
iCLP: LARGE LANGUAGE MODEL REASONING WITH IMPLICIT COGNITION LATENT PLANNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs), when guided by explicit textual plans, can
012 perform reliable step-by-step reasoning during problem-solving. However,
013 generating accurate and effective textual plans remains challenging due to
014 LLM hallucinations and the high diversity of task-specific questions. To
015 address this, we draw inspiration from human *Implicit Cognition (IC)*,
016 the subconscious process by which decisions are guided by compact, gen-
017 eralized patterns learned from past experiences without requiring explicit
018 verbalization. We propose *iCLP*, a novel framework that enables LLMs
019 to adaptively generate latent plans (LPs), which are compact encodings
020 of effective reasoning instructions. *iCLP* first distills explicit plans from
021 existing step-by-step reasoning trajectories. It then learns discrete repre-
022 sentations of these plans via a vector-quantized autoencoder coupled with
023 a codebook. Finally, by fine-tuning LLMs on paired latent plans and cor-
024 responding reasoning steps, the models learn to perform implicit planning
025 during reasoning. Experimental results on mathematical reasoning and code
026 generation tasks demonstrate that, with *iCLP*, LLMs can plan in latent
027 space while reasoning in language space. This approach yields significant
028 improvements in both accuracy and efficiency and, crucially, demonstrates
029 strong cross-domain generalization while preserving the interpretability of
030 chain-of-thought reasoning.

1 INTRODUCTION

031 Large language models (LLMs) employ a step-by-step reasoning process expressed as a chain
032 of thought (CoT) [Wei et al. \(2022\)](#) to solve complex problems. Guiding thought generation
033 with explicit plans [Yao et al. \(2022\)](#), which are step-wise and question-specific reasoning
034 instructions, is crucial for improving practical usage and reliability of LLMs [Huang et al.](#)
035 [\(2024; 2022\)](#). However, preparing such plans effectively for accurate reasoning is inherently
036 challenging [Valmeekam et al. \(2023; 2024\)](#), particularly given the high diversity of problems
037 across different tasks.

038 One preliminary approach to achieving this goal involves prompting LLMs to generate
039 explicit plans using their internal knowledge [Yao et al. \(2022\)](#); [Wang et al. \(2023a\)](#); [Sun](#)
040 [et al. \(2023\)](#). However, this method is limited by errors in the plans, which arise from
041 the inevitable hallucinations of LLMs. While leveraging external knowledge bases can help
042 mitigate these errors [Lyu et al. \(2024\)](#); [Zhu et al. \(2024\)](#), accessing useful information from
043 them is time-consuming, and many tasks lack effective knowledge bases altogether. More
044 promising recent efforts [Yao et al. \(2022\)](#); [Jiao et al. \(2024\)](#); [Qiao et al. \(2024b\)](#); [Brahman](#)
045 [et al. \(2024\)](#) focus on fine-tuning LLMs on automatically or manually synthesized samples
046 with explicit plans. Unfortunately, LLMs fine-tuned in this manner still struggle to achieve
047 better performance because the plans required by problems within a single task, as well as
048 across tasks, are vast in number and highly diverse.

049 We argue that these mechanisms do not align with human wisdom, known as *Implicit*
050 *Cognition (IC)* [Kihlstrom et al. \(1995\)](#), through which we learn from experiences to summarize
051 implicit patterns that shape our subconscious mind [Locke & Kristof \(1996\)](#), allowing us to use
052 these patterns to solve new problems without explicitly verbalizing them. These patterns

054 contain abstract rules that reflect high-level common knowledge, capable of generalizing
055 across different problems. Additionally, our preliminary experiments on visualizing the
056 representations of explicit plans distilled from CoTs of different questions reveal clear
057 clustering for plans from the same task, along with a certain level of overlap indicating their
058 reuse.

059 Therefore, this paper mimics IC by proposing a framework called *iCLP*, which enables
060 any LLM to generate latent plans (LPs) in a hidden space, effectively guiding step-by-step
061 reasoning in the language space. Our key insight for its effectiveness is that LPs, built upon
062 summarizing experiences, are analogous to the subconscious mind in humans. Similar to
063 how the subconscious mind serves as a flexible and adaptive guidance system in the brain
064 for diverse problems Murphy (1963), LPs, due to their commonality and reusability for
065 reasoning guidance, are small in scale, making them generalizable across tasks.

066 To construct this space, *iCLP* first prompts an off-the-shelf LLM to summarize explicit
067 plans from a collection of effective CoT traces. Subsequently, *iCLP* borrows the encoding
068 module of ICAE Ge et al. (2024) to map these distilled plans into a small set of memory slots
069 that compress their semantics; it then derives generic slot representations from a codebook
070 learned via a vector-quantized autoencoder Esser et al. (2021), trained end-to-end with plan
071 reconstruction. By treating codebook indices as special tokens for the LLM, we directly
072 obtain the *latent plans*, which serve as compact encodings of the plans within the learned
073 codebook. Finally, by integrating them into the original samples, we reformulate each sample
074 into the form: (*user*: question, *assistant*: latent plans and CoTs). Fine-tuning any LLM
075 on these samples enables the model to internalize the intelligence of *IC*, empowering it to
076 perform latent planning for reliable, step-wise reasoning.

077 We conduct evaluations on mathematical reasoning and code generation tasks. For accuracy,
078 supervised fine-tuning of small LLMs, such as Qwen2.5-7B, with *iCLP* on datasets like MATH
079 and CodeAlpaca yields substantial gains, achieving performance competitive with GRPO
080 Shao et al. (2024), which relies on reinforcement learning. For efficiency, LLMs enhanced
081 with *iCLP* reduce token cost by 10% on average compared to zero-shot CoT prompting.
082 For generality, cross-dataset evaluations show that fine-tuned models applied to AIME2024
083 and MATH-500 achieve more than a 10% average accuracy improvement over base models.
084 Similarly, on HumanEval and MBPP, we observe a 9% gain. Moreover, LLMs fine-tuned with
085 *iCLP* outperform all baselines, including those trained with long CoT samples and latent
086 CoT reasoning, while maintaining interpretability.

088 2 PRELIMINARY AND MOTIVATION

091 2.1 STEP-WISE REASONING WITH PLANNING

092 Given a question Q , the large language model (LLM) denoted as f with parameters θ ,
093 generates a chain of thoughts (CoTs), denoted as $\mathbf{c}_{1..n} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n]$, where each \mathbf{c}_i
094 with $i \in [1, \dots, n]$ is a textual description of the thought at the i -th reasoning step. Each
095 thought derives formally from conditional sampling $\mathbf{c}_i \sim f_{\theta}(\mathbf{c}_i | Q, \mathbf{c}_{1..i-1})$. The target of
096 n steps reasoning is to produce the predicted solution \tilde{y} in \mathbf{c}_n to match the ground truth
097 y . With *explicit plans* as shown in Figure 2, denoted as $\mathbf{p}_{1..n} = [\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n]$, where
098 each represents a textual instruction outlining *what to do* in a single reasoning step, the
099 LLM can gain prior knowledge on how to organize $\mathbf{c}_{1..n}$ for reliable problem-solving. Thus,
100 we reformulate CoTs as $\mathbf{c}_{1..n} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n | \mathbf{p}_{1..n}]$, meaning that the i -th thought is
101 represented as $\mathbf{c}_i \sim f_{\theta}(\mathbf{c}_i | Q, \mathbf{c}_{1..i-1}, \mathbf{p}_{1..i-1}, \mathbf{p}_i)$. The guidance of \mathbf{p}_i reduce the randomness
102 and uncertainty of LLMs in generating the thought.

