
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

iCLP: Large Language Model Reasoning with
Implicit Cognition Latent Planning

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs), when guided by explicit textual plans, can
perform reliable step-by-step reasoning during problem-solving. However,
generating accurate and effective textual plans remains challenging due to
LLM hallucinations and the high diversity of task-specific questions. To
address this, we draw inspiration from human Implicit Cognition (IC),
the subconscious process by which decisions are guided by compact, gen-
eralized patterns learned from past experiences without requiring explicit
verbalization. We propose iCLP, a novel framework that enables LLMs
to adaptively generate latent plans (LPs), which are compact encodings
of effective reasoning instructions. iCLP first distills explicit plans from
existing step-by-step reasoning trajectories. It then learns discrete repre-
sentations of these plans via a vector-quantized autoencoder coupled with
a codebook. Finally, by fine-tuning LLMs on paired latent plans and cor-
responding reasoning steps, the models learn to perform implicit planning
during reasoning. Experimental results on mathematical reasoning and code
generation tasks demonstrate that, with iCLP, LLMs can plan in latent
space while reasoning in language space. This approach yields significant
improvements in both accuracy and efficiency and, crucially, demonstrates
strong cross-domain generalization while preserving the interpretability of
chain-of-thought reasoning.

1 Introduction

Large language models (LLMs) employ a step-by-step reasoning process expressed as a chain
of thought (CoT) Wei et al. (2022) to solve complex problems. Guiding thought generation
with explicit plans Yao et al. (2022), which are step-wise and question-specific reasoning
instructions, is crucial for improving practical usage and reliability of LLMs Huang et al.
(2024; 2022). However, preparing such plans effectively for accurate reasoning is inherently
challenging Valmeekam et al. (2023; 2024), particularly given the high diversity of problems
across different tasks.

One preliminary approach to achieving this goal involves prompting LLMs to generate
explicit plans using their internal knowledge Yao et al. (2022); Wang et al. (2023a); Sun
et al. (2023). However, this method is limited by errors in the plans, which arise from
the inevitable hallucinations of LLMs. While leveraging external knowledge bases can help
mitigate these errors Lyu et al. (2024); Zhu et al. (2024), accessing useful information from
them is time-consuming, and many tasks lack effective knowledge bases altogether. More
promising recent efforts Yao et al. (2022); Jiao et al. (2024); Qiao et al. (2024b); Brahman
et al. (2024) focus on fine-tuning LLMs on automatically or manually synthesized samples
with explicit plans. Unfortunately, LLMs fine-tuned in this manner still struggle to achieve
better performance because the plans required by problems within a single task, as well as
across tasks, are vast in number and highly diverse.

We argue that these mechanisms do not align with human wisdom, known as Implicit
Cognition (IC) Kihlstrom et al. (1995), through which we learn from experiences to summarize
implicit patterns that shape our subconscious mind Locke & Kristof (1996), allowing us to use
these patterns to solve new problems without explicitly verbalizing them. TThese patterns

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

contain abstract rules that reflect high-level common knowledge, capable of generalizing
across different problems. Additionally, our preliminary experiments on visualizing the
representations of explicit plans distilled from CoTs of different questions reveal clear
clustering for plans from the same task, along with a certain level of overlap indicating their
reuse.

Therefore, this paper mimics IC by proposing a framework called iCLP, which enables
any LLM to generate latent plans (LPs) in a hidden space, effectively guiding step-by-step
reasoning in the language space. Our key insight for its effectiveness is that LPs, built upon
summarizing experiences, are analogous to the subconscious mind in humans. Similar to
how the subconscious mind serves as a flexible and adaptive guidance system in the brain
for diverse problems Murphy (1963), LPs, due to their commonality and reusability for
reasoning guidance, are small in scale, making them generalizable across tasks.

To construct this space, iCLP first prompts an off-the-shelf LLM to summarize explicit
plans from a collection of effective CoT traces. Subsequently, iCLP borrows the encoding
module of ICAE Ge et al. (2024) to map these distilled plans into a small set of memory slots
that compress their semantics; it then derives generic slot representations from a codebook
learned via a vector-quantized autoencoder Esser et al. (2021), trained end-to-end with plan
reconstruction. By treating codebook indices as special tokens for the LLM, we directly
obtain the latent plans, which serve as compact encodings of the plans within the learned
codebook. Finally, by integrating them into the original samples, we reformulate each sample
into the form: (user: question, assistant: latent plans and CoTs). Fine-tuning any LLM
on these samples enables the model to internalize the intelligence of IC, empowering it to
perform latent planning for reliable, step-wise reasoning.

We conduct evaluations on mathematical reasoning and code generation tasks. For accuracy,
supervised fine-tuning of small LLMs, such as Qwen2.5-7B, with iCLP on datasets like MATH
and CodeAlpaca yields substantial gains, achieving performance competitive with GRPO
Shao et al. (2024), which relies on reinforcement learning. For efficiency, LLMs enhanced
with iCLP reduce token cost by 10% on average compared to zero-shot CoT prompting.
For generality, cross-dataset evaluations show that fine-tuned models applied to AIME2024
and MATH-500 achieve more than a 10% average accuracy improvement over base models.
Similarly, on HumanEval and MBPP, we observe a 9% gain. Moreover, LLMs fine-tuned with
iCLP outperform all baselines, including those trained with long CoT samples and latent
CoT reasoning, while maintaining interpretability.

