

000 INFORMATION GAP IN CHAIN-OF-THOUGHT INDUCES 001 IMPLICIT THINKING THAT FAILS IN LENGTH GENER- 002 ALIZATION 003

004 **Anonymous authors**
 005
 006

007 Paper under double-blind review
 008
 009

010 ABSTRACT 011

012 Recent works reveal that Chain-of-Thought may not faithfully reflect the model’s
 013 actual reasoning, as the semantics can diverge from model’s underlying “implicit
 014 thoughts”. In this work, using a synthetic dataset with controllable complexity, we
 015 find signs of *implicit thinking* in models after supervised finetuning (SFT) on CoT
 016 rationales, that is, the models have internally identified all necessary variables to
 017 be solved before generating the actual CoT. This implicit thinking ability sharply
 018 degrades as the required CoT steps exceed those seen during training, hence pre-
 019 venting the model from generalizing to more complex problems. To understand
 020 why implicit thinking emerges during SFT on explicit CoT rationales, we first
 021 define “information gap” within a CoT based on the ratio of unexplored actions
 022 and all admissible actions at each state. We hypothesize that a large information
 023 gap (a lot of admissible but unexplored actions) force LLMs to justify the actions
 024 explored in golden CoT by looking for clues in its internal representation, hence
 025 leading to implicit thinking. We benchmark 4 types of CoT, each based on a dif-
 026 ferent graph traversal heuristic, and observe a positive correlation between the
 027 magnitude of information gap in CoTs and the implicit thinking ability in mod-
 028 els finetuned on these CoTs. We further support this hypothesis by showing that
 029 actively reducing the information gap by including multiple CoT trajectories per
 030 question can reduce implicit thinking and enhance generalization to more complex
 031 questions. Overall, our findings suggest rethinking the role of CoT in LLM rea-
 032 soning and understanding the necessary condition of learning generalizable CoT.¹
 033

034 1 INTRODUCTION 035

036 Chain-of-thought (CoT) enables large language models (LLMs) to generate a sequence of interme-
 037 diate reasoning steps in natural languages before predicting a final answer (Wei et al., 2022). It is the
 038 foundation of recent advancement of LLM in reasoning-heavy tasks such as solving olympiad-level
 039 math and coding problems. Researchers (Baker et al., 2025) have also argued that by monitoring
 040 the generated CoT rationales, humans, or other models can better interpret the “thinking process” of
 041 LLMs and hence reliably verify the soundness of machine reasoning.

042 However, findings from recent work challenge the aforementioned interpretation of CoT as the
 043 human-like “thoughts” of LLMs: Sun et al. (2025) show that models trained with SFT cannot ex-
 044 ploratively generalize to solve more complex problems requiring the same set of knowledge as the
 045 training data; while another line of work (Arcuschin et al., 2025; Stechly et al., 2025; Barez et al.,
 046 2025) finds that CoT sometimes is a post-hoc rationalization of the *implicit* thinking already done
 047 by LLMs: it only reveals partial thinking processes or even has little to no causal effects on the
 048 final predicted answer. Building upon these previous findings, we hypothesize that LLM’s ability to
 049 generalize to more complex problems is negatively correlated with the amount of implicit thinking
 050 they perform prior to generating the CoT. We further study which data factors in CoT supervision
 051 give rise to implicit thinking and whether we can control it to unlock more generalizable reasoning.

052 To isolate the core reasoning ability from confounders like domain knowledge/tool-usage and to
 053 eliminate the chance of data contamination in evaluation, we synthesize WORLD OF BOXES (WoB),

¹We aim to open-source our code and data upon publication.

054 a grade-school-level math dataset following the same principles used for iGSM (Ye et al., 2024):
 055 as shown in Fig. 1, for each question, we randomly create a dependency tree graph of “boxes”
 056 and assign every box a weight between 0 to 23 randomly. The question asks for either the weight
 057 of a source box at leaf given only the weight of the target box at root (R2L) or the weight of the
 058 source box at root given only the weight of the target box at leaf (L2R). Solving a question in WOB
 059 requires searching for the path connecting the source box to the target box and performing addi-
 060 tion/subtraction between positive integers less than 24 to calculate boxes’ weight. Compared to
 061 iGSM, our WORLD OF BOXES further encompasses a significantly simplified parameter structure
 062 (e.g., with only one type of instance parameter: the weight of boxes) and a considerably larger
 063 graphs (e.g., as many as 800 parameters/boxes as opposed to 28 in iGSM-hard). This allows us to
 064 evaluate generalization of reasoning within complex, unseen environments with a large number of
 065 possible states but without confounding factors from pretrained knowledge.
 066

067 First, to understand LLM’s reasoning ability on WORLD OF BOXES, we finetune 3 different base
 068 models of 7B parameters using different types of CoT rationale: (1) FORWARD-COT that only solve
 069 the boxes along the ground-truth path connecting the source to the target box, (2) BACKTRACK-
 070 COT that first backtracks from the target box to the source box, (3) Rs-COT that traverses the
 071 entire dependency graph in random order, and (4) DFS-COT that traverses the graph following a
 072 depth-first-search procedure. We then supervised-finetune (SFT) pre-trained language models on
 073 WORLD OF BOXES questions with at most 5 layers in its dependency graph and evaluate them on test
 074 questions with as many as 8 layers. On WOB-R2L, we observe that while all models reach perfect
 075 accuracy on in-distribution (ID) test questions of 5 layers, models trained with FORWARD-COT
 076 degrades sharply on out-of-distribution (OOD) questions of more than 5 layers. Search-enabled
 077 models trained on Rs-COT or DFS-COT score significantly better results on OOD questions, while
 BACKTRACK-COT models achieves almost perfect generalization to questions with dependency
 graphs up to 8 layers.

078 Next, to investigate how implicit thinking emerges during CoT learning and hampers generalization,
 079 we train a linear probe on frozen models’ internal representations to predict whether a box is neces-
 080 sary² (e.g., box PRU in Fig. 1) in computing the target box’s weight or not (e.g., box FEB). On top of
 081 FORWARD-COT models, the linear probe achieves > 95% accuracy on ID questions, revealing the
 082 fact that, before generating the first token in CoT, the model has already implicitly identified a com-
 083 plete list of necessary boxes. However, the probe accuracy drops dramatically on OOD questions of
 084 deeper dependency graphs. This indicates that the *implicit thinking* ability cannot length-generalize
 085 and potentially explains the FORWARD-COT models’ catastrophic degradation when facing OOD
 086 questions: they rely on their implicit reasoning, not CoTs to find the path connecting the source and
 087 target box. On the other hand, Rs-COT and DFS-COT models show less *implicit thinking* as the
 088 probe’s accuracy is significantly lower on ID questions. On BACKTRACK-COT models, the probe’s
 089 accuracy stays at random chance. These findings overall show a negative correlation between their
 090 implicit thinking ability and the generalization to more complex questions.

091 To understand why implicit thinking emerges during SFT on explicit CoT rationales, we propose
 092 a hypothesis explaining that language models acquire implicit reasoning ability when there exist
 093 *reasoning gaps* between CoT steps. We then show a positive correlation between the magnitude of
 094 the information gap within training-set CoTs and the implicit thinking ability measured by probing
 095 accuracy. Finally, we show that a recently proposed SFT improvements, DFT (Wu et al., 2025), in
 096 fact closes the *reasoning gaps* by scaling down the loss of off-policy CoT tokens. Empirically, we
 097 observe a significant drop in the probing performance in after applying the DFT objective. Hence,
 098 we hypothesize that a potential reason behind DFT’s successes on real-world reasoning tasks is that
 099 it effectively suppress the learning of implicit thinking from *information gaps* within CoT rationales.

100 The contributions of this work are: (1) we introduce how we create the WORLD OF BOXES dataset
 101 and different types of CoT rationales (Sec. 3); (2) we show LLMs’ failure in generalization on
 102 WORLD OF BOXES and conduct a probing analysis that exposes these models’ implicit thoughts
 103 (Sec. 4); (3) we propose a hypothesis that “information gap” within CoT rationales induces im-
 104 plicit thinking support it with empirical evidence (Sec. 5). While we refrain from overclaiming
 105 that implicit thinking causally hinders LLMs from generalizing, we present multiple pieces of evi-
 106 dence that suggests a negative correlation between these two factors. Overall, our findings indicate
 107 rethinking the role of CoT (especially in SFT) in achieving generalizable reasoning.