103 To enable reasoning with plan guidance, a direct prompting approach, *PS*, performs sampling
104 via $\mathbf{p}_{1..n} \sim f_{\theta}(\mathbf{p}_{1..n} | \mathbf{I})$, where \mathbf{I} represents a customized prompt. Other approaches, such
105 as Trajectories Synthesis, REACT Yao et al. (2022), AUTOACT Qiao et al. (2024b), and
106 PlaSma Brahman et al. (2024), formulate the sample as that each reasoning step \mathbf{c}_i condition
107 on $\mathbf{p}_i \sim f_{\theta}(\mathbf{p}_i | Q, \mathbf{c}_{1..i-1}, \mathbf{p}_{1..i-1}, \mathbf{I})$, allowing the LLM to be fine-tuned to first plan then
108 reason.

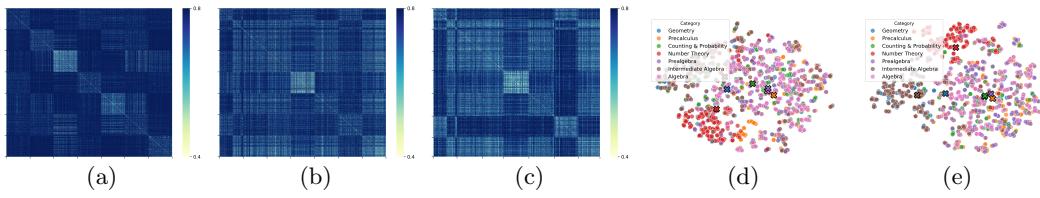


Figure 1: Illustration of relations between explicit plans of questions from different categories. We extract 200 samples from each category of the MATH dataset’s 7 categories and prompt the LLM to decompose the answers into individual steps, followed by summarizing their explicit plans. (a)(b)(c) display the encoding distances between pairs of items: questions, explicit plans of Step 1 and Step 3, respectively. (d)(e) show the encoding clusters of the explicit plans of Step 1 and Step 3.

2.2 EXPLICIT PLANS PRESENT COMMONALITY ACROSS PROBLEMS

Current efforts such as ReACT Yao et al. (2022) and PlaSma Brahman et al. (2024) that rely on explicit plans face a key limitation: specific and question-oriented instructions often fail to generalize well across diverse problems, and the detailed content involved is prone to errors, making it difficult for the LLM to learn effectively. Here, we introduce the idea of mapping plans from language space to latent space to capture high-level, generalizable, and concise instructions that provide conceptual-level reasoning guidance. Unlike explicit plans tailored to individual problems, their encodings are not question-specific; instead, they offer general guidance applicable across a variety of contexts. As a result, despite differing textual formulations, the encodings retain only the commonality that generalizes well across problems.

To show these benefits, we prompt DeepSeek-V3 Team (2024) to perform $\mathbf{c}_{1\dots n} \sim f_{\theta}(\mathbf{c}_{1\dots n} | Q, \mathbf{A}, \mathbf{D})$ and $\mathbf{p}_{1\dots n} \sim f_{\theta}(\mathbf{p}_{1\dots n} | Q, \mathbf{c}_{1\dots n}, \mathbf{S})$, where \mathbf{A} denotes the CoT answer, while \mathbf{D} and \mathbf{S} represent the prompts for answer decomposition and explicit plan summarization. We present the results in Figure 1. Specifically, after removing stop words from the questions and the summarized skeleton plans using NLTK, we encode them with the *all-MiniLM-L6-v2* model. We then visualize the pairwise distances with a heatmap and project the embeddings into 2D using t-SNE.

Figure 1 shows that embeddings of explicit plans exhibit a certain level of commonality and are capable of generalizing across problems. Using Figure 1a, which visualizes question similarity across seven categories, as a reference, we observe that explicit plans from reasoning Step 1 and Step 3 (Figure 1b) reveal two key trends: (1) when two questions are similar, their corresponding plans also tend to be close in embedding space; and (2) as the reasoning step increases, the degree of commonality strengthens. These trends are further supported by the clustering patterns of plans from Step 1 and Step 3 shown in Figures 1d and 1e: plans across different categories not only exhibit clear boundary separation but also significant overlap, indicating that a single plan can be applicable to questions both within and across categories.

3 METHODOLOGY

This section introduces the three components of our framework, *iCLP*: distilling explicit plans from existing answers, learning a latent plan space, and finetuning LLMs with latent plans (LPs). The overall pipeline is illustrated in Figure 2. Our core objective, motivated by Subsection 2.2, is to capture the commonalities and generalizable reasoning guidance beyond plans to support accurate reasoning across diverse tasks.

3.1 EXPLICIT PLAN DISTILLATION

iCLP distills explicit plans, denoted as $\mathbf{p}_{1\dots n}$, from existing CoT answers by prompting an off-the-shelf LLM. Specifically, for each question and its corresponding generated answer, as described in Subsection 2.2, *iCLP* first decomposes the answer into n separate reasoning

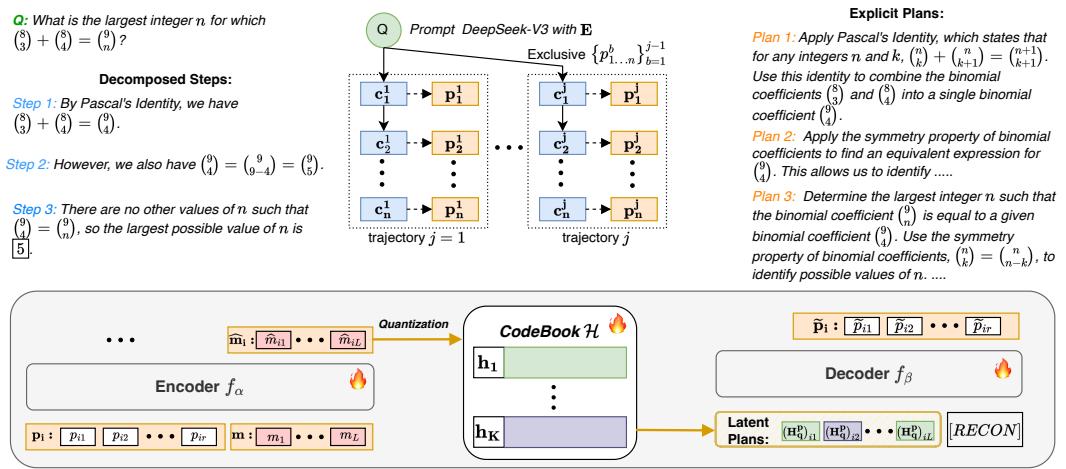
162 **Q:** What is the largest integer n for which
 163 $\binom{3}{3} + \binom{3}{4} = \binom{9}{n}$?

164 **Decomposed Steps:**

165 **Step 1:** By Pascal's Identity, we have
 166 $\binom{3}{3} + \binom{3}{4} = \binom{9}{4}$.

