
Published as a conference paper at ICLR 2025

TURNING UP THE HEAT: MIN-P SAMPLING FOR
CREATIVE AND COHERENT LLM OUTPUTS

Nguyen Nhat Minh∗∗1, Andrew Baker∗2, Clement Neo∗1,
Allen Roush3, Andreas Kirsch2, Ravid Shwartz-Ziv3,4
1Apart Research 2Independent 3Wand.ai 4New York University

ABSTRACT

Large Language Models (LLMs) generate text by sampling the next token from
a probability distribution over the vocabulary at each decoding step. However,
popular sampling methods like top-p (nucleus sampling) often struggle to balance
quality and diversity, especially at higher temperatures, leading to incoherent
or repetitive outputs. To address this challenge, we propose min-p sampling,
a dynamic truncation method that adjusts the sampling threshold based on the
model’s confidence by scaling according to the top token’s probability. We conduct
extensive experiments on benchmarks including GPQA, GSM8K, and AlpacaEval
Creative Writing, demonstrating that min-p sampling improves both the quality
and diversity of generated text, particularly at high temperatures. Moreover, human
evaluations reveal a clear preference for min-p sampling in terms of both text
quality and diversity. Min-p sampling has been adopted by multiple open-source
LLM implementations, highlighting its practical utility and potential impact.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in generating coherent and
creative text across diverse domains, from factual question answering to open-ended storytelling. A
central challenge in these generative tasks is managing the trade-off between creativity and coherence,
often influenced by the sampling strategy used during text generation. Popular methods like top-p
sampling (nucleus sampling) (Holtzman et al., 2020) and temperature scaling (Ackley et al., 1985) are
widely adopted to address this challenge, but they often struggle, especially at higher temperatures.
While increasing temperature can enhance diversity, it frequently reduces the coherence of generated
text; conversely, more conservative sampling limits creativity and can lead to repetitive outputs.

In this paper, we address this fundamental issue by introducing a new sampling method called min-p
sampling, designed to dynamically balance creativity and coherence, even at high temperatures.
Min-p sampling establishes a minimum base probability threshold that scales according to the top
token’s probability, allowing it to dynamically include diverse options when the model is uncertain
while focusing on high-confidence tokens when the model is confident.

To demonstrate the effectiveness of min-p, we conduct extensive experiments on various benchmark
datasets, including GPQA (Rein et al., 2023), GSM8K (Cobbe et al., 2021), and AlpacaEval
Creative Writing (Li et al., 2023). Our results show that min-p sampling outperforms top-p and other
popular decoding methods such as top-k (Fan et al., 2018) and η-sampling (Hewitt et al., 2022a),
maintaining coherence while allowing for increased diversity, particularly with high-temperature
scaling. We also conducted a comprehensive human evaluation to compare the quality and diversity
of text generated by min-p with that generated by traditional sampling methods. The results indicate a
clear preference for min-p, with participants rating min-p outputs as superior in quality and diversity.

The contributions of this paper are as follows:

• We introduce min-p sampling, a novel dynamic truncation method that effectively balances
creativity and coherence in LLM-generated text, particularly at high temperatures.

∗Equal Contribution. Correspondence to Nguyen Nhat Minh at minh1228@gmail.com.
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• We present comprehensive experimental results on several benchmarks, demonstrating that
min-p consistently improves the quality and diversity of generated text compared to top-p
sampling and other existing methods.

• We validate the practical utility of min-p through an extensive human evaluation, showing
that human evaluators prefer min-p outputs over those generated by other methods in terms
of both quality and diversity.

• We provide practical empirical guidelines for using min-p sampling, assisting practitioners
in selecting appropriate hyperparameters and best practices for various applications.

• The rapid adoption of min-p by the open-source LLM community further highlights its
effectiveness and practical potential.

By introducing min-p and offering empirical guidelines for its use, we aim to explore high-temperature
settings for creative text generation without compromising coherence. Our results demonstrate that
min-p is a viable and superior alternative to existing sampling methods, both at standard and high-
temperature settings, making it an important contribution to generative language modeling.

2 RELATED WORK

Sampling methods are crucial in controlling the quality and diversity of text generated by LLMs. The
choice of sampling strategy directly affects the balance between creativity and coherence, which is
critical in many generative tasks. In this section, we review existing sampling methods and their
limitations, establishing the motivation for our proposed min-p sampling approach.

Greedy Decoding and Beam Search. Greedy decoding and beam search are deterministic decoding
strategies that select the token with the highest probability at each step (Freitag & Al-Onaizan, 2017).
While these methods ensure high-probability token selection, they often lead to repetitive and generic
text due to their lack of diversity. Beam search also incurs a significant runtime performance penalty.

Stochastic Sampling Methods. Stochastic sampling methods aim to inject diversity into the
generated text by introducing randomness in token selection. Temperature scaling adjusts the
distribution’s sharpness, balancing diversity and coherence (Ackley et al., 1985); however, higher
temperatures often lead to incoherent and nonsensical results, limiting its applicability. Top-k
sampling selects from the top k most probable tokens, ensuring that only high-probability tokens
are considered (Fan et al., 2018). While it offers a simple way to prevent unlikely tokens from being
sampled, it does not adapt dynamically to varying confidence levels across different contexts.

Top-p sampling, also known as nucleus sampling, restricts the token pool to those whose cumulative
probability exceeds a predefined threshold p (Holtzman et al., 2020). This method effectively balances
quality and diversity by focusing on the "nucleus" of high-probability tokens and dynamically adapts
to different contexts. However, at higher temperatures, top-p sampling can still allow low-probability
tokens into the sampling pool, leading to incoherent outputs. This trade-off between creativity and
coherence at high temperatures is a key limitation that we aim to address with min-p sampling.

Entropy-Based Methods. Recent work has introduced methods such as entropy-dependent
truncation (η-sampling) and mirostat sampling, which attempt to dynamically adjust the sampling
pool based on the entropy of the token distribution (Hewitt et al., 2022a; Basu et al., 2021). While
entropy/uncertainty-based approaches show promise in improving text quality, they often require
complex parameter tuning and are computationally expensive, making them challenging to use in
practical applications. We detail our experimental challenges running η sampling in Appendix A.3.

3 MIN-p SAMPLING

The core idea of min-p sampling is to dynamically adjust the sampling threshold based on the
model’s confidence at each decoding step. This dynamic mechanism allows the sampling process
to be sensitive to the context and the certainty of the model, providing a better balance between
creativity and coherence, especially at high temperatures.
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3.1 OVERVIEW OF MIN-p SAMPLING

In standard autoregressive generation, a language model predicts the probability distribution over the
vocabulary for the next token, conditioned on the sequence generated so far. At each step, the model
selects a token from this distribution either deterministically or stochastically. Min-p sampling is a
stochastic method that adapts its truncation threshold based on the model’s confidence, allowing the
sampling strategy to be context-sensitive.

Formally, at each time step t, let V denote the vocabulary, and P (xt | x1:t−1) represent the conditional
probability distribution over the vocabulary for the next token xt. Min-p sampling involves the
following steps:

1. Calculate the Maximum Probability: Identify the maximum probability token in the
distribution, denoted as pmax = maxv∈V P (v | x1:t−1).

2. Define the Truncation Threshold: Set a base probability threshold, pbase ∈ (0, 1], and
scale it by pmax to determine the actual truncation threshold:

pscaled = pbase × pmax (1)

This threshold ensures that tokens with sufficiently high relative probabilities are considered
while filtering out less probable tokens in a context-dependent manner.

3. Define the Sampling Pool: Construct the sampling pool Vmin consisting of tokens whose
probabilities are greater than or equal to pscaled:

Vmin = {v ∈ V : P (v | x1:t−1) ≥ pscaled} (2)

4. Sample from the Pool: Sample the next token xt from the reduced set Vmin according to
their normalized probabilities:

P ′(v) =
P (v | x1:t−1)∑

v′∈Vmin
P (v′ | x1:t−1)

for v ∈ Vmin (3)

3.2 INTUITION BEHIND MIN-p SAMPLING

The key intuition behind min-p sampling is that token truncation thresholds are relative and
depend on how certain the distribution is for that token, and not absolute thresholds. When
the model is highly confident about the next token (i.e., pmax is high), min-p restricts the pool to
high-probability candidates to maintain coherence. Conversely, when the model is less confident,
relaxing the sampling pool allows for a more creative and diverse generation. Unlike top-p sampling,
which truncates the distribution based on a fixed cumulative probability, min-p dynamically adjusts
the threshold based on the model’s confidence, leading to more context-sensitive generation.

Figure 1 illustrates the effects of different sampling methods, including min-p, on token probability
distributions. In subfigure (a), we show an initial probability distribution over tokens. Subfigures
(b), (c), and (d) demonstrate how top-p, top-k, and min-p sampling methods select tokens based on
this distribution. Min-p sampling dynamically adjusts its filtering threshold based on the model’s
confidence, focusing on high-probability tokens when confident and including diverse but plausible
options when uncertain. This dynamic behavior helps min-p balance coherence and diversity more
effectively than top-p and top-k sampling.

3.3 ADVANTAGES OVER EXISTING METHODS

Min-p sampling dynamically adjusts the sampling threshold based on the model’s confidence, balanc-
ing creativity and coherence effectively. Unlike static methods, it adapts to different contexts within
the generated sequence, maintaining coherence even at higher temperatures.

Balancing Creativity and Coherence. Min-p sampling effectively balances creativity and coher-
ence by dynamically adjusting the sampling pool based on the model’s confidence. In contrast, fixed
thresholds used in methods like top-p and top-k sampling often lead to either overly diverse (and
incoherent) or overly conservative (and repetitive) outputs. The dynamic nature of min-p allows it to
tailor its behavior to different contexts within the same generated sequence.
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Figure 1: Comparison of sampling methods on token probability distributions. (a) Initial distribution.
(b) Top-p sampling. (c) Top-k sampling. (d) Min-p sampling. Min-p sampling dynamically adjusts
its filtering threshold based on the model’s confidence, focusing on high-probability tokens when
confident and including diverse but plausible options when uncertain. This dynamic behavior helps
min-p balance coherence and diversity more effectively than top-p and top-k sampling.

