measurements from crowd-
sourced speedtest platform

2G, 3G, 4G Technology, location, time of day, phone model,
MNO, battery level, signal strength, handover

Throughput, link stability

Ours Brazil Real-user measurements fromMNO
Android app

2G, 3G, 4G, 5G Technology, time of day, phonemodel, battery level,
signal strength, CPU, RAM, Number of attached
devices, handover

Throughput

common technologies. It is likely that both technologies will still
be used by a significant share of the population in the following
years. 5G is already more popular than 2G but is still rising timidly
throughout the considered period. Compared to January of 2020,
the country’s network performance improved significantly. The
average download and upload speed went from 11 Mbps and 5
Mbps, respectively, to 24 Mbps and 12 Mbps in 2023. The average
download speed of 5G connections is 141 Mbps and upload speed is
36.2 Mbps, although some measurements record download speeds
as high as 550Mbps. The recorded averages are similar to 5G studies
[28] recorded in other continents, and are enough to offer a good
quality of service to network-intensive applications such as video
streaming or downloading media.

C Client Distribution Mirrors Population
The Location Area Code is defined by the SIM card being used
by the phone during the measurement session. We can infer in
which LAC region each base station is located considering only
the most common LAC from the measurement sessions at that
base station. Therefore, we get (at a granularity of LAC region) the
location of every device. In Figure 8 we plot devices and population
in each LAC region. The Spearman correlation coefficient for these
two variables give a value of 0.66; and fitting a regression line on
those two variables gives an R-squared measure of 0.76, values that
indicate a strong correlation between both variables.

D SHAP Values per Technology
In Figure 9 we see the feature importance ranking for New Radio.
We note that signal strength and CPU clock speed are among the
top contributors even when predicting a single connection technol-
ogy. In other words, signal and clock speed are not entirely related
to connection technology; they influence the output independently
of it. The remaining variables retain their positions: signal strength,
handover, CPU speed and number of devices are the top contrib-
utors for 5G. The same ordering happens when we analyze only
LTE connections.

One of the possible explanations for the CPU clock speed effect
on throughput is in Figure 10. We see the memory usage starts to

(a) Device by LAC region

(b) Population by LAC region

Figure 8: Device and population in each LAC region.

negatively impact the prediction value at around 75%. This number
is likely the threshold on which the cellphone cannot keep up
network processing fast enough. Second, we see from the image
that this scenario happens predominantly in CPU clock speeds
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Figure 9: Feature set ranked, considering only New Radio
(5G) measurements.

under 1,500 MHz, which may indicate that CPU clock speed is a
useful proxy variable to indicate hardware (dis)advantage. This
observation applies for both 4G and 5G connections.

Figure 10: Dependency plot of Max Mem Usage vs. CPU
Speed.

E Impact of Battery Level on Throughput
Battery level is a value between 1 and 100 that shows the device’s
battery level during themeasurement session. The average recorded
battery level is 57.97 and the standard deviation is 26.53. The mea-
surements are fairly spread out across the range of possible values.
There are slightly less measurements recorded on phones with very
low battery, presumably because people leave their phones charged
more often than not.

For unmatched data points, Spearman’s Rank correlation shows
𝜌 = +0.008 and 𝑝 = 10𝑒 − 21. Although these values are statistically
significant, the correlation coefficients are so low that it does not
mean any effective correlation, in a practical sense. For matched
pairs, Spearman shows 𝜌 = +0.034, 𝑝 = 10𝑒 − 14. Similarly, no
significant correlation is found when neutralizing covariates. The

correlation coefficient for upload throughput is 𝜌 = +0.005 and
𝑝 = 10𝑒 − 21, almost identical values to download throughput.

Although there seems to be no correlations between battery
level and throughput, many devices have a battery saving mode,
usually activated when the device drops below 10% battery level.
We can derive a binary metric from battery level that divides the
data into measurements being made on low battery or otherwise.
The average download throughput for low battery phones is 10.77
Mbps, and for high battery phones is 10.38 Mbps. Likewise, average
upload throughput valuesmeasure 5.46Mbps on low battery phones
and 5.66 Mbps on high battery phones. Although values differ with
a significant confidence interval on a t-test, this is not enough to
conclude that battery level correlates to throughput.

Takeaway: Battery level did not exhibit a significant correlation
with download or upload throughput. Likewise, Android’s battery
saving mode seems to have no correlation with measured throughput.
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