167 **Step 2:** However, we also have $\binom{9}{4} = \binom{9}{9-4} = \binom{9}{5}$.

168 **Step 3:** There are no other values of n such that
 169 $\binom{9}{4} = \binom{9}{n}$, so the largest possible value of n is
 170 5.



171
 172 **Figure 2:** Illustration of the overall pipeline of *iCLP*. The upper part shows the process
 173 of Plan Distillation using a sample from the Counting & Probability category of the MATH
 174 dataset. The right part depicts the encoder - quantizer - decoder structure used for Latent
 175 Plan Generation.

176
 177 steps, marking the i -th step with the phrase “Step i ”. It then summarizes a plan for each
 178 step using zero temperature decoding, resulting in n plans $\mathbf{p}_{1 \dots n}$, one for each step.

179
 180 To further increase the diversity of plans, in addition to using the provided answer for
 181 each sample, we prompt the LLM to generate U CoT reasoning trajectories per question.
 182 To prevent the LLM from reusing existing plans, for any reasoning trajectory indexed by
 183 $j \in [2, \dots, U]$, we use a prompting formulation given by $\mathbf{c}_{1 \dots n} \sim f_{\theta}(\mathbf{c}_{1 \dots n} | Q, \mathbf{E}, \{\mathbf{p}_{1 \dots n}^b\}_{b=1}^{j-1})$.
 184 Here, \mathbf{E} is a textual prompt that instructs the LLM not to reuse any previously used chains
 185 of plans $\{\mathbf{p}_{1 \dots n}^b\}_{b=1}^{j-1}$ during reasoning. Importantly, \mathbf{E} permits the repetition of individual
 186 plans but not of entire chains $\mathbf{p}_{1 \dots n}^b$ because one chain can encode specific reasoning logic.
 187 After filtering out CoT trajectories that lead to incorrect solutions, we retain $\mathbf{p}_{1 \dots n}^{U'}$ for each
 188 question. Note that while the value of n varies across questions, we use fixed notation here
 189 for simplicity.

3.2 LATENT PLAN GENERATION

190
 191 Although explicit plans present clear instructions and generalize among similar questions,
 192 they remain susceptible to token-level errors, particularly when LLMs hallucinate. To address
 193 this, we propose learning a latent plan space, which serves as a hidden representation of
 194 the plans. By conducting planning in this latent space, we mitigate the negative impact of
 195 token-level errors and further enhance the LLM’s generalization ability, as the reasoning no
 196 longer depends on explicit and specific textual instructions.

197
 198 To construct this latent space, we first follow the ICAE Ge et al. (2024) to introduce
 199 few memory tokens, denoted as $\mathbf{m} = [m_1, \dots, m_L]$, where L is the length. Then, we
 200 introduce a vector-quantized autoencoder comprising an encoder f_{α} , a discrete codebook
 201 $\mathcal{H} = \{\mathbf{h}\}_{k=1}^K \subset \mathbb{R}^{d_h}$ and a decoder f_{β} , where d_h represents the dimensionality of the code.
 202 Similar to the pipeline in VQ-VAE van den Oord et al. (2017) and VQ-GAN Esser et al.
 203 (2021), we approximate a given plan \mathbf{p} by $\tilde{\mathbf{p}} = f_{\beta}(\mathbf{H}_q^p)$, where $\mathbf{H}_q^p \in \mathbb{R}^{d_h \times |\mathbf{p}|}$ is a spatial
 204 collection of codebook entries representing \mathbf{p} . Specifically, we set the f_{α} to be an encoder-only
 205 transformer and f_{β} to be a decoder-only transformer. Thus, we obtain the \mathbf{H}_q^p by performing
 206 element-wise quantization $q(\widehat{\mathbf{H}}^p)$, where each spatial code $\widehat{\mathbf{h}}_L \in \mathbb{R}^{d_h}$ from only the encoded
 207 memory representation $\widehat{\mathbf{H}}^p = f_{\alpha}([\mathbf{p}, \mathbf{m}]) \in \mathbb{R}^{d_h \times |\mathbf{m}|}$ is mapped to its nearest codebook
 208 entry \mathbf{h}_k , where $e \in [1, \dots, |\mathbf{m}|]$ here is the token index of the memory token. This process

216 is formulated as follows:

217

$$218 \quad \mathbf{H}_q^p = \mathbf{q}(\widehat{\mathbf{H}}^p) := \arg \min_{\mathbf{h}_k \in \mathcal{H}} \|\mathbf{h}_k - \widehat{\mathbf{h}}_e\|, \quad \tilde{\mathbf{p}} = f_{\beta}(\mathbf{q}(f_{\alpha}([\mathbf{p}, \mathbf{m}]))), \forall e \in [1, \dots, |\mathbf{m}|]. \quad (1)$$

219

220 For the reconstruction task, where $\tilde{\mathbf{p}} \approx \mathbf{p}$, we employ the completion loss, as that presented in
221 ICAE [Ge et al. \(2024\)](#). Given the quantized representation \mathbf{H}_q^p and a special reconstruction
222 indicator token ‘[RECON]’, the decoder predicts the input \mathbf{p} via next-token prediction. To
223 optimize $\alpha, \mathcal{H}, \beta$, we propagate gradients from the decoder to the encoder, avoiding the
224 non-differentiable quantization. The combination of the cross-entropy loss and commitment
225 loss is computed as: $-\frac{1}{T} \sum_{t=1}^T \log P_{\theta}(x_t | x_{<t}) + \|\text{sg}[\mathbf{f}_{\alpha}(\mathbf{p})] - \mathbf{H}_q^p\|^2 + \|\text{sg}[\mathbf{H}_q^p] - \mathbf{f}_{\alpha}(\mathbf{p})\|$.
226 With the trained α, \mathcal{H} , we can obtain the **latent plan** for any plan by representing it with
227 \mathbf{H}_q^p .

228

229 3.3 FINE-TUNING LLMs FOR LATENT PLANNING

230

231 We synthesize new samples to fine-tune the LLM for planning in the latent space to enhance
232 reasoning in the language space. Specifically, for a sample $q, \mathbf{c}_{1\dots n}$ with distilled plans
233 $\mathbf{p}_{1\dots n}$, we first compute each plan encoding as $\mathbf{f}_{\alpha}([\mathbf{p}_i, \mathbf{m}])$, then map each memory token
234 encoding to its closest codebook entry in \mathcal{H} . Thus, we have the matching indexes denoted as
235 $\mathcal{I}_p = \{\mathcal{I}_{p_i}\}_{i=1}^n$, where for each \mathbf{p}_i , $\mathcal{I}_{m_{ie}} = k$ corresponds to $(\mathbf{H}_q^p)_{ie} = \mathbf{h}_k$.

236

237 For any LLM, we extend the vocabulary size to include the size of the codebook K by
238 adding special tokens denoted as ‘[LP{idx}]’ where {idx} corresponds to the row index
239 in the codebook. Consequently, we reformulate the sample into the form (*user*: question,
240 *assistant*: latent plans and CoTs). This is obtained by first expressing the sample as (*user*:
241 question, *assistant*: $\mathbf{p}_1, \mathbf{c}_1, \dots, \mathbf{p}_n, \mathbf{c}_n$) following by replacing the token IDs of each \mathbf{p}_i with
242 \mathcal{I}_{m_i} . As a result, with supervised fine-tuning, we train the extended vocabulary embeddings
243 and fine-tune the LLM using the completion loss.

