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ABSTRACT

While contrastive pre-training is widely employed, its data efficiency problem
has remained relatively under-explored thus far. Existing methods often rely
on static coreset selection algorithms to pre-identify important data for training.
However, this static nature renders them unable to dynamically track the data
usefulness throughout pre-training, leading to subpar pre-trained models. To
address this challenge, our paper introduces a novel dynamic bootstrapping dataset
pruning method. It involves pruning data preparation followed by dataset mutation
operations, both of which undergo iterative and dynamic updates. We apply this
method to two prevalent contrastive pre-training frameworks: CLIP and MoCo,
representing vision-language and vision-centric domains, respectively. In particular,
we individually pre-train seven CLIP models on two large-scale image-text pair
datasets, and two MoCo models on the ImageNet dataset, resulting in a total of 16
pre-trained models. With a data pruning rate of 30-35% across all 16 models, our
method exhibits only marginal performance degradation (less than 1% on average)
compared to corresponding models trained on the full dataset counterparts across
various downstream datasets, and also surpasses several baselines with a large
performance margin. Additionally, the byproduct from our method, i.e., coresets
derived from the original datasets after pre-training, also demonstrates significant
superiority in terms of downstream performance over other static coreset selection
approaches. We include the code in the supplementary material to facilitate the
reproduction of our experimental results.

1 INTRODUCTION

Large models are heavily data-driven, particularly in the realm of pre-training (Chen et al., 2020c;
2021; Radford et al., 2021). This paradigm has been widely underpinned by the scaling law (Hoffmann
et al., 2022; Kaplan et al., 2020), which suggests that more data often lead to reduced generalization
errors. However, using large quantities of data frequently results in a notable increase in carbon
footprints. Addressing this pressing issue requires substantial efforts to optimize the data efficiency.

This paper delves into the data efficiency problem for contrastive pre-training. Despite the per-
vasiveness of contrastive pre-training across both vision-centric (Chen et al., 2020c; 2021) and
vision-language (Jia et al., 2021; Radford et al., 2021) domains, nevertheless, the data efficiency
issue has received scant attention in the existing literature. We attribute the reason for this fact to
two challenges. I- Absence of reliable labels for self-supervised learning objectives. Unlike in super-
vised learning, where explicit labels aid in class prediction, self-supervised learning in contrastive
pre-training operates without such guidance, making it unable to estimate the class probability of data
samples such as EL2N (Paul et al., 2021). II- Extensive data scale due to easy accessibility, e.g., the
interleaved image-text data from the web (Radford et al., 2021). Current datasets usually comprise
millions (Changpinyo et al., 2021; Sharma et al., 2018) or even billions of samples (Schuhmann et al.,
2022). It is thus intractable in time for methods employing gradients (Paul et al., 2021) or second
derivative (Influence Functions) (Koh & Liang, 2017) to evaluate data usefulness individually. Recent
approaches in the vision-language area have resorted to coreset selection algorithms (Mirzasoleiman
et al., 2020) for a reduced pre-training dataset beforehand (Abbas et al., 2023; Maharana et al., 2024;
Mahmoud et al., 2024; Wang et al., 2023; Webster et al., 2023). The crux of these methods lies
in the semantic match/duplication that is quantified by some proxy metrics like CLIP matching
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score (Radford et al., 2021). Consequently, a subset, namely a coreset, of the original dataset is
filtered for pre-training from scratch.

Our motivation for this work is inspired by the advancement in dynamic sparse training (DST) (Nowak
et al., 2023; Yuan et al., 2021; Zhang et al., 2024), which dynamically prunes less influential learnable
weights from models. Compared to its static sparse training counterparts (Lee et al., 2019; Tanaka
et al., 2020), DST demonstrates notable strengths in performance, robustness, and model compression
without the need for over-parameterization (Liu et al., 2021a; Nowak et al., 2023). Intriguingly, we
recognize that recent coreset selection algorithms predominantly adhere to the static approach, akin
to the fixed weight masks employed in static sparse networks (Lee et al., 2019). As a result, we argue
that these coreset-based dataset pruning methods are subject to similar limitations as previous static
sparse training ones, albeit with a shift in application scope from learnable weights to individual data
samples. Given this context, approaching the dataset pruning challenge can be easily decomposed
into two sub-problems: 1)- metric identification and 2)- pruning strategy design. Specifically,
the proxy metric should meet several conditions: dynamic adaptability, quick obtainability (with
minimal additional cost), and reflecting the learning status of each sample. Regarding the pruning
strategy, we introduce a novel data bootstrapping algorithm named SCAN. Instead of employing a
consistent pruning ratio throughout training, our SCAN approach identifies and eliminates data from
less important subsets in a bootstrapping manner. These two operations from our SCAN method are
performed iteratively for stable pre-training.
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Figure 1: The interplay between training data size
and model downstream performance of base model
CLIP, our method SCAN, and two SoTA baselines.

We validate the effectiveness of the proposed
method with widely used contrastive pre-
training frameworks in both vision-language
(CLIP (Ilharco et al., 2021; Radford et al.,
2021)) and vision-centric (MoCo (Chen et al.,
2020c; 2021)) domains. The pre-training
datasets for CLIP include CC3M (Sharma
et al., 2018), MSCOCO (Lin et al., 2014),
SBU-Captions (Ordonez et al., 2011), and
CC12M (Changpinyo et al., 2021), forming two
groups of datasets with different scales. On the
other hand, we pre-train MoCo models using
the ImageNet Dataset (Deng et al., 2009). More-
over, we employ various downstream datasets,
including ImageNet (Deng et al., 2009), CIFAR-
10, and CIFAR-100 (Krizhevsky et al., 2009),
along with out-of-distribution datasets such as
ImageNet-R (Hendrycks et al., 2021) and Im-
ageNet V2 (Recht et al., 2019). Our eval-
uation protocols encompass full fine-tuning,
linear probing, and zero-shot testing on Ima-
geNet. Within the CLIP framework, we evaluate
seven models covering ResNet (He et al., 2016),
ViT (Dosovitskiy et al., 2021), and Swin Transformer (Liu et al., 2021b). As for MoCo, due to
resource constraints, we use two popular ViT models (Touvron et al., 2021) in the experiments. Our
experimental results, partially depicted in Fig. 1, exhibit that SCAN achieves a significant trade-off
between training data size and downstream model performance as compared to several baselines (Ab-
bas et al., 2023; Qin et al., 2024; Yang et al., 2023). We include the code in the supplementary
material for the reproduction of our results.

