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Abstract

Multi-state models are generalizations of time-to-event models, where individuals1

progress through discrete states in continuous time. As opposed to classical ap-2

proaches to survival analysis which include only alive-dead transitions, states can3

be competing in nature and transient, enabling richer modelling of complex clinical4

event series. Classical multi-state models, such as the Cox–Markov model, struggle5

to capture idiosyncratic, non-linear, time dependent, or high-dimensional covari-6

ates for which more sophisticated machine learning models are needed. Recently7

proposed extensions can overcome these limitations, however, they do not allow for8

uncertainty quantification of the model prediction, and typically have limited inter-9

pretability at the individual or population level. Here, we introduce SURVIVAEL,10

a multi-state survival framework based on a VAE architecture, enabling uncertainty11

quantification and interpretable patient trajectory clustering.12

1 Introduction13

1.1 Motivation14

Survival analysis is of great importance in medicine with great interest in predicting the time to15

specific events like death or adverse events, while taking into account missing outcomes due to loss16

to follow-up. The de facto standard model in medicine today is the Cox proportional hazards (PH)17

model [8], a semi-parametric model making strong assumptions on the functional dependence of18

hazard rates on covariates. By now there has been a plethora of machine learning models generalizing19

beyond the PH assumption and allowing non-linear covariate influences [16, 20, 19, 5].20

With the rise of electronic health records there is an ever increasing amount of information available21

and the possibility to model clinical patient trajectories in more detail, going beyond binary time-22

to-event analysis. In many cases, disease progression or other clinical events can be modeled with23

discrete states, e.g. tumor progression, side effects to treatments or relapse/remission after tumor24

surgery. The default approach in this case is the Cox–Markov model, describing any possible25

transition with a Cox-PH model without taking into account the previous disease trajectory and26

assuming piece-wise constant hazard rates. To advance beyond these very limiting assumptions27

SURVNODE, a machine learning model based on neural ordinary differential equations [7], has been28

introduced by Groha et al. [12]. By using a neural network and introducing hidden states in the time29

evolution, SURVNODE gets around the limiting assumptions of the Cox–Markov model, however, at30

the price of losing most of its interpretability as well as a clear means of uncertainty quantification.31

The goal of this manuscript is to add these two features, while retaining the flexibility of SURVNODE.32

1.2 Multi-state survival analysis33

We define a continuous time stochastic process {Y (t); 0 6 t 6 T} over a finite state space Y =34

{1, ..., S}, corresponding to the discrete states of the multi-state model. In the following, we will35
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briefly introduce the likelihood function and its relation to the Kolmogorov forward equations [18, 11].36

As the approach introduced here is an extension of SURVNODE, the presentation closely follows that37

of [12].38

For each patient, the process is observed at predefined times t1, . . . , tm where the patient is in states39

y(t1), . . . , y(tm). The likelihood is given by40

P (y(t1), . . . , y(tm)|Htm ; θ) = P (y(t1))
∏m

j=2
Py(tj−1)y(tj−1)

(
tj−1, tj |Htj−1

; θ
)

× λy(tj−1)y(tj)(tj | Htj ; θ),
where θ denotes all free model parameters, P (y(t1)) the probability to be in the initial state, Pij (s, t)41

the transition probability between any set of states i, j occurring at time points s, t and Ht the42

filtration up until, but excluding time t. The full likelihood for all n patients is given by43

L(θ; {y1, . . . , yn}) =
∏n

i=1
P
(
yi(t

i
1), . . . , yi(t

i
mi

)|Htmi
; θ
)
,

with yi = {yi(ti1), . . . , yi(timi
)}, i = 1, . . . , n. To accommodate censoring, the likelihood has to be44

adjusted. With the assumption of independent censoring, we observe {xi, yi, δi; j = 1, . . . ,mi, i =45

1, . . . , n}, where xi are individual covariates, mi is the number of transitions the individual i is going46

through and yi are as above or the state at time of last contact. Censoring is indicated by δi = 047

whereas we write δi = 1 if the event is observed. The corresponding likelihood can then be written as48

L(θ; {y1, . . . , yn}) =
∏n

i=1
P
(
yi(t

i
1)
)∏mi−1

j=2
Pyi(tij−1)yi(t

i
j−1)

(
tij−1, t

i
j ; θ
)
λyi(tij−1)yi(t

i
j)
(tij | θ)

× Pyi(timi−1)yi(t
i
mi−1)