244

245 4 EXPERIMENTS

246

247 **Datasets.** For the mathematical task, we use the [MATH Hendrycks et al. \(2021\)](#) and [GSM8K Cobbe et al. \(2021\)](#) datasets for model fine-tuning, while the [AIME2024 MAA Committees](#) and [MATH-500 Hendrycks et al. \(2021\)](#) datasets are used exclusively for evaluation. For the
248 code generation task, we use the [CodeContests Li et al. \(2022\)](#) (3760 training, 165 test)
249 dataset for fine-tuning, and the [HumanEval Chen et al. \(2021\)](#) and [MBPP Austin et al. \(2021\)](#)
250 datasets for evaluation.

251

252 **Learning Settings.** We use Qwen2.5 [Yang et al. \(2024\)](#) in different sizes including 0.5B, 3B,
253 7B as the base models for fine-tuning toward latent planning. For all cases, to generate new
254 CoT answers or extract the explicit plans, we prompt DeepSeek-V3 with a zero temperature
255 and 0.3 temperature, respectively. For supervised fine-tuning, the learning rates for the 0.5B,
256 0.6B, 1.7B, 3B, and 7B models are set to 2e-5, 2e-5, 1e-5, 8e-6, and 5e-6, respectively. We
257 employ the AdamW optimizer with a cosine learning rate scheduler. For *iCLP*, the encoder
258 is the all-MiniLM-L6-v1 model from sentence-transformers, while the decoder is Qwen2.5-3B
259 with the extended vocabulary, as discussed in subsection 3.3. For the quantizer, the size of
260 the codebook is 2048, the dimension is 512, and β is 0.3. The training of *iCLP* uses LoRA
261 [Hu et al. \(2021\)](#), with a batch size of 16 for 2 epochs. For the Plan Distillation, we set the U
262 to be 20. Throughout the experiment, we set the number of memory tokens to $L = 6$ due to
263 that the explicit plan is generally a short sentence.

264 **Baselines.** In addition to comparisons with base LLMs, *iCLP* is evaluated against state-of-
265 the-art (SOTA) fine-tuning (FT) methods, including Learn Planning and Reasoning [Jiao et al. \(2024\)](#),
266 PS+/PS [Wang et al. \(2023b\)](#), ReAct [Yao et al. \(2022\)](#), PlaSma [Brahman et al. \(2024\)](#), and
267 Coconut [Hao et al. \(2024\)](#). However, fully reproducing these methods is relatively
268 infeasible due to their strong dependence on specific task settings. Instead, we implement
269 their core ideas within the context of our work, which involves step-wise explicit plans.
These approaches can be viewed as instances of fine-tuning (FT) large language models on
plan-based reasoning samples synthesized from existing datasets. We refer to this setting as

270 Table 1: Evaluating the reasoning performance of a series of Qwen2.5 models with different
 271 methods. The abbreviates of the datasets **MATH**, **MATH-500**, **AIME2024**, **GSM8K**, **CodeContests**,
 272 and **HumanEval** are **M**, **M-500**, **AM**, **G8**, **CC**, **HE**, and **MBPP**, respectively. The \times indicates that,
 273 under the corresponding fine-tuning method for LLMs, training fails to converge. The \rightarrow
 274 indicates cross-dataset evaluation, as described in the ‘Metrics’ part of the experimental
 275 settings. Here, the base refers to LLMs using zero-shot CoT prompting.

277 Qwen2.5	278 Methods	279 <i>Normal Mode</i>			280 <i>Cross Mode</i>					
		281 M	282 G8	283 CC	284 M \rightarrow AM	285 G8 \rightarrow AM	286 M \rightarrow M-500	287 G8 \rightarrow M-500	288 CC \rightarrow HE	289 CC \rightarrow MBPP
290 0.5B	291 Base	19.5	41.6	1.2	0	0	15.8	15.8	30.5	39.3
	292 GRPO	49.6	54.5	\times	0	0	34.4	17.9	\times	\times
	293 <i>FT-E</i>	23.1	43.8	5.5	0	0	18.8	15.8	32.9	43.6
	294 <i>FT-S</i>	31.1	48	8.5	0	0	27.2	18.4	36.6	47
	295 <i>FT-LE</i>	13.3	38.3	1.8	0	0	11.2	9.6	19	21.4
296 3B	297 <i>iCLP</i>	36.7	51.5	11.5	0	0	28.1	20.8	39.6	51
	298 Base	42.6	79.1	9	0	0	39.6	39.6	42.1	57.1
	299 GRPO	68.5	86.6	\times	10	0	60.8	40.4	\times	\times
	300 <i>FT-E</i>	48.2	81.4	10.9	0	0	43	39.8	44.5	61.2
	301 <i>FT-S</i>	54.9	83.2	13.9	7.6	0	48.4	40	47	65.2
302 7B	303 <i>FT-LE</i>	\times	\times	12.1	\times	0	\times	\times	44.5	62
	304 <i>iCLP</i>	60.1	85	18.8	10	0	55.4	44.2	54	73
	305 Base	49.8	85.4	15.8	3.3	3.3	42.4	42.4	53	74.9
	306 GRPO	83.7	91.7	19.2	20	3.3	78.2	45.6	53.2	76
	307 <i>FT-E</i>	57.4	87.3	19.4	10	3.3	52	43.8	56.5	75.6
308	309 <i>FT-S</i>	65.8	88.9	22.4	16.7	3.3	58.4	44	59.5	78.9
	310 <i>FT-LE</i>	\times	\times	\times	\times	\times	\times	\times	\times	\times
	311 <i>iCLP</i>	74.3	90.1	26.7	20	3.3	68.6	46.2	66.5	86.9

293 FT-explicit (*FT-E*), where each step in the synthesized data includes a corresponding explicit
 294 plan. We also introduce Coconut, which implements latent chain-of-thought reasoning. This
 295 approach is distinct compared to our latent planning method and is therefore referred to
 296 as FT-special (*FT-S*). Additionally, for ablation analysis, we apply *iCLP* to learn a latent
 297 representation of the explicit plans and fine-tune the model based on this latent space,
 298 denoted as the *FT-latent explicit (FT-LE)* setting. *iCLP* is the full version of our method,
 299 which fine-tunes LLMs using latent plans learned from explicit plans. In particular, we
 300 compare our method with the state-of-the-art (SOTA) approach GPRO [Shao et al. \(2024\)](#),
 301 which fine-tunes LLMs using reinforcement learning.

302 **Metrics.** We report the pass1 accuracy (in %) of the LLM evaluated in three modes: In
 303 the *normal mode*, the LLM with *iCLP* is evaluated directly on the test set from the same
 304 dataset as the train set. In the *cross mode*, the LLM with *iCLP* is evaluated on a test set
 305 from a dataset different from the one used for training, denoted as training dataset \rightarrow test
 306 set. The *accumulation mode* involves collecting explicit plans from multiple datasets to train
 307 the LLM with *iCLP*, followed by evaluation on various datasets.