To the best of our knowledge, we are the first to comprehensively study the data efficiency problem
within the context of contrastive pre-training. Our work not only introduces an effective bootstrapping
approach but also is able to produce a static coreset (a smaller dataset) that outperforms other static
coreset selection methods (Abbas et al., 2023; Yang et al., 2023) by a large performance margin on
diverse downstream image classification datasets. These contributions enable our work to hold a
positive promise for the efficient utilization of data in contrastive pre-training, thereby potentially
reducing more computational overhead and carbon footprints.
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2 RELATED WORK

Dataset Pruning and Distillation represent two common approaches to enhancing dataset efficiency
during training. The former aims to synthesize a smaller dataset that achieves test performance
similar to a full dataset when using the same model (Chen et al., 2024; Du et al., 2023; Shang et al.,
2023; Sun et al., 2024). Recent advancements in this area have leveraged techniques such as mutual
information (Shang et al., 2023), frequency domain transformation (Shin et al., 2023), and multi-stage
generation (Chen et al., 2024) to craft datasets that exhibit enhanced performance. Two notable
limitations are inherent in these methods: I) The generalization capability is significantly constrained
due to the reliance on distillation from a specific dataset and model, e.g., the use of ResNet (He
et al., 2016). II) The dataset sizes utilized for comparison are frequently confined to small-scale
datasets such as CIFAR (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). In contrast,
dataset pruning is employed to directly filter a smaller subset from the original dataset (Li et al., 2024;
Sorscher et al., 2022). Typically, previous methods involve initially learning an indication score,
which serves as a basis for identifying and subsequently removing data samples falling below or above
a certain threshold. For image classification tasks, prevailing methods often utilize gradient (Paul
et al., 2021), loss value (Qin et al., 2024), and second derivative (Koh & Liang, 2017) as the indicator.
More recently, efforts have emerged focusing on pruning vision-language pre-trained datasets (Li
et al., 2023a;b; Wang et al., 2023; Xu et al., 2023; 2024). The key idea is to construct a coreset by
identifying the semantic mismatch/duplication, a process facilitated by often using a pre-trained CLIP
model (Beaumont, 2022; Radford et al., 2021).

Contrastive Pre-Training has garnered wide attention as a technique for pre-training versatile models
applicable to a range of downstream tasks (Gao et al., 2021). Its fundamental principle involves
bringing the embeddings of positive pairs closer while simultaneously pushing away negative ones.
Traditional approaches within the vision-centric domain often build positive samples by leveraging
alternative views of the anchor sample, as exemplified by approaches like SimCLR (Chen et al.,
2020a;b) and MoCo (Chen et al., 2020c; 2021). Benefiting from the advancement of transformer
architectures (Dosovitskiy et al., 2021; Vaswani et al., 2017), recent endeavors have shifted towards
patch masking followed by subsequent recovery (Bao et al., 2022; Caron et al., 2021; He et al., 2022).
Contrastive learning has achieved notable success in vision-language per-training as well (Jia et al.,
2021; Radford et al., 2021). The alignment of modalities has propelled significant advancements in
downstream multi-modal tasks, including visual question answering (Antol et al., 2015; Zhou et al.,
2022) and cross-modal retrieval (Bowyer & Flynn, 2000; Lin et al., 2014). Our study specifically
targets the data efficiency challenge within CLIP and MoCo, which serve as prominent representatives
of vision-language and vision-centric doamins, respectively.

Dynamic Sparse Training (DST). Unlike earlier static sparse training methodologies (Lee et al.,
2019; Tanaka et al., 2020), DST learns a sparse neural network by pruning weights and growing
them back throughout the training process. The weight importance is typically quantified using
metrics such as magnitude (Evci et al., 2020; Mocanu et al., 2018), gradients (Yuan et al., 2021),
or sensitivity (Mozer & Smolensky, 1989). The demonstrated superiority of DST over its static
counterpart inspires us to design a dynamic approach for dataset pruning, especially considering that
recent coreset-based methods predominantly adhere to fixed pruning strategies. Furthermore, the
well-developed DST methods provide additional hints for devising our dataset pruning strategy.

3 METHOD

3.1 BACKGROUND OF CONTRASTIVE PRE-TRAINING

Contrastive pre-training necessitates the utilization of both positive and negative pairs of samples, be
it alternative views of an image (Chen et al., 2020c; 2021) or combinations of image and text (Jia
et al., 2021; Radford et al., 2021). Its objective is to bring positive pairs closer in the embedding
space while pushing negative ones away. At its core is the InfoNCE loss (van den Oord et al., 2018),
defined as,

Lf→g = − 1

|Dt|

|Dt|∑
i=1

log
exp(f(Ii)

T g(Ti)/τ)∑|Dt|
j=1 exp(f(Ii)

T g(Tj)/τ)
, (1)
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Unsettled Questions
 When to prune
 How many data should be pruned

1. Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse Training. In NeurIPS 2023.
2. MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge. In NeurIPS 2021.
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Figure 2: Overall pipeline of the proposed SCAN method. We begin by identifying a substantial
portion of data samples as pruning candidates. Subsequently, a subset of these candidates is employed
for pruning based on varying mutation ratios that are gradually increased (bootstrapping). After
growing back to the original full dataset, the above two operations are iterated for another round.

where τ is a learnable temperature, Ii and Tj respectively denote the sampled image and text from the
batched examples Dt; while f and g represent the image and text encoders, respectively. Likewise,
we can obtain the loss from the other direction Lg→f as well. The overall training loss is then
computed as the mean of Lf→g + Lg→f . Without loss of generality, we take the contrastive learning
utilized in CLIP as an example (Radford et al., 2021). The application in other approaches such as
MoCo (Chen et al., 2021) can be straightforwardly extrapolated.

Motivation. Contrastive pre-training often demands large-scale data to learn a versatile model. For
instance, the original CLIP pre-training uses 400M image-text pairs sourced from the web (Radford
et al., 2021), while recent studies push these limits to datasets containing billions of samples (Schuh-
mann et al., 2022; Yu et al., 2022). Accordingly, the introduced footprint and storage cost present
significant challenges for researchers. To address this issue, we propose a novel bootStrapping
ContrAstive Pre-traiNing method (SCAN), to dynamically, efficiently, and effectively leverage
smaller dataset for pre-training1.