(
timi−1, t

i
mi

; θ
) (
λyi(timi−1)yi(t

i
mi

)(t
i
mi
| θ)
)δi

,

where we omitted the dependence on the filtration for notational brevity. The evolution of the49

transition probabilities is governed by the Kolmogorov forward equation50

dPij(s, t|Ht)
dt

=
∑

k
Pik(s, t|Ht)λkj(t|Ht), i = 1, . . . , S, j = 1, . . . S, (1)

which relates the intensities λij(t) to the transition probabilities Pij(s, t). Upon solving this equation51

we have all the ingredients for the likelihood function.52

1.3 NeuralODE for multi-state survival modelling53

The idea underlying SURVNODE is to model the instantaneous transition rates λij(t) using a neural54

network and solving the Kolmogorov forward equation using neural ODEs [7]. To incorporate the55

covariates and to include an approximation of the filtration of the process, SURVNODE introduces56

auxiliary memory states m(t), itself modelled by an ODE57

dmi

dt
=Mi(t,P (t),m(t)).

The initial conditions are encoded by the covariates of the patient m(0) = f(x), where f is given by58

a neural net. This implies having to solve the system of differential equations59

dPij(0, t)

dt
=
∑

k
Pik(0, t)λkj(t,P (0, t)(t),m(t))

dmi

dt
=Mi(t,P (0, t),m(t)).

Using that P (s, 0) = P−1(0, s) one can obtain Pij(s, t) at any s and t.60

2 SURVIVAEL61

z

x

t

To obtain a quantification of model uncertainty and interpretability, we extend
the model to a variational setting by introducing latent variables. Instead of
maximum likelihood estimation, the objective will be the variational free energy
or evidence lower bound ELBO. The variational model assumes the existence of
a latent state z, which replaces the role of the initial memory state m(0) above,
such that L(θ;Y, z) does not depend on the covariates x given z. A graphical
representation is given in Figure to the left.
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Table 1: Benchmark on the METABRIC data-set. The other models are taken from [19] and [12].

Metric Cox-PH[8] DeepSurv [16] DeepHit [20] RSF [14] SURVNODE SURVIVAEL
c 0.628 0.636 0.675 0.649 0.667 0.646

ibs 0.183 0.176 0.184 0.175 0.157 0.170
inbll 0.538 0.532 0.539 0.515 0.477 0.503

We can derive the variational lower bound in a similar way to a (supervised) VAE [17, 15] as63

log p(t | x) = log

∫
p(t | z)p(z | x) ≥ Eq(z|t,x)

[
log

p(t | z)p(z | x)
q(z | t, x)

]
.

The objective is then64

ELBO(θ,Y) = Eq(z|t,x)
[
logL(θ;Y, z)

]
−DKL

(
q(z | t,x) ‖ p(z | x)

)
where we model the variational distribution q(z|t,x) and the prior p(z|x) as65

q(z|t,x) = N
(
z;µq(x, t), diag(σ2

q (x, t))
)

and p(z|x) = N
(
z;µp(x), diag(σ2

p(x))
)
,

with neural networks for µq, µp, σq, and σp, encoding the covariates into the latent space. For66

prediction, we obtain realizations of the transition matrix Pij(0, t) by repeated sampling from the67

prior and taking the mean as well as the 95% credible interval.68

3 Experiments69

3.1 Survival: benchmark of model70

We benchmark the variational model against various survival frameworks on the METABRIC breast71

cancer data set [9, 24]. We compare concordance (c)[2], integrated Brier score (ibs)[4], as well as72

the integrated binomial log-likelihood estimator (ibll)[19] using five-fold cross validation in Table 1.73

SURVIVAEL is presented with only manual hyper-parameter tuning, whereas the other models went74

through an extensive hyperparameter search. We still find that the model is competitive in terms of75

survival prediction, retaining a lot of flexibility of SURVNODE.76
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Figure 1: Left: Graphical representation of the Illness-death model. Right: Plot of probabilities for
being in the different states of the illness-death model. Blue corresponds to “Health”, red to “Illness”
and green to “Death”. The shaded area represents the 95% confidence intervals.