²An unknown box is necessary if it is the ancestor of the target box.

108

2 RELATED WORK

110 **The faithfulness of Chain-of-Thought.** Chain-of-Thought rationale is widely regarded as a interpretability tool (Wei Jie et al., 2024) that reveals the reasoning process of LLMs and an extension
 111 to their reasoning boundary (Zhou et al., 2023). However, more recent work (Turpin et al., 2023;
 112 Chen et al., 2025) finds that CoT sometimes is not totally faithful to the model’s underlying thinking
 113 process. Sometimes it is merely a post-hoc rationalization of the *implicit* thinking already done by
 114 LLMs: it only reveals partial thinking processes or even having little to no causal effects on the final
 115 predicted answer (Arcuschin et al., 2025; Stechly et al., 2025). Most notably, Barez et al. (2025)
 116 summarize the evidence of unfaithful CoT in a wide range of work mentioned above and beyond,
 117 and challenge the soundness of treating CoT as being sufficient for interpretability.
 118

119 **Probing for internal reasoning of LLMs.** In order to “read models’ mind” and expose the internal
 120 reasoning behavior that may deviate from their generated CoT rationales, previous works have
 121 leveraged probing for different indicator quantities from models’ intermediate representations. Afzal
 122 et al. (2025) show that a probe can predict a model’s success before it generates the first token in
 123 CoT, while another work (Dong et al., 2025) uses linear probe to successfully predict global struc-
 124 ture attributes (e.g., response length, reasoning steps) in the future. Most relevantly, Ye et al. (2024)
 125 use v-probing to find that language models trained with SFT on synthetic CoTs already know the
 126 full list of necessary parameters before generating the CoT.
 127

128 **The learnability and generalizability of CoTs in synthetic reasoning tasks.** A number of pre-
 129 vious works (Liu et al., 2022b; Kazemi et al., 2023; Feng et al., 2023; Wang et al., 2024; Mirzadeh
 130 et al., 2025; Shojaee et al., 2025; Malek et al., 2025) have studied the learnability of CoTs in solving
 131 reasoning-heavy tasks and the undesired shortcuts (e.g., memorization (Zhang et al., 2025b), implicit
 132 thinking (Liu et al., 2022a; Qin et al., 2025)) that arise from models’ trying to imitate demon-
 133 strations of reasoning traces. Minegishi et al. (2025) extract reasoning graph by clustering hidden-state
 134 representation of CoT steps and reveal the relationship between the graph topology and underly-
 135 ing reasoning ability. Mirtaheri et al. (2025) compare sequential versus parallel scaling CoTs on the
 136 graph connectivity problem. Most notably, Bachmann & Nagarajan (2024) demonstrate that teacher-
 137 forcing can let the model overfit “lookahead tasks” similar to our WOB and fail in generalization.
 138 Abbe et al. (2024) show that learning knowledge extraction and simple multihop reasoning is more
 139 challenging for problems with larger “branching factors” (e.g., the number of possible next steps)
 140 compared to those with a smaller action space. Zhang et al. (2025a) further reveal that for the same
 141 problem, reasoning in the direction with lower conditional entropy is always easier for language
 142 models. A recent benchmark OMEGA (Sun et al., 2025) includes olympiad-level questions that
 143 require applying learned problem-solving skills to more complex instances. They show that LLMs
 144 cannot, for example, count rectangles in an dodecagon after trained to count in octagon, similar to
 145 our finding regarding the failure in length generalization on WORLD OF BOXES after SFT.
 146

147

3 SYNTHETIC MATH DATASET

148 To isolate the core reasoning ability from confounders like domain knowledge and tool-usage in
 149 evaluation, we synthesize a grade-school math dataset called WORLD OF BOXES (WOB). It requires
 150 only commonsense (e.g., if the prompt in Fig. 1 states that box PRU weighs 1 pound less than box
 151 RYH and the box RYH weighs 22 pounds, then the models needs to generate $W_{PRU} = 22 - 1 = 21$ to solve the weight of box PRU) and addition/subtraction between positive integers less than 24.
 152

153

3.1 CONSTRUCTING A WORLD OF BOXES FROM A DEPENDENCY GRAPH

154 In WORLD OF BOXES, the prompt of every data point describes a unique imaginary world made of
 155 boxes only. We first build a tree of a certain depth (as shown in the right panel of Fig. 1) as the
 156 dependency graph between all boxes with every tree node representing a box. During the creation
 157 of the tree, we randomly select the branching factor ³ of each node from the range 1-4. We then
 158 assign every box a random integer weight between 0 to 23 pounds and a unique name made by a
 159 random permutation of three capital letters (e.g., “box FEB”). The prompt (as shown in the left panel
 160 of Fig. 1) describes the relationship between every two connected boxes (e.g., “box PRU weighs 1
 161

³A tree node with k descendants has a branching factor of k.

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175

Question (abbreviated)

Box BGA weighs 2 pounds less than box LWR.
 Box BZB weighs 10 pounds more than box RYH.
 Box COS weighs 4 pounds more than Box XKB.
 Box HWR weighs 9 pounds more than Box BGA.
 Box FEB weighs 22 pounds less than box RYH.
 Box QFV weighs 10 pounds more than box OSB.
 Box CPU weighs 8 pounds more than Box FEB.
 Each Box RYH weighs 22 pounds.
 Box MUL weighs 11 pounds less than Box PRU.
 Box BOW weighs 10 pounds more than Box BZB.
 Box BZB weighs 10 pounds less than Box AGS.
 Box DCY weighs 20 pounds more than Box OSB.
 Box IZL weighs 6 pounds more than box OGS.
 Box BOW weighs 16 pounds more than Box PRU.
 Box MWK weighs 7 pounds more than Box OSB.
 Box GLP weighs 4 pounds less than Box QFV.
 Box AGS weighs 9 pounds more than Box JRF.
 Box LWR weighs 10 pounds more than box RYH.
 Box DAO weighs 2 pounds more than Box BOW.
 Box FII weighs 6 pounds less than Box QFV.
 Box KRI weighs 8 pounds less than Box BOW.
 Box BOW weighs 10 pounds more than box JZF.
 Box OGS weighs 9 pounds less than Box XKB.
 Box PRU weighs 18 pounds more than Box BOW.
 Box BZB weighs 6 pounds more than Box PRU.
 Box PRU weighs 10 pounds less than box RYH.
 Box CKO weighs 4 pounds more than Box LWR.
 Box OSS weighs 19 pounds less than Box PRU.
 Box EYU weighs 4 pounds more than Box PRU.
 Box QFV weighs 9 pounds more than Box JZF.

What is the weight of Box EYU?

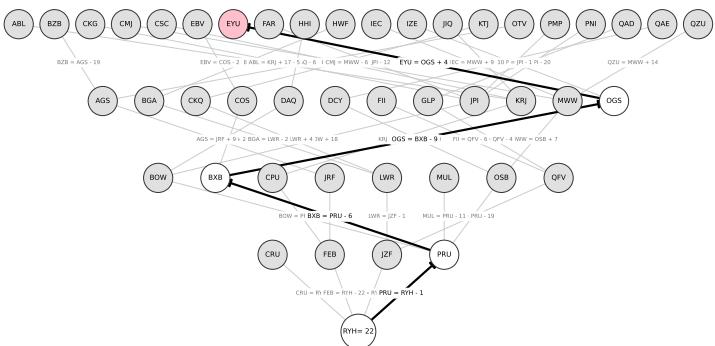


Figure 1: An example in WORLDOFBOXES-R2L dataset that requires solving the weight of a target leaf box (shown in red) by finding the path connecting it and the only box (root) with known weight. Every question (shown abbreviated on the left) describes a unique world of boxes with its underlying dependency graph (shown on the right). Each statement in the question either describes the weight of the source box or the relationship between two connected boxes. Those bold statements in the question describe the path connecting the source box RYH to the target box EYU. In the dependency graph, the boxes that are NOT on this path are shaded in grey.