3.2 SCAN OVERVIEW

Our proposed SCAN method involves a two-step operation. Specifically, our first step entails
identifying a proxy metric that is dynamically adaptable, easily obtainable, and capable of tracing the
learning status of each sample. We abandon the use of gradients as done in related domains (Paul
et al., 2021), given the substantially increased compute overhead incurred for individual samples2.
Instead, we opt for the loss value as the reliable indicator as it meets the above conditions. Under this
context, we disentangle the loss in Eqn. 1 to obtain a loss set L̄f→g = {L̄(1)

f→g, L̄
(2)
f→g, ..., L̄

(|Dt|)
f→g },

with each element corresponding to the loss value of one data sample.

The second core step is to determine the pruning strategy. Addressing sparsity within the dataset
pruning study presents a substantial challenge. To approach this, we propose a pruned data preparation
and then a dataset mutation approach. Specifically, in the pruned data preparation stage, candidate
data samples that are potentially less important are selected. Thereafter, in the dataset mutation stage,
samples are gradually bootstrapped for pruning across epochs. These two stages iterate through
several rounds until the completion of pre-training.

3.3 BOOTSTRAPPING DATASET PRUNING

Unlike conventional approaches that use the full dataset for pre-training, we vary the training data
size for each epoch. As illustrated in Fig. 2, an example case utilizes 1.0, 6⁄9, 4⁄9, and 2⁄9 of the full
dataset for four consecutive training epochs, resulting in an average dataset pruning ratio of ∼40%.
More details regarding the algorithm can be kindly found at Appendix A.

1The name itself reflects our method’s capability to scan all data samples, identifying those that should be
eliminated from further pre-training.

2The data size in contrastive pre-training is notably larger than in other related domains.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.3.1 PRUNING DATA PREPARATION

We opt to utilize the loss values of in-batch samples rather than those from the entire dataset for
candidate selection. This decision is based on two facts: 1) Comparing InfoNCE losses across batches
holds less significance compared to supervised learning, as the instance loss varies drastically with
respect to the randomly selected batched samples. 2) Saving the losses for the entire dataset incurs
more computational storage compared to in-batch ones.

Additionally, existing coreset selection approaches (Hessel et al., 2021; Schuhmann et al., 2021)
from the vision-language domain typically focus only on pruning ill-matched samples. These are
characterized by image-text pairs indicating less semantic alignment, where, for example, the text
inadequately describes the content of the paired image. However, we posit that beyond these ill-
matched samples, there also exist samples that are redundant. These redundant samples are effectively
memorized during the early stages of training and are less likely to be forgotten with further training
iterations (Feldman & Zhang, 2020). In view of this, we can safely eliminate these redundant data as
training progresses.

To operationalize the above ideas, given a pruning ratio ρ, we separately identify the ill-matched and
redundant set of data using: {

Dred
t = Dt:i, i ∈ ≺ρL̄f→g,

Dill
t = Dt:j , j ∈ ≻ρL̄f→g,

(2)

where ≺ρL̄f→g denotes the indices of the ρ smallest values of L̄f→g (the loss set before loss
summation and backpropagation). We then obtain the redundant subset Dred

t by selecting data
samples according to these indices from the original full in-batch set Dt. This approach is driven
by the intuition that small losses often denote effective data memorization by the given model. On
the other hand, we can also identify the ill-matched subject Dill

t from the ρ largest loss values using
≻ρL̄f→g. This is because large losses are usually associated with small cosine similarities (Hessel
et al., 2021), indicating a poor match between image and text pairs. The final candidate subset is
formed by the union of these two: D′

t = Dred
t | Dill

t .

Thereafter, we merge the subset intersection from Lf→g and Lg→f . In total, we obtain 2ρ|Dt|
candidates for the current batched samples, which amounts to twice the size of the expected pruned
data, as will be explained in the next section. At last, we iterate through all training data to have the
final candidate pruning subset D′

.

Preparation Warm-up. It is intuitive that the model’s learning capability may exhibit instability
during the early training iterations. To mitigate this issue, we design a warm-up strategy (Gotmare
et al., 2019), wherein the full dataset is utilized for training during the first several epochs. We track
the average epoch-wise loss to determine the optimal timing for initiating pruning. Specifically, we
calculate the difference between the loss from the previous epochL′

pre and the current epochL′

cur, and
compare it against a pre-defined threshold value Ttd. If the condition (L′

pre−L
′

cur)/(L
′

pre+ϵ) ≥ Ttd

holds true, where ϵ is infinitesimal and is introduced to prevent overflow, it indicates relative stability
in the pre-training process. Consequently, we can then start the pruning data preparation from this
pre-training epoch.

3.3.2 DATASET MUTATION

Rather than employing a static pruning ratio consistently throughout training, we advocate for a
bootstrapping dataset mutation approach. The benefits of this methodology are shown in Sect. 4.2.
Additionally, we refrain from performing the pruning data preparation solely once, as further
training iterations may alter the matching and redundancy characteristics of data samples.

Specifically, we regenerate the candidate pruning data from scratch every (τcos+1) epochs as detailed
in Sect. 3.3.1. Subsequently, we adapt the cosine annealing strategy (Loshchilov & Hutter, 2017) to
determine the current pruning ratio ρcur using:

ρcur =
1

2
(1 + cos((τcos − (τcur mod (τcos + 1)))

π

τcos
). (3)

It can be easily seen that the pruning ratio ρcur gradually and periodically increases with larger
training epoch τcur. We can then randomly select ρcur|D

′ | samples from D′
for pruning – D′

ρ.
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Table 1: Performance comparison of CLIP models on the CC12M+ pre-trained datasets. CLIP
utilizes 10.1M pre-trained data samples, while the remaining models use 7.1M. The best results
(excluding the original CLIP model) are highlighted in bold. A dash (-) indicates the collapse of
pre-training, resulting in impaired evaluation of downstream tasks.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN101

CLIP 18.78 41.14 95.96 82.13 75.76 64.31 40.57

Random 14.05 30.60 95.02 78.34 73.99 60.27 36.13
SemDeDup 13.26 29.70 95.07 78.77 74.24 62.16 37.65
D-Pruning 12.59 28.62 94.94 78.89 74.07 61.30 37.07
Info-Batch 21.60 41.11 96.04 81.60 75.21 63.27 39.34

SCAN 23.10 47.52 96.08 82.28 75.66 63.75 40.10

ViT-B/32

CLIP 24.62 49.10 95.62 82.11 63.40 49.97 31.09

Random 09.12 21.09 90.13 69.98 51.99 41.01 20.08
SemDeDup 06.47 16.71 90.83 70.03 52.21 39.75 20.99
D-Pruning 06.27 15.88 90.11 69.69 51.72 38.66 20.42
Info-Batch - - - - - - -