2 Preliminary and Motivation

2.1 Step-wise Reasoning with Planning

Given a question Q, the large language model (LLM) denoted as f with parameters θ,
generates a chain of thoughts (CoTs), denoted as c1...n = [c1, c2, . . . , cn], where each ci
with i ∈ [1, . . . , n] is a textual description of the thought at the i-th reasoning step. Each
thought derives formally from conditional sampling ci ∼ fθ (ci|Q, c1...i−1). The target of
n steps reasoning is to produce the predicted solution ỹ in cn to match the ground truth
y. With explicit plans as shown in Figure 2, denoted as p1...n = [p1,p2, . . . ,pn], where
each represents a textual instruction outlining what to do in a single reasoning step, the
LLM can gain prior knowledge on how to organize c1...n for reliable problem-solving. Thus,
we reformulate CoTs as c1...n = [c1, c2, . . . , cn | p1...n], meaning that the i-th thought is
represented as ci ∼ fθ (ci | Q, c1...i−1,p1...i−1,pi). The guidance of pi reduce the randomness
and uncertainty of LLMs in generating the thought.

To enable reasoning with plan guidance, a direct prompting approach, PS, performs sampling
via p1...n ∼ fθ (p1...n | I), where I represents a customized prompt. Other approaches, such
as Trajectories Synthesis, REACT Yao et al. (2022), AUTOACT Qiao et al. (2024b), and
PlaSma Brahman et al. (2024), formulate the sample as that each reasoning step ci condition
on pi ∼ fθ (pi | Q, c1...i−1,p1...i−1, I), allowing the LLM to be fine-tuned to first plan then
reason.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(a) (b) (c) (d) (e)

Figure 1: Illustration of relations between explicit plans of questions from different categories.
We extract 200 samples from each category of the MATH dataset’s 7 categories and prompt
the LLM to decompose the answers into individual steps, followed by summarizing their
explicit plans. (a)(b)(c) display the encoding distances between pairs of items: questions,
explicit plans of Step 1 and Step 3, respectively. (d)(e) show the encoding clusters of the
explicit plans of Step 1 and Step 3.

2.2 Explicit Plans present Commonality across Problems

Current efforts such as ReACT Yao et al. (2022) and PlaSma Brahman et al. (2024) that
rely on explicit plans face a key limitation: specific and question-oriented instructions often
fail to generalize well across diverse problems, and the detailed content involved is prone
to errors, making it difficult for the LLM to learn effectively. Here, we introduce the idea
of mapping plans from language space to latent space to capture high-level, generalizable,
and concise instructions that provide conceptual-level reasoning guidance. Unlike explicit
plans tailored to individual problems, their encodings are not question-specific; instead, they
offer general guidance applicable across a variety of contexts. As a result, despite differing
textual formulations, the encodings retain only the commonality that generalizes well across
problems.

To show these benefits, we prompt DeepSeek-V3 Team (2024) to perform c1...n ∼
fθ (c1...n | Q,A,D) and p1...n ∼ fθ (p1...n | Q, c1...n,S), where A denotes the CoT answer,
while D and S represent the prompts for answer decomposition and explicit plan summa-
rization. We present the results in Figure 1. Specifically, after removing stop words from
the questions and the summarized skeleton plans using NLTK, we encode them with the
all-MiniLM-L6-v2 model. We then visualize the pairwise distances with a heatmap and
project the embeddings into 2D using t-SNE.

Figure 1 shows that embeddings of explicit plans exhibit a certain level of commonality
and are capable of generalizing across problems. Using Figure 1a, which visualizes question
similarity across seven categories, as a reference, we observe that explicit plans from reasoning
Step 1 and Step 3 (Figure 1b) reveal two key trends: (1) when two questions are similar,
their corresponding plans also tend to be close in embedding space; and (2) as the reasoning
step increases, the degree of commonality strengthens. These trends are further supported
by the clustering patterns of plans from Step 1 and Step 3 shown in Figures 1d and 1e: plans
across different categories not only exhibit clear boundary separation but also significant
overlap, indicating that a single plan can be applicable to questions both within and across
categories.

3 Methodology

This section introduces the three components of our framework, iCLP : distilling explicit
plans from existing answers, learning a latent plan space, and finetuning LLMs with latent
plans (LPs). The overall pipeline is illustrated in Figure 2. Our core objective, motivated by
Subsection 2.2, is to capture the commonalities and generalizable reasoning guidance beyond
plans to support accurate reasoning across diverse tasks.

3.1 Explicit Plan Distillation

iCLP distills explicit plans, denoted as p1...n, from existing CoT answers by prompting an
off-the-shelf LLM. Specifically, for each question and its corresponding generated answer, as
described in Subsection 2.2, iCLP first decomposes the answer into n separate reasoning

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Q: What is the largest integer for which
?

Step 1: By Pascal's Identity, we have
.

Step 2: However, we also have .

Explicit Plans:
Plan 1: Apply Pascal's Identity, which states that
for any integers and , .
Use this identity to combine the binomial
coefficients and into a single binomial
coefficient .

Decomposed Steps:

Step 3: There are no other values of such that
, so the largest possible value of is

.

Plan 3: Determine the largest integer such that
the binomial coefficient is equal to a given
binomial coefficient . Use the symmetry
property of binomial coefficients, , to
identify possible values of

Q

Encoder
Decoder

trajectory

Exclusive

trajectory

Latent
Plans:

Prompt DeepSeek-V3 with

🔥 🔥

CodeBook 🔥Quantization

Plan 2: Apply the symmetry property of binomial
coefficients to find an equivalent expression for

. This allows us to identify

Figure 2: Illustration of the overall pipeline of iCLP. The upper part shows the process
of Plan Distillation using a sample from the Counting & Probability category of the MATH
dataset. The right part depicts the encoder - quantizer - decoder structure used for Latent
Plan Generation.

steps, marking the i-th step with the phrase “Step i”. It then summarizes a plan for each
step using zero temperature decoding, resulting in n plans p1...n, one for each step.