309 4.1 MAIN RESULTS

311 Table 1 shows that LLMs with *iCLP* significantly enhance reasoning performance across
 312 three datasets, demonstrating the ability to perform **generalizable planning and achieve**
 313 **high accuracy** across diverse tasks. In the *normal mode* and the more challenging *cross*
 314 *mode*, *iCLP* consistently outperforms all baselines and closely matches the performance of
 315 the GRPO algorithm [Shao et al. \(2024\)](#). These results suggest that reasoning with latent
 316 planning enables LLMs to acquire reasoning abilities that are both reliable and generalize
 317 effectively across a wide range of problem-solving tasks.

318 Specifically, *iCLP* consistently outperforms Base in *normal mode*, with an average accuracy
 319 improvement of 11.5. Although GRPO shows better performance on **MATH** and **GSM8K**, with
 320 average gains of 8 at 0.3B, 5 at 3B, and 5.5 at 7B, *iCLP* achieves the strongest results on
 321 **CodeContests**, where GRPO fails to converge at 0.5B and 3B and falls behind by 7.5 at 7B.
 322 For math reasoning tasks on **MATH** and **GSM8K**, *iCLP* surpasses *FT-E*, *FT-S*, and *FT-LE* with
 323 average improvements of 9.4, 4.3, and 30.4 respectively. On **CodeContests**, the gains are 7.1
 324 over *FT-E*, 4.1 over *FT-S*, and 18.4 over *FT-LE*. These results suggest that *iCLP* enables

324 LLMs of various sizes to perform latent-space planning as generalized guidance, resulting in
325 substantial improvements in both mathematical reasoning and code generation.
326

327 As shown in Table 2, Our *iCLP*
328 achieves high **token efficiency**,
329 with an average token cost of 250.3 ± 110.9 on **MATH**. This cost is
330 significantly lower than that of
331 planning-based reasoning methods
332 such as PS+ Wang et al. (2023b).
333 . In particular, on the more chal-
334 lenging dataset **TheoremQA**, the to-
335 ken usage is only 200.7 ± 100.2
336 for Qwen2.5-0.5B and $370.2 \pm$
337 127.1 for Qwen2.5-7B which is lower
338 even than ZeroCoT. This efficiency
339 arises from two factors: (1) the la-
340 tent plan requires only 6 tokens,
341 and (2) the plan provides clear
342 guidance, enabling the LLM to
343 avoid unnecessary exploration dur-
344 ing reasoning.

345 For the *cross mode* for generalizable planning evaluation, we evaluate Qwen2.5 models
346 trained on latent plans derived from one dataset and tested on a different dataset. Qwen2.5
347 3B and 7B models with *iCLP* trained on **MATH** successfully solve challenging AIME2024
348 problems, with the 7B model achieving an accuracy of 20, only 3.3 lower than the much
349 larger Qwen2.5-72B-Instruct. Across all model sizes (0.5B, 3B, 7B), *iCLP* significantly
350 outperforms the Base LLM. While *iCLP* performs slightly below GRPO on $M \rightarrow M-500$ with
351 an average gap of 3.9, it consistently outperforms GRPO on $G8 \rightarrow M-500$, with average gains
352 of 2.2, most notably 2.9 at 0.5B and 3.8 at 3B, indicating stronger generalization when
353 transferring plans from $G8$ to $M-500$. In code generation, *iCLP* shows clear advantages. It
354 improves over Base by an average of 12.4 on $CC \rightarrow HE$ and $CC \rightarrow MBPP$. GRPO fails to converge
355 at 0.5B and 3B on CC , while *iCLP* remains stable and effective. At 7B, where GRPO does
356 converge, *iCLP* still outperforms it by 13.3 on $CC \rightarrow HE$ and 10.9 on $CC \rightarrow MBPP$, demonstrating
357 robust cross-data generalization. Moreover, compared to the variants *FT-E*, *FT-S*, and
358 *FT-LE*, *iCLP* consistently achieves higher accuracy and more stable performance across
359 model sizes and tasks, confirming its effectiveness in cross-data generalization for both math
360 and code reasoning.

361 4.2 CONTINUOUS LEARNING WITH LATENT PLANNING

363 Figure 3 demonstrates that in the *accumulation mode*, plans can be progressively accumulated
364 across datasets to enhance the performance of *iCLP* in improving LLM reasoning, thus
365 enabling the continuously learning ability of the LLMs with the latent plan space. Specifically,
366 we first distill plans from the **MATH** and **GSM8K** datasets, then merge them and eliminate
367 duplicates based on identical reasoning indices. Using this expanded set of plans, we train
368 the codebook and fine-tune the LLM via *iCLP*. As shown in Figure 3, the resulting model is
369 evaluated on four datasets.

370 Figure 3a highlights the significant difference between the number of explicit plans and the
371 number of questions. In the seven categories of the **MATH** dataset, the number of explicit
372 plans is not significantly larger than the number of questions, especially in some challenging
373 categories such as *C&P*. Besides, LLMs fine-tuned with explicit plans achieve better accuracy,
374 as shown in Table 1, indicating that explicit plans effectively capture the commonality and
375 generalizable reasoning patterns across questions. Despite the small scale of explicit plans,
376 such as 18,100 in **GSM8K**, learning latent plans results in their representation by only a few
377 clusters. As shown in Figure 5, latent plans for questions within the same categories exhibit
378 significant clustering while showing overlap across categories. More importantly, **fine-tuning**

327 Table 2: Evaluation of the average generation token
328 cost across different methods on **MATH** and **TheoremQA**.
329 We report both the average and standard deviation
330 (mean \pm std) of the total tokens used per question,
331 including tokens used for prompting the LLMs and
332 those generated by the models.

Methods	MATH	TheoremQA
0.5B w/ ZeroCoT	221.6 ± 172.5	250.3 ± 110.2
14B w/ ZeroCoT	261.8 ± 192.2	308.7 ± 137.5
0.5B w/ PS+	327.5 ± 176.7	367.5 ± 153.6
0.5B w/ Prompting	815.2 ± 356.7	993.4 ± 390.5
0.5B w/ <i>iCLP</i>	250.3 ± 110.9	200.7 ± 100.2
7B w/ ZeroCoT	246.9 ± 189.5	291.2 ± 160.8
7B w/ PS	357.2 ± 200.9	390.6 ± 190
7B w/ Prompting	934.5 ± 390.2	1103 ± 487.5
7B w/ <i>iCLP</i>	300.6 ± 150.8	270.2 ± 127.1

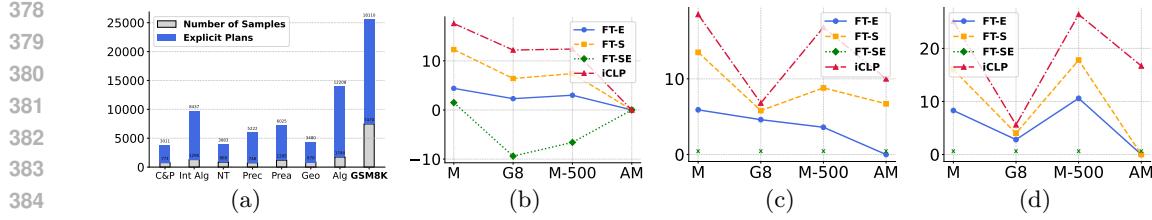


Figure 3: Illustration of the number of distilled plans and the *accumulation mode* performance of LLMs with *iCLP*. (a) shows the number of explicit plans that can be distilled from each category of the MATH and GSM8K datasets. The x-axis labels represent the abbreviations of the seven category names (see appendix). (b)(c)(d) show the accuracy gain ('y-axis') over the base model after fine-tuning the LLM with plans accumulated from the MATH and GSM8K datasets. Accuracy is measured across four datasets, with abbreviated names provided in Table 1. (b)(c)(d) correspond to Qwen2.5 models with 0.5B, 3B, and 7B parameters, respectively.