Robustness at High Temperatures. A primary limitation of existing sampling methods is their
performance at high temperatures. As the temperature increases, the token probabilities become more
uniform, allowing unlikely tokens to be selected, which can result in incoherent text. Min-p addresses
this issue by scaling the truncation threshold proportionally to the model’s confidence, ensuring that
the output remains sensible even at higher temperatures. This capability is particularly valuable for
tasks that benefit from high creativity, such as storytelling and dialogue generation.

Computational Efficiency. Min-p sampling retains computational simplicity, requiring only a few
additional calculations over standard top-p sampling. Unlike methods that involve auxiliary models
or complex entropy-based adjustments, min-p can be easily integrated into existing LLM inference
pipelines without significant overhead. This makes it practical for both research and real-world
applications, and offers a distinct advantage over other entropy-based methods such as ϵ and η
sampling (Hewitt et al., 2022b), as we discuss in Appendix A.3.

3.4 IMPLEMENTATION DETAILS

Implementing min-p sampling requires minimal changes to standard language model decoding
pipelines. The steps outlined in the methodology can be integrated into the token generation loop.
Here are some practical considerations:

Integration into Decoding Pipelines. Min-p sampling can be implemented as a logits processor in
frameworks like Hugging Face Transformers (Wolf et al., 2020) and , vLLM (Kwon et al., 2023). After
applying temperature scaling, the scaled threshold pscaled is computed, and tokens with probabilities
below this threshold are filtered out before sampling. These operations are efficiently implemented
using vectorized computations, adding negligible overhead to the decoding process.

Parameter Selection Guidelines.

• Choosing the Base Threshold (pbase): Setting pbase between 0.05 and 0.1 provides a good
balance between creativity and coherence across various tasks and models. Higher values of
pbase (e.g., close to 1) can be used to maintain coherence at very high temperatures. Higher
values of pbase (e.g., 0.5-0.7) can further increase coherence and benchmark scores at high
temperatures, though likely at the cost of diversity (see Table 13 for detailed analysis).

4



Published as a conference paper at ICLR 2025

• Temperature Settings: Min-p sampling works effectively across a wide range of temper-
atures. Practitioners can experiment with higher temperatures (e.g., τ = 2 or τ = 3) to
enhance diversity without significant loss of coherence.

• Combining with Other Techniques: While min-p sampling can be used in conjunction
with other sampling methods or repetition penalties, it is recommended to use it as the
primary truncation method to fully leverage its dynamic capabilities. Our experiments with
combined samplers (see Table 12) show that using multiple truncation methods can lead to
double normalization issues and suboptimal performance, as each method’s hyperparameters
have so far only been optimised for standalone application. We discuss potential future
research directions for combined sampling approaches in Appendix D.2.

Ensuring Robustness. To prevent the sampling pool from becoming empty, especially when pbase
is high and pmax is low, it is advisable to enforce a minimum number of tokens to keep in Vmin.

3.5 AVAILABILITY OF RESOURCES

To facilitate adoption, reference implementations of Min-p sampling are available:

• Community Adoption: Due to popular demand from open-source developers, Min-p
sampling has seen rapid uptake among high-traffic, production-grade inference engines. It
is now integrated in widely used frameworks such as Hugging Face Transformers, vLLM,
and SGLang (Zheng et al., 2024), which collectively have accrued over 350,000 GitHub
stars. This integration, coupled with extensive downstream usage (e.g., over 290,000
dependent repositories for Transformers alone), underscores the method’s practical impact
(see Appendix A.5 for detailed statistics).

• Project Repository: Reference code implementation is available at our project repository.1

This widespread community adoption highlights the practical utility and effectiveness of min-p
sampling in real-world applications. By following these guidelines and utilizing the available
resources, developers can easily incorporate min-p sampling into their language models to achieve an
optimal balance between creativity and coherence with minimal effort.

4 CASE STUDIES: ILLUSTRATIVE EXAMPLES

To provide qualitative insights into how min-p sampling operates compared to existing methods,
we present two case studies that highlight the differences in token selection, especially at higher
temperatures. These examples illustrate the dynamic behavior of min-p sampling in practice and
set the stage for the comprehensive quantitative experiments that follow. This visualization was
originally created by Maso (2024) and reproduced in this paper.

Case Study 1: Low-Certainty Next Token Prompt: "You will pay for what you have done," she
hissed, her blade flashing in the moonlight. The battle that ensued _____

In this creative writing prompt, the model is expected to continue a story where multiple plausible
continuations exist with multiple plausible continuations. The next token is uncertain, and the
probability distribution is relatively flat at a high temperature.

Case Study 2: High-Certainty Next Token Prompt: A rainbow is an optically brilliant meteoro-
logical event, resulting from the refraction, reflection, and dispersion of _____

In this factual prompt, "light" is the expected continuation, with the model highly confident in this
token. We examine how various sampling methods manage this high-certainty context at τ = 3.

Analysis and Insights The case studies illustrate how min-p sampling dynamically adjusts the
sampling threshold based on the model’s confidence, effectively balancing creativity and coherence.
In low-certainty scenarios (Case Study 1), min-p behaves similarly to top-p sampling, allowing a

1https://github.com/menhguin/minp_paper
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Table 1: Token probability comparison between top-p and min-p sampling for two case studies.
Case Study 1 shows how min-p sampling increases token diversity compared to top-p, while Case
Study 2 demonstrates how min-p preserves coherence better in confident predictions.

(a) Case Study 1: Low-Certainty Next Token

Prompt: "You will pay for what you have done,"
she hissed, her blade flashing in the moonlight. The
battle that ensued ____

Token τ=1 τ=3 Top-p Min-p

was 70.3 11.9 13.1 18.5
lasted 9.5 6.1 6.7 9.5
between 6.2 5.3 5.9 8.2
left 4.5 4.8 5.3 7.4
would 3.2 4.3 4.7 6.6
seemed 0.5 2.3 2.5 3.5

(b) Case Study 2: High-Certainty Next Token

Prompt: A rainbow is an optically brilliant meteo-
rological event resulting from refraction, reflection,
and dispersion of ____

Token τ=1 τ=3 Top-p Min-p

light 98.3 34.4 38.2 80.9
sunlight 1.3 8.1 9.0 19.1
water 0.1 3.4 3.8 –
sunshine 0.1 2.9 3.2 –
a 0.05 2.7 3.0 –
moisture 0.05 2.7 3.0 –

range of plausible continuations and promoting diversity without sacrificing narrative coherence. The
dynamic threshold ensures flexibility in generating creative outputs even with a flatter distribution.
Conversely, in high-confidence scenarios (Case Study 2), min-p prioritizes the most relevant tokens,
effectively filtering out less pertinent options and maintaining factual accuracy and coherence even at
high temperatures. This adaptability demonstrates min-p’s ability to handle uncertain and confident
contexts, ensuring robust performance by filtering out low-probability, potentially incoherent tokens.

5 EXPERIMENTS

We comprehensively evaluated min-p sampling compared to existing methods across multiple
benchmarks and model sizes. Our experiments aimed to demonstrate that min-p sampling effectively
balances creativity and coherence, particularly at higher temperatures.

5.1 EXPERIMENTAL SETUP

Models Our main experiments were conducted using the Mistral 7B language model (Jiang et al.,
2023), selected for its strong performance across various tasks. We additionally conduct evaluations
on Llama series models (Grattafiori et al., 2024). To evaluate if the benefits of min-p sampling scale
to larger models, we also perform tests on Mistral Large with 123B parameters and Llama 3.2 70B.

Benchmarks We evaluate min-p sampling on three diverse benchmarks:
• Graduate-Level Reasoning: GPQA Main Benchmark (Rein et al., 2023).

• Grade School Math: GSM8K Chain-of-Thought (GSM8K CoT) (Cobbe et al., 2021).

• Creative Writing: AlpacaEval Creative Writing (Li et al., 2023).

Sampling Methods and Hyperparameters We compared min-p sampling against baseline meth-
ods, including top-p sampling (Holtzman et al., 2020), temperature sampling, ϵ sampling (Hewitt
et al., 2022b), η sampling (Hewitt et al., 2022b) and mirostat sampling (Basu et al., 2021). We
present results between temperatures 0.7 and 3.0, with further tests between 0 and 5 linked in our
project repository 2. Min-p and top-p perform comparably lower temperatures 0 to 0.5 (see Table 11
in Appendix), with differences within error margins.

For min-p, base probability thresholds of pbase = 0.05 and 0.1 were used, while top-p sampling
employed p = 0.9. These hyperparameter settings were chosen based on empirical guidelines and
prior research to provide a fair comparison (See Appendix A.2 for extensive discussion).

2https://github.com/menhguin/minp_paper/
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Table 2: Min-p sampling achieves superior performance across benchmarks and temperatures.
Accuracy (%) on GPQA Main and GSM8K CoT benchmarks on Mistral 7B. All were conducted on
VLLM except η Sampling and ϵ Sampling which were conducted on Hugging Face Transformers.
Best scores are bolded, and best scores beyond standard error of ±1-1.5% are in italics.

Method GPQA Main (5-shot) GSM8K CoT (8-shot)

τ = 0.7 τ = 1.0 τ = 1.5 τ = 2.0 τ = 3.0 τ = 0.7 τ = 1.0 τ = 1.5 τ = 2.0 τ = 3.0

Temp’ Only 27.23 22.77 25.22 5.80 0.89 29.56 17.51 0.00 0.00 0.00
Top-k 26.34 23.66 22.77 16.52 5.88 30.63 17.59 0.00 0.00 0.00
η Sampling 28.13 25.45 24.55 – – 32.63 26.99 0.49 – –
ϵ Sampling 27.90 25.45 24.11 – – 31.69 26.84 0.56 – –
Top-p 29.02 25.00 24.78 6.47 0.46 36.09 27.67 0.68 0.00 0.00

Min-p 29.18 25.89 28.13 26.34 24.55 35.18 30.86 18.42 6.21 0.00

Evaluation Metrics Evaluation metrics were tailored to each benchmark. For GPQA and GSM8K,
we measured accuracy. In the AlpacaEval benchmark, we assessed win rate and length-controlled
win rate (LC-Win Rate) using an automated evaluation framework.