To further increase the diversity of plans, in addition to using the provided answer for
each sample, we prompt the LLM to generate U CoT reasoning trajectories per question.
To prevent the LLM from reusing existing plans, for any reasoning trajectory indexed by

j ∈ [2, . . . , U], we use a prompting formulation given by c1...n ∼ fθ

(
c1...n | Q,E,

{
pb
1...n

}j−1

b=1

)
.

Here, E is a textual prompt that instructs the LLM not to reuse any previously used chains

of plans
{
pb
1...n

}j−1

b=1
during reasoning. Importantly, E permits the repetition of individual

plans but not of entire chains pb
1...n because one chain can encode specific reasoning logic.

After filtering out CoT trajectories that lead to incorrect solutions, we retain pU ′

1...n for each
question. Note that while the value of n varies across questions, we use fixed notation here
for simplicity.

3.2 Latent Plan Generation

Although explicit plans present clear instructions and generalize among similar questions,
they remain susceptible to token-level errors, particularly when LLMs hallucinate. To address
this, we propose learning a latent plan space, which serves as a hidden representation of
the plans. By conducting planning in this latent space, we mitigate the negative impact of
token-level errors and further enhance the LLM’s generalization ability, as the reasoning no
longer depends on explicit and specific textual instructions.

To construct this latent space, we first follow the ICAE Ge et al. (2024) to introduce
few memory tokens, denoted as m = [m1, . . . ,mL], where L is the length. Then, we
introduce a vector-quantized autoencoder comprising an encoder fα, a discrete codebook

H = {h}Kk=1 ⊂ Rdh and a decoder fβ, where dh represents the dimensionality of the code.
Similar to the pipeline in VQ-VAE van den Oord et al. (2017) and VQ-GAN Esser et al.
(2021), we approximate a given plan p by p̃ = fβ

(
Hp

q

)
, where Hp

q ∈ Rdh×|p| is a spatial
collection of codebook entries representing p. Specifically, we set the fα to be an encoder-only
transformer and fβ to be a decoder-only transformer. Thus, we obtain the Hp

q by performing

element-wise quantization q
(
Ĥp

)
, where each spatial code ĥL ∈ Rdh from only the encoded

memory representation Ĥp = fα ([p,m]) ∈ Rdh×|m| is mapped to its nearest codebook
entry hk, where e ∈ [1, . . . , |m|] here is the token index of the memory token. This process

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

is formulated as follows:

Hp
q = q

(
Ĥp

)
:= argmin

hk∈H
||hk − ĥe||, p̃ = fβ (q (fα ([p,m]))) ,∀e ∈ [1, . . . , |m|]. (1)

For the reconstruction task, where p̃ ≈ p, we employ the completion loss, as that presented in
ICAE Ge et al. (2024). Given the quantized representation Hp

q and a special reconstruction
indicator token ‘[RECON]’, the decoder predicts the input p via next-token prediction. To
optimize α,H,β, we propagate gradients from the decoder to the encoder, avoiding the
non-differentiable quantization. The combination of the cross-entropy loss and commitment

loss is computed as: − 1
T

∑T
t=1 logPθ(xt | x<t) + ||sg [fα (p)]−Hp

q ||2 + ||sg
[
Hp

q

]
− fα (p) ||.

With the trained α,H, we can obtain the latent plan for any plan by representing it with
Hp

q .

3.3 Fine-tuning LLMs for Latent Planning

We synthesize new samples to fine-tune the LLM for planning in the latent space to enhance
reasoning in the language space. Specifically, for a sample q, c1...n with distilled plans
p1...n, we first compute each plan encoding as fα ([pi,m]), then map each memory token
encoding to its closest codebook entry in H. Thus, we have the matching indexes denoted as
Ip = {Ipi

}ni=1, where for each pi, Imie
= k corresponds to

(
Hp

q

)
ie
= hk.

For any LLM, we extend the vocabulary size to include the size of the codebook K by
adding special tokens denoted as ‘[LP{idx}]’ where {idx} corresponds to the row index
in the codebook. Consequently, we reformulate the sample into the form (user: question,
assistant: latent plans and CoTs). This is obtained by first expressing the sample as (user:
question, assistant: p1, c1, . . . ,pn, cn) following by replacing the token IDs of each pi with
Imi

. As a result, with supervised fine-tuning, we train the extended vocabulary embeddings
and fine-tune the LLM using the completion loss.

4 Experiments

Datasets. For the mathematical task, we use the MATH Hendrycks et al. (2021) and GSM8K
Cobbe et al. (2021) datasets for model fine-tuning, while the AIME2024 MAA Committees
and MATH-500 Hendrycks et al. (2021) datasets are used exclusively for evaluation. For the
code generation task, we use the CodeContests Li et al. (2022) (3760 training, 165 test)
dataset for fine-tuning, and the HumanEval Chen et al. (2021) and MBPP Austin et al. (2021)
datasets for evaluation.

Learning Settings. We use Qwen2.5 Yang et al. (2024) in different sizes including 0.5B, 3B,
7B as the base models for fine-tuning toward latent planning. For all cases, to generate new
CoT answers or extract the explicit plans, we prompt DeepSeek-V3 with a zero temperature
and 0.3 temperature, respectively. For supervised fine-tuning, the learning rates for the 0.5B,
0.6B, 1.7B, 3B, and 7B models are set to 2e-5, 2e-5, 1e-5, 8e-6, and 5e-6, respectively. We
employ the AdamW optimizer with a cosine learning rate scheduler. For iCLP, the encoder
is the all-MiniLM-L6-v1 model from sentence-transformers, while the decoder is Qwen2.5-3B
with the extended vocabulary, as discussed in subsection 3.3. For the quantizer, the size of
the codebook is 2048, the dimension is 512, and β is 0.3. The training of iCLP uses LoRA
Hu et al. (2021), with a batch size of 16 for 2 epochs. For the Plan Distillation, we set the U
to be 20. Throughout the experiment, we set the number of memory tokens to L = 6 due to
that the explicit plan is generally a short sentence.