183
 184 pound less than box RYH") and reveals the exact weight of one source box (e.g., "box RYH weighs
 185 22 pounds"). Based on these dependency tree graphs, we create two sub-tasks that differ in the
 186 direction of ground-truth graph traversal:

187 **WORLDOFBOXES-R2L.** Based on a randomly sampled tree, a *Root2Leaf* (WoB-R2L) question
 188 asks for the weight of a specific leaf box (target box) given only the weight of the root box (source
 189 box). The graph descriptions (e.g., box BGA weighs 2 pounds less than box LWR) and question
 190 (What is the weight of box EYU) shown on the left of Fig. 1 form a prompt in WoB-R2L.

191 **WORLDOFBOXES-L2R.** Based on a randomly sampled tree, a *Leaf2Root* (WoB-L2R) question
 192 asks for the weight of the root box (target box) given only the weight of a leaf box (source box).
 193 Based on the dependency tree graph shown in Fig. 1, a valid L2R question could ask for the weight
 194 of the root box RYH given the weight of any one of the leaf box (e.g., ABL or EYU).

3.2 SYNTHESIZING COT RATIONALES

199 To answer a question, a CoT must (1) find a path connecting the source and target box and (2)
 200 solve the weights of all boxes on the path. We construct four types of CoT rationales with different
 201 graph traversal strategies: (1) FORWARD-COT that only solve the boxes along the ground-truth path
 202 connecting the source to the target box, (2) BACKTRACK-COT that first backtracks from the target
 203 box to the source box, (3) RS-COT that traverses the entire dependency graph in random order, and
 204 (4) DFS-COT that traverses the graph following a depth-first-search procedure. We discuss each
 205 type CoT in details in Appendix A.1 and show example CoTs in Table 2.

4 DIAGNOSING IMPLICIT THINKING IN COT LEARNING

209 After introducing the WORLDOFBOXES dataset with different types of CoT rationales, we now
 210 turn to examine how training on these CoTs shapes the reasoning ability in LLMs. To this end, we
 211 evaluate post-SFT models on ID and OOD datasets and use linear probing to investigate how implicit
 212 thinking⁴ emerges in these models. We show that the choice of CoT supervision systematically
 213 influences implicit reasoning in LLMs these hidden computations hamper models' generalization to
 214 more complex questions. Our experimental setup is explained in Appendix B.1.

215 ⁴We provide a working definition of implicit thinking in Definition. 1.

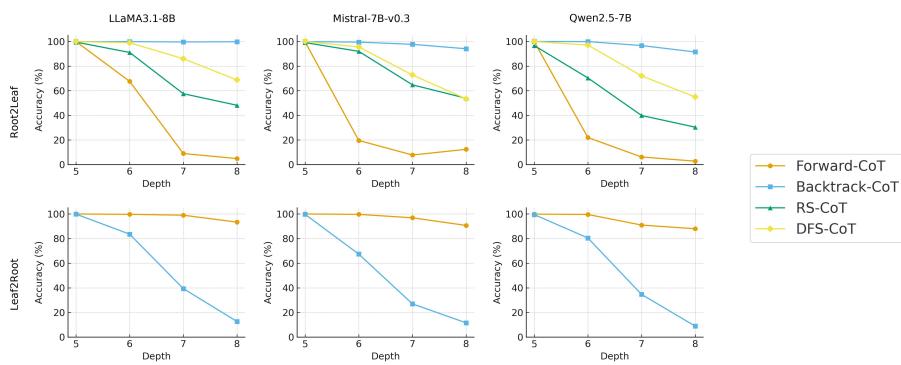


Figure 2: Test accuracy on WORLD OF BOXES of models trained with FORWARD-CoT, BACKTRACK-CoT, RS-CoT, and DFS-CoT. All models are trained on 100k questions with maximum dependency graph depth of 5 and evaluated on questions with depth 5 to 8. On WOB-L2R, both RS-CoT and DFS-CoT reduce to FORWARD-CoT because there is only one admissible next box (the predecessor of the current box). Full results are shown in Table 3 and Table 4.

4.1 LENGTH GENERALIZATION RESULTS ON WORLD OF BOXES

For each WORLD OF BOXES task (R2L and L2R), we first finetune the base models on 100k questions based on dependency graphs up to 5 layers and one of the four types of CoT (FORWARD-CoT, BACKTRACK-CoT, RS-CoT, DFS-CoT). We then evaluate them on the corresponding ID and OOD test questions based on dependency graphs with up to 8 layers.

Observation: BACKTRACK-CoT generalizes in R2L while FORWARD-CoT generalizes in L2R. As shown in Fig. 2, all finetuned models show strong in-distribution (ID) questions based on dependency graphs of 5 layers only. However, on WORLD OF BOXES-R2L task, models trained with FORWARD-CoT fail to generalize to out-of-distribution (OOD) questions with deeper dependency graphs than those seen in training: their performance drops to <10% on questions with 8-layer dependency graphs. In contrast, models trained with BACKTRACK-CoT generalize to OOD questions significantly better, achieving at least 91% accuracy on questions with 8-layer dependency graphs.

On WORLD OF BOXES-L2R, we observe a reversed trend: models trained with FORWARD-CoT generalize to more complex questions significantly better than models trained with BACKTRACK-CoT. For example, LLaMA3.1-8B finetuned with FORWARD-CoT only suffers a minimal performance drop (100% → 94.5%) when the number of CoT steps increases from 5 to 8, while the same model trained with BACKTRACK-CoT only achieves 12.7% accuracy on questions requiring 8 steps.

Observation: DFS-CoT generalizes better than RS-CoT on WORLD OF BOXES-R2L. We then finetune the three base models on the same WORLD OF BOXES-R2L training set used above, but with RS-CoT and DFS-CoT as the output supervision. Compared to FORWARD-CoT and BACKTRACK-CoT, these two types of CoT allow the model to explore the entire dependency graph following the order defined by a graph traversing algorithm and solving the weight of visited boxes along the way. As shown in Fig. 2, models trained with DFS-CoT outperform their corresponding models trained with RS-CoT in every OOD test (with dependency graphs of 6, 7, or 8 layers), while both obtain a significant advantage over FORWARD-CoT: LLaMA3.1-8B’s performance improves from 5.3% to 44.4% after we replaced the FORWARD-CoT with DFS-CoT as the training labels.

Finding I: Reasoning in the direction with lower branching factor yields stronger generalization. Reflecting upon the two observations above, we find that the length-generalization potential of CoT supervision depends on the interaction between CoT’s traversal direction and the dependency graph’s topology. Specifically, when the CoT traverses the dependency tree graph from leaf to root (e.g., BACKTRACK-CoT in R2L), the post-SFT models generalize well to solve questions with dependency graphs deeper than those seen in training. This trend also aligns with the finding in (Zhang et al., 2025a), which states that given a question, it is easier to approach it from the direction with lower branching factor (e.g., traversing a tree from leaf to root has a branching factor of 1 at each step while traversing from root to leaf has a dynamic branching factor that equals the number of successors of the current node). In real-world reasoning scenarios, the underlying dependency

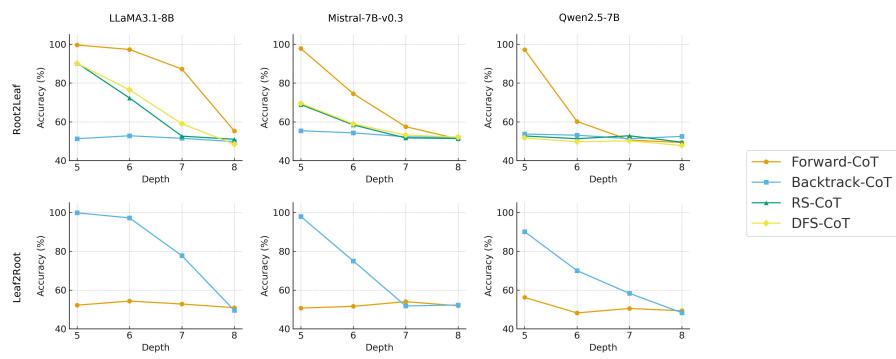


Figure 3: Probing accuracy of predicting whether a box described in the instruction is necessary (box PRU in Fig. 1) or not (box CRU/FEB/JZF in Fig. 1) in computing the target box. All models are trained on 100k questions with at most 5 layers in their dependency graph and then frozen. All linear probes are trained and evaluated on questions with dependency graphs of 5-8 layers. Full results are shown in Table 5 and Table 6.

graph is rarely as simple as a tree: some nodes could have multiple predecessors and successors and hence it is difficult to predict the optimal CoT direction. Therefore we need CoTs with a more general, error-tolerant traversal strategy like RS-CoT and DFS-CoT that can generalize well even when traversing the graph in the direction of large branching factor. Next, in Sec. 4.2, we will probe into the internal representations of models that learned different types of CoT and explain what factors enable/disable models’ generalization.