3.2 Multi-state survival77

For illustration in the multi-state case, we compare performance on the population level with the78

non-parametric Aalen–Johansen estimator [1] for an illness-death model (see Figure 1). As a baseline,79

we simulate a data set with one binary covariate and proportional hazards violation using the coxed80

R package [13]. We compare our model with the standard tool in the multi-state survival literature,81

which is fitting a Cox proportional hazard model to each transition, treating the other events as82

censored [10]. The comparison can be seen in Figure 1, where we plot the predicted probabilities for83

the occupation of every state over time together with the non-parametric Aalen–Johansen estimator.84

We see a clear advantage of our model over the cause-specific Cox model and more importantly we85

see that the confidence intervals of SURVIVAEL include the non-parametric estimator for most times.86
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Table 2: Comparison of SURVNODEand the Cox proportional hazard model in terms of calibration
and concordance.

Model calibration concordance
Cox proportional hazards model [8] 0.250± 0.015 0.6244± 0.0064

SURVIVAEL 0.749± 0.071 0.6396± 0.0097

Calibration of the credible intervals While our model captures the non-parametric estimator by87

visual inspection, we seek to quantify the calibration performance in simulations where the ground88

truth is known. We simulate a survival data set with three covariates with the coxed package, where89

we also extract the underlying individual survival probabilities. To estimate calibration of the error90

intervals, we therefore calculate the average of fraction of times the true survival probabilities we91

sample from lie within the 95% credible interval. We compare the calibration of our model to the92

prediction from a Cox proportional hazards model using Wald type error estimates. For one random93

realization of the simulated data we perform a five fold cross validation in Table 2. We find that94

our model produces more consistent and better calibrated error intervals than the Cox proportional95

hazards model, as shown in Table 296

Clustering of the latent space An additional useful feature of the latent variable model can be97

found by inspection of the latent space of the model. Using a simulated illness-death model with nine98

covariates we run the variational SURVNODE model with early stopping using a validation set and99

then inspect the latent on a test data-set. Using UMAP [22] we identify five clusters (Figure 2). We100

examine the probabilities to be in each of the three states for each cluster in the validation data set101

using the non-parametric Aalen–Johansen estimator. As can be seen in Figure 2, the clusters are a102

meaningful unsupervised differentiation between patients and capture survival differences as well as103

differences in transitioning to the "Illness" state well. We can additionally obtain covariate effects104

associated with each cluster by using logistic regression. This feature has useful applications in a105

clinical setting, where identification of extreme survivors to a treatment while modeling other state106

transitions is of particular interest.107
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Figure 2: The latent space of the variational SURVNODE model shows meaningful clusters. The
subset of patients in the clusters on the left are used in a non-parametric Aalen–Johansen estimator to
obtain state occupation probabilities for all three states per cluster. The first panel is the probability
for the "Health" state, the second for the "Illness" and the third for the "Death" state.

Our approach is directly applicable to survival analysis, where methods for example based on LDA108

[6] or variational inference [21] were recently proposed to cluster the latent space, but SURVIVAEL109

generalizes those to the multi-state setting.110

4 Conclusion111

We have introduced a variational framework for multi-state survival analysis based on neural ODEs112

and shown comparable performance in the special cases of survival. Our approach allows for the113

estimation of credible intervals and provides an interpretability aspect, which is absent from most114

machine learning survival methods and the first of its kind in the setting of multi-state models.115
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A Implementation details187

All models are implemented in PyTorch [23] using the torchdiffeq package [7]. As our example188

networks are sufficiently small, we use backpropagation through the ODE solver to obtain gradients,189

however, using the adjoint method is of course possible as well. We use the dopri5 method for190

the ODE solver with an absolute and relative tolerance of 10−8 in the ODE solver. To include the191

accuracy of the solution as a hyperparameter, we scale the event times to have the maximum value192

S, which we choose to be of O(1). To specify the non-zero elements of the transition rate matrix, a193

matrix with 1 indicators for non-zero off-diagonal elements and NaN indicators for all other elements194

are needed. We have the hyperparameters:195

• Number of layers Lp and number of neurons per layer Np with dropout pp for multilayer196

perceptron for prior p(z|x);197

• Number of layers Lq and number of neurons per layer Nq with dropout pp for multilayer198

perceptron for variational postierior q(z|x, t);199

• Number of layers LQ and number of neurons per layer NQ for multilayer perceptron200

modeling Q;201

• Number of latent states M ;202

• Coefficient of Lyapunov style loss term µ;203

• ELBO parameter β204

• Scaling coefficient for event times S;205

• Learning rate l of the Adam optimizer;206

• Weight decay w,207

where the ELBO parameter β characterizes the relative weight between log-likelihood and Kullback-208