Baselines. In addition to comparisons with base LLMs, iCLP is evaluated against state-of-
the-art (SOTA) fine-tuning (FT) methods, including Learn Planning and Reasoning Jiao
et al. (2024), PS+/PS Wang et al. (2023b), ReAct Yao et al. (2022), PlaSma Brahman et al.
(2024), and Coconut Hao et al. (2024). However, fully reproducing these methods is relatively
infeasible due to their strong dependence on specific task settings. Instead, we implement
their core ideas within the context of our work, which involves step-wise explicit plans.
These approaches can be viewed as instances of fine-tuning (FT) large language models on
plan-based reasoning samples synthesized from existing datasets. We refer to this setting as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Evaluating the reasoning performance of a series of Qwen2.5 models with different
methods. The abbreviates of the datasets MATH, MATH-500, AIME2024, GSM8K, CodeContests,
and HumanEval are M, M-500, AM, G8, CC, HE, and MBPP, respectively. The × indicates that,
under the corresponding fine-tuning method for LLMs, training fails to converge. The →
indicates cross-dataset evaluation, as described in the ‘Metrics’ part of the experimental
settings. Here, the base refers to LLMs using zero-shot CoT prompting.

Qwen2.5 Methods
Normal Mode Cross Mode

M G8 CC M→AM G8→AM M→M-500 G8→M-500 CC→HE CC→MBPP

0.5B

Base 19.5 41.6 1.2 0 0 15.8 15.8 30.5 39.3
GRPO 49.6 54.5 × 0 0 34.4 17.9 × ×
FT-E 23.1 43.8 5.5 0 0 18.8 15.8 32.9 43.6
FT-S 31.1 48 8.5 0 0 27.2 18.4 36.6 47
FT-LE 13.3 38.3 1.8 0 0 11.2 9.6 19 21.4
iCLP 36.7 51.5 11.5 0 0 28.1 20.8 39.6 51

3B

Base 42.6 79.1 9 0 0 39.6 39.6 42.1 57.1
GRPO 68.5 86.6 × 10 0 60.8 40.4 × ×
FT-E 48.2 81.4 10.9 0 0 43 39.8 44.5 61.2
FT-S 54.9 83.2 13.9 7.6 0 48.4 40 47 65.2
FT-LE × × 12.1 × 0 × × 44.5 62
iCLP 60.1 85 18.8 10 0 55.4 44.2 54 73

7B

Base 49.8 85.4 15.8 3.3 3.3 42.4 42.4 53 74.9
GRPO 83.7 91.7 19.2 20 3.3 78.2 45.6 53.2 76
FT-E 57.4 87.3 19.4 10 3.3 52 43.8 56.5 75.6
FT-S 65.8 88.9 22.4 16.7 3.3 58.4 44 59.5 78.9
FT-LE × × × × × × × × ×
iCLP 74.3 90.1 26.7 20 3.3 68.6 46.2 66.5 86.9

FT-explicit (FT-E), where each step in the synthesized data includes a corresponding explicit
plan. We also introduce Coconut, which implements latent chain-of-thought reasoning. This
approach is distinct compared to our latent planning method and is therefore referred to
as FT-special (FT-S). Additionally, for ablation analysis, we apply iCLP to learn a latent
representation of the explicit plans and fine-tune the model based on this latent space,
denoted as the FT-latent explicit (FT-LE) setting. iCLP is the full version of our method,
which fine-tunes LLMs using latent plans learned from explicit plans. In particular, we
compare our method with the state-of-the-art (SOTA) approach GPRO Shao et al. (2024),
which fine-tunes LLMs using reinforcement learning.

Metrics. We report the pass1 accuracy (in %) of the LLM evaluated in three modes: In
the normal mode, the LLM with iCLP is evaluated directly on the test set from the same
dataset as the train set. In the cross mode, the LLM with iCLP is evaluated on a test set
from a dataset different from the one used for training, denoted as training dataset → test
set. The accumulation mode involves collecting explicit plans from multiple datasets to train
the LLM with iCLP, followed by evaluation on various datasets.

4.1 Main Results

Table 1 shows that LLMs with iCLP significantly enhance reasoning performance across
three datasets, demonstrating the ability to perform generalizable planning and achieve
high accuracy across diverse tasks. In the normal mode and the more challenging cross
mode, iCLP consistently outperforms all baselines and closely matches the performance of
the GRPO algorithm Shao et al. (2024). These results suggest that reasoning with latent
planning enables LLMs to acquire reasoning abilities that are both reliable and generalize
effectively across a wide range of problem-solving tasks.

Specifically, iCLP consistently outperforms Base in normal mode, with an average accuracy
improvement of 11.5. Although GRPO shows better performance on MATH and GSM8K, with
average gains of 8 at 0.3B, 5 at 3B, and 5.5 at 7B, iCLP achieves the strongest results on
CodeContests, where GRPO fails to converge at 0.5B and 3B and falls behind by 7.5 at 7B.
For math reasoning tasks on MATH and GSM8K, iCLP surpasses FT-E, FT-S, and FT-LE with
average improvements of 9.4, 4.3, and 30.4 respectively. On CodeContests, the gains are 7.1
over FT-E, 4.1 over FT-S, and 18.4 over FT-LE. These results suggest that iCLP enables

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

LLMs of various sizes to perform latent-space planning as generalized guidance, resulting in
substantial improvements in both mathematical reasoning and code generation.