4.2 MEASURING IMPLICIT THINKING WITH LINEAR PROBE

In order to understand how the fine-tuned model internally decides which box to explore at a certain CoT step, we train a linear probe on the model’s internal state for the binary classification task: whether a box is necessary for computing the weight of the target box (probing task $\text{nece}(A)$ in (Ye et al., 2024)). Further details of probing experiment’s setup is discussed in Appendix C.1.

Observation: FORWARD-CoT models implicitly think ahead on WOB-R2L while BACKTRACK-CoT models implicitly think ahead on WOB-L2R. We present our probing results in Fig. 3. Similar to the findings in Ye et al. (2024), probing on WORLD OF BOXES-R2L requiring 5 CoT steps indicates that, by the end of the problem description and before generating the first token in CoT, the FORWARD-COT model has already identified the full list of necessary boxes (the shortest path connecting the source root node to the target leaf node). This reveals that the generated CoT is simply following the result of the models’ implicit thinking. In contrast to the results on WORLD OF BOXES-R2L, probing on the L2R subtask, where the FORWARD-COT models achieve significantly better generalization, shows that they do not learn to implicitly plan ahead: for both ID questions requiring 5 CoT steps and OOD questions requiring up to 8 steps, the probe’s accuracy remains around random chance (50%). The probing results of the BACKTRACK-COT models are exactly opposite of the FORWARD-COT models: as shown in Fig. 3, the probe’s accuracy remains around random chance at ID questions (depth=5) on WORLD OF BOXES-R2L while achieving > 90% accuracy on L2R.

Observation: The implicit thinking ability cannot generalize to OOD questions. While we observe hints of strong implicit thinking ability from probing FORWARD-COT models and BACKTRACK-COT models on R2L and L2R subtasks respectively, the probe’s accuracy drops significantly on OOD questions with deeper dependency graphs. As shown in Fig. 3, the probing accuracy of all 3 FORWARD-COT models (orange lines) on WOB-R2L (upper half of the figure) drops to below 60% on questions with dependency graphs of 8 layers. It indicates that implicit thinking can only support questions of the same or lower complexity as those seen during training. This drop in implicit thinking ability also aligns the same trend as their degrading performance shown in Fig. 2.

Finding II: Implicit thinking negatively impacts length generalization. Compared to the results of probing FORWARD-COT models on R2L subtask, we observe lower accuracy when probing models trained on search traces (RS-CoT or DFS-CoT) on in-distribution questions of depth

324 5. For example, the probe only achieves an accuracy of 62% on Qwen2.5-7B-Rs-CoT and 51%
 325 on Qwen2.5-7B-DFS-CoT. Overall, probing these models trained with different types of CoT on
 326 WORLD OF BOXES reveals a negative correlation between their generalization to more complex ques-
 327 tions and their implicit thinking ability: models that do not implicitly plan ahead (FORWARD-COT
 328 on L2R, BACKTRACK-COT and DFS-CoT on R2L) achieve better generalization to questions re-
 329 quiring more CoT steps than those seen in training. In other words, it suggests that implicit reasoning
 330 is a static capability with a fixed capacity, while explicit reasoning in the token space can dynam-
 331 ically extend its capacity beyond the training distribution. In the next section, we will propose a
 332 hypothesis based on information theory to explain what causes the models to not acquire the
 333 implicit reasoning ability on WORLD OF BOXES tasks.

334 335 5 TOWARDS GENERALIZABLE CoT BY ENCOURAGING EXPLICIT THINKING

336 In this section, we first propose a hypothesis regarding the "information gap" in CoT (Sec. 5.1) and
 337 show that it positively correlates with the implicit thinking ability of post-SFT models (Sec. 5.2).
 338 Finally, we show that a recent improvement to the SFT objective can reduce the implicit thinking of
 339 models trained on WORLD OF BOXES (Sec. 5.3).

340 341 342 343 5.1 THE HYPOTHESIS OF INFORMATION GAP IN CHAIN-OF-THOUGHT RATIONALE

344 **Notations.** We denote a directed acyclic dependency graph with N nodes as $g = \{n_1, n_2, \dots, n_N\}$.
 345 A trajectory $\tau = [\tau_1, \tau_2, \dots, \tau_P]$ traverses g by visiting nodes $\tau_1, \tau_2, \dots, \tau_P$ sequentially. A trajectory
 346 ${}^\phi\tau$ follows a graph traversing heuristic ϕ (e.g., depth-first search) that cannot jump over an unvisited
 347 node to directly visit its children. For non-deterministic heuristic ϕ (e.g., DFS used in creating DFS-
 348 CoT), ${}^\phi\mathcal{T} = \{{}^\phi\tau\}$ is the collection of all possible trajectories τ that could be produced by ϕ . At any
 349 step i , \mathbb{C}_i^ϕ is the list of *admissible nodes* that can be visited at step i according to ϕ . For the example
 350 in Fig. 1, $\mathbb{C}_1^{DFS} = \mathbb{C}_1^{RS} = \{RYH\}$ (because the first step has to visit the root) and $\mathbb{C}_2^{DFS} = \mathbb{C}_2^{RS} =$
 351 $\{CRU, FEB, JZF, PRU\}$. Assuming $\tau_2 = FEB$, then $\mathbb{C}_3^{DFS} = \{CPU, JRF\}$ because DFS must
 352 prioritize successors of the last visited node, while $\mathbb{C}_3^{RS} = \{CRU, JZF, PRU, CPU, JRF\}$. We
 353 first formally define implicit thinking on a dependency graph:

354 **Definition 1 (Implicit thinking on a dependency graph.)** Given a dependency graph g and the
 355 task of finding a path $\tau = [\tau_1, \tau_2, \dots, \tau_P]$, we say the model "implicitly thinks" if the representa-
 356 tions $r(\tau_i|g)$ and $r(c|g) \forall \tau_i \in \tau, c \in \mathbb{C}_i \setminus \tau$ are linearly separable.

357 Note that the representations $r(\tau_i|g)$ and $r(c|g)$ are only conditioned on the graph without any
 358 generated CoT tokens. Therefore, Definition 1 aligns with our approach to use a linear probe to
 359 quantify the magnitude of "implicit thinking" (i.e., the linear separability) within models. Next, we
 360 define the Information Gap within a CoT trajectory that traverses the dependency graph:

361 **Definition 2 (Information Gap within a CoT trajectory)** Given a dependency graph g , the infor-
 362 mation gap \mathcal{I} of a trajectory τ following a graph traversal heuristic ϕ is defined as:

$$363 \mathcal{I}(\tau) = -\frac{1}{P} \sum_{i=1, \dots, P} \log(q^\phi(\tau_i|\tau)), \quad q^\phi(\tau_i|\tau) = \frac{|\mathbb{C}_i^\phi \cap \tau|}{|\mathbb{C}_i^\phi|}$$

364 where P is the number of nodes visited by τ and $q^\phi(\tau_i|\tau)$ is the ratio between "explored admissible
 365 nodes" ($\mathbb{C}_i^\phi \cap \tau$) and "all admissible nodes" (\mathbb{C}_i^ϕ) at step i . Intuitively, Definition 2 measures both
 366 the "branching factor" and the "completeness" of the exploration at any point of the trajectory. A
 367 large branching factor corresponds to a large set of admissible nodes \mathbb{C}_i and hence contributes to a
 368 larger denominator for $q^\phi(\tau_i|\tau)$. On the other hand, a more complete exploration of the dependency
 369 graph contributes to a larger numerator. For example in Fig. 1, if all of the four admissible boxes
 370 at layer 1 (CRU, FEB, JZF, PRU) are visited by the end of the DFS-CoT (i.e., $\mathbb{C}_2^\phi \in \tau$), then
 371 $|\mathbb{C}_2^\phi \cap \tau| = |\mathbb{C}_2^\phi|$ and hence $q^{dfs}(\tau_2|\tau) = 1$, yields an information gap of 0 at step 2. However, if
 372 only CRU and FEB are explored through the DFS-CoT, then $|\mathbb{C}_2^\phi \cap \tau| = 2$ at step 2, which would
 373 contribute to a positive information gap of $-\log(1/2)$.