SCAN 26.12 50.67 95.41 81.16 61.55 48.73 29.23

ViT-B/16

CLIP 23.43 47.71 96.76 84.25 72.30 59.39 33.50

Random 14.45 32.41 94.35 76.45 67.09 54.38 27.07
SemDeDup 11.58 26.01 94.18 76.71 67.22 53.78 27.19
D-Pruning 10.00 23.72 93.82 75.96 66.68 53.13 26.23
Info-Batch 22.12 42.30 96.03 81.69 71.46 56.35 31.13

SCAN 24.71 49.12 96.13 83.71 71.78 58.58 32.45

During this training epoch, batched instances Dt are sampled from the reduced dataset D\D′

ρ, which
are then employed for pre-training using contrastive learning (Eqn. 1). This bootstrapping process
provides us with robust estimates regarding data samples and enables us to refrain from making strict
assumptions about the underlying distribution of the data (Efron, 2003; Sivaganesan, 1994).

In each iterative round, where ρcur increases from 0 to 2ρ (where 0 corresponds to the pruned data
preparation epoch), the average pruning ratio remains fixed at ρ as predefined. Finally, we grow back
to the original full dataset for another round of pruning data preparation and mutation (Fig. 2).

3.4 TIME-EFFICIENCY OF SCAN

In fact, our proposed SCAN method introduces negligible additional pre-training time in comparison
to each base model. The potentially increased time involves three major steps: metric selection,
pruned data preparation, and pruned data retrieval. Since we directly utilize individual loss values, the
metric selection step does not impose an additional time overhead. Second, we obtain the candidate
pruned data from in-batch samples, typically containing only a few thousand data points, thereby
enabling a fast sorting process. Last, retrieving from millions of pruned data sets also leads to
negligible costs, as evidenced by our empirical observations.

More importantly, we maintain consistency in the number of training epochs for our SCAN model,
aligning it with the epochs utilized by each respective base model. This approach ensures time
efficiency within our proposed method, as demonstrated in Sect. 4.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Pre-Training Datasets. For CLIP models, we utilized two versions of pre-training datasets to
examine the data-size scaling law as well. We employed the OpenCLIP repository (Ilharco et al.,
2021) to conduct pre-training for all models (including CLIP) from scratch, ensuring a fair comparison
between our proposed method and the baselines. Specifically, the smaller dataset, denoted as CC3M+,

6
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Table 2: Performance comparison of MoCo models. MoCo utilizes 1.28M pre-trained data, while the
remaining models use 0.83M. The best results (excluding the original MoCo model) are highlighted
in bold.

Arc Method ImageNet CIFAR-100

Top-1 Top-5 Top-1 Top-5

ViT-S/16

MoCo (Chen et al., 2021) 78.48 94.17 86.02 97.85

Random 75.38 91.18 84.00 95.59
Info-Batch (Qin et al., 2024) 77.99 93.45 85.51 97.49

SCAN 78.58 94.19 86.01 97.53

ViT-B/16

MoCo (Chen et al., 2021) 79.53 94.49 88.31 98.04

Random 75.28 91.01 85.99 97.02
Info-Batch (Qin et al., 2024) 78.46 94.18 87.69 97.70

SCAN 79.15 94.33 88.11 97.78

Table 3: Performance comparison of CLIP models on the CC3M+ pre-trained datasets. CLIP utilizes
4.1M pre-trained data samples, while the remaining models use 2.9M. The best results (excluding
the original CLIP model) are highlighted in bold. A dash (-) indicates the collapse of pre-training,
resulting in impaired evaluation of downstream tasks.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN101

CLIP 15.72 35.19 96.17 81.78 75.39 63.42 39.69

Random 12.35 29.03 95.01 78.99 73.73 61.01 36.11
SemDeDup 12.97 28.90 95.16 79.44 74.08 61.94 36.74
D-Pruning 12.77 28.03 94.85 78.23 73.55 61.56 36.48
Info-Batch 16.79 34.38 95.49 80.89 74.48 62.11 38.01

SCAN 15.59 34.77 95.77 81.95 74.61 62.92 38.05

ViT-B/16

CLIP 18.17 37.62 96.58 82.47 70.78 57.28 30.13

Random 13.26 31.27 91.62 73.53 50.60 40.55 21.80
SemDeDup 11.35 25.56 94.36 76.53 66.56 53.18 25.50
D-Pruning 10.00 23.31 93.46 75.37 65.80 52.50 24.39
Info-Batch 17.16 39.14 95.98 81.43 69.19 56.00 28.55

SCAN 18.21 37.20 96.00 81.49 69.46 56.04 28.60

Swin-Base

CLIP 13.98 32.05 95.75 82.19 73.89 61.92 35.38

Random 12.56 30.12 94.10 78.01 72.55 60.25 31.31
SemDeDup - - - - - - -
D-Pruning 12.44 28.60 94.07 77.86 72.54 60.28 31.41
Info-Batch 13.82 32.05 95.80 81.25 72.69 59.47 33.13

SCAN 17.50 37.42 95.37 81.35 73.55 61.60 33.55

comprises CC3M (Sharma et al., 2018), SBU-Captions (Ordonez et al., 2011), and MSCOCO (Lin
et al., 2014), totaling 4.1 million image-text pairs. The larger dataset, denoted as CC12M+, includes
CC12M (Changpinyo et al., 2021), SBU-Captions (Ordonez et al., 2011), and MSCOCO (Lin et al.,
2014), with a total of 10.1 million pairs.

For the pre-training dataset of MoCo (Chen et al., 2020c; 2021), we adhered to the original imple-
mentation and utilized the ImageNet dataset (Deng et al., 2009).

Downstream Datasets. We conducted extensive downstream fine-tuning experiments across various
datasets. Specifically, we utilized datasets such as ImageNet (Deng et al., 2009), CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), as well as out-of-distribution datasets including ImageNet V2 (Recht
et al., 2019) and ImageNet-R (Hendrycks et al., 2021) to validate the downstream performance of
CLIP pre-trained models. For all these datasets, we explored diverse experimental settings, encom-
passing zero-shot transfer learning from ImageNet, linear probing, and full fine-tuning. Moreover,
we employed both the ImageNet and CIFAR-100 datasets to conduct experiments on MoCo models.
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Model Architectures. As OpenCLIP (Ilharco et al., 2021) offers a variety of model cards, we utilized
model architectures from both ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2021). The model
architectures employed for pre-training CLIP include RN50, RN101, ViT-S/32, ViT-S/16, ViT-B/32,
ViT-B/16, and Swin-Base (Liu et al., 2021b). Due to resource constraints, we pre-trained MoCo
using two model architectures: ViT-S/16 and ViT-B/16 (Touvron et al., 2021). It is important to note
that pre-training MoCo consumes approximately seven times more resources than pre-training a
CLIP model. Therefore, we primarily conducted experiments on CLIP to assess the effectiveness of
the proposed method.