Table 2: Evaluation of the average generation token
cost across different methods on MATH and TheoremQA.
We report both the average and standard deviation
(mean ± std) of the total tokens used per question,
including tokens used for prompting the LLMs and
those generated by the models.

Methods MATH TheoremQA

0.5B w/ ZeroCoT 221.6 ± 172.5 250.3 ± 110.2
14B w/ ZeroCoT 261.8 ± 192.2 308.7 ± 137.5
0.5B w/ PS+ 327.5 ± 176.7 367.5 ± 153.6

0.5B w/ Prompting 815.2 ± 356.7 993.4 ± 390.5
0.5B w/ iCLP 250.3 ± 110.9 200.7 ± 100.2
7B w/ ZeroCoT 246.9 ± 189.5 291.2 ± 160.8

7B w/ PS 357.2 ± 200.9 390.6 ± 190
7B w/ Prompting 934.5 ± 390.2 1103 ± 487.5

7B w/ iCLP 300.6 ± 150.8 270.2 ± 127.1

As shown in Table 2, Our iCLP
achieves high token efficiency,
with an average token cost of 250.3
± 110.9 on MATH. This cost is
significantly lower than that of
planning-based reasoning methods
such as PS+ Wang et al. (2023b).
. In particular, on the more chal-
lenging dataset TheoremQA, the to-
ken usage is only 200.7 ± 100.2
for Qwen2.5-0.5B and 370.2 ±
127.1 for Qwen2.5-7Bwhich is lower
even than ZeroCoT. This efficiency
arises from two factors: (1) the la-
tent plan requires only 6 tokens,
and (2) the plan provides clear
guidance, enabling the LLM to
avoid unnecessary exploration dur-
ing reasoning.

For the cross mode for generalizable planning evaluation, we evaluate Qwen2.5 models
trained on latent plans derived from one dataset and tested on a different dataset. Qwen2.5
3B and 7B models with iCLP trained on MATH successfully solve challenging AIME2024
problems, with the 7B model achieving an accuracy of 20, only 3.3 lower than the much
larger Qwen2.5-72B-Instruct. Across all model sizes (0.5B, 3B, 7B), iCLP significantly
outperforms the Base LLM. While iCLP performs slightly below GRPO on M→M-500 with
an average gap of 3.9, it consistently outperforms GRPO on G8→M-500, with average gains
of 2.2, most notably 2.9 at 0.5B and 3.8 at 3B, indicating stronger generalization when
transferring plans from G8 to M-500. In code generation, iCLP shows clear advantages. It
improves over Base by an average of 12.4 on CC→HE and CC→MBPP. GRPO fails to converge
at 0.5B and 3B on CC, while iCLP remains stable and effective. At 7B, where GRPO does
converge, iCLP still outperforms it by 13.3 on CC→HE and 10.9 on CC→MBPP, demonstrating
robust cross-data generalization. Moreover, compared to the variants FT-E, FT-S, and
FT-LE, iCLP consistently achieves higher accuracy and more stable performance across
model sizes and tasks, confirming its effectiveness in cross-data generalization for both math
and code reasoning.

4.2 Continuous Learning with Latent Planning

Figure 3 demonstrates that in the accumulation mode, plans can be progressively accumulated
across datasets to enhance the performance of iCLP in improving LLM reasoning, thus
eavling the continuously learning ability of the LLMs with the latent plan space. Specifically,
we first distill plans from the MATH and GSM8K datasets, then merge them and eliminate
duplicates based on identical reasoning indices. Using this expanded set of plans, we train
the codebook and fine-tune the LLM via iCLP. As shown in Figure 3, the resulting model is
evaluated on four datasets.

Figure 3a highlights the significant difference between the number of explicit plans and the
number of questions. In the seven categories of the MATH dataset, the number of explicit
plans is not significantly larger than the number of questions, especially in some challenging
categories such as C&P. Besides, LLMs fine-tuned with explicit plans achieve better accuracy,
as shown in Table 1, indicating that explicit plans effectively capture the commonality and
generalizable reasoning patterns across questions. Despite the small scale of explicit plans,
such as 18,100 in GSM8K, learning latent plans results in their representation by only a few
clusters. As shown in Figure 5, latent plans for questions within the same categories exhibit
significant clustering while showing overlap across categories. More importantly, fine-tuning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

C&P Int Alg NT Prec Prea Geo Alg GSM8K0

5000

10000

15000

20000

25000

771 1295 869 746 1205 870
1744

7470

3011

8437

3083

5222
6025

3480

12208

18110

Number of Samples
Explicit Plans

(a)
M G8 M-500 AM

10

0

10

FT-E
FT-S
FT-SE
iCLP

(b)
M G8 M-500 AM

0

10

x x x x

FT-E
FT-S
FT-SE
iCLP

(c)
M G8 M-500 AM

0

10

20

x x x x

FT-E
FT-S
FT-SE
iCLP

(d)

Figure 3: Illustration of the number of distilled plans and the accumulation mode performance
of LLMs with iCLP. (a) shows the number of explicit plans that can be distilled from each
category of the MATH and GSM8K datasets. The x-axis labels represent the abbreviations
of the seven category names (see appendix). (b)(c)(d) show the accuracy gain (‘y-axis’)
over the base model after fine-tuning the LLM with plans accumulated from the MATH and
GSM8K datasets. Accuracy is measured across four datasets, with abbreviated names provided
in Table 1. (b)(c)(d) correspond to Qwen2.5 models with 0.5B, 3B, and 7B parameters,
respectively.

LLMs using these latent plans achieves optimal accuracy, as show in Table 1, which
approaches SOTA RL-based method GRPO.