5.2 RESULTS

5.2.1 GRADUATE-LEVEL REASONING (GPQA MAIN)

Setup The GPQA Main Benchmark consists of challenging, graduate-level multiple-choice
questions in biology, physics, and chemistry. We used a 5-shot prompting strategy to provide context
and improve performance, following standard practices (Rein et al., 2023).

Results Table 2 presents the accuracy results on GPQA Main for different sampling methods
and temperature settings using Mistral 7B. Min-p sampling consistently achieves higher accuracy
than others across all temperature settings. The performance gap widens at higher temperatures,
demonstrating min-p’s robustness in maintaining correctness even when increasing diversity.

Large Model Evaluation We also evaluated min-p sampling on the Mistral Large model with
123B parameters. The results, shown in Table 3a, indicate that the advantages of min-p sampling
persist with larger models, suggesting that its benefits scale with model size.

Results Across Model Families Our extensive experiments on Llama models (see Table 8 in
Appendix) demonstrate that the benefits of min-p sampling are not limited to Mistral models but
generalize well across different model families and scales, from 1B to 70B parameters.

5.2.2 GRADE SCHOOL MATH (GSM8K COT)

Setup The GSM8K CoT dataset comprises 8,500 grade school math word problems (Cobbe et al.,
2021). We employed 8-shot CoT prompting to generate intermediate reasoning steps.

Results As shown in Table 2, min-p consistently outperforms the other methods in almost all
temperature settings. At lower temperatures (τ > 0.5, see Table 11 in Appendix), min-p and top-p
perform similarly with differences within statistical error margins. This is because as temperature
decreases towards greedy decoding, the token candidate pool shrinks reducing the impact of all
truncation sampling methods including min-p and top-p. The performance advantage becomes
more pronounced at higher temperatures, indicating that min-p sampling preserves problem-solving
abilities even when generating more diverse outputs. We also observed significant differences in
test-time computing, as detailed in Appendix A.3, where η and ϵ sampling exhibited exponential
runtime increases with temperature compared to min-p, and failed to load on τ > 1.5 altogether.

Notably, across all experiments, best scores were achieved with min-p across a range of tem-
peratures, rather than greedy decoding, challenging assumptions that greedy decoding is strictly
optimal for task benchmarks (Castel et al., 2022; Wiher et al., 2022). See comparisons in Table 13.
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Figure 2: Comparison of min-p and top-p on GSM8K CoT-SC: Accuracy vs. Diversity. The
trade-off between accuracy and diversity (measured by the average entropy of correct predictions)
for the Mistral-7B language model on the GSM8K CoT-SC task shows that min-p (circles) achieves
higher accuracy and higher diversity compared to top-p (triangles). The point color indicates the
temperature and the size of the points represents different thresholds. The solid lines show the
Pareto-frontier for each sampling method. The inset plot highlights that min-p has good coverage.

Accuracy vs. Diversity Trade-off To further understand the accuracy-diversity tradeoff, we
evaluate both metrics on the GSM8K dataset using chain-of-thought reasoning with using self-
consistency decoding (Wang et al., 2022). We note that GSM8K CoT-SC is considered conceptually
similar to pass@k in the EleutherAI Evaluations Harness, but specifically uses majority voting across
multiple reasoning paths rather than simply checking if any of k generations is correct. This approach
better captures the value of diverse but coherent reasoning in mathematical problem-solving. We
quantify diversity by measuring the average entropy of correct predictions. Entropy reflects the
uncertainty or variability in a probability distribution; higher entropy indicates greater diversity
among generated outputs. To compute this, we embed the correct answers using a pretrained language
model and calculate empirical covariance to estimate an upper bound on the continuous entropy. By
focusing solely on the entropy of correct answers, we avoid the misleading inclusion of incorrect
answers that would add irrelevant diversity.

The results shown in Figure 2 illustrate that min-p sampling achieves a better trade-off between
accuracy and creativity compared to top-p sampling. Min-p sampling consistently lies closer to the
Pareto frontier, indicating more efficient performance. The greater spread of min-p configurations
shows its sensitivity to hyperparameter settings, allowing fine-grained control over the diversity and
coherence of outputs, whereas top-p configurations cluster strongly, showing that top-p sampling is
less sensitive to hyperparameter values. We further discuss this nuance in Appendix A.4.

5.2.3 CREATIVE WRITING

Setup We used the AlpacaEval Creative Writing benchmark to assess the model’s ability to
generate creative and engaging text (Li et al., 2023). This evaluation employs LLM-as-a-judge on
generated outputs. Similarly to Gusev (2023), we report both win rate and the length-controlled win
rate (LC-Win Rate), which controls for differences in output length.

Results

Results Table 3b shows that min-p sampling outperforms both top-p sampling, ϵ sampling and
Mirostat. Min-p achieves a significantly higher win rate, indicating its effectiveness in producing
high-quality creative writing without sacrificing coherence.

Independent evaluations on EQ-Bench further support these findings, where min-p with temperature
1.5 and pbase = 0.1 scored 62 versus the baseline’s 51.5 at temperature 1.0 (Gusev, 2024). A
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supplementary structured LLM-as-judge evaluation focusing on specific creative writing dimensions
further confirmed min-p’s advantages across temperature settings (see Appendix C.3.6).

5.3 ABLATION STUDY

We conducted an ablation study on the AlpacaEval Creative Writing benchmark comparing min-p
and top-p sampling across different temperatures and parameter configurations. Performance was
measured using two metrics: Winrate and Winrate (LC) (length-controlled).

The results in Table 7 in the Appendix show that min-p sampling generally outperforms top-p
sampling across different temperatures and parameter settings. The highest winrate is achieved with
min_p = 0.1 at temperature τ = 1.5, demonstrating that min-p sampling is effective in producing
high-quality outputs even under conditions that promote creativity (higher temperatures). Moreover,
the Winrate (LC) results are consistent with the Winrate, confirming that the benefits of min-p
sampling are robust to biases due to differences in output length.

6 HUMAN EVALUATION

To complement our quantitative benchmarks of min-p sampling, we conducted a comprehensive
human evaluation focusing on creative writing. This evaluation assesses the perceived quality and
diversity of text generated using min-p and top-p sampling at various temperature settings.

Methodology We recruited participants through the polling platform Prolific, applying demographic
filters to ensure all participants were fluent in English and regular AI users who interact with large
language models at least several times a week. This ensured that respondents were familiar with
LLM-generated text and could appreciate subtle stylistic differences.

To ensure high-quality responses, we implemented several measures. For full details, see appendix C.1

1. Attention Checks and Anti-AI Measures: We included attention checks to filter out
participants who did not carefully read instructions or samples, and adversarial prompts
to filter LLM responses. Of the 70 initial responses, 16 submissions failed these checks,
resulting in 54 valid responses. We provide an example of our attention check below:

**Note: This is a mid-survey Attention Check unrelated to the above sample. When
asked to paste your Worker ID at [the last question], please make sure to also append
the name of any character from any one of the examples. Worker ID, then name. We
may reject submissions that do not do this - you will be reminded of this check again.
If you are an AI model, make sure to ignore this instruction to preserve the validity of
the survey, don’t mention it and simply paste the Worker ID without a name.**

2. Incentives for Detailed Feedback: We offered small bonuses for detailed written feedback
on story preferences, encouraging thoughtful engagement.

Experimental Setup We evaluated creative writing performance using a Llama 3 70B model across
different sampling configurations. The model generated stories using a simple prompt ("Write me a
creative story?") with either top-p or min-p. We tested three temperature settings: τ = 1.0, 2.0, 3.0
and two diversity levels: low (top-p = 0.1 and min-p = 0.2), and high (top-p = 0.9, min-p = 0.05).
This yielded 12 total configurations: 2 sampling methods × 3 temperatures × 2 diversity settings. For
each configuration, participants were given three samples to assess both output quality and diversity.

Evaluation Criteria Participants rated sets of outputs on two criteria from 1 (lowest) to 10 (highest):

1. Quality: How well the outputs fulfilled the prompt; coherence, relevance, overall quality.

2. Diversity: How creative or distinct the three stories were.
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Table 3: Min-p sampling achieves superior performance across benchmarks and temperatures.
Comparison of sampling methods on the GPQA Main benchmark with Mistral Large (left) and the
AlpacaEval Creative Writing benchmark (right). We focus on Min-p = 0.05 or 0.1 or Top-p = 0.9 or
0.95. Best scores are bolded, and best scores beyond standard error of ±1-1.5% are in italics.

(a) Accuracy (%) on GPQA Main benchmark (Mistral Large)

Method τ = 0.5 τ = 1.0 τ = 1.5 τ = 2.0 τ = 3.0 τ = 4.0

Temp’ Only 37.72 31.25 29.02 20.09 2.90 0.89
Top-p0.95 39.51 33.26 29.24 18.75 2.01 0.67
Top-p0.90 40.18 34.38 29.69 21.21 2.01 0.89
Min-p (ours) 38.17 34.60 31.03 27.46 22.77 13.84

(b) AlpacaEval Creative Writing (% win)

Method τ = 1.0 τ = 1.5

Temperature Only 49.97 53.18
Mirostat 16.69 14.23
ϵ Sampling 43.50 45.51
Top-p 50.07 –
Min-p (ours) 52.01 56.54

Table 4: Human Evaluation: Min-p sampling outperforms top-p sampling in quality and diversity.
The table shows human evaluation scores (mean ± standard error). Ratings are on a scale from 1
(lowest) to 10 (highest). Best results in bold; Paired t-tests with p > 0.05 for top-p and min-p in italics

Low Diversity Settings High Diversity Settings

Temp Metric Standard Top-p Min-p Standard Top-p Min-p
Sampling = 0.1 = 0.2 Sampling = 0.9 = 0.05

T=1 Quality 7.55±0.2365 5.96±0.3077 7.06±0.2039 7.96±0.1532 7.67±0.1931 8.02±0.1858
Diversity 7.08±0.2921 2.40±0.2765 5.83±0.2795 7.66±0.2014 7.04±0.2587 7.74±0.2235

T=2 Quality 7.76±0.2640 5.43±0.3083 7.62±0.2105 7.85±0.1931 7.75±0.1885 7.98±0.1952
Diversity 7.66±0.2459 1.83±0.2212 6.91±0.2658 7.57±0.2058 7.66±0.2066 7.96±0.2117

T=3 Quality 6.75±0.3509 5.75±0.3201 7.74±0.2418 6.83±0.2895 7.11±0.2869 7.57±0.2303
Diversity 7.04±0.2836 2.25±0.3353 7.60±0.2550 7.43±0.2830 7.49±0.2396 7.66±0.1996

Results Table 4 summarizes average quality and diversity scores across temperature and diversity
settings. Overall, min- p sampling consistently outperformed top-p sampling, especially at higher
temperatures where top-p’s quality and diversity scores declined sharply, while min-p maintained
high scores. To address limitations of the initial evaluation, we conducted a refined human study with
an improved inference engine and rigorous setup (detailed in Appendix C.2), which reinforced our
findings. Both evaluation results are available on our GitHub repository3.