LLMs using these latent plans achieves optimal accuracy, as show in Table 1, which approaches SOTA RL-based method GRPO.

Thus, by accumulating plans, we are able to integrate **generalizable planning knowledge from different datasets**, enabling LLMs trained with *iCLP* to achieve better performance, as shown in Figure 3b, 3c, and 3d. Across all four evaluation datasets, Qwen2.5 models fine-tuned with latent ones (i.e., *iCLP*) show significant accuracy improvements compared to the base models. These improvements consistently exceed those achieved using explicit plans and *FT-S*. As the Qwen2.5 model size increases from 0.5B to 7B, the performance gains from *iCLP* become more evident, particularly with improvements greater than 20% on MATH and 10% on AIME2024.

4.3 ABLATION STUDY AND QUALITATIVE RESULTS

Table 3 presents the impact of different settings for the encoding dimension and the size of the codebook \mathcal{H} on the performance of our *iCLP*. Increasing d_h from 256 to 512 leads to a significant improvement in accuracy, while further increasing it to 1024 offers no additional benefit. Based on this, we set $d_h = 512$ and increase the codebook size K from 1024 to 2048, which yields accuracy gains of 2.9 and 1.2 points on MATH and CodeContests, respectively. However, further enlarging K does not lead to additional performance improvements. Therefore, based on these results, especially the cross-data evaluation, we argue that the codebook size K plays a more critical role than the dimensionality in improving latent planning performance.

To better understand and visualize the latent space of the latent plans, we perform reasoning with Qwen2.5-7B using *iCLP* on the MATH dataset and collect the encodings of latent plans across different reasoning steps. For each latent plan, we compute the average encodings by applying mean pooling over its token encodings. We then present the pairwise distance relationships between plans from different steps in Figure 4, and the corresponding encoding structures in 2D space using t-SNE in Figure 5. To make it easier to understand how the LLM with *iCLP* performs latent planning during reasoning, we provide a demonstration in Figure 6. It is evident that the LLM only needs to perform latent planning by generating a few special tokens before each reasoning step to achieve a reliable reasoning process. More importantly, compared to existing latent reasoning methods such as Coconut Hao et al. (2024), *iCLP* enables planning in the latent space while maintaining CoT reasoning in the

Table 3: Comparison of different dimensions (d_h and sizes (K)) of the coodbook \mathcal{H} .

Qwen2.5	d_h	K	M	CC	M→AM	CC→HE
3B	256	1024	53.7	14.5	0	47.6
	512	1024	56.9	17	10	49.4
	1024	1024	57.2	17.6	10	51.2
	512	2048	60.1	18.8	10	54
	12	4096	60.1	19.4	10	54.3

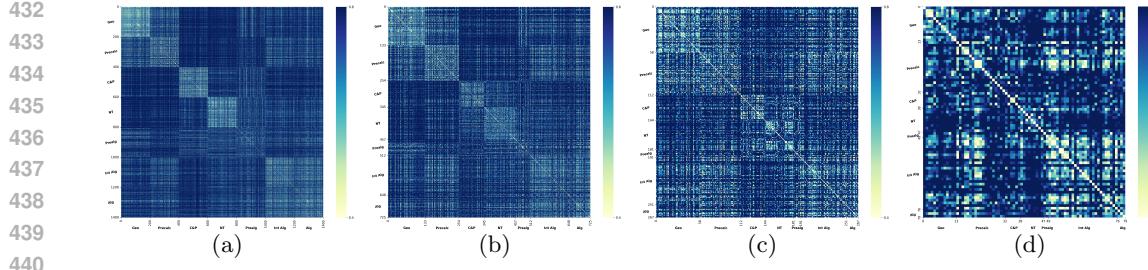


Figure 4: Illustration of the relations of the encoding distances between pairwise latent plans from different reasoning steps (1, 2, 3, and 4). We randomly sample 200 questions from the test set of the MATH dataset and extract the encodings of latent plans generated by Qwen2.5-7B with *iCLP* during problem solving. Subfigures (a), (b), (c), and (d) present the results for the 1st, 2nd, 3rd, and 4th latent plans, respectively.

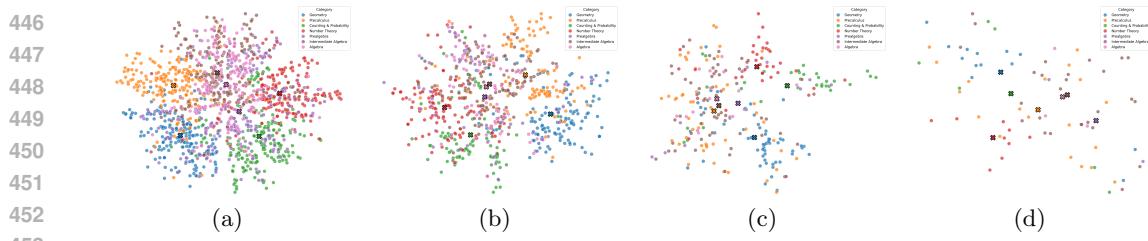


Figure 5: Illustration of the encodings of latent plans from different reasoning steps (1, 2, 3, and 4) in 2D space. We follow the same procedure as in Figure 4 and visualize the latent plan encodings using t-SNE.

language space, thereby guaranteeing strong interpretability, which is crucial for practical applications.

From Figure 4, we observe two key patterns. First, for questions belonging to the same category in MATH, their latent plans exhibit clear similarity, as evidenced by the prominently highlighted diagonal regions in Figures 4a, 4b, 4c, and 4d. This indicates that the LLM with *iCLP* tends to generate similar latent plans when solving problems within the same category. Second, in the later reasoning steps—particularly in Figures 4c and 4d—latent plans become more aligned across different categories, suggesting that the model increasingly draws on similar implicit plan knowledge regardless of the specific problem type. From Figure 5, we observe two key patterns. First, latent plans from the same category form distinct clusters, while those from different categories are clearly separated, indicating strong category-specific structuring in the latent space. Second, the clusters from different categories are distributed around a common center, suggesting that the latent plans share a core of common implicit knowledge that generalizes well across problem types. Therefore, the result matches our motivation in Subsection 2.2: **enabling the LLM to plan in the latent space with generalizable reasoning guidance that is reusable and transfers well across problems, thereby supporting both the generalization and accuracy of reasoning.**

5 RELATED WORK

Large language models (LLMs) have the capability to solve problems using **step-by-step reasoning** Kojima et al. (2022), where each step addresses a sub-problem and is described textually as a thought, thereby collectively forming a Chain of Thought (CoT) Wei et al. (2022). However, inherent hallucinations in LLMs can lead to ineffective thoughts. To address this issue, prompting methods have been proposed to extend CoT reasoning by incorporating additional searching Wang et al. (2022); Zhou et al. (2023); Fu et al. (2023); Yao et al. (2023) or self-reflection mechanisms Sijia et al. (2024); Sijia & Baochun (2024); Miao et al. (2024).