Thus, by accumulating plans, we are able to integrate generalizable planning knowledge
from different datasets, enabling LLMs trained with iCLP to achieve better performance,
as shown in Figure 3b, 3c, and 3d. Across all four evaluation datasets, Qwen2.5 models
fine-tuned with latent ones (i.e., iCLP) show significant accuracy improvements compared
to the base models. These improvements consistently exceed those achieved using explicit
plans and FT-S. As the Qwen2.5 model size increases from 0.5B to 7B, the performance
gains from iCLP become more evident, particularly with improvements greater than 20% on
MATH and 10% on AIME2024.

4.3 Ablation Study and Qualitative Results

Table 3 presents the impact of different settings for the encoding dimension and the size of
the codebook H on the performance of our iCLP. Increasing dh from 256 to 512 leads to a
significant improvement in accuracy, while further increasing it to 1024 offers no additional
benefit. Based on this, we set dh = 512 and increase the codebook size K from from 1024 to
2048, which yields accuracy gains of 2.9 and 1.2 points on MATH and CodeContests, respec-
tively. However, further enlarging K does not lead to additional performance improvements.
Therefore, based on these results, especially the cross-data evaluation, we argue that the
codebook size K plays a more critical role than the dimensionality in improving latent
planning performance.

Table 3: Comparison of different dimensions (dh and
sizes (K)) of the coodbook H.

Qwen2.5 dh K M CC M→AM CC→HE

3B

256 1024 53.7 14.5 0 47.6
512 1024 56.9 17 10 49.4
1024 1024 57.2 17.6 10 51.2
512 2048 60.1 18.8 10 54
12 4096 60.1 19.4 10 54.3

To better understand and visual-
ize the latent space of the latent
plans, we perform reasoning with
Qwen2.5-7B using iCLP on the
MATH dataset and collect the encod-
ings of latent plans across different
reasoning steps. For each latent
plan, we compute the average en-
codings by applying mean pooling
over its token encodings. We then
present the pairwise distance rela-
tionships between plans from different steps in Figure 4, and the corresponding encoding
structures in 2D space using t-SNE in Figure 5. To make it easier to understand how the
LLM with iCLP performs latent planning during reasoning, we provide a demonstration in
Figure 6. It is evident that the LLM only needs to perform latent planning by generating a
few special tokens before each reasoning step to achieve a reliable reasoning process. More
importantly, compared to existing latent reasoning methods such as Coconut Hao et al.
(2024), iCLP enables planning in the latent space while maintaining CoT reasoning in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) (b) (c) (d)

Figure 4: Illustration of the relations of the encoding distances between pairwise latent
plans from different reasoning steps (1, 2, 3, and 4). We randomly sample 200 questions
from the test set of the MATH dataset and extract the encodings of latent plans generated by
Qwen2.5-7B with iCLP during problem solving. Subfigures (a), (b), (c), and (d) present the
results for the 1st, 2nd, 3rd, and 4th latent plans, respectively.

(a) (b) (c) (d)

Figure 5: Illustration of the encodings of latent plans from different reasoning steps (1, 2, 3,
and 4) in 2D space. We follow the same procedure as in Figure 4 and visualize the latent
plan encodings using t-SNE.

language space, thereby guaranteeing strong interpretability, which is crucial for practical
applications.

From Figure 4, we observe two key patterns. First, for questions belonging to the same
category in MATH, their latent plans exhibit clear similarity, as evidenced by the prominently
highlighted diagonal regions in Figures 4a,4b, 4c, and 4d. This indicates that the LLM
with iCLP tends to generate similar latent plans when solving problems within the same
category. Second, in the later reasoning steps—particularly in Figures 4c and 4d—latent
plans become more aligned across different categories, suggesting that the model increasingly
draws on similar implicit plan knowledge regardless of the specific problem type. From
Figure 5, we observe two key patterns. First, latent plans from the same category form
distinct clusters, while those from different categories are clearly separated, indicating strong
category-specific structuring in the latent space. Second, the clusters from different categories
are distributed around a common center, suggesting that the latent plans share a core of
common implicit knowledge that generalizes well across problem types. Therefore, the result
matches our motivation in Subsection 2.2: enabling the LLM to plan in the latent
space with generalizable reasoning guidance that is reusable and transfers well
across problems, thereby supporting both the generalization and accuracy of
reasoning.

5 Related Work

Large language models (LLMs) have the capability to solve problems using step-by-step
reasoning Kojima et al. (2022), where each step addresses a sub-problem and is described
textually as a thought, thereby collectively forming a Chain of Thought (CoT) Wei et al.
(2022). However, inherent hallucinations in LLMs can lead to ineffective thoughts. To address
this issue, prompting methods have been proposed to extend CoT reasoning by incorporating
additional searching Wang et al. (2022); Zhou et al. (2023); Fu et al. (2023); Yao et al. (2023)
or self-reflection mechanisms Sijia et al. (2024); Sijia & Baochun (2024); Miao et al. (2024).

Instead of relying on resource-intensive approaches, enhancing reasoning with step-wise
planning aims to directly guide LLMs using a plan — a textual instruction that specifies

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

<LP146> <LP192> <LP15><LP693> <LP194><LP192> <LP1586> <LP750> <LP362> <LP229> <LP385> <LP257> <LP280><LP1586><LP362> <LP12> <LP229> <LP385> <LP280> <LP750> <LP1586> <LP515> <LP194> <LP750> <LP362> <LP639> <LP12> <LP1586>

Q: By partial fractions,

Find .