Compared Baselines. Given the absence of common models for addressing the data efficiency
problem in contrastive pre-training, we adapted four different approaches in this study: Random,
SemDeDup (Abbas et al., 2023), D-Pruning (Yang et al., 2023), and Info-Batch (Qin et al., 2024).
Unless otherwise specified, we utilized a pruning ratio of 30% for CLIP models and 35% for MoCo
models. Additionally, we provide more details regarding the baseline introduction and training
protocol in Appendix B.2 and B.1.

4.2 OVERALL EXPERIMENTAL RESULTS

We present the comprehensive results of CLIP in Tables 1 and 3, and the results of MoCo in Table 2.
Additional experimental results can be found in the appendix. The insights from these tables can be
summarized into four key observations:

• Our proposed SCAN method consistently outperforms the four compared baselines, indicating that
our approach achieves a superior trade-off between performance and data efficiency compared to
existing data-efficient methods.

• In comparison to the base CLIP models, SCAN achieves comparable performance while utilizing
fewer data for pre-training. Specifically, our method preserves 99% of the original CLIP model’s
performance in most cases, while using only 30% of the original training dataset. Take the IN result
of the RN101 architecture in Table 3 as an example: 74.61 (SACN) v.s. 75.39 (CLIP) - 99% of CLIP
result. It is also worth noting that some of our methods even outperform the base CLIP models.

• Dynamic approaches such as Info-Batch and SCAN often outperform static coreset selection methods
like SemDeDup and D-Pruning. This verifies the superiority of dynamic pruning approaches.

• An apple-to-apple comparison between Table 1 and Table 3 reveals that models trained with more
data (CC12M+) consistently outperform those trained with less data (CC3M+), thereby verifying
the dataset scaling law (Hoffmann et al., 2022; Kaplan et al., 2020).

4.3 CORESET RESULTS FROM SCAN

Beyond the dynamic data pruning approach, we also investigated the coreset results obtained from
our SCAN method. To implement this, we first identify the pruned data using two pre-trained models
from our method, such as RN50 and ViT-S/16. After that, we obtain the intersection of these two sets
and ensure that the overall pruning ratio remains the same as ρ, thereby generating a coreset from the
original full dataset.

Downstream Performance. We then performed pre-training for another model from scratch, e.g., ViT-
B/32, employing the exact same process as previous static coreset-based approaches (Abbas et al.,

Table 4: Coreset selection model results on the ImageNet dataset. The coreset generated by our
SCAN (static) method is derived from the intersection of the datasets obtained from the other two
models. All models are pre-trained from scratch using each respective coreset.

Method RN50 ViT-S/16 ViT-B/32

ZS@1 ZS@5 FT@1 ZS@1 ZS@5 FT@1 ZS@1 ZS@5 FT@1

SCAN 16.91 35.79 72.91 17.31 35.51 66.86 16.48 33.60 56.64

SemDeDup 11.98 26.30 71.51 09.57 22.00 62.30 07.20 17.50 50.99
D-Pruning 11.72 26.65 71.11 08.60 20.35 61.70 06.51 16.13 50.01

SCAN (static) 16.99 35.20 73.11 16.68 34.31 66.22 13.16 28.46 55.99
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2023; Yang et al., 2023). From the results in Table 4, we observe the following: I) Our selected
coreset significantly outperforms other existing coreset-based baselines utilizing using the exact same
settings. II) Our static method achieves very competitive results compared to our dynamic variant.
This observation further underscores the potential of our proposed method for identifying a subset that
can be directly and efficiently utilized in future research endeavors, thereby reducing more training
overhead.

Table 5: Coreset overlap ratios.
Model Overlap

RN50 ViT-S/16 ViT-B/32 Ratio

✓ ✓ 56.78%
✓ ✓ 55.77%

✓ ✓ 61.73%
✓ ✓ ✓ 47.89%

Coreset Overlaps. We then calculated the intersection
over union for each pair and trio of coresets. The results
are presented in Table 5. The result reveals that I) The
coresets obtained are highly related to the specific model
architecture used. II) The coresets from ViT-B/32 and ViT-
S/16 have a higher degree of overlap than the other two,
as these two models share the same architecture family.

4.4 ABLATION STUDY

Different Pruning Ratios. The performance change corresponding to different pruning ratios ρ is
depicted in Fig. 3. Generally, we can observe that the performance tends to degrade with increasing
pruning ratios. Further, selecting the optimal pruning ratio also involves a trade-off.
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Figure 3: Downstream performance variation of two CLIP models w.r.t. different pruning ratios.

Table 6: Results w.r.t. mutation epoch.
Mutation ViT-S/32 ViT-S/16

Epochs ZS@5 FT@1 ZS@5 FT@1

2 28.72 56.38 36.28 66.81
3 33.60 56.72 35.51 67.04
4 28.31 56.25 33.80 66.94
5 29.43 58.33 33.29 67.02

Different Mutation Epochs. The results for differ-
ent mutation epochs are summarized in Table 6. It
can be observed that employing a mutation epoch of
three generally yields better results compared to other
variants.

Different Pruning Modes. Our SCAN method com-
bines samples categorized as both redundant and ill-
matched for pruning purposes. Additionally, we con-
ducted a separate analysis to evaluate the effectiveness of utilizing either redundant (R.) or ill-matched
(I.) samples alone, and the results are presented in Table 7. It is evident from the table that employing
ill-matched samples for pruning yields superior performance compared to using redundant samples
alone. Moreover, the combination of these two categories results in further performance improvement.

Table 7: Results w.r.t. different pruning modes.
Pruning Mode ViT-S/32 ViT-S/16

w/. R. w/. I. ZS@5 FT@1 ZS@5 FT@1

✓ ✗ 31.48 56.66 33.51 66.85
✗ ✓ 34.12 56.01 35.19 67.04
✓ ✓ 33.60 56.72 35.51 67.04

Table 8: Results w.r.t. distinct ratio variants.