Instead of relying on resource-intensive approaches, **enhancing reasoning with step-wise planning** aims to directly guide LLMs using a plan — a textual instruction that specifies

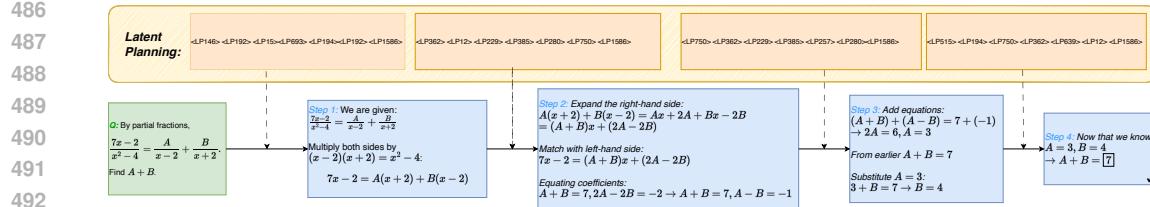


Figure 6: Illustration of the reasoning process of LLMs with latent planning. In each of the four reasoning steps, Qwen2.5-7B with *iCLP* first plans in the latent space, which then guides the generation of the next reasoning step.

what to do at each step for reliable reasoning Huang et al. (2024; 2022). Prior works Wang et al. (2023a); Sun et al. (2023); Ling et al. (2023) Prompt LLMs to generate question-specific plans or premises to guide step-wise reasoning. Building on this idea, subsequent works Yao et al. (2022); Lyu et al. (2024); Zheng et al. (2024); Zhao et al. (2023); Qiao et al. (2024a) propose to guide LLMs by synthesizing new reasoning processes in the form of planning trajectories, where each step begins with a plan and is followed by the generation of a corresponding solution step. However, as it remains difficult for LLMs to produce effective and coherent plans Valmeeekam et al. (2023; 2024); Xie et al. (2025), recent methods Yao et al. (2022); Jiao et al. (2024); Qiao et al. (2024b); Brahman et al. (2024); Qiao et al. (2024a) fine-tune LLMs using synthesizes planning trajectories. However, the plans used in these approaches are still tightly coupled with specific questions and task contexts. As a result, they often lack generalizability and are susceptible to errors in detailed content. In contrast, our work focuses on latent plans, which provide high-level, concise, and generalizable instructions.

Reasoning in a latent continuous space has been increasingly explored in recent research Xu et al. (2024); Hao et al. (2024); Pagnoni et al. (2024); Su et al. (2025); team et al. (2024); Tack et al. (2025), demonstrating promising improvements in both accuracy and efficiency. Similar to our approach of learning latent plans for CoT rationales, LaRS Xu et al. (2024) proposes constructing a latent space of rationales via unsupervised learning, enabling LLMs to retrieve latent rationales for given questions. The TokenAssorted in Su et al. (2025) abstracts away initial reasoning steps using latent discrete tokens generated by VQ-VAE van den Oord et al. (2017). CoCoMix Tack et al. (2025), closely related to our work, combines discrete next-token prediction with continuous concept representations learned via a pretrained sparse autoencoder. Although the ideas presented in these methods are closely aligned with ours in blending latent representations with language tokens during reasoning, our work makes a significant advance by explicitly separating the planning and reasoning phases: planning is performed in a latent space, while reasoning is carried out in natural language.

6 CONCLUDING REMARKS

In this paper, we enabled large language models (LLMs) to emulate human-level intelligence, specifically *Implicit Cognition* (IC), by introducing a novel framework called *iCLP*. This framework allows LLMs to perform planning in a latent space in order to augment their reasoning capabilities in the language space. A central component of *iCLP* is the use of latent plans, which are crucial due to their ability to generalize across tasks. To realize this, we employ a vector quantizer autoencoder to learn a latent space, represented as a codebook, from distilled plans. We then fine-tune LLMs to generate latent plans that support reasoning across a variety of problem-solving tasks. Experimental results demonstrate that incorporating *iCLP* into LLMs leads to substantial improvements in reasoning accuracy. Furthermore, the generalizable structure of the latent plans enables LLMs fine-tuned on one dataset to transfer effectively to other datasets without requiring retraining. The latent space also supports continual learning, allowing plans distilled from multiple datasets to enhance the codebook and continuously strengthen the model’s latent planning capabilities for guiding reliable reasoning. We hope this work opens a new direction that highlights the importance of enhancing reliable and generalizable reasoning through planning in a continuous latent space.

540 REPRODUCIBILITY STATEMENT
541

542 To support reproducibility, the paper provides sufficient methodological and experimental
543 details to enable independent replication of our results. The complete implementation,
544 including all code, configuration files, and instructions necessary to reproduce the findings, is
545 publicly available as a GitHub repository and the supplementary material. In keeping with
546 current research best practices, all materials and necessary components are made publicly
547 available on these places to enable full accessibility and reproducibility by the research
548 community. The provided GitHub repository and our “code.zip” includes detailed instructions
549 for reproducing not only the proposed method *iCLP* but also the main results reported in
550 the paper. To access the source code directly, please locate the **examples/LatentPlan**
551 directory in the supplementary material file “code.zip”. Additionally, **please read the**
552 **README.md** **file for step-by-step instructions on how to run the code.** The raw
553 data of the distilled plans from MATH and other datasets are available on the *Hugging Face*
554 website. Please download them directly.

555 REFERENCES
556

557 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
558 Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
559 synthesis with large language models. *ArXiv*, abs/2108.07732, 2021. 5

560 Faeze Brahman, Chandra Bhagavatula, Valentina Pyatkin, Jena D. Hwang, Xiang Lorraine
561 Li, Hirona Jacqueline Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang Ren, and Yejin
562 Choi. Plasma: Procedural knowledge models for language-based planning and re-planning.
563 In *International Conference on Learning Representations*, 2024. 1, 2, 3, 5, 10

564 Mark Chen et al. Evaluating large language models trained on code. *ArXiv*, abs/2107.03374,
565 2021. URL <https://api.semanticscholar.org/CorpusID:235755472>. 5

566 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
567 Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
568 verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021. 5

569 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
570 image synthesis. In *Proc. IEEE/CVF conference on computer vision and pattern recognition*,
571 pp. 12873–12883, 2021. 2, 4

572 Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
573 prompting for multi-step reasoning. In *Proc. International Conference on Learning
574 Representations*, 2023. 9

575 Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
576 for context compression in a large language model. In *Proc. International Conference on
577 Learning Representations*, 2024. 2, 4, 5

578 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and
579 Yuandong Tian. Training large language models to reason in a continuous latent space.
580 *ArXiv*, 2024. 5, 8, 10

581 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
582 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
583 math dataset. *arXiv preprint arXiv:2103.03874*, 2021. 5

584 J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
585 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International
586 Conference on Learning Representations*, 2021. 5

587 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
588 Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown,
589 Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner
590 monologue: Embodied reasoning through planning with language models. In *Annual
591 Conference on Robot Learning*, 2022. 1, 10