Step 2: Expand the right-hand side:

Match with left-hand side:

Equating coefficients:

Step 1: We are given:

Multiply both sides by
:

Latent
Planning:

Step 3: Add equations:

From earlier

Substitute :

Step 4: Now that we know:

Figure 6: Illustration of the reasoning process of LLMs with latent planning. In each of
the four reasoning steps, Qwen2.5-7B with iCLP first plans in the latent space, which then
guides the generation of the next reasoning step.

what to do at each step for reliable reasoning Huang et al. (2024; 2022). Prior works Wang
et al. (2023a); Sun et al. (2023); Ling et al. (2023) Prompt LLMs to generate question-specific
plans or premises to guide step-wise reasoning. Building on this idea, subsequent works Yao
et al. (2022); Lyu et al. (2024); Zheng et al. (2024); Zhao et al. (2023); Qiao et al. (2024a)
propose to guide LLMs by synthesizing new reasoning processes in the form of planning
trajectories, where each step begins with a plan and is followed by the generation of a
corresponding solution step. However, as it remains difficult for LLMs to produce effective
and coherent plans Valmeekam et al. (2023; 2024); Xie et al. (2025), recent methods Yao
et al. (2022); Jiao et al. (2024); Qiao et al. (2024b); Brahman et al. (2024); Qiao et al.
(2024a) fine-tune LLMs using synthesizes planning trajectories. However, the plans used in
these approaches are still tightly coupled with specific questions and task contexts. As a
result, they often lack generalizability and are susceptible to errors in detailed content. In
contrast, our work focuses on latent plans, which provide high-level, concise, and generalizable
instructions.

Reasoning in a latent continuous space has been increasingly explored in recent research
Xu et al. (2024); Hao et al. (2024); Pagnoni et al. (2024); Su et al. (2025); team et al. (2024);
Tack et al. (2025), demonstrating promising improvements in both accuracy and efficiency.
Similar to our approach of learning latent plans for CoT rationales, LaRS Xu et al. (2024)
proposes constructing a latent space of rationales via unsupervised learning, enabling LLMs to
retrieve latent rationales for given questions. The TokenAssorted in Su et al. (2025) abstracts
away initial reasoning steps using latent discrete tokens generated by VQ-VAE van den Oord
et al. (2017). CoCoMix Tack et al. (2025), closely related to our work, combines discrete
next-token prediction with continuous concept representations learned via a pretrained sparse
autoencoder. Although the ideas presented in these methods are closely aligned with ours in
blending latent representations with language tokens during reasoning, our work makes a
significant advance by explicitly separating the planning and reasoning phases: planning is
performed in a latent space, while reasoning is carried out in natural language.

6 Concluding Remarks

In this paper, we enabled large language models (LLMs) to emulate human-level intelligence,
specifically Implicit Cognition (IC), by introducing a novel framework called iCLP. This
framework allows LLMs to perform planning in a latent space in order to augment their
reasoning capabilities in the language space. A central component of iCLP is the use of
latent plans, which are crucial due to their ability to generalize across tasks. To realize
this, we employ a vector quantizer autoencoder to learn a latent space, represented as a
codebook, from distilled plans. We then fine-tune LLMs to generate latent plans that support
reasoning across a variety of problem-solving tasks. Experimental results demonstrate that
incorporating iCLP into LLMs leads to substantial improvements in reasoning accuracy.
Furthermore, the generalizable structure of the latent plans enables LLMs fine-tuned on
one dataset to transfer effectively to other datasets without requiring retraining. The latent
space also supports continual learning, allowing plans distilled from multiple datasets to
enhance the codebook and continuously strengthen the model’s latent planning capabilities
for guiding reliable reasoning. We hope this work opens a new direction that highlights
the importance of enhancing reliable and generalizable reasoning through planning in a
continuous latent space.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Reproducibility statement

To support reproducibility, the paper provides sufficient methodological and experimental
details to enable independent replication of our results. The complete implementation,
including all code, configuration files, and instructions necessary to reproduce the findings, is
publicly available as a GitHub repository and the supplementary material. In keeping with
current research best practices, all materials and necessary components are made publicly
available on these places to enable full accessibility and reproducibility by the research
community. The provided GitHub repository and our “code.zip” includes detailed instructions
for reproducing not only the proposed method iCLP but also the main results reported in
the paper. To access the source code directly, please locate the examples/LatentPlan
directory in the supplementary material file “code.zip”. Additionally, please read the
README.md file for step-by-step instructions on how to run the code. The raw
data of the distilled plans from MATH and other datasets are available on the Hugging Face
website. Please download them directly.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. ArXiv, abs/2108.07732, 2021. 5

Faeze Brahman, Chandra Bhagavatula, Valentina Pyatkin, Jena D. Hwang, Xiang Lorraine
Li, Hirona Jacqueline Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang Ren, and Yejin
Choi. Plasma: Procedural knowledge models for language-based planning and re-planning.
In International Conference on Learning Representations, 2024. 1, 2, 3, 5, 10

Mark Chen et al. Evaluating large language models trained on code. ArXiv, abs/2107.03374,
2021. URL https://api.semanticscholar.org/CorpusID:235755472. 5

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 5

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proc. IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021. 2, 4

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. In Proc. International Conference on Learning
Representations, 2023. 9

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In Proc. International Conference on
Learning Representations, 2024. 2, 4, 5

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and
Yuandong Tian. Training large language models to reason in a continuous latent space.
ArXiv, 2024. 5, 8, 10

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021. 5

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2021. 5

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown,
Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner
monologue: Embodied reasoning through planning with language models. In Annual
Conference on Robot Learning, 2022. 1, 10

11

https://api.semanticscholar.org/CorpusID:235755472

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng
Wang, Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A
survey. ArXiv, 2024. 1, 10

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F. Chen, and Shafiq R. Joty. Learning
planning-based reasoning by trajectories collection and process reward synthesizing. In
Conference on Empirical Methods in Natural Language Processing, 2024. 1, 5, 10