R. v.s. I. (%) ViT-S/32 ViT-S/16

ZS@5 FT@1 ZS@5 FT@1

(30 : 10) 31.84 56.35 34.84 66.90
(20 : 20) 33.60 56.72 35.51 67.04
(10 : 30) 33.72 56.43 35.49 67.10

Different Variants of the Same Pruning Ratio. In our experiments, we employed a pruning ratio ρ
of 30% for CLIP models and divided it equally between redundant (R.) and ill-matched (I.) samples.
Furthermore, we investigated other variants, and the outcomes are presented in Table 8. All the ratios
are relative to the full dataset. It can be seen from the table that evenly distributing the pruning ratio
leads to slightly better results.
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Pruning on ViT Tokens

Text: A city during a storm

Text: A doctor carefully 
places a falcon on a bench

Text: biological species 
crawling on a banana leaf

Figure 5: Ill-matched ex-
amples.

4.5 IN-DEPTH ANALYSIS

Pre-Training Time Comparison. The primary outcome of our method is the reduction in training
time and, consequently, the decrease in carbon footprint. We illustrate the pre-training time in Fig. 4.
It can be observed from the figure that our SCAN method contributes to a reduction of approximately
25% to 30% in the original pre-training computational cost (The additional negligible time cost can
be attributed to the pruned data preparation and retrieval processes.). This advantage proves especially
beneficial when training large models such as RN101 and ViT-B-16.

Visualization of Ill-Matched Samples. We also provide visualizations of some ill-matched samples
identified by SCAN. Two examples are shown in Fig. 5. In the first example, an incorrect annotation is
evident, as there is no city depicted in the image. Additionally, in the second example, the individual
portrayed is identified as a doctor rather than a stockman.

5 CONCLUSION

Limitations. We acknowledge two potential limitations of this work. Firstly, akin to other dataset
pruning methodologies, our method necessitates the storage of the original large-scale dataset. This
may pose storage challenges for researchers with limited computing resources. Secondly, our method
may not seamlessly transfer to the recent popular large language model pre-training. Apart from
differences in pre-training objectives, large language models (LLMs) often require only a few training
epochs, typically one to three. In contrast, our iterative bootstrapping strategy requires more epochs
to converge, the same as each corresponding contrastive pre-training model.

Summary. This work sets an initial effort to comprehensively address the data efficiency challenge
in contrastive pre-training. We propose a novel dataset bootstrapping approach, applying it to a
range of contrastive pre-training model architectures and evaluating it using various protocols. Our
experiments demonstrate that, across all experimental settings, the proposed method achieves a
superior balance between downstream model performance and data efficiency compared to both the
base models and several existing data efficiency approaches. Additionally, it also helps yield an
effective coreset dataset that significantly outperforms other coreset-based baselines, thereby further
reducing time costs and training overhead.

Future Work. In the future, we plan to validate the effectiveness of our method 1) in more domains
such as language-centric contrastive pre-training, 2) with larger pre-training datasets for vision-
language like LAION-400M (Schuhmann et al., 2021). Moreover, our method stands orthogonal to
other efficiency studies, such as model compression. As such, by integrating strategies from these
related domains, we aim to build a more efficient training pipeline framework, thus contributing to
substantial reductions in carbon footprints.
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A SCAN ALGORITHM

We present a detailed algorithm of our proposed SCAN in Algorithm A. This algorithm is applicable
to contrastive pre-training models including CLIP and MoCo.

Algorithm 1: Dataset Pruning of SCAN.
Input: Full training data D, Number of training epochs τstop, Number of mutation epochs τcos,

Pre-initialized losses Lpre and Lcur, Threshold value Ttd and an infinitesimal value ϵ.
Output: Pre-trained modelM
while τcur < τstop do

// Pre-Pruning Warm-Up

if (L̂pre − L̂cur)/(L̂pre + ϵ) ≥ Ttd then
for Batched sample Dt ∈ D do

Forward and updateM on Dt;
end
L̂pre ← L̂cur;
Get the updated current epoch loss L̂cur;

end
else

// Pruning Data Preparation
if τcur mod (τcos + 1) = 0 then

for Batched sample Dt ∈ D do
Forward and updateM on Dt;
Obtain redundant set Dred

t and ill-matched set Dill
t ;

Obtain the overall pruning subset D′

t = Dred
t | Dill

t ;
end
Accumulate all the candidate pruning data D′

;
end
// Dataset Mutation
else

Obtain the pruning ratio ρcur;
Randomly prune ρcur|D

′ | samples from D′
;

for Batched sample Dt ∈ D \ D
′

ρ do
Forward and updateM on Dt

end
end

end
τcur ← τcur + 1

end

B MORE EXPERIMENTAL SETTINGS

B.1 PRE-TRAINING DETAILS

Our primary objective in this study is to assess the efficacy of our proposed data-efficient method.
Consequently, we did not conduct an extensive parameter search and instead utilized a universal
setting across different models.

Table 9: Batch sizes for pre-training and fine-tuning CLIP models.
PT RN50 RN101 ViT-S/32 ViT-S/16 ViT-B/32 ViT-B/16 Swin-Base

✓ 256×4 200×4 800×4 400×4 480×4 200×4 100×4

✗ 384 225 1024 600 768 300 160
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Due to limitations in computational resources, most of our pre-training experiments were conducted
using four NVIDIA A5000 GPUs. Specifically, for CLIP models, we employed 32 epochs, a learning
rate of 1e-3, and a weight decay of 0.1. Various batch sizes are detailed in Table 9. For the downstream
image classification task, we fine-tuned the pre-trained models on a single NVIDIA A100-40G GPU.
Fine-tuning comprises 10 epochs with a learning rate of 1e-3 and a weight decay of 0.1.

Regarding the pre-training of MoCo, we utilized the original implementation3. We employed batch
sizes of 600 and 370 for ViT-16/S and ViT-B/16, respectively.

B.2 COMPARED BASELINES

We compared with the following four baselines in this work:

• Random prunes ρ samples with randomness for each epoch. Notably, it falls under dynamic
pruning methods as the pruned samples vary across epochs.

• SemDeDup (Abbas et al., 2023) identifies the semantic duplicates based on embedding simi-
larities. We used one public implementation4. This method is applicable only to multi-modal
models such as CLIP.

• D-Pruning (Yang et al., 2023) estimate the parameter influence of a training example through
the removal of it. We utilized the official implementation5 for CLIP models only. We abandoned
the use of MoCo due to its hard-to-configure running environment.