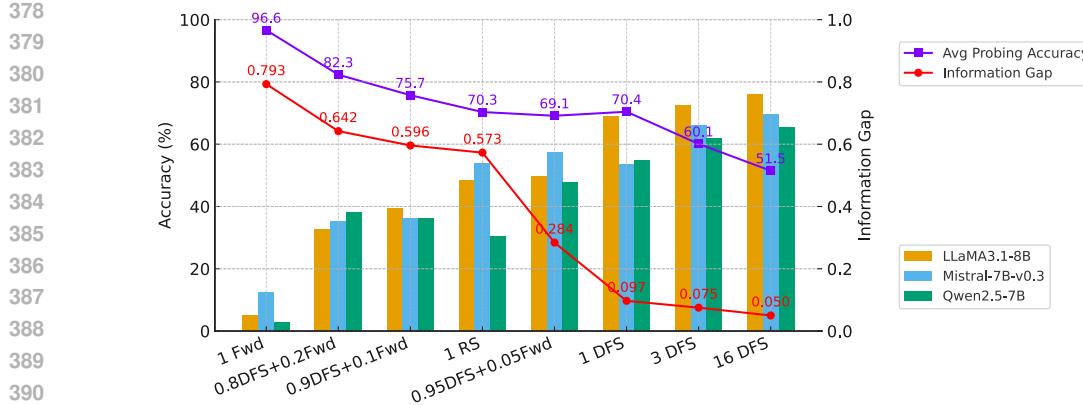


Figure 4: Answer accuracy on questions with 8-layer dependency graph, information gap of the training set, and probing accuracy averaged over the 3 base models. Full results are shown in Table 7.

Hypothesis 1 (Information Gap in CoT induces implicit thinking) *Given a language model \mathcal{M} , a dataset $\mathcal{G} = [(g_j, \phi_j^\tau)]_{j=1, \dots, J}$ of J dependency graphs and trajectories sampled from a traversal heuristic ϕ_i . SFT \mathcal{M} on \mathcal{G} yields \mathcal{M}_{ϕ_i} . If $\forall g_j \in \mathcal{G}, \mathcal{I}(\phi_j^\tau) < \mathcal{I}(\phi_i^\tau)$, then \mathcal{M}_{ϕ_i} has less implicit thinking (measured by probing) than \mathcal{M}_{ϕ_j} .*

Intuitively, a large information gap between two consecutive CoT steps $i-1, i$ indicates that, given the previous $i-1$ steps, there are many possible nodes which can be explored at step i and the current CoT τ only explores a few by the end (i.e., $|\mathcal{C}_i^\phi \cap \tau| \ll |\mathcal{C}_i^\phi|$). Therefore, simply optimizing the likelihood of explored nodes $|\mathcal{C}_i^\phi \cap \tau|$ could encourage the model to search for clues from its internal representations, which are not explicitly stated in previous CoT steps, that could be utilized to justify not exploring other admissible nodes.

5.2 SUPPORTING EVIDENCE OF THE INFORMATION GAP HYPOTHESIS

To support Hypothesis 1, we present the next observation and finding that, although cannot establish causality, exemplify the co-occurrence of the mitigating Information Gap in the CoT training data and the reduction of the implicit thinking measured post-SFT.

Observation: SFT on multiple search traces per question reduces implicit thinking and improves generalization. In Definition 2, we defined Information Gap within a single trajectory that traverses a dependency graph. When training an LLM to solve the target variable by traversing a dependency graph, it is possible to sample multiple CoT trajectories as the labels for each question. To gain more insights into the effect of learning from multiple CoTs per question, we define:

Definition 3 (Information Gap within multiple CoT trajectories of a single graph) *Given a dependency graph g with a list of K trajectories $\{\tau^k\}_{k=1, \dots, K}$ that follow a graph traversal heuristic ϕ , the information gap \mathcal{I} within one trajectory τ^k is:*

$$\mathcal{I}(\tau^k) = -\frac{1}{P} \sum_{i=1, \dots, P} \log(q^\phi(\tau_i^k | \mathcal{T})), \quad q^\phi(\tau_i^k | \mathcal{T}) = \frac{|\mathcal{C}_i^\phi \cap \mathcal{T}|}{|\mathcal{C}_i^\phi|}, \quad \mathcal{T} = \bigcup_k \tau^k$$

where τ_i^k is the i -th node's id visited by τ^k . According to Definition 3, given multiple trajectories of the same dependency graph, the information gap within each trajectory τ^k could be reduced because when exploring τ_i^k , nodes visited by other trajectories (\mathcal{T}) that are also within the admissible nodes of the current step (\mathcal{C}_i) can increase the numerator ($|\mathcal{C}_i^\phi \cap \mathcal{T}|$). Therefore, Hypothesis 1 suggests that once a model is shown multiple CoT trajectories that sufficiently explore the admissible node space at a state $g, \tau_{<i}$, it is less likely to develop implicit thinking.

To verify this hypothesis, we sample up to 16 DFS-CoT trajectories per question and then finetune base models on this augmented training set with 3 CoTs per question. Based on the answer

Training Loss	Math Accuracy				Probe Accuracy 5
	5	6	7	8	
SFT	96.7	70.4	39.9	30.4	52.7
DFT	98.2	71.5	43.1	36.7	50.2

Table 1: Test accuracy on WORLDFOFBXES-R2L of Qwen2.5-7B trained with RS-CoT using either standard SFT loss (cross entropy) or DFT loss (Wu et al., 2025). All models are trained on 100k questions with maximum dependency graph depth of 5 and evaluated on questions with dependency graphs of depth 5 to 8.

and probing accuracy in Fig. 4, LLaMA and Mistral models trained with 3/16 trajectories per question consistently obtain better length-generalization results and lower probing accuracy compared to their counterparts trained with only 1 trajectory per question. This observation corroborates our argument that mitigating the information gap by including multiple trajectories per question indeed reduces implicit thinking and hence improves length-generalization.

We calculate the average Information Gap of FORWARD-CoT, RS-CoT, and DFS-CoT rationales of the entire training set. We also create 3 hybrid CoT types x DFS+ $(1 - x)$ FWD-CoT: at each step, we randomly select between DFS-CoT and FORWARD-CoT with probability x and $1 - x$ respectively. As presented in Fig. 4, DFS-CoT has the lowest average Information Gap of 0.097, while FORWARD-CoT has the largest Information Gap of 0.793. For the augmented training set, with 3 DFS-CoT trajectories per question the average information gap reduces from 0.097 to 0.075, while having 16 trajectories further lowers it down to 0.05. These measured information gaps (\mathcal{I}) directly validate Corollary 3. Combining \mathcal{I} and the probing accuracy reported in Fig. 4 further support our Hypothesis 1, that information gap (\mathcal{I}) within CoT rationales induces implicit thinking in post-SFT models. Drawing connection between Hypothesis 1 and Finding II that showcase how implicit thinking negatively impacts generalization further brings out our ultimate hypothesis:

Hypothesis 2 (Information Gap in CoT impair length generalization) *Given a language model \mathcal{M} , a dataset $\mathcal{G} = [(g_j, \phi_j \tau)]_{j=1, \dots, J}$ of J dependency graphs with maximum depth of d and traversal trajectories following traversal heuristic ϕ . SFT \mathcal{M} on \mathcal{G} yields \mathcal{M}_ϕ . If $\forall g_j \in \mathcal{G}$, $\mathcal{I}(\phi_j \tau) < \mathcal{I}(\phi'_j \tau)$, then \mathcal{M}_{ϕ_1} can generalize better than \mathcal{M}_{ϕ_2} on deeper dependency graphs g' with depth $d' > d$.*

This hypothesis can be seen as the generalization of the conclusion in Zhang et al. (2025a), which states that among forward and backward reasoning, decoding in the direction with lower branching factor yields better results. By defining information gap based on the branching factor and exploration ratio, we are able to measure any traversal strategy (beyond forward and backward reasoning) and reveal that information gap in CoT supervision hurts generalization because it elicits static, implicit thinking that cannot generalize beyond the dependency graph depth seen in training.