J. F. Kihlstrom, V. A. Shames, and J. Dorfman. Intuition, incubation, and insight: Implicit
cognition in problem-solving. In Geoffrey D. M. Underwood (ed.), Implicit Cognition, pp.
257–296. Oxford University Press, 1995. 1

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. In Advances in Neural Information
Processing Systems, volume 35, pp. 22199–22213, 2022. 9

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom, Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
Choy, Cyprien de, Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Jo-
hannes Welbl, Sven Gowal, Alexey, Cherepanov, James Molloy, Daniel Jaymin Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. Competition-level code generation with alphacode. Science, 378:1092 –
1097, 2022. 5

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and
Hao Su. Deductive verification of chain-of-thought reasoning. In Advances in Neural
Information Processing Systems, 2023. 10

Edwin A. Locke and Amy L. Kristof. Volitional choices in the goal achievement process.
In Peter M. Gollwitzer and John A. Bargh (eds.), The Psychology of Action: Linking
Cognition and Motivation to Behavior, pp. 365–384. Guilford, 1996. 1

Yuanjie Lyu, Zihan Niu, Zheyong Xie, Chao Zhang, Tong Xu, Yang Wang, and Enhong
Chen. Retrieve-plan-generation: An iterative planning and answering framework for
knowledge-intensive llm generation. In Conference on Empirical Methods in Natural
Language Processing, 2024. 1, 10

MAA Committees. Aime problems and solutions. Art of Problem Solving. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. 5

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their
own step-by-step reasoning. In Proc. International Conference on Learning Representations,
2024. 9

Joseph Murphy. The Power of Your Subconscious Mind. Prentice-Hall, 1963. 2

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
garet Li, Chunting Zhou, Lili Yu, Jason Weston, Luke S. Zettlemoyer, Gargi Ghosh, Mike
Lewis, Ari Holtzman, and Srinivasan Iyer. Byte latent transformer: Patches scale better
than tokens. ArXiv, 2024. 10

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong
Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge
model. In Advances in Neural Information Processing Systems, 2024a. 10

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor
Jiang, Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch for
qa via self-planning. In Annual Meeting of the Association for Computational Linguistics,
2024b. 1, 2, 10

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K.
Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning
in open language models. ArXiv, 2024. 2, 6

12

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Chen Sijia and Li Baochun. Toward adaptive reasoning in large language models with
thought rollback. In International Conference on Machine Learning, 2024. 9

Chen Sijia, Li Baochun, and Di Niu. Boosting of thoughts: Trial-and-error problem solving
with large language models. In Proc. International Conference on Learning Representations,
2024. 9

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng.
Token assorted: Mixing latent and text tokens for improved language model reasoning.
ArXiv, 2025. 10

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in Neural Information Processing
Systems, 2023. 1, 10

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
Yuandong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts.
ArXiv, 2025. 10

DeepSeek-AI Team. Deepseek-v3 technical report. ArXiv, 2024. 3

The Lcm team, Löıc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom
Kozhevnikov, Belen Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon,
Marta Ruiz Costa-jussà, David Dale, Hady ElSahar, Kevin Heffernan, Joao Maria Janeiro,
Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alex Mourachko,
Safiyyah Saleem, and Holger Schwenk. Large concept models: Language modeling in a
sentence representation space. ArXiv, 2024. 10

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo Hernandez, and
Subbarao Kambhampati. On the planning abilities of large language models (a critical
investigation with a proposed benchmark). In Advances in neural information processing
systems, 2023. 1, 10

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can
lrms? a preliminary evaluation of openai’s o1 on planbench. In International Conference
on Learning Representations, 2024. 1, 10

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In Neural Information Processing Systems, 2017. 4, 10

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka Wei Lee, and Ee Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models. In Association for Computational Linguistics, pp. 2609–2634, 2023a. 1,
10

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-
Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by
large language models. In Proc. Annual Meeting of the Association for Computational
Linguistics, volume 1, pp. 2609–2634, 2023b. 5, 7

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. In Proc. International Conference on Learning Representations, 2022. 9

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022. 1, 9

Jian Xie, Kexun Zhang, Jiangjie Chen, Siyu Yuan, Kai Zhang, Yikai Zhang, Lei Li, and
Yanghua Xiao. Revealing the barriers of language agents in planning. In Association for
Computational Linguistics, 2025. 10

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Zifan Xu, Haozhu Wang, Dmitriy Bespalov, Xian Carrie Wu, Peter Stone, and Yanjun Qi.
Lars: Latent reasoning skills for chain-of-thought reasoning. In Conference on Empirical
Methods in Natural Language Processing, 2024. 10

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin,
Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang,
Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 technical report. ArXiv, 2024.
5

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations, 2022. 1, 2, 3, 5, 10

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Advances in Neural Information Processing Systems, 2023. 9

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge
for large-scale task planning. In Advances in Neural Information Processing Systems,
volume 36, 2023. 10

Zhonghua Zheng, Lizi Liao, Yang Deng, Ee-Peng Lim, Minlie Huang, and Liqiang Nie.
Thoughts to target: Enhance planning for target-driven conversation. In Conference on
Empirical Methods in Natural Language Processing, 2024. 10

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
enables complex reasoning in large language models. In Proc. International Conference on
Learning Representations, 2023. 9

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen,
Lei Liang, Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning
for llm-based agents. In North American Chapter of the Association for Computational
Linguistics, 2024. 1

14

	Introduction
	Preliminary and Motivation
	Step-wise Reasoning with Planning
	Explicit Plans present Commonality across Problems

	Methodology
	Explicit Plan Distillation
	Latent Plan Generation
	Fine-tuning LLMs for Latent Planning

	Experiments
	Main Results
	Continuous Learning with Latent Planning
	Ablation Study and Qualitative Results

	Related Work
	Concluding Remarks