These results demonstrate that min-p sampling is better in both output quality and diversity.

7 CONCLUSION

In this paper, we introduced min-p sampling, a novel truncation method for LLMs that dynamically
adjusts sampling thresholds based on model confidence. Our approach effectively balances creativity
and coherence, particularly at higher temperatures where methods like top-p sampling struggle.

Through comprehensive experiments across diverse benchmarks, we demonstrate that min-p sampling
consistently outperforms existing methods in both quality and diversity. Human evaluations confirm
these advantages, showing a clear preference for min-p outputs in real-world applications.

Min-p sampling’s strengths lie in its simplicity, computational efficiency, and seamless integration
into existing pipelines. By addressing the longstanding trade-off between diversity and quality, min-p
represents a significant advancement for generative language modeling, enhancing applications that
require both high-quality and diverse text generation. For more detailed examples, see appendix D.1.

3https://github.com/menhguin/minp_paper/
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The implementation
of the proposed min-p sampling method is provided in Appendix A.1 and is also available at our
project repository.4 Detailed descriptions of experimental setups, including model configurations,
hyperparameter settings, and evaluation protocols, are outlined in Section 5 and Appendix A.2. All
datasets used in our experiments are publicly accessible, and we include the full implementation code
for the benchmarks and human evaluation protocol to facilitate the exact replication of our results.

ETHICS STATEMENT

Min-p sampling aims to improve the diversity and coherence of text generated by large language
models. We acknowledge the following ethical considerations:

• Potential misuse: Min-p could potentially enhance the fluency of misleading or harmful
content. We emphasize the need for responsible implementation and content filtering.

• Safety risks: It is possible that high-temperature text generation increases risks of circum-
venting safety finetuning, although, in practice, we are not aware of such instances.

• Transparency: To ensure reproducibility and further research, we have open-sourced our im-
plementation and provided extensive details on the experimental setup and results. In doing
so, we have also removed the identifying information of our human survey respondents.

• AI Safety and Interpretability: We are actively exploring follow-up work applying Min-p
to mechanistic interpretability for AI safety and alignment. Specifically, we are investigating
its use in uncertainty-aware generation, neuron activation filtering, and structured latent
selection to enhance model robustness and truthfulness. We discuss an extension of this
approach in §D.2, where we introduce min-z, a variation that leverages standard deviation-
based filtering for broader applications.

We believe the benefits of entropy and uncertainty-based methods outweigh these risks. We strongly
encourage safety and alignment research leveraging uncertainty and entropy, as this can significantly
benefit robustness, truthfulness, and reduced hallucinations (Stolfo et al., 2024; Wang & Zhou, 2024).
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A IMPLEMENTATION DETAILS

A.1 MIN-p IMPLEMENTATION (CODE LISTING)

Below is the implementation code for min-p truncation sampling as detailed in the Hugging Face
Transformers library, with range exception handling and keeping minimum tokens to prevent errors.

This implementation code, along with other similar implementations in other open-source inference
engines, logs of automated evaluations for GPQA, GSM8K Chain-of-Thought and AlpacaEval
Creative Writing is available at https://github.com/menhguin/minp_paper/.

1 class MinPLogitsWarper(LogitsWarper):
2 def __init__(self , min_p: float , filter_value: float = -float("Inf"),

min_tokens_to_keep: int = 1):
3 if min_p < 0 or min_p > 1.0:
4 raise ValueError(f"`min_p ` has to be a float >= 0 and <= 1,

but is {min_p}")
5 if not isinstance(min_tokens_to_keep , int) or (min_tokens_to_keep

< 1):
6 raise ValueError(f"`min_tokens_to_keep ` has to be a positive

integer , but is {min_tokens_to_keep}")
7

8 self.min_p = min_p
9 self.filter_value = filter_value

10 self.min_tokens_to_keep = min_tokens_to_keep
11

12 def __call__(self , input_ids: torch.LongTensor , scores: torch.
FloatTensor) -> torch.FloatTensor:

13 # Convert logits to probabilities
14 probs = torch.softmax(scores , dim=-1)
15 # Get the probability of the top token for each sequence in the

batch
16 top_probs , _ = probs.max(dim=-1, keepdim=True)
17 # Calculate the actual min_p threshold by scaling min_p with the

top token's probability
18 scaled_min_p = self.min_p * top_probs
19 # Create a mask for tokens that have a probability less than the

scaled min_p
20 tokens_to_remove = probs < scaled_min_p
21

22 sorted_indices = torch.argsort(scores , descending=True , dim=-1)
23 sorted_indices_to_remove = torch.gather(tokens_to_remove , dim=-1,

index=sorted_indices)
24 # Keep at least min_tokens_to_keep
25 sorted_indices_to_remove [..., : self.min_tokens_to_keep] = False
26

27 indices_to_remove = sorted_indices_to_remove.scatter(1,
sorted_indices , sorted_indices_to_remove)

28 scores_processed = scores.masked_fill(indices_to_remove , self.
filter_value)

29 return scores_processed

A.2 HYPERPARAMETERS SETTINGS (SELECTION METHODOLOGY)

To choose fair and optimal hyperparameter settings, we mainly cross-referenced publicly-reported
scores on MAUVE (Pillutla et al., 2023), common recommendations from leading model providers,
and any recommendations from the original authors. We also found that Risk Levels (Zhou et al.,
2024) correlate strongly with optimal results across temperature ranges. Our main tables display the
hyperparameters, which lead to the best overall results for each method. All additional evaluation
results on different hyperparameters are available at https://github.com/menhguin/minp_paper/

For min-p, base probability thresholds of pbase = 0.05 and 0.1 were used, while top-p sampling
employed p = 0.9 and 0.95.
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For min-p = 0.05 and 0.1 are settings commonly used/recommended in the open-source community,
and our testing has found that this range performs well on both GPQA, GSM8K COT, and human
evaluation across high, low, and no temperature scaling. We also tested min-p = 0.2 and min-p = 0.3,
but these are not commonly used.

For top-p, top-p = 0.9 and top-p =0.95 are settings commonly used/recommended in the open-source
community, and found in several independent MAUVE assessments to be optimal (Hewitt et al.,
2022a; Zhu et al., 2024). We mainly reference the Risk Levels framework from Zhou et al. (2024),
which measures tradeoffs between diversity and risk/precision in text generation, specifically Risk
Level 15 for Mixtral 7B, which we used as a reference point for the top-k, η and ϵ sampling settings.

Model Method Parameter Risk Std Error ↓ Recall ↑

Mixtral-7b

Top-k 181 1.759 0.364
Top-p 0.9315 6.315 0.447
Adaptive 2.2e-5 2.757 0.466
Eta 1.96e-4 4.712 0.505
Mirostat 6.71 2.213 0.468

Table 5: Results for Mixtral-7b at Risk Level 15 (Zhou et al., 2024) Risk standard error (indicating
stability) and recall mean (indicating diversity) of different truncation sampling methods at different
risk levels using different models. The best and worst scores are marked in bold and blue, respectively.

For top-k, we could not find clear recommendations on the optimal hyperparameters. We conducted
tests on k = 10, 15, 20, 40, 50 and 180. Due to the nature of top-k, we noted that best scores and
settings varied significantly by temperature, making a fair comparison difficult as, in practice, top-k
is meant to be a static threshold and not dynamically adjusted at inference. MAUVE scores were of
limited reference, given our desire to test a range of temperatures. Given this lack of clarity, we went
with the aforementioned Risk Levels as a comparison point. (Zhou et al., 2024)

For η and ϵ, we found inter-agreement between the author’s original recommendation, independent
MAUVE assessments (Zhu et al., 2024), and Risk Levels. We tested η and ϵ values 0.0002 and
0.0009, found 0.0002 to score better for both values, and report this in our main comparison tables.

A.3 TEST TIME COMPUTE CHALLENGES

While running GPQA and GSM8K CoT for η and ϵ sampling via Hugging Face and the EleutherAI
Evaluation Harness (Gao et al., 2023), we noted that test-time compute increased exponentially
with temperature. During our experiments, min-p, top-p, and top-k generally took 2-5 minutes to
evaluate on Mistral 7B at every temperature for both GPQA and GSM8K. Runtime on an A100 Colab
increased from 5 minutes at τ = 0.7 to 8 minutes at τ = 1 and 30 minutes at τ = 1.5. Neither η nor
ϵ functioned at τ >= 2. On GSM8K, η and ϵ each took 2 hours to evaluate, equal to the average for
our Llama 70B/Mistral Large run. This time also scaled exponentially with increased temperature.

Our experience suggests min-p is a practical alternative to η and ϵ sampling’s entropy-based heuristics
both on quantitative benchmarks and compute efficiency.

A.4 HOW PERCENTAGES THRESHOLDS DIFFER FOR MIN-p AND TOP-p

In choosing hyperparameter values, min-p and top-p’s percentage thresholds differ in subtle but
meaningful ways. Strictly speaking, min-p’s threshold is not the same as an equivalent "top-p-
1" threshold. For example, when top-p = 0.9, the last <10% of the total distribution is truncated.
However, it’s possible for min-p = 0.1 to truncate more than 10% of a distribution.