5.3 CONNECTION TO REASONING TASKS IN THE WILD

In Definition 2, we assume the dependency graph of variables is known. Here we define Information Gap within a CoT rationale for questions in the wild without a known dependency graph.

Definition 4 (Information Gap within a CoT in the wild) *Given an instruction x , the information gap \mathcal{I} of a CoT rationale y is the average token-level log likelihood:*

$$\mathcal{I}(y) = -\frac{1}{P} \sum_{i=1, \dots, P} \log(p_\theta(y_i | y_{<i}, x))$$

where $p_\theta(y_i | y_{<i}, x)$ is an LLM’s (parameterized by θ) output distribution given the previous $i - 1$ CoT tokens and instruction x . A large information gap is caused by low-likelihood tokens in CoT, which intuitively means a large portion of token-level probability space is left unexplored.

Since it’s not a trivial task to establish a sequence of necessary variables for non-synthetic reasoning questions, we cannot measure the amount of implicit thinking in the wild by probing for these variables in models’ internal representations. However, we observe that a recently proposed

SFT objective called DFT (Wu et al., 2025), which bring non-trivial gains in reasoning-heavy tasks like math and coding, can also reduce implicit thinking on WORLD OF BOXES. Specifically, DFT reweights the token-level cross-entropy loss by the token’s own probability. According to Definition. 4, low-likelihood tokens also contribute the most toward the overall information gap of the CoT rationale. Therefore, scaling down the loss of these tokens is also mitigating the influence of information gap in the gradients. We replace the cross-entropy loss with DFT loss in SFT and then train a linear probe following the same procedure in Sec. 4.2. Using RS-COT as the supervision in SFT, we observe stronger generalization to deeper graph and lower probing accuracy on models trained with DFT loss (Table 1), indicating that suppressing the gradients from CoT tokens with large information gap can indeed prevent models from developing implicit thinking during SFT.

6 CONCLUSION

In summary, we show that standard CoT training can mask non-causal “implicit” reasoning that collapses under length extrapolation, and we make this failure mode concrete with a controlled grade-school math benchmark (WORLD OF BOXES). SFT’d models solve in-distribution questions yet rely on implicit backtracking that does not generalize to deeper trees, as revealed by linear probes that recover the model’s internal plan before any CoT token is emitted. By contrast, training models by adopting objectives that close *information gaps* (e.g., including multiple CoTs per question) suppresses these shortcuts in training, aligns generated CoT with the model’s real computation, and yields markedly stronger out-of-distribution performance. Taken together, our results argue that length-generalizable reasoning emerges when supervision faithfully traces the causal steps the model actually uses, not when CoT is treated as a decorative afterthought.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can transformers reason? the globality barrier and inductive scratchpad. *Advances in Neural Information Processing Systems*, 37:27850–27895, 2024.

Anum Afzal, Florian Matthes, Gal Chechik, and Yftah Ziser. Knowing before saying: LLM representations encode information about chain-of-thought success before completion. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 12791–12806, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.662. URL <https://aclanthology.org/2025.findings-acl.662/>.

Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and Arthur Conny. Chain-of-thought reasoning in the wild is not always faithful. *arXiv preprint arXiv:2503.08679*, 2025.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 2296–2318. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/bachmann24a.html>.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the risks of promoting obfuscation. *arXiv preprint arXiv:2503.11926*, 2025.

Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, et al. Chain-of-thought is not explainability. *Preprint, alphaXiv*, pp. v2, 2025.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan Leike, Jared Kaplan, and Ethan Perez. Reasoning models don’t always say what they think, 2025. URL <https://arxiv.org/abs/2505.05410>.

540 Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, and Chaochao Lu. Emergent response
 541 planning in LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL
 542 <https://openreview.net/forum?id=Ce79P8ULPY>.

543 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 544 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 545 *arXiv e-prints*, pp. arXiv–2407, 2024.

546 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
 547 revealing the mystery behind chain of thought: A theoretical perspective. In A. Oh,
 548 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
 549 ral Information Processing Systems*, volume 36, pp. 70757–70798. Curran Associates, Inc.,
 550 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf.

551 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 552 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 553 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 554 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

555 Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. LAMBADA:
 556 Backward chaining for automated reasoning in natural language. In Anna Rogers, Jordan Boyd-
 557 Gruber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association
 558 for Computational Linguistics (Volume 1: Long Papers)*, pp. 6547–6568, Toronto, Canada, July
 559 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.361. URL
 560 <https://aclanthology.org/2023.acl-long.361/>.

561 Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
 562 learn shortcuts to automata. *arXiv preprint arXiv:2210.10749*, 2022a.

563 Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
 564 learn shortcuts to automata. *arXiv preprint arXiv:2210.10749*, 2022b.

565 Alan Malek, Jiawei Ge, Nevena Lazic, Chi Jin, András György, and Csaba Szepesvári. Frontier llms
 566 still struggle with simple reasoning tasks. *arXiv preprint arXiv:2507.07313*, 2025.

567 Gouki Minegishi, Hiroki Furuta, Takeshi Kojima, Yusuke Iwasawa, and Yutaka Matsuo. Topology
 568 of reasoning: Understanding large reasoning models through reasoning graph properties. In *Ad-
 569 vances in Neural Information Processing Systems*. Curran Associates, Inc., 2025. URL <https://openreview.net/pdf/7131557a34836bae01d636c964b3953522c88ea0.pdf>.

570 Parsa Mirtaheri, Ezra Edelman, Samy Jelassi, Eran Malach, and Enric Boix-Adserà. Let me think! a
 571 long chain-of-thought can be worth exponentially many short ones. *CoRR*, abs/2505.21825, May
 572 2025. URL <https://doi.org/10.48550/arXiv.2505.21825>.

573 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 574 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
 575 large language models. In *The Thirteenth International Conference on Learning Representations*,
 576 2025. URL <https://openreview.net/forum?id=AjXkRZIvjb>.

577 Tian Qin, David Alvarez-Melis, Samy Jelassi, and Eran Malach. To backtrack or not to backtrack:
 578 When sequential search limits model reasoning. In *Second Conference on Language Modeling*,
 579 2025. URL <https://openreview.net/forum?id=XNQHMYsUHf>.

580 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 581 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 582 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 583 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 584 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 585 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 586 URL <https://arxiv.org/abs/2412.15115>.

594 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 595 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 596 models via the lens of problem complexity, 2025. URL <https://arxiv.org/abs/2506.06941>.

598 Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Subbarao Kambham-
 599 pati. Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens. *arXiv*
 600 *preprint arXiv:2505.13775*, 2025.

602 Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Jiankun Zheng, Hannaneh Hajishirzi, Nouha Dziri,
 603 and Dawn Song. OMEGA: Can LLMs reason outside the box in math? evaluating exploratory,
 604 compositional, and transformative generalization. In *The Thirty-ninth Annual Conference on*
 605 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2025. URL <https://openreview.net/forum?id=gBxpAKxg22>.

607 Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don't always
 608 say what they think: Unfaithful explanations in chain-of-thought prompting. In *Thirty-seventh*
 609 *Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=bzs4uPLXvi>.

611 Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transform-
 612 ers: A mechanistic journey to the edge of generalization. In A. Globerson, L. Mackey,
 613 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-*
 614 *ral Information Processing Systems*, volume 37, pp. 95238–95265. Curran Associates, Inc.,
 615 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/ad217e0c7fecc71bdf48660ad6714b07-Paper-Conference.pdf.

618 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 619 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 620 *neural information processing systems*, 35:24824–24837, 2022.

621 Yeo Wei Jie, Ranjan Satapathy, Rick Goh, and Erik Cambria. How interpretable are reason-
 622 ing explanations from prompting large language models? In Kevin Duh, Helena Gomez, and
 623 Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL 2024*,
 624 pp. 2148–2164, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
 625 doi: 10.18653/v1/2024.findings-naacl.138. URL <https://aclanthology.org/2024.findings-naacl.138/>.

627 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
 628 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
 629 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.

631 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
 632 grade-school math and the hidden reasoning process. *arXiv preprint arXiv:2407.20311*, 2024.