• Info-Batch (Qin et al., 2024) is a recent robust dataset pruning baseline. It prunes a portion of
less informative samples and then rescales the gradients of the remaining samples to approximate
the original gradients. We followed the original code6 to re-implement it for our experiments.

C MORE EXPERIMENTAL RESULTS

We present additional fine-tuning results of CLIP in Table 10 and Table 11. Furthermore, Table 12
shows the results of linear probing for CLIP. It is evident that our proposed SCAN method consistently
achieves superior performance across various settings.

Experimental Results on CLIP-Benchmark. We utilized the CLIP-Benchmark tool to assess the
performance of both CLIP and our SCAN method across 19 additional datasets. For this evaluation,
we employed models pre-trained on the CC12M+ datasets. The results, presented in Table 13,
demonstrate that our SCAN method delivers performance competitive with the original CLIP.

Results w.r.t. Pre-defined Thresholds. To assess the impact of varying thresholds, we evaluated two
model architectures, RN50 and ViT-B/32, using threshold values from 0.1 to 0.7, with a step size of
0.2. The ImageNet zero-shot performance results are summarized in the table below. As indicated,
the models perform optimally at threshold values of 0.3 or 0.5. For simplicity and consistency, we
selected a threshold of 0.3 for subsequent model evaluations.

Different Pruning Ratios of MoCo. The performance variations with different pruning ratios (ρ) for
the MoCo model are depicted in Fig. 6. It is evident that as the pruning ratios increase, there is a
general degradation in performance.

More Visualization of Ill-matched Samples from CLIP. We further visualize some ill-matched
samples as indicated by SCAN in Fig. 7.

3https://github.com/facebookresearch/moco-v3.
4https://github.com/BAAI-DCAI/Dataset-Pruning/tree/main.
5https://github.com/BAAI-DCAI/Dataset-Pruning/tree/main.
6https://github.com/henryqin1997/InfoBatch.
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Table 10: Performance comparison of CLIP models on the CC3M+ pre-trained datasets. CLIP
utilizes 4.1M pre-trained data samples, while the remaining models use 2.9M. The best results
(excluding the original CLIP model) are highlighted in bold.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN50

CLIP 17.06 36.21 95.32 80.01 73.81 61.89 36.09

Random 11.02 25.23 94.01 75.12 70.22 58.04 31.80
SemDeDup 11.98 26.30 94.53 76.81 71.51 58.79 32.31
D-Pruning 11.72 26.65 94.48 76.73 71.11 58.79 31.88
Info-Batch 16.44 36.74 95.30 79.40 73.01 61.49 35.04
SCAN 16.91 35.79 95.30 80.24 72.91 60.59 34.53

ViT-S/32

CLIP 13.70 29.33 90.59 71.74 55.60 42.81 23.91

Random 06.57 16.19 86.61 60.18 48.87 34.48 17.98
SemDeDup 05.33 14.05 85.16 59.87 47.39 35.56 17.70
D-Pruning 04.78 12.91 84.21 57.96 46.53 34.77 16.88
Info-Batch 10.89 26.91 90.02 69.99 50.53 39.61 19.69

SCAN 14.88 31.47 90.12 70.33 54.13 41.29 22.70

ViT-S/16

CLIP 18.41 37.41 96.09 81.31 68.49 55.79 29.52

Random 07.80 21.53 93.58 72.11 62.13 49.63 19.01
SemDeDup 09.57 22.00 93.43 74.37 62.30 48.89 23.04
D-Pruning 08.60 20.35 93.26 73.72 61.70 48.97 22.46
Info-Batch 16.19 35.06 95.64 80.03 67.57 53.52 27.64
SCAN 17.31 35.51 95.53 80.27 66.86 53.59 27.34

ViT-B/32

CLIP 14.97 32.02 94.43 77.72 58.33 45.70 25.59

Random 07.44 18.88 89.96 69.41 50.43 40.62 18.07
SemDeDup 07.20 17.50 90.88 70.13 50.99 38.34 19.76
D-Pruning 06.51 16.13 60.07 69.11 50.01 38.43 19.03
Info-Batch 12.44 30.98 93.57 75.44 55.99 43.30 24.64
SCAN 16.48 33.60 93.77 77.63 56.64 44.25 24.10
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Figure 6: Downstream performance variation of ViT-S/16 MoCo model w.r.t. different pruning ratios.
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Table 11: Performance comparison of CLIP models on the CC12M+ pre-trained datasets. CLIP
utilizes 10.1M pre-trained data samples, while the remaining models use 7.1M. The best results
(excluding the original CLIP model) are highlighted in bold.

Architecture Method IN Zero-Shot CIFAR10 CIFAR100 IN IN-V2 IN-R
Top-1 Top-5

RN50

CLIP 20.95 44.41 95.68 80.75 74.93 62.81 38.36

Random 12.39 35.96 94.89 76.96 71.65 59.71 32.03
SemDeDup 15.89 36.76 95.00 78.12 72.46 60.01 33.86
D-Pruning 11.19 26.53 94.31 77.69 71.96 59.19 33.44
Info-Batch 20.63 45.10 95.68 79.88 73.53 61.23 36.67

SCAN 23.03 47.83 95.63 81.03 74.28 62.20 38.14

ViT-S/32

CLIP 26.48 51.32 93.23 76.32 61.53 48.60 30.57

Random 08.79 16.93 87.79 63.04 50.12 38.09 21.11
SemDeDup 05.04 13.49 86.43 61.67 49.46 37.37 19.29
D-Pruning 04.54 12.43 85.86 61.81 48.39 36.57 18.62
Info-Batch 10.07 26.63 91.11 67.94 53.47 40.91 20.77

SCAN 25.27 50.08 91.86 75.27 59.87 46.96 27.86

ViT-S/16

CLIP 27.09 53.57 96.62 84.05 71.40 58.40 34.24

Random 16.58 35.43 95.00 79.90 67.78 54.12 26.23
SemDeDup 10.56 26.52 94.46 76.65 65.32 51.37 25.52
D-Pruning 09.37 22.16 93.42 75.52 63.53 50.79 24.43
Info-Batch 21.28 45.56 96.09 82.13 68.87 55.90 29.58

SCAN 28.46 54.56 96.24 83.32 70.40 57.10 31.85
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Figure 7: More ill-matched samples obtained by our SCAN approach.
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Table 12: Linear probing results of six CLIP models. For the CC3M+ pre-trained datasets, CLIP
utilizes 4.1M pre-trained data samples, while the remaining models use 2.9M. For the CC12M+
pre-trained datasets, CLIP utilizes 10.1M pre-trained data samples, while the remaining models
use 7.1M. The best results (excluding the original CLIP model) are highlighted in bold. A dash (-)
indicates the collapse of pre-training, resulting in impaired evaluation of downstream tasks.