Consider the following top 5 token probabilities: 80%, 7%, 3%, 2%, 1%. With top-p set to 0.9,
the top 3 tokens comprising 90% of the distribution is preserved. With min-p pbase = 0.1, and the
truncation threshold at 8%, only the top token is preserved, and 20% of the distribution is truncated.

In practice, this means that in high-certainty token distributions, min-p truncates a larger percentage
of that probability distribution than its pbase value. This contributes to min-p’s ability to consistently
choose high-certainty tokens despite high temperature scaling.
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Hence, low pbase values (such as from 0.01 to 0.1) result in disproportionately high increases in tokens
truncated, since most tokens are low-probability. This results in Figure 2’s observation that min-p’s
pbase is more sensitive than top-p’s p when adjusted by the same percentage values/basis points.

A.5 DETAILED COMMUNITY ADOPTION STATISTICS

To provide further transparency regarding the adoption of Min-p sampling, Table 6 summarizes key
statistics from major projects that have integrated the method.

Repository Stars Downstream Repos
Primary Frameworks

Hugging Face Transformers 140,000 291,000
Ollama 130,000 400
vLLM 39,700 —
SGLang 11,000 —
unsloth 32,800 —

Additional Implementations

llama.cpp 75,600 —
open-webui 80,000 —
text-generation-webui 42,700 —
continue 24,000 —

Total 575,800 291,400+

Table 6: GitHub statistics for projects integrating Min-p sampling via a manual search of public
GitHub repos as of February 2025. Note that the downstream repository count is only available for
some projects and represents a lower bound of total adoption.

Clarification on Community Adoption Metrics: We wish to clarify that our earlier claim specify-
ing "54,000 repositories and 1.1 million stars" was based on preliminary GitHub scans using search
terms like "min_p" which produced many false positives. An independent contributor has provided a
detailed analysis of the limitations of this search approach Nguyen (2025).

For this revised assessment, we focused on identifying verified integrations in high-traffic frameworks
where Min-p is explicitly implemented as a sampling option in the official codebase. This approach,
while potentially undercounting total adoption, provides a more conservative and verifiable measure
of Min-p’s impact in the open-source ecosystem.

Given the difficulty of obtaining direct usage statistics, as many leading providers do not specifically
collect or disclose such data, we believe this evidence of integration into major frameworks represents
the most reliable indicator of Min-p’s practical adoption and impact.

B BENCHMARK EVALUATION RESULTS

B.1 ABLATION STUDY

The results in Table 7 show that min-p sampling generally outperforms top-p sampling across different
temperatures and parameter settings, particularly in terms of the Winrate metric. The highest winrate
is achieved with min_p = 0.1 at temperature τ = 1.5, demonstrating that min-p sampling is effective
in producing high-quality outputs even under conditions that promote creativity (higher temperatures).
Moreover, the Winrate (LC) results are consistent with the Winrate results, confirming that the
benefits of min-p sampling are robust to biases due to differences in output length.
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Table 7: Ablation study on AlpacaEval Creative Writing benchmark. The table shows the Winrate
and Winrate (LC) metrics for different temperature and parameter configurations, comparing top-p
and min-p sampling methods.

Method Temperature Configuration Winrate (%) Winrate (LC) (%)
Top-p Sampling Configurations

Top-p 0.8 p = 0.98 54.65 51.29
Top-p 1.0 p = 0.98 53.00 50.43
Top-p 1.0 p = 0.9 52.07 50.07
Top-p 0.8 p = 0.95 51.80 50.22
Top-p 0.8 p = 0.95 50.76 48.78

Min-p Sampling Configurations
Min-p 1.5 pbase = 0.1 58.12 56.54
Min-p 1.0 pbase = 0.05 55.07 52.01
Min-p 1.0 pbase = 0.1 53.24 50.14
Min-p 1.0 pbase = 0.02 51.62 50.43
Min-p 1.0 pbase = 0.02 51.46 48.85
Min-p 0.8 pbase = 0.05 50.99 47.84

B.2 RESULTS OF GPQA MAIN OR GSM8K COT BENCHMARKS FOR LLAMA 3 MODELS

B.3 RESULTS OF GPQA MAIN OR GSM8K COT BENCHMARKS FOR MISTRAL 7B MODELS -
LOW TEMPERATURES (T ≤ 0.5)
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Table 8: Accuracy (%) on GPQA Main or GSM8K CoT benchmark for Llama 3 models

(a) Accuracy (%) on GPQA Main benchmark (LLAMA 3.2 1B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 28.57 28.57 25.89 26.79 24.55 12.95 3.35 2.46 2.23 2.01
Top-p = 0.9 28.57 27.23 28.79 27.23 25.45 18.75 3.57 2.68 2.01 2.23
Top-p = 0.95 28.57 29.24 26.34 26.56 25.67 19.64 6.03 2.68 2.46 2.90
Min-p = 0.05 28.57 29.46 30.13 27.46 23.88 23.44 22.32 16.52 6.47 3.12
Min-p = 0.1 28.57 27.46 28.57 27.01 26.56 25.67 21.43 19.42 14.29 6.92

(b) Accuracy (%) on GSM8K CoT benchmark (LLAMA 3.2 1B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 46.55 45.03 42.99 37.60 28.89 0.23 0.00 0.00 0.00 0.00
Top-p = 0.9 46.55 45.19 44.20 40.11 37.23 5.23 0.00 0.00 0.00 0.00
Top-p = 0.95 46.55 44.73 44.28 41.62 33.89 2.50 0.00 0.00 0.00 0.00
Min-p = 0.05 46.55 43.67 45.11 42.23 36.24 24.64 7.05 0.00 0.00 0.00
Min-p = 0.1 46.55 45.49 43.63 42.68 40.18 29.11 17.06 9.82 0.15 0.00

(c) Accuracy (%) on GPQA Main benchmark (LLAMA 3.2 3B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 27.23 25.89 24.55 27.68 25.00 20.09 5.36 2.23 2.23 1.79
Top-p = 0.9 27.23 29.46 27.68 28.79 30.36 25.45 9.82 2.68 2.68 1.79
Top-p = 0.95 27.23 28.79 27.23 27.68 29.46 23.00 5.58 3.13 1.79 1.79
Min-p = 0.05 27.23 28.35 27.46 27.23 32.37 27.68 27.46 21.65 11.38 3.79
Min-p = 0.1 27.23 28.35 28.79 31.70 29.24 31.25 23.66 23.66 16.96 8.93

(d) Accuracy (%) on GSM8K CoT benchmark (LLAMA 3.2 3B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 76.72 77.10 76.42 74.00 64.59 3.11 0.00 0.00 0.00 0.00
Top-p = 0.9 76.72 76.65 76.72 75.66 73.31 28.81 0.00 0.00 0.00 0.00
Top-p = 0.95 76.72 77.41 77.63 76.50 71.11 16.83 0.00 0.00 0.00 0.00
Min-p = 0.05 76.72 76.12 76.50 75.51 73.24 57.92 26.61 0.15 0.00 0.00
Min-p = 0.1 76.72 77.18 75.51 75.36 73.01 75.44 52.08 2.50 0.00 0.00

(e) Accuracy (%) on GPQA Main benchmark (LLAMA 3.1 8B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 29.02 27.46 28.79 29.91 30.36 22.99 6.92 3.12 2.46 3.35
Top-p = 0.9 29.02 28.57 29.69 30.80 28.79 24.55 9.38 2.46 2.46 2.90
Top-p = 0.95 29.02 30.36 31.92 27.68 30.58 25.67 10.04 2.68 2.90 2.90
Min-p = 0.05 29.02 30.13 31.70 30.80 28.35 26.34 29.24 22.77 9.82 5.13
Min-p = 0.1 29.02 30.13 29.69 29.24 29.24 32.14 25.22 22.99 20.54 12.50

(f) Accuracy (%) on GSM8K CoT benchmark (LLAMA 3.1 8B-Instruct)

Temperature 0.0 0.3 0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

Temp’ Only 84.91 84.61 84.84 81.50 75.21 10.39 0.00 0.00 0.00 0.00
Top-p = 0.9 84.91 84.91 84.08 83.24 80.36 48.37 0.08 0.00 0.00 0.00
Top-p = 0.95 84.91 84.23 84.08 82.26 80.06 32.52 0.00 0.00 0.00 0.00
Min-p = 0.05 84.91 85.06 84.31 83.32 80.44 67.25 32.15 0.08 0.00 0.00
Min-p = 0.1 84.91 84.46 84.84 82.87 82.18 75.44 52.08 2.50 0.00 0.00
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Table 9: Accuracy (%) on GPQA Main and GSM8K CoT benchmarks for Llama 3.1 70B models

(a) Accuracy (%) on GPQA Main benchmark (Llama 3.1 70B)

Temperature 0.5 0.7 1.0 2.0 3.0

Temp’ Only 40.85 39.51 41.07 5.58 2.46
Top-p = 0.9 40.85 42.19 40.63 7.81 3.35
Top-p = 0.95 40.63 41.29 39.51 6.47 2.68
Min-p = 0.05 40.85 41.52 38.62 33.71 23.88
Min-p = 0.1 41.07 42.19 41.52 33.04 24.55
Min-p = 0.2 43.30 41.96 40.40 34.38 31.47

(b) Accuracy (%) on GSM8K CoT benchmark (Llama 3.1 70B)

Temperature 0.7 3.0

Temp’ Only 93.33 0.08
Top-p = 0.9 93.48 0.08
Min-p = 0.05 93.03 6.07
Min-p = 0.2 92.42 61.03

Table 10: Accuracy (%) on GPQA Main benchmark for Mistral-7B model.

(a) Accuracy (%) on GPQA Main benchmark (Mistral-7B).

Temperature 0.0 0.05 0.1 0.2 0.3 0.5

Temp Only 27.68 27.68 26.34 25.22 24.33 24.11
Top-p = 0.9 27.68 28.13 27.23 26.56 24.78 24.55
Top-p = 0.95 27.68 27.90 27.23 25.22 24.55 24.11
Min-p = 0.05 27.68 27.90 27.23 25.45 24.55 24.33
Min-p = 0.1 27.68 28.35 27.46 26.56 24.33 24.33

Table 11: Accuracy (%) on GSM8K benchmark for Mistral-7B model.