633 Yizhe Zhang, Richard Bai, Zijin Gu, Ruixiang Zhang, Jitao Gu, Emmanuel Abbe, Samy Bengio,
 634 and Navdeep Jaitly. What makes the preferred thinking direction for llms in multiple-choice
 635 questions?, 2025a. URL <https://arxiv.org/abs/2502.18435>.

637 Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity
 638 control facilitates reasoning-based compositional generalization in transformers. *arXiv preprint*
 639 *arXiv:2501.08537*, 2025b.

640 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
 641 urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
 642 enables complex reasoning in large language models. In *The Eleventh International Confer-
 643 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=WZH7099tgfM>.

645
 646
 647

648
649

A APPENDIX: SYNTHETIC MATH DATASET

650
651

A.1 FOUR TYPES OF CoT RATIONALE

652
653
654
655

Forward-CoT. This type of CoT restricts reasoning to the boxes along the ground-truth path from the source to the target node. It forms the shortest sequence of boxes the model needs to solve in order to solve the target box. The CoT starts from the source box (the root for R2L or a leaf for L2R) and, at each step, performs an arithmetic operation to calculate the weight of a successor box.

656
657
658
659
660
661

Backtrack-CoT. This type of CoT differs from a FORWARD-COT in that it first goes through the shortest path in the backward direction (starting from the target box and reaching the source box at the end) and then follows the exact steps in a FORWARD-COT. BACKTRACK-COT mimics the process of backtracking the dependencies from the knowledge graph (e.g., “I need to find the weight of Box X. Box X weighs 5 pounds more than Box H, so let me solve Box H first.”), which is often adopted by humans in solving complex questions (Ye et al., 2024).

662
663
664
665
666

Random-search (RS) CoT. For R2L, we also create Random-search (Rs-CoT) and DFS-CoT (introduced below), both of which can include boxes that are not necessary in solving the target box. Specifically, for each CoT step, we uniformly sample from a list of solvable boxes⁵ and add the corresponding arithmetic solution for this box to the CoT.

667
668
669
670

DFS-CoT. Depth-first-search (DFS) CoT differs from Rs-CoT in that it traverses the dependency graph following a DFS procedure. When the solved box at the current step has multiple children boxes, we randomly select one of them to solve at the next step.⁶ Compared to random search, DFS has a smaller search space at most CoT steps.

671
672

A.2 TRAINING AND TEST SETS

673
674
675
676
677
678
679
680

In constructing the training set, we first sample dependency tree graphs with the depth ranging from 3 to 5 and then create the prompt that describes all dependency between boxes. Fig. 1 shows a dependency graph of depth 5 and the partial prompts of a WOB-R2L question. Our in-distribution (ID) test set is created following the same procedure as the training set, with a fixed tree depth of 5. The random process in creating the dependency graph, box names, and box weights ensures that every test question describes a novel world of boxes. Other than the ID test set, we also create 3 out-of-distribution (OOD) test sets by sampling dependency tree graphs of depth 6, 7, and 8 so that solving these questions requires generating CoT longer than those seen in training.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

⁵In R2L, a box is solvable if the weight of its parent is known. In L2R, a box is solvable if the weight of one of its children is known.

⁶This is achieved by randomizing the order of adding the children nodes to the stack during DFS.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Type	CoT Rationales
FORWARD-CoT	Each Box RYH weighs 22 pounds. Box PRU weighs 1 pounds less than Box RYH. So Box PRU weighs $22 - 1 = 21$ pounds. Box BXB weighs 6 pounds less than Box PRU. So Box BXB weighs $21 - 6 = 15$ pounds. [1 step omitted] Box EYU weighs 4 pounds more than Box OGS. So Box EYU weighs $6 + 4 = 10$ pounds.
BACKTRACK-CoT	Box EYU weighs 4 pounds more than Box OGS. So I need to find out the weight of Box OGS. Box OGS weighs 9 pounds less than Box BXB. So I need to find out the weight of Box BXB. [1 step omitted] Box PRU weighs 1 pounds less than Box RYH. So I need to find out the weight of Box RYH. <i>Now let's solve these unknown boxes one by one. [FORWARD-CoT omitted]</i>
Rs-CoT	Each Box RYH weighs 22 pounds. Box FEB weighs 22 pounds less than Box RYH. So Box FEB weighs $22 - 22 = 0$ pounds. Box CPU weighs 8 pounds more than Box FEB. So Box CPU weighs $0 + 8 = 8$ pounds. Box CRU weighs 3 pounds less than Box RYH. So Box CRU weighs $22 - 3 = 19$ pounds. [20 steps omitted] Box EYU weighs 4 pounds more than Box OGS. So Box EYU weighs $6 + 4 = 10$ pounds.
DFS-CoT	Each Box RYH weighs 22 pounds. Box FEB weighs 22 pounds less than Box RYH. So Box FEB weighs $22 - 22 = 0$ pounds. Box CPU weighs 8 pounds more than Box FEB. So Box CPU weighs $0 + 8 = 8$ pounds. Box KRJ weighs 8 pounds less than Box CPU. So Box KRJ weighs $8 - 8 = 0$ pounds. Box CSC weighs 7 pounds more than Box KRJ. So Box KRJ weighs $0 + 7 = 7$ pounds. [18 steps omitted] Box EYU weighs 4 pounds more than Box OGS. So Box EYU weighs $6 + 4 = 10$ pounds.

731
732
733
734
735
736
737 Table 2: Four types of CoT rationales we created for the WORLD OF BOXES-R2L question shown
738 in Fig. 1: “what is the weight of Box EYU?”. BACKTRACK-COT first backtracks from the target box
739 EYU to the source box RYH and then produces the FORWARD-COT (omitted). RS-COT traverses
740 the tree by randomly choosing a solvable boxes whose predecessor’s weight is known. DFS-COT
741 traverses the tree graph following a depth-first search heuristic until it reaches the target box EYU.
742 We omit some intermediate steps in each CoT rationale due to limited space.
743
744
745
746
747
748
749
750
751
752
753
754
755

Models	ROOT2LEAF (R2L)				LEAF2ROOT (L2R)			
	5	6	7	8	5	6	7	8
FORWARD-CoT								
LLaMA3.1-8B	100	67.6	9.0	4.9	100	99.7	99	93.4
Mistral-7B-v0.3	99.7	19.6	7.8	12.4	100	99.7	96.9	90.7
Qwen2.5-7B	99.9	22.0	6.2	2.8	99.9	99.6	91.0	88.0
BACKTRACK-CoT								
LLaMA3.1-8B	99.9	99.9	99.6	99.8	99.9	83.6	39.4	12.7
Mistral-7B-v0.3	99.9	99.5	97.7	94.1	99.7	67.4	27	11.6
Qwen2.5-7B	100	99.9	96.7	91.5	99.5	80.5	34.7	8.9

Table 3: Test accuracy on WORLD OF BOXES of models trained with FORWARD-CoT and BACKTRACK-CoT. All models are trained on 100k questions with maximum dependency graph depth of 5 and evaluated on questions with dependency graphs of depth 5 to 8.

Models	Rs-CoT				DFS-CoT			
	5	6	7	8	5	6	7	8
LLaMA3.1-8B	99.5	91.1	57.6	48.2	99.9	99.0	86.0	68.8
Mistral-7B-v0.3	99.1	92.0	64.8	53.9	100.0	95.6	72.8	53.4
Qwen2.5-7B	96.7	70.4	39.9	30.4	100.0	97.1	72.1	54.9

Table 4: Test accuracy on WORLD OF BOXES-R2L of models trained with Rs-CoT and DFS-CoT. All models are trained on 100k questions with maximum dependency graph depth of 5 and evaluated on questions with dependency graphs of depth 5 to 8.

B APPENDIX: EXPERIMENTS

B.1 EXPERIMENTAL SETUP

Base models. For all experiments in this work, we finetune and evaluate on three base models: LLaMA3.1-8B (Dubey et al., 2024), Mistral-7B-v0.3 (Jiang et al., 2023), and Qwen2.5-7B (Qwen et al., 2025). During evaluation, we allow the models to generate up to 16384 tokens to minimize the risk of failing the task by running out of token budget.

B.2 FULL RESULTS

We show the full results of evaluating post-SFT models on WORLD OF BOXES test sets in Table 3 and Table 4.