Arc Method CC3M+ CC12M+

CF-10 CF-100 IN IN-V2 IN-R CF-10 CF-100 IN IN-V2 IN-R

R
N

50

CLIP 95.58 80.31 73.96 61.60 35.59 95.69 81.88 74.96 62.85 38.57

Random 93.89 75.45 70.25 58.05 31.78 94.00 76.43 70.99 58.78 32.09
SemDeDup 94.92 77.16 71.62 58.99 32.44 94.88 78.00 72.22 59.70 33.16
D-Pruning 94.50 76.78 71.00 57.98 31.70 94.30 77.70 71.77 59.01 33.20
Info-Batch 95.29 79.39 73.07 61.03 34.66 95.66 79.84 73.23 61.10 36.63

SCAN 95.46 80.35 73.07 61.25 34.59 95.62 81.28 74.27 62.66 37.30

R
N

10
1

CLIP 95.92 82.04 75.10 63.61 38.78 96.03 82.73 75.78 63.93 40.09

Random 95.00 78.13 73.79 60.20 36.12 95.02 78.34 73.99 60.27 36.13
SemDeDup 94.84 79.25 74.08 61.94 36.74 95.01 78.02 73.89 59.91 33.80
D-Pruning 94.79 72.12 73.74 61.66 35.64 94.78 78.83 74.08 61.28 37.09
Info-Batch 95.08 80.76 74.13 62.89 37.57 95.82 81.56 75.02 63.21 39.21

SCAN 95.67 81.36 74.42 63.07 37.86 95.93 82.12 75.61 63.87 39.32

V
iT

-S
/3

2

CLIP 91.65 72.23 55.52 43.00 23.48 93.29 77.06 61.73 48.84 30.40

Random 87.00 61.31 49.97 36.07 20.88 87.79 63.04 50.12 38.09 21.11
SemDeDup 83.46 60.06 47.65 35.51 17.61 86.23 61.77 49.20 37.10 19.11
D-Pruning 84.21 58.73 46.57 35.03 16.95 85.82 61.09 47.99 36.58 18.00
Info-Batch 89.30 70.02 50.51 39.58 19.78 91.02 68.90 53.49 40.69 20.71

SCAN 89.37 71.05 54.24 41.30 22.65 91.88 74.86 59.90 46.90 27.90

V
iT

-S
/1

6

CLIP 96.09 81.39 68.49 55.19 29.06 96.66 84.35 71.53 58.56 33.85

Random 93.62 73.37 63.02 49.96 20.62 94.90 79.91 67.90 54.10 26.24
SemDeDup 93.21 73.85 62.34 49.40 22.54 94.00 77.01 64.45 51.40 25.51
D-Pruning 93.28 73.09 61.67 48.99 22.48 93.41 75.43 63.42 50.77 24.41
Info-Batch 95.26 80.46 67.76 53.49 27.11 96.03 82.11 68.78 55.78 29.59

SCAN 95.31 80.00 67.04 53.75 27.41 96.37 82.71 70.32 57.17 31.89

V
iT

-B
/3

2

CLIP 94.36 77.84 58.43 45.79 25.50 95.65 81.62 63.40 50.33 31.28

Random 90.05 69.26 50.23 40.54 18.03 90.13 69.98 51.99 41.01 20.08
SemDeDup 90.44 69.86 50.89 38.15 19.89 90.77 70.00 51.19 39.80 20.91
D-Pruning 90.06 69.08 50.04 37.87 19.11 90.07 69.65 51.23 37.99 20.43
Info-Batch 93.54 75.49 56.98 44.03 24.08 - - - - -

SCAN 94.00 76.91 56.72 44.12 24.21 95.05 81.21 61.96 48.42 29.53

V
iT

-B
/1

6

CLIP 96.27 82.74 70.87 57.77 29.82 96.77 84.48 72.37 59.07 33.24

Random 91.60 73.61 50.59 40.52 21.72 94.56 76.67 67.57 54.40 27.10
SemDeDup 94.16 76.34 66.60 53.13 25.60 94.17 76.66 67.10 53.39 27.11
D-Pruning 93.48 75.41 65.90 52.69 24.57 93.88 75.99 65.98 53.00 26.05
Info-Batch 96.10 81.06 70.30 56.10 28.48 96.12 81.78 71.34 56.25 31.12

SCAN 96.16 81.10 69.55 56.48 28.76 96.12 83.97 71.82 58.31 32.48
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Table 13: Comparison of ViT-B/32 and ViT-B/16 using CLIP and SCAN on CLIP-Benchmark.

Dataset ViT-B/32 ViT-B/16

CLIP SCAN CLIP SCAN

FER2013 18.50 22.27 18.36 20.77
ImageNet-O 30.70 30.55 33.05 31.20
ImageNet-R 29.23 31.91 31.08 29.67
ImageNetv2 20.19 21.80 21.39 20.90
ObjectNet 15.13 13.93 14.84 15.03
rendered-sst2 50.08 49.92 51.12 50.02
STL-10 85.18 86.06 85.11 85.04
SUN397 40.55 41.02 41.95 41.29
VOC-2007 47.22 42.62 52.59 48.48
Caltech-101 64.93 68.56 65.63 65.46
Dmlab 20.02 11.81 17.77 16.19
DTD 15.66 16.44 16.24 13.83
EuroSat 21.92 29.81 34.20 29.67
Flowers 18.63 24.70 20.80 20.13
KITTI 32.63 32.77 35.49 35.59
PCam 50.33 52.23 50.32 52.69
Pet 31.28 43.06 36.41 35.84
RESISC45 23.41 23.05 21.28 19.38
SVHN 16.99 06.97 09.73 07.86

Table 14: Performance comparison of RN50 and ViT-B/32 at different thresholds.

Threshold RN50 ViT-B/32

Top-1 Top-5 Top-1 Top-5

0.1 15.80 35.21 14.75 31.58
0.3 16.91 35.79 16.48 33.60
0.5 18.22 37.79 16.04 33.19
0.7 18.20 37.78 16.48 33.23
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