594 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng
595 Wang, Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A
596 survey. *ArXiv*, 2024. 1, 10

597

598 Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F. Chen, and Shafiq R. Joty. Learning
599 planning-based reasoning by trajectories collection and process reward synthesizing. In
600 *Conference on Empirical Methods in Natural Language Processing*, 2024. 1, 5, 10

601 J. F. Kihlstrom, V. A. Shames, and J. Dorfman. Intuition, incubation, and insight: Implicit
602 cognition in problem-solving. In Geoffrey D. M. Underwood (ed.), *Implicit Cognition*, pp.
603 257–296. Oxford University Press, 1995. 1

604

605 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
606 Large language models are zero-shot reasoners. In *Advances in Neural Information
607 Processing Systems*, volume 35, pp. 22199–22213, 2022. 9

608

609 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweiser, Rémi Leblond,
610 Tom, Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
611 Choy, Cyprien de, Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Jo-
612 hannes Welbl, Sven Gowal, Alexey, Cherepanov, James Molloy, Daniel Jaymin Mankowitz,
613 Esme Sutherland Robson, Pushmeet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
614 Oriol Vinyals. Competition-level code generation with alphacode. *Science*, 378:1092 –
1097, 2022. 5

615

616 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and
617 Hao Su. Deductive verification of chain-of-thought reasoning. In *Advances in Neural
618 Information Processing Systems*, 2023. 10

619

620 Edwin A. Locke and Amy L. Kristof. Volitional choices in the goal achievement process.
621 In Peter M. Gollwitzer and John A. Bargh (eds.), *The Psychology of Action: Linking
Cognition and Motivation to Behavior*, pp. 365–384. Guilford, 1996. 1

622

623 Yuanjie Lyu, Zihan Niu, Zheyong Xie, Chao Zhang, Tong Xu, Yang Wang, and Enhong
624 Chen. Retrieve-plan-generation: An iterative planning and answering framework for
625 knowledge-intensive llm generation. In *Conference on Empirical Methods in Natural
Language Processing*, 2024. 1, 10

626

627 MAA Committees. Aime problems and solutions. Art of Problem Solving. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. 5

628

629 Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their
630 own step-by-step reasoning. In *Proc. International Conference on Learning Representations*,
631 2024. 9

632

633 Joseph Murphy. *The Power of Your Subconscious Mind*. Prentice-Hall, 1963. 2

634

635 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
636 garet Li, Chunting Zhou, Lili Yu, Jason Weston, Luke S. Zettlemoyer, Gargi Ghosh, Mike
637 Lewis, Ari Holtzman, and Srinivasan Iyer. Byte latent transformer: Patches scale better
than tokens. *ArXiv*, 2024. 10

638

639 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong
640 Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge
model. In *Advances in Neural Information Processing Systems*, 2024a. 10

641

642 Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor
643 Jiang, Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch for
644 qa via self-planning. In *Annual Meeting of the Association for Computational Linguistics*,
2024b. 1, 2, 10

645

646 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K.
647 Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning
in open language models. *ArXiv*, 2024. 2, 6

648 Chen Sijia and Li Baochun. Toward adaptive reasoning in large language models with
649 thought rollback. In *International Conference on Machine Learning*, 2024. 9
650

651 Chen Sijia, Li Baochun, and Di Niu. Boosting of thoughts: Trial-and-error problem solving
652 with large language models. In *Proc. International Conference on Learning Representations*,
653 2024. 9

654 DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng.
655 Token assorted: Mixing latent and text tokens for improved language model reasoning.
656 *ArXiv*, 2025. 10

657

658 Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
659 planning from feedback with language models. *Advances in Neural Information Processing
660 Systems*, 2023. 1, 10

661

662 Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
663 Yuandong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts.
664 *ArXiv*, 2025. 10

665

666 DeepSeek-AI Team. Deepseek-v3 technical report. *ArXiv*, 2024. 3

667

668 The Lcm team, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom
669 Kozhevnikov, Belen Alastrauey, Pierre Andrews, Mariano Coria, Guillaume Couairon,
670 Marta Ruiz Costa-jussà, David Dale, Hady ElSahar, Kevin Heffernan, Joao Maria Janeiro,
671 Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alex Mourachko,
672 Safiyyah Saleem, and Holger Schwenk. Large concept models: Language modeling in a
673 sentence representation space. *ArXiv*, 2024. 10

674

675 Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo Hernandez, and
676 Subbarao Kambhampati. On the planning abilities of large language models (a critical
677 investigation with a proposed benchmark). In *Advances in neural information processing
678 systems*, 2023. 1, 10

679

680 Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can't plan; can
681 lrms? a preliminary evaluation of openai's o1 on planbench. In *International Conference
682 on Learning Representations*, 2024. 1, 10

683

684 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
685 learning. In *Neural Information Processing Systems*, 2017. 4, 10

686

687 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka Wei Lee, and Ee Peng
688 Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
689 language models. In *Association for Computational Linguistics*, pp. 2609–2634, 2023a. 1,
690 10

691

692 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-
693 Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by
694 large language models. In *Proc. Annual Meeting of the Association for Computational
695 Linguistics*, volume 1, pp. 2609–2634, 2023b. 5, 7

696

697 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
698 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
699 language models. In *Proc. International Conference on Learning Representations*, 2022. 9

700

701 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
702 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
703 *Advances in neural information processing systems*, 35:24824–24837, 2022. 1, 9

704

705 Jian Xie, Kexun Zhang, Jiangjie Chen, Siyu Yuan, Kai Zhang, Yikai Zhang, Lei Li, and
706 Yanghua Xiao. Revealing the barriers of language agents in planning. In *Association for
707 Computational Linguistics*, 2025. 10

702 Zifan Xu, Haozhu Wang, Dmitriy Bespalov, Xian Carrie Wu, Peter Stone, and Yanjun Qi.
703 Lars: Latent reasoning skills for chain-of-thought reasoning. In *Conference on Empirical*
704 *Methods in Natural Language Processing*, 2024. [10](#)

705 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
706 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian
707 Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin,
708 Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
709 Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
710 Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang,
711 Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 technical report. *ArXiv*, 2024.
712 [5](#)

713 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
714 Yuan Cao. React: Synergizing reasoning and acting in language models. In *International*
715 *Conference on Learning Representations*, 2022. [1](#), [2](#), [3](#), [5](#), [10](#)

716 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
717 Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
718 models. In *Advances in Neural Information Processing Systems*, 2023. [9](#)

719 Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge
720 for large-scale task planning. In *Advances in Neural Information Processing Systems*,
721 volume 36, 2023. [10](#)

722 Zhonghua Zheng, Lizi Liao, Yang Deng, Ee-Peng Lim, Minlie Huang, and Liqiang Nie.
723 Thoughts to target: Enhance planning for target-driven conversation. In *Conference on*
724 *Empirical Methods in Natural Language Processing*, 2024. [10](#)

725 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
726 Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
727 enables complex reasoning in large language models. In *Proc. International Conference on*
728 *Learning Representations*, 2023. [9](#)

729 Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen,
730 Lei Liang, Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning
731 for llm-based agents. In *North American Chapter of the Association for Computational*
732 *Linguistics*, 2024. [1](#)

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755