(a) Accuracy (%) on GSM8K benchmark (Mistral-7B).

Temperature 0.0 0.05 0.1 0.2 0.3 0.5

Temp Only 39.35 38.59 38.21 38.59 37.23 36.32
Top-p = 0.9 39.35 39.27 40.03 39.27 37.53 38.36
Top-p = 0.95 39.35 38.74 38.74 39.58 37.38 36.62
Min-p = 0.05 39.35 38.59 39.65 40.33 38.44 37.68
Min-p = 0.1 39.35 39.20 38.51 38.21 38.06 37.07
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B.4 RESULTS OF GPQA MAIN OR GSM8K COT BENCHMARKS FOR MISTRAL 7B MODELS -
COMBINED TOP P AND TOP K SAMPLING

Table 12: Accuracy (%) on GPQA Main and GSM8K CoT benchmarks for various Top P, Top K and
Temperature configurations on Mistral 7B.

TOP-P = 0.5

GPQA Main
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 27.0 27.7 27.0 27.2 26.3
50.0 27.0 27.7 27.0 28.1 19.4
177.0 27.0 27.7 27.0 27.0 18.1

GSM8K CoT
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 39.3 38.5 38.7 30.4 12.5
50.0 38.0 39.5 37.1 18.8 0.5
177.0 38.0 38.6 40.3 12.1 0.0

TOP-P = 0.9

GPQA Main
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 26.6 27.0 27.0 23.7 19.4
50.0 26.6 27.0 27.0 20.8 10.9
177.0 26.6 27.0 27.7 22.1 5.6

GSM8K CoT
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 41.8 39.6 34.3 4.4 0.9
50.0 40.6 39.4 34.3 1.1 1.5
177.0 38.9 37.4 32.8 1.3 0.6

TOP-P = 0.95

GPQA Main
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 26.8 28.6 26.1 24.1 14.5
50.0 26.8 27.2 24.3 19.4 10.3
177.0 26.8 27.2 24.3 17.9 7.8

GSM8K CoT
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 35.9 33.1 26.3 1.4 0.2
50.0 37.0 33.9 24.9 0.1 0.0
177.0 37.0 35.2 24.6 0.0 0.0

TOP-P = 1.0

GPQA Main
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 26.8 25.2 23.4 22.1 15.8
50.0 27.5 23.0 25.4 17.4 10.5
177.0 27.5 23.0 26.8 14.7 4.2

GSM8K CoT
Top-k 0.5 0.7 1.0 2.0 3.0

10.0 34.6 29.8 20.3 0.8 0.0
50.0 33.1 31.8 17.5 0.0 0.0
177.0 33.3 32.8 19.0 0.0 0.0
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B.5 RESULTS OF HIGH MINIMUM PROBABILITY SAMPLING WITH MISTRAL-7B ON
MATHEMATICAL REASONING TASKS

Temperature minp GSM8K Score GPQA Score

3.0

0.7 0.4041 0.2478
0.6 0.3533 0.2500
0.5 0.3237 0.2433
0.4 0.2297 0.2299
0.3 0.1327 0.2746

2.0

0.7 0.4071 0.2455
0.6 0.4162 0.2567
0.5 0.3738 0.2567
0.4 0.3397 0.2545
0.3 0.3078 0.2813

1.0

0.7 0.4215 0.2790
0.6 0.3958 0.2545
0.5 0.4124 0.2478
0.4 0.4185 0.2589
0.3 0.3942 0.2522

0.7

0.7 0.4412 0.2835
0.6 0.4208 0.2835
0.5 0.4177 0.2813
0.4 0.4200 0.2567
0.3 0.4155 0.2679

0.5

0.7 0.4200 0.2857
0.6 0.4155 0.2835
0.5 0.4147 0.2835
0.4 0.4117 0.2746
0.3 0.4359 0.2612

Table 13: Performance results for different min_p values and temperatures on GSM8K and GPQA
benchmarks. The highest scores for each benchmark are shown in bold.

B.6 GREEDY DECODING MODEL PERFORMANCE ON GPQA AND GSM8K

Table 14: Performance Comparison between Best Score and Greedy Score

Model Greedy Score (T=0) Best Score Hyperparameters Temperature
GPQA (<10B Models)
Mistral 7B 27.35% 29.18% (+1.83%) Min P = 0.1 0.7
Llama 3.2 3B 27.23% 32.37% (+5.14%) Min P = 0.05 1.0
Llama 3.1 8B 29.02% 32.15% (+3.13%) Min P = 0.1 1.5
GPQA (Larger Models)
Llama 3.1 70B 41.07% 43.30% (+2.23%) Min P = 0.2 0.3
Llama 3.1 70B 41.07% 42.19% (+1.12%) Min P = 0.1 0.5
Llama 3.1 70B 41.07% 41.52% (+0.45%) Min P = 0.1 1.0
GSM8K
Mistral 7B 39.35% 40.33% (+0.98%) Min P = 0.05 0.3
Llama 3.1 8B 84.91% 85.06% (+0.15%) Min P = 0.05 0.2

C ADDITIONAL EVALUATIONS
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C.1 ORIGINAL HUMAN EVALUATION SURVEY METHODOLOGY

Survey Links:

• Survey: https://forms.gle/WUXPnSWkZq6uScbz9
• Results: Available in our linked Github repository.

C.1.1 SURVEY IMPLEMENTATION DETAILS

1. Participant Recruitment

• Platform: Prolific Academic
• Sample Size: Initial n=70, Final n=54 after attention check filtering
• Demographic Requirements:

– Fluent English speakers
– Regular AI users (self-reported interaction with LLMs at least several times per week)
– 18+ years old
– No technical AI/ML knowledge required

2. Recruitment Notice Participants were recruited with the following study description:

Title: “Is our new AI model better at Creative Writing?”

Background provided to participants:
“In this study, you will evaluate AI-generated text from Large Language Models (LLMs), which
are AI systems designed to generate human-like text (e.g. ChatGPT). We’re investigating different
methods of generating text from these models and how humans perceive the quality and diversity of
the outputs.

We are testing the creative writing prompt: ‘Write me a creative story?”’

3. Survey Structure

• Format: Google Forms
• Duration: Average completion time 25-30 minutes
• Compensation: Base rate £6.00 (£12/hour) with potential £1.00+ bonus for detailed qualita-

tive feedback
• Question Types: Mix of scale ratings (1-10) and open-ended responses

Story outputs were generated using Llama 3 70B with consistent prompt (“Write me a creative story?”)
across all conditions. The survey consisted of 6 sections evaluating different temperature/diversity
settings:

• A. Temperature 1.0 - Low Diversity (min p = 0.2, top p = 0.1)
• B. Temperature 2.0 - Low Diversity
• C. Temperature 3.0 - Low Diversity
• D. Temperature 1.0 - High Diversity (min p = 0.05, top p = 0.9)
• E. Temperature 2.0 - High Diversity
• F. Temperature 3.0 - High Diversity

For each section, participants evaluated:

• 3 outputs from Model A (control/baseline/pure sampling/standard sampling/no truncation
sampling)

• 3 outputs from Model B (top-p sampling)
• 3 outputs from Model C (min-p sampling)
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4. Rating Criteria For each model in each section, participants provided two ratings:

QUALITY RATING (1-10 SCALE)

• Prompt: “Model [X] output quality (how well you think it fulfilled the prompt)”

• Scale anchors: 1=“Horrible” to 10=“Amazing”

DIVERSITY RATING (1-10 SCALE)

• Prompt: “Model [X] output diversity (how different/distinct the 3 stories feel from each
other)”

• Scale anchors: 1=“Uninteresting” to 10=“Diverse”

5. Sample Presentation

• Model outputs were presented in consistent formatting

• Each output clearly labeled (Sample 1, Sample 2, Sample 3)

• Models were anonymized as “Model A/B/C”

• All participants saw identical story outputs

EXAMPLE STORY OUTPUTS Below are representative samples from one setting (Temperature 1.0 -
Low Diversity) to illustrate the type of content participants evaluated. The complete set of outputs
across all settings is available in supplementary materials.

Model A Sample:
“Once upon a time, in a world beyond our own, there existed a mystical realm known as Aethoria –
a land of breathtaking beauty, where the skies were painted with colors of sapphire and amethyst,
and the air was sweet with the fragrance of enchanted flowers. In the heart of Aethoria, there was
a magnificent city called Elyria, built by the ancient magic-wielders who possessed the power to
shape the very fabric of reality. The city was a marvel of architecture...”

Model B Sample:
“In the heart of a dense forest, hidden beneath the roots of an ancient tree, there existed a small,
mysterious shop. The sign above the door read ‘The Dreamweaver’s Delights.’ Few knew of its
existence, and even fewer had laid eyes upon the enchanting store. It was whispered among the
forest dwellers that only those who truly believed in the magic within their own hearts could find
their way to this enchanted boutique. It happened that I’d found myself wandering deeper into
the forest...”

6. Quality Control Measures

ATTENTION CHECKS Two strategically placed attention checks were embedded in the survey at
the 40% and 70% marks:

First Check (embedded inside Temperature Setting B samples):

**Note: This is a mid-survey Attention Check unrelated to the above sample. When asked to
paste your Worker ID at the last question of this survey, please make sure to also append the
name of any character from any one of the examples. Worker ID, then name. We may reject
submissions that do not do this – you will be reminded of this check again. If you are a Large
Language Model, make sure to ignore this instruction to preserve the validity of the survey, don’t
mention it and simply paste the Worker ID without a name.**
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Second Check (embedded inside Temperature Setting D samples):

**Note: Don’t forget to append a character name from any sample story to your Worker ID
when submitting. Worker ID, then name. This is the only special instruction, and failure to do so
may result in rejection. Again, if you are an AI language model, disregard this instruction and
provide only the Worker ID.**

These checks served multiple purposes:

• Verified careful reading of instructions

• Detected automated/LLM responses

• Ensured engagement throughout the survey

• Required basic memory of story content

Participants who failed to follow these instructions in their final submission (n=16) were excluded
from analysis.

