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Abstract

Reconstruction of 3D surfaces from sparse 2D data is a challenging problem that attracted
increasing attention also in the medical field where image acquisition is expensive and the
patients often bear high radiation doses (CT, fluoroscopy). Further, advances in computer-
guided surgical assistant systems and preoperative planning necessitate fast 3D reconstruc-
tion from sparse image data. Recent learning-based approaches showed notable success in
reconstructing primitive objects leveraging abundant artificial data sets. However, quality
3D data in the clinical context is often scarce. This motivates the exploitation of domain
knowledge in form of anatomical shape priors to simplify the reconstruction problem. Fur-
ther, mesh-sensitive applications (e.g., finite element analysis of implant design) greatly
benefit from pre-defined mesh topologies. Thus, we propose a concept for implementing
and training a learning-based patient-specific 3D reconstruction from bi-planar radiographs
based on altering anatomical template meshes.

Keywords: 3D reconstruction, deep learning, mesh, medical imaging, X-ray, digitally
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1. Introduction

Reconstruction and registration of the patient’s anatomy become more important with
advances in computer-assisted surgery and planning (Fiirnstahl et al., 2012). Current ap-
proaches often rely on segmented CT scans, which are costly, time-consuming to acquire
and expose the patient to high radiation doses. However, 3D reconstruction from scarce 2D
data leads to an ill-posed problem that can not be solved with conventional methods. Here,
learning-based solutions for sparse-view 3D reconstruction provide a promising alternative
(Kasten et al., 2020). Wherever data are sparse, domain knowledge helps to simplify the
solution process. Inspired by early medical segmentation algorithms using shape priors, we
want to exploit anatomical model templates to enhance the learning-based 3D reconstruc-
tion from bi-planar radiographs. The end-to-end mesh prediction facilitates patient-specific
musculoskeletal modeling, finite element analysis, or preoperative planning.
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2. Methods

The proposed pipeline aims to reconstruct patient-specific geometries provided with only
bi-planar radiographs and a template mesh of the desired anatomical structure. Figure 1
describes the workflow on the example of the pelvic bone. The core of our reconstruction
pipeline is a deformation network that predicts a translation vector for each vertex of
the mesh template which best fits the radiographic input. Following the idea of Wen
et al. (2019), convolutional encoder networks (VGG-16) extract information from the two
radiographs with bi-planar perceptual feature pooling. The resulting feature vector is then
concatenated with the first layer of the reconstruction network. As a primary variant,
we suggest employing a fully-connected architecture as in Pan et al. (2019) with ReLU
activations in the first three layers and tanh activations in the output layer. Finally, applying
the predicted translation vectors to the template nodes yields the patient-specific mesh.

To train the network we propose a loss term that simply considers the sum of the eu-
clidean distances between every vertex x; and y; of the predicted mesh and the ground truth,
respectively: L4 = . ||z; — yi||?. Extending the loss function with geometry regularizers
potentially benefits the mesh’s smoothness (Wen et al., 2019).

To obtain training data, we derive digitally reconstructed radiographs (DRRs) from
1,184 CT volumes (Liu et al., 2021). Then, an iterative closest point algorithm fits the
template mesh to the corresponding 3D segmentations generating the ground truth mesh
that complements the DRR (e.g., Scalismo). A frequent problem of DRRs is their mismatch
in style regarding the emulated image modality. However, our preliminary results showed
that generative networks like CycleGAN can be successfully trained to imitate the desired

image style in an unsupervised manner.
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Figure 1: Concept for the implementation of the proposed reconstruction pipeline. Cross-
view perceptual feature pooling adapted from Wen et al. (2019).
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3. Conclusion

We believe combining shape priors and learning-based reconstruction has potential in a
plethora of medical applications, e.g., a predefined mesh facilitates further use in patient-
specific models and implant design. However, a mesh-based reconstruction comes not with-
out challenges regarding the accuracy and implementational complexity. The presented
concept will likely adapt to new challenges and ideas that occur during the implementation
process. For instance, Wen et al. (2019) already demonstrated that graph convolutions are
well suited for mesh-based reconstruction. The known geometry and physical properties of
the X-ray device offer even more potential for domain knowledge exploitation. Further, the
image encoder could be replaced by lighter and more efficient network architectures.
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