Leibler divergence, which we set to be 1 throughout the paper. Closer investigation of the clustering209

property with respect to this parameter would be of interest.210

B Clustering: Covariates and survival strata211

To further examine the clustering of the latent space, we can superimpose the nine binary covariates212

in the model on the UMAP projection. This can be seen in Figure 3. We see that some of the clusters213

clearly reflect the covariates, for example in the case of covariate one, which is the lowest third of the214

covariate with the largest effect size for one of the transitions in the simulation, we see that almost all215

the values are in one of the clusters. By characterizing the effect of the covariates on these clusters216

with specific survival properties, we can obtain the influence of the covariate on survival.217

C Calibration of the credible intervals218

A visual way to show the calibration of the credible intervals is to predict individual survival over219

time and plot together with the true underlying survival function obtained from the coxed R package.220

This can be seen in Figure 4. We see that the credible intervals contain the survival function in most221

of the cases.222

D Experiments223

D.1 Simulation of data224

The simulated data in the publication is generated in two ways. First, we simulate data with the R225

package coxed.226

In the survival cases, we choose three covariates, where one of the covariates has time varying227

coefficients to model a proportional hazards violation. We choose all coefficients to be of O(1), with228

a saw-tooth time dependence for the time dependent covariate. We sample 2048 patients for the229

training set and 1024 patients for the validation and test set respectively with event times between230

0 and 100. In the case of the illness death model, we sample using the coxed package for every231

transition, assuming independence of each transition. We extract the covariates from the first sampled232

model and use them for the other two survival realizations, however choosing different coefficients.233
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Figure 3: Possible values of the nine binary covariates in the model. We see that some of the clusters
clearly reflect the covariates.

Figure 4: Predicted survival function vs real underlying survival function from the simulation. We
see that the credible intervals cover the underlying survival function well.
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Table 3: Characteristics of the METABRIC and SUPPORT data sets.
Data set Size Covariates Unique Durations Prop. Censored

SUPPORT 8873 14 1714 0.32
METABRIC 1904 9 1686 0.42

Due to a limitation of the coxed package, only the first sampled model can have time varying234

coefficients, with the other transitions then effectively being sampled from a Cox-model. In the235

competing case between "Illness" and "Death" from the "Health" state, we choose the first occurring236

time of the two sampled survival data realizations, no matter if there is censoring or not. The237

maximum time for the generated data in the competing case is T = 100, whereas we choose T = 50238

for the transition from "Illness" to "Death".239

The second way is to directly sample from a Markov-Jump process. For this we implement a Gillespie240

sampling algorithm in Julia [3], using the DifferentialEquations.jl [25] package. We241

sample parameters for a Weibull distribution for each transition in the multi-state case and multiplica-242

tively add covariate dependence in a proportional hazards way. To break proportional hazards, we243

use time dependent coefficients for two of the 12 covariates, as in the above sampling algorithm. We244

choose all coefficients to be ofO(1). We sample 5000 patients, which we then split into 64% training,245

16% validation and 20% test set. As we specify the underlying hazard functions, ground truth for246

both hazard functions as well as probability distributions is directly accessible for any multi-state247

model. The simulation code is available on the SURVNODE github page.248

D.2 Data sets and hyperparameters249

The METABRIC and SUPPORT data sets are standard survival data sets for benchmarking. The250

characteristics are shown in 3 [19] and are obtained from the pycox python package [19]. The251

SYNTHETIC data set in the competing hazards case is taken from [20] and available on Github with252

30000 patients and two outcomes, where 50% of patients experience any event, whereas the other253

50% are censored.254

For all benchmark experiments we do a five-fold cross validation where we split the data in an 80−20255

split into 20% test-data and the remaining data again in an 80− 20 split into 64% training data and256

16% validation data. In the comparison with the non-parametric Aalen-Johansen estimator we used257

• Lp = 2 with Np = 400 and pp = 0.;258

• Lq = 2 with Np = 1000 and pp = 0.;259

• LQ = 3 with NQ = 1000260

• M = 70;261

• µ = 10−4;262

• S = 1.;263

• l = 1e− 4;264

• w = 1e− 7;265

• β = 1,266

and for clustering the latent space the hyperparameter setting we use is267

• Lp = 2 with Np = 400 and pp = 0.;268

• Lq = 2 with Np = 400 and pp = 0.;269

• LQ = 2 with NQ = 1000270

• M = 50;271

• µ = 10−4;272

• S = 1.;273

• l = 5e− 5;274

• w = 1e− 7;275

• β = 1.276

all of which were only manually hyperparameter tuned on train and validation set.277
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