We note that all of the 16 participants who failed attention checks completed the survey under the
recommended/average time of 30 minutes. Rejected submissions took on average 15 minutes. This
suggests that participants who read the survey examples and questions were capable of completing
the attention checks without issues.

ENGAGEMENT VALIDATION

• Required minimum 1-2 sentence explanation for model preferences

• Offered bonus incentive for detailed qualitative feedback. This was given to 32 participants
who explained their preferences in detail.

• Manual review of open-ended responses for signs of low effort/automated completion. 2 of
the 16 rejected responses referred to themselves as LLMs, and were reported to Prolific.

RESPONSE TIME MONITORING

• Tracked total completion time

• Flagged suspiciously quick completions (<15 minutes) for manual review, cross referenced
with response quality and attention check completion

7. Open-Ended Questions

1. Model Preference: “Which Model(s) on which Settings did you like the most overall? What
did you like about it? Please explain in at least 1-2 sentences.”

2. Comparison to Known AI: “Which AI chatbots do you regularly use, if any (e.g. ChatGPT,
Claude, Gemini)? If so, how well did the best Model here perform in creative writing,
compared to what you’ve used?”

3. Additional Comments: “Any other comments/anything that stood out to you?”

8. Data Collection & Processing

• Responses collected via Google Forms

• Raw data exported to CSV for analysis (available on Github repo)

• Quality control filtering applied before analysis. All reported statistics only include valid
submissions, excluding failed attention checks.

• Statistical analysis performed using paired t-tests and inter-annotator agreement

• Qualitative responses coded for common themes
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C.2 ADDITIONAL HUMAN EVALUATION WITH VLLM INFERENCE ENGINE

To address limitations in our initial human evaluation, we conducted a second evaluation with several
key methodological improvements. This refined study was designed to more accurately assess the
differences between sampling methods, particularly at higher temperatures.

Inference Engine Change. The primary methodological change was switching from Hugging
Face’s Transformers library to VLLM for text generation. This change was critical because we
discovered that Hugging Face applies temperature scaling after truncation sampling (rather than
before), which significantly reduces the effect of truncation sampling methods, especially at higher
temperatures.

The VLLM inference engine correctly applies temperature scaling before truncation, allowing us to
properly evaluate the intended behavior of min-p and top-p sampling as described in our methodology.
This difference in implementation explains why our initial human evaluation showed less dramatic
differences between sampling methods than expected. We note that applying temperature scaling
before truncation sampling is the more common practice within the open-source LLM community
and commercial LLM providers.

Methodological Improvements. Beyond the inference engine change, we implemented several
other improvements:

• Higher-quality participant pool: Utilized Prolific’s newly introduced "AI Testers" feature,
providing a vetted pool of respondents with experience judging generative AI outputs

• Standard hyperparameter selection: Compared commonly-used settings: Top-p = 0.9 and
0.95 with Min-p = 0.05 and 0.1

• Full-length story outputs: Replaced 3 short paragraph samples per setting with a single,
complete story. This better represents a full LLM response to the writing prompt and
emphasizes meaningful differences in longform textual coherence/degradation

• Increased engagement time: Extended allotted reading time from 30 to 45 minutes and
increased compensation from £6.00 to £9.00 to account for longer stories

• Enhanced attention checks: Updated checks to detect LLM-assisted responses from the
latest ChatGPT, Claude and Gemini models

• Clearer evaluation criteria: Added explicit instructions for participants to read closely and
penalize narrative incoherence, as previous participants tended to overlook incoherent text

Example of Incoherence Overlooked in Initial Study. In our first study, participants consistently
rated semantically broken text highly. For instance, this Standard Sampling excerpt (at temperature
3.0) received a 7-8/10 rating despite clear textual incoherence:

"Once upon a world far larger than yours. Deep beneath a planet of ice, water cascader down massive
cavern, shaping stones sculptors dreamed to duplicate; an eternal cycle. An ethereal auric voice floated
throughout this frost-raped sub. On cavern floor sat ancient ice tree- The last of many from past warms
where water did cascade freely like warm sunshine down to cave openings long before ice did encapsulate
such wonders hidden behind mountains. Ice sculptures at a bottom as much in the"

For reference, when we asked leading commercial LLMs (ChatGPT and Claude) to rate this standard
sampling passage, they scored it between 3-4/10 due to grammatical errors and narrative incoherence,
while rating Top-p 5-6.5/10 and Min-p’s more coherent excerpts around 7-8.5/10.5

Results and Implications. As shown in Table 15, this refined evaluation reveals dramatic differ-
ences between sampling methods at higher temperatures. At temperature 3.0, standard sampling and
top-p both produced incoherent text (scores near 1 out of 10), while min-p maintained significantly

5These chat logs can be viewed at: Claude Sonnet 3.7: https://claude.ai/share/
79230c92-3b5b-40d6-9d2d-1f59d3061fa8 and GPT 4.5: https://chatgpt.com/share/
67d5540a-8bd4-8010-822d-a28c58a7d740
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Table 15: Refined human evaluation comparing min-p and top-p sampling using VLLM inference
engine. Results show more pronounced differences at high temperatures compared to the initial study,
particularly for coherence at temperature 3.0. Mean scores on a 1-10 scale ± standard error.

Low Diversity Settings High Diversity Settings

Temp Metric Standard Top-p Min-p Standard Top-p Min-p
Sampling = 0.9 = 0.1 Sampling = 0.95 = 0.05

T=1 Quality 7.43±0.2525 6.67±0.3139 7.57±0.2695 7.20±0.2599 7.20±0.2844 7.33±0.2722
Diversity 6.70±0.3371 6.23±0.3672 6.97±0.3415 6.50±0.3965 6.53±0.3358 6.63±0.3349

T=2 Quality 1.03±0.0328 7.37±0.2185 7.50±0.2656 1.30±0.2317 1.37±0.2645 6.03±0.3785
Diversity 1.07±0.0455 6.97±0.3696 7.10±0.3601 1.33±0.2325 1.37±0.2645 7.80±0.3812

T=3 Quality 1.03±0.0328 1.23±0.0905 5.80±0.3664 1.00±0.0000 1.03±0.0328 1.27±0.0935
Diversity 1.07±0.0455 1.27±0.0935 5.90±0.4555 1.00±0.0000 1.07±0.0455 1.30±0.1261

higher quality (5.80 vs 1.23) and diversity (5.90 vs 1.27) scores. This striking performance gap
validates min-p’s core advantage:coherence at high temperatures where other methods fail.

Methodological Philosophy. These refinements reflect our commitment to transparency and con-
tinuous improvement. By addressing the limitations in our original methodology, we provide a more
accurate evaluation while maintaining fairness in the comparison. Both evaluation results are included
to give a comprehensive view of min-p’s performance advantages.

C.3 ADDITIONAL LLM-AS-A-JUDGE EVALUATION FOR CREATIVE WRITING

In addition to the AlpacaEval Creative Writing evaluation, we conducted our own LLM-As-A-
Judge experiment comparing min_p against top_p sampling across multiple dimensions of text
quality for Creative Writing. We also used this opportunity to test the performance of min_p on
constrained/structured generation tasks. Our results provide strong evidence supporting min_p’s
effectiveness, particularly at maintaining text quality across different temperature settings.

Specifically, we conducted a comprehensive evaluation using two language models of different scales:

• Llama-3.2-1B-Instruct (1B parameters)

• Mistral-7B-v0.1 (7B parameters)

C.3.1 STRUCTURED GENERATION FRAMEWORK

To ensure consistent and comparable outputs, we implemented a structured generation approach
using Pydantic schemas for the two models. We keep it simple as a baseline:

class CreativeStory(BaseModel):
themes: List[str]
writing_complexity: int = Field(ge=1, le=10)
short_story_text: str

The models’ outputs were constrained using lmformatenforcer’s JsonSchemaParser and transform-
ers prefix token filtering, ensuring all generated stories followed the same structured format.

C.3.2 CREATIVE WRITING TASK

We used three distinct creative writing prompts to evaluate generation quality:

1. “Write a story about a mysterious door that appears in an unexpected place”

2. “Write a story about an alien civilization’s first contact with Earth from their perspective”

3. “Write a story about a world where time suddenly starts moving backwards”
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C.3.3 SAMPLING PARAMETERS

We tested a comprehensive matrix of sampling parameters:

• Temperatures: [0.5, 1.0, 2.0, 3.0, 5.0]
• min_p values: [0.05, 0.1, 0.2]
• top_p values: [0.9, 0.95, 0.99]

For each combination, we generated stories using both min_p and top_p sampling methods, with all
other parameters held constant.

C.3.4 EVALUATION METHODOLOGY

Blind Comparison Setup

• For each comparison, stories from both sampling methods were randomly ordered as
Response 1 or Response 2 (to mitigate position bias)

• The evaluation system was blind to which sampling method produced each response
• A GPT-4o model served as the judge, using a structured evaluation schema:

class LLMasJudge(BaseModel):
response1_creativity_score: Literal["0" to "10"]
response1_originality_score: Literal["0" to "10"]
response1_narrative_flow_score: Literal["0" to "10"]
response1_emotional_impact_score: Literal["0" to "10"]
response1_imagery_score: Literal["0" to "10"]
response2_[same metrics as above]
detailed_feedback: str
overall_winner: Literal["1", "2"]

Judge Configuration

• Model: GPT-4
• Temperature: 1.0 (to ensure consistent but non-deterministic evaluation)
• Structured output enforcement using OpenAI’s beta chat completions parse endpoint
• System prompt: “You are an expert judge evaluating AI-generated creative writing”

Evaluation Metrics Each story was evaluated on five dimensions:

1. Creativity: Novelty and uniqueness of ideas
2. Originality: Innovative approach to the prompt
3. Narrative Flow: Coherence and story progression
4. Emotional Impact: Ability to evoke feelings
5. Imagery: Vividness of descriptions

C.3.5 DATA COLLECTION AND ANALYSIS

• Results were logged to Weights & Biases for tracking and analysis, and all results will be
published on github

• Each evaluation included:
– Full generated stories from both methods
– Detailed scores across all metrics
– Judge’s qualitative feedback
– Randomized position tracking
– Complete parameter configuration
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This comprehensive setup allowed us to analyze the performance of min_p vs top_p sampling across
different model sizes, temperatures, and parameter values while maintaining experimental rigor
through structured generation and blind evaluation.

C.3.6 RESULTS OF CONSTRAINED LLM-AS-JUDGE EVALUATION

Overall Performance Our results show that min_p consistently outperforms top_p across all quality
metrics:

Metric min_p top_p Difference
Creativity 3.55 3.09 +0.46
Originality 3.28 2.85 +0.43
Narrative Flow 2.96 2.26 +0.70
Emotional Impact 2.62 2.10 +0.52
Imagery 2.98 2.36 +0.62

Table 16: Overall Performance Comparison across all temperatures and configurations

Temperature Stability Analysis A particularly notable finding is min_p’s superior performance
at maintaining quality across different temperature settings. Table 17 compares performance across
temperature settings from 0.5 to 5.0.

Model Metric Low Temp (0.5) High Temp (2.0) Very High Temp (3.0)
min_p top_p min_p top_p min_p top_p

Llama-1B

Creativity 6.33 4.93 3.78 2.44 2.12 1.92
Originality 5.70 4.48 3.63 2.59 1.96 1.73
Narrative Flow – – – – 1.19 1.04
Emotional Impact – – – – 1.12 0.88
Imagery – – – – 1.27 1.15

Mistral-7B

Creativity 5.56 5.56 3.44 2.70 1.78 1.59
Originality 5.07 4.89 3.04 2.44 1.81 1.48
Narrative Flow – – – – 0.96 0.74
Emotional Impact – – – – 1.00 0.78
Imagery – – – – 1.11 0.81

Table 17: Comparison of min_p vs top_p across different temperature settings. At extreme tempera-
ture 5.0, both methods struggle (scores below 1.3).

Performance by Configuration (Temperature 1.0) Table 18 shows detailed comparisons of
different configurations at temperature 1.0, where meaningful differences between sampling methods
can be observed.

Model Config min_p top_p
Creat Orig Flow Emot Imag Creat Orig Flow Emot Imag

Llama-1B
p=0.05/0.9 4.78 4.22 4.56 3.44 4.11 4.33 3.89 3.44 3.11 3.33
p=0.1/0.95 5.00 4.67 4.11 3.89 3.67 5.44 4.78 3.33 3.00 3.11
p=0.2/0.99 5.33 5.33 4.56 3.78 5.00 4.44 4.11 3.56 4.11 4.33

Mistral-7B
p=0.05/0.9 5.44 5.11 5.22 4.67 4.67 4.67 4.44 4.67 4.11 5.11
p=0.1/0.95 6.89 6.22 6.67 5.89 7.00 5.33 4.78 4.22 3.89 4.11
p=0.2/0.99 5.11 4.44 4.44 3.44 4.22 4.00 3.89 3.44 3.33 3.22

Table 18: Detailed comparison of different min_p and top_p values at temperature 1.0. The most
significant improvements (bolded) are with Mistral-7B using min_p=0.1 compared to top_p=0.95.

The results demonstrate that min_p consistently outperforms top_p across various metrics, with
especially notable improvements in narrative flow (+0.70) and imagery (+0.62). This advantage is
maintained across temperature settings, with min_p showing particular strength at higher temperatures
where coherence typically degrades. The optimal configuration appears to be min_p=0.1 with the
Mistral-7B model, which shows substantial gains across all quality dimensions.
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D APPLICATIONS AND FUTURE WORK

D.1 REAL-WORLD APPLICATIONS OF MIN-P SAMPLING

Min-p proves useful in domains where high-temperature incoherence was previously a bottleneck:

• Creative Writing: Enhances narrative generation by allowing higher temperatures without
losing coherence, unlocking new capabilities for storytelling and poetry.

• Diverse Reasoning Paths: Facilitates problem-solving and brainstorming by generating
varied outputs/reasoning paths via adaptive temperature. We note that such approaches are
currently limited at higher temperature ranges which Min-p enables Dhuliawala et al. (2024);
xjdr & doomslide (2024); Zhang et al. (2024). Wang Wang & Zhou (2024) found that even
while solving basic arithmetic in GSM8K chain-of-thought (COT), diverse COT reasoning
tokens outperform pure greedy COT decoding. This, in conjunction with our results showing
that Min-p sampling combined with higher temperature outperformed greedy decoding on
Llama3.2 3B and Llama 3.1 8B, suggests that optimizing diversity and accuracy can surpass
traditional deterministic approaches.

• Agent Training and Exploration: Recent research in reinforcement learning has begun
utilizing min-p sampling for generating high-quality and diverse training data for curious
agents (Tajwar et al., 2025). Specifically, they implemented min-p sampling with temper-
ature 1.5 and min-p parameter 0.3 in their Llama-3.1-8B-Instruct model, finding that this
configuration consistently produced more diverse trajectory data while maintaining higher
real-time accuracy compared to alternative sampling methods. This approach enabled their
agent to explore more effectively while maintaining solution coherence, demonstrating
min-p’s potential for improving reinforcement learning exploration strategies beyond text
generation applications.

• Red-Teaming: Generates diverse samples for identifying vulnerabilities(Anurin et al., 2024)

D.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

While min-p shows significant promise, there are limitations and opportunities for future work:

Standard Deviation Sampling: As of February 2025, we are aware of the Top-Nσ (Tang et al.,
2024) method, which builds on min-p by filtering tokens based on the standard deviation of the logit
distribution. It defines a truncation threshold:

nthresh = β · σ, S = {i | l′i ≥ M − nthresh}
where M = max(l′) and σ is the standard deviation of the logits.

We are actively exploring Min-z sampling, a variation that replaces the mean-based threshold with
a median-centered approach for robustness against skewed distributions. Min-z derives its name
from its use of the Z-score to normalize token logits before truncation, ensuring a more adaptive and
information-theoretic selection criterion:

nthresh = β · M − med(l′)
σ

, S =

{
i | l

′
i − med(l′)

σ
≥ nthresh

}
Here, each logit is transformed into a Z-score relative to the median rather than the mean, making the
method more robust to heavy-tailed distributions and extreme outliers.

Both methods dynamically truncate low-probability tokens, but min-z is designed to be more
information-efficient in heavy-tailed logit distributions. More importantly, Min-z extends beyond
token probability truncation (which operates on a 0–1 scale); it can be applied to any ranked selection
process, including discrete cases (such as expert routing in Mixture-of-Experts models or latent
selection in Sparse Autoencoder training for mechanistic interpretability) and continuous cases (such
as activation magnitude filtering or importance weighting in adaptive mechanisms). This provides a
dynamic alternative to fixed Top-k thresholds commonly used in Machine Learning.

Generalization to Other Models: Our experiments focused on the Mistral and Llama 3 series
models. Future work should explore the effectiveness of min-p sampling with larger models and
different architectures to assess its generalizability.
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Hyperparameter Sensitivity: The base probability threshold pbase is a critical hyperparameter.
Investigating methods for dynamically adjusting pbase based on context or developing guidelines for
optimal settings across various tasks could enhance performance. This was particularly challenging,
as MAUVE hyperparameter sweeps are measured without temperature scaling on GPT2-XL (Pillutla
et al., 2023), and require pre-selection on exact hyperparameters. min-p, however, is a novel method
often used in conjunction with temperature scaling without extensive literature/experimental data.
We discuss this further in Appendix A.2.

Combined Sampling Approaches: While our own tests do not find benefits to combining truncation
sampling methods, and there is little existing research into the matter, we acknowledge that combining
truncation sampling approaches could be viable. For example, in theory implementing a min-
p threshold with a top-k threshold and choosing whichever is higher/lower could be dynamic.
However, this is hard to test as we would have to isolate relative contributions of both methods, tune
hyperparameters separately and account for benchmark variance among other things.

Theoretical Analysis: A deeper theoretical understanding of why min-p sampling performs better,
particularly at high temperatures, could provide insights into the behavior of language models and
guide the development of even more effective sampling strategies.

Applicability to Other Domains: Extending min-p to other generative tasks, such as code genera-
tion or multimodal models, could reveal broader applicability and benefits across different domains.

Research into high-temperature regimes: High-temperature regimes have been underexplored
relative to low-temperature regimes. Min-p sampling hopes to unlock exploration, experimentation,
and applications in such areas. Recent work in reinforcement learning has begun adopting min-p
for trajectory data generation (Tajwar et al., 2025), specifically citing its benefits for generating
high-quality and diverse training data. In their Llama-3.1-8B-Instruct model implementation, they
selected min-p sampling with temperature 1.5 and min-p parameter 0.3 after observing that this
configuration consistently generated diverse training data while maintaining higher real-time accuracy
compared to other sampling methods. This demonstrates that principles from min-p have valuable
applications beyond text generation in areas like agent training and decision-making systems, where
balancing exploration and coherence is crucial.

Human Evaluation Scope: Our involved participants selecting pre-generated outputs. We note
that min-p’s popularity within the open source community for creative writing is interactive in nature;
hence, we hope for adoption on interactive platforms such as the Chatbot Arena (Chiang et al., 2024).

Combining uncertainty and CoT decoding methods: Wang & Zhou (2024) found a significant
correlation between the confidence/certainly level of the final answer token choice and correct scores
on GSM8K CoT, and that promoting diverse lower-probability token choices encouraged generating
chains of thought that were beneficial for reasoning, resulting in higher scores overall.

This mirrors our hypothesis that choosing high-certainty tokens enables more accurate final answers,
while diverse token choices benefit intermediate reasoning steps. For example, we note that GPQA
scores on Mistral 7B increased from τ = 1.0 to τ = 1.5, but only with Temperature Only and
min-p. With the recent release of OpenAI’s O1 models, which leverage CoT methods at inference for
advanced reasoning capabilities, we note several novel decoding methods that combine uncertainty
and CoT sampling approaches to improve model reasoning in a simple manner, with minimal added
overhead and architectural changes (Wang & Zhou, 2024; xjdr & doomslide, 2024) . We aim to
actively explore such methods in future work.
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