810 C APPENDIX: PROBING EXPERIMENTS
811812 C.1 EXPERIMENTAL SETUP
813

814 In order to understand how the fine-tuned model internally decides which box to explore at a certain
815 CoT step, we train a linear probe on the model’s internal state for the binary classification task:
816 whether a box is necessary for computing the weight of the target box (probing task $\text{nece}(A)$ in
817 (Ye et al., 2024)). Specifically, we append a box’s name to the problem description and feed the
818 last token’s final-layer representation as the input to the probe. With all model parameters frozen,
819 we train the linear probe on 100k WORLD OF BOXES (either R2L or L2R) questions requiring 3 to 8
820 CoT steps with a balanced class distribution.⁷ The test set is comprised of unseen questions with a
821 balanced distribution of positive and negative classes.
822

823 C.2 MORE FINDINGS
824

825 **Observation: FORWARD-CoT models implicitly search backward while BACKTRACK-CoT
826 models implicitly search forward.** Other than the overall accuracy of probing for every necessary
827 box in the k -step CoT, we further break down the probe’s accuracy at classifying boxes at different
828 depths in the dependency graph. On WOB-R2L questions with out-of-distribution depths of 6 to 8,
829 the probes on FORWARD-CoT models consistently achieve strong performance in classifying boxes
830 in the last 5 layers. This observation indicates that FORWARD-CoT models learn static, implicit
831 backtracking: before generating the CoT, they internally search backward from the target box to
832 uncover the last 5 necessary boxes. In contrast, on WOB-L2R, we can observe that the probes
833 on BACKTRACK-CoT models remain accurate in the first 5 boxes from the leaf-to-root path, only
834 failing to classify boxes in the last $k - 5$ layers (i.e., boxes that are closer to the root), suggesting
835 BACKTRACK-CoT models learn static, implicit forward search that can discover the first 5 necessary
836 boxes that need to be solved in CoT.
837

838 **Finding III: Implicit thinking traverse the dependency graph from leaf to root.** Reflecting
839 on the symmetrical pattern observed above: FORWARD-CoT models implicitly think backward on
840 R2L while BACKTRACK-CoT models implicitly think forward on L2R, we find that models always
841 develop implicit thinking when the CoT rationales present the path from root to leaf. Moreover,
842 this implicit search always proceeds from bottom up (leaf to root), which has a branching factor
843 of 1, instead of attempting the much more complex task of traversing the entire graph from top
844 down (root to leaf). When the CoT rationales already traverse the tree graph from leaf to root, then
845 the models would not develop additional implicit search. In real-world reasoning scenarios, the
846 underlying dependency graph could encompass a mixture of R2L and L2R paths: some nodes may
847 have more predecessors than successors and some may have more successors than predecessors.
848 Therefore, a purely FORWARD-CoT or BACKTRACK-CoT may inevitably induce implicit thinking
849 in the models.
850

851 D MORE RESULTS
852853 D.1 FULL RESULTS OF FIGURES IN THE MAIN PAPER
854

855 We show the full results of probing experiments in Table 5 and Table 7.
856

857 D.2 IMPACT OF MODEL SIZES ON IMPLICIT THINKING
858

859 We also finetune Qwen2.5 models of different sizes (3B, 7B, and 14B) on our WOB training set with
860 graph depth up to 5. We show the OOD evaluation accuracy and ID probing accuracy in Table 8. We
861 observe that the larger model (14B) always achieve better accuracy on questions with graph depth
862 up to 8 under every CoT type, demonstrating a positive scaling in OOD length generalization. When
863 trained with FORWARD-CoT, the probing accuracy is lower on Qwen2.5-14B (83%) compared to
864

865 ⁷For each question of depth k , we create $k - 1$ positive examples by appending each of the necessary boxes,
866 except for the root box, to the question. We also create $k - 1$ negative examples by appending one random
867 unnecessary sibling box of each necessary box.
868

Models	ROOT2LEAF (R2L)				LEAF2ROOT (L2R)			
	5	6	7	8	5	6	7	8
FORWARD-CoT								
LLaMA3.1-8B	99.6	97.3	87.2	55.3	52.2	54.3	52.8	50.9
Mistral-7B-v0.3	97.8	74.5	57.5	51.2	50.7	51.6	54	51.9
Qwen2.5-7B	97.2	60.2	50.6	49.3	56.2	48.2	50.5	49.3
BACKTRACK-CoT								
LLaMA3.1-8B	51.3	52.8	51.5	49.8	99.8	97.2	77.7	49.5
Mistral-7B-v0.3	55.4	54.3	52.3	51.8	97.9	75.0	51.8	52.3
Qwen2.5-7B	53.7	53.1	51.3	52.5	90.1	70.0	58.3	48.3

Table 5: Probing accuracy of predicting whether a box described in the instruction is necessary (box PRU in Fig. 1) or not (box CRU/FEB/JZF in Fig. 1) in computing the target box. All models are trained on 100k questions with at most 5 layers in their dependency graph and then frozen. All linear probes are trained and evaluated on questions with dependency graphs of depth 5-8.

Models	Rs-CoT				DFS-CoT			
	5	6	7	8	5	6	7	8
LLaMA3.1-8B	90.3	72.3	52.6	51.0	90.1	76.5	59.0	48.5
Mistral-7B-v0.3	68.9	58.4	51.7	51.4	69.5	58.9	53.2	52.1
Qwen2.5-7B	52.7	51.3	52.8	49.5	51.7	49.7	50.2	47.8

Table 6: Probing accuracy on WORLD OF BOXES-R2L of models trained with Rs-CoT and DFS-CoT. All models are trained on 100k questions with maximum dependency graph depth of 5 and probed on questions with dependency graphs of depth 5 to 8.

smaller models while its answer accuracy on OOD questions with depth of 6 is significantly higher, suggesting that scaling up the model size could elicit more explicit reasoning.

Models	Answer (acc.)				Information Gap	Probing (acc.)
	5	6	7	8	3-5	5
1 FORWARD-CoT						
LLaMA3.1-8B	100	67.6	9.0	4.9		94.9
Mistral-7B-v0.3	99.7	19.6	7.8	12.4	0.793	97.8
Qwen2.5-7B	99.9	22.0	6.2	2.8		97.2
1 (80%DFS-CoT + 20%FORWARD-CoT) trajectory						
LLaMA3.1-8B	99.9	71.0	35.8	32.5		87.8
Mistral-7B-v0.3	100	70.8	42.8	35.3	0.642	85.5
Qwen2.5-7B	99.0	74.6	39.7	38.1		73.7
1 (90%DFS-CoT + 10%FORWARD-CoT) trajectory						
LLaMA3.1-8B	99.7	72.2	41.5	39.4		85.4
Mistral-7B-v0.3	99.8	66.1	44.5	36.1	0.596	74.5
Qwen2.5-7B	98.6	75.9	45.5	36.1		67.3
1 Rs-CoT						
LLaMA3.1-8B	99.5	91.1	57.6	48.2		90.3
Mistral-7B-v0.3	99.1	92.0	64.8	53.9	0.573	68.0
Qwen2.5-7B	96.7	70.4	39.9	30.4		52.7
1 (95%DFS-CoT + 5%FORWARD-CoT) trajectory						
LLaMA3.1-8B	99.9	81.8	53.2	49.5		82.3
Mistral-7B-v0.3	99.9	92.3	66.7	57.2	0.284	65.9
Qwen2.5-7B	98.8	91	57.9	47.7		59.2
1 DFS-CoT trajectory						
LLaMA3.1-8B	99.9	99.0	86.0	68.8		90.1
Mistral-7B-v0.3	100.0	95.6	72.8	53.4	0.097	69.5
Qwen2.5-7B	100.0	97.1	72.1	54.9		51.7
3 DFS-CoT trajectories						
LLaMA3.1-8B	100.0	99.6	88.2	72.4		67.7
Mistral-7B-v0.3	99.9	98.9	82.7	66.0	0.075	60.0
Qwen2.5-7B	100.0	97.1	74.7	61.9		52.6
16 DFS-CoT trajectories						
LLaMA3.1-8B	100.0	99.8	90.4	76.0		53.7
Mistral-7B-v0.3	99.9	99.2	84.3	69.6	0.050	49.5
Qwen2.5-7B	100.0	98.6	76.9	65.3		51.3

Table 7: Test and Probing accuracy on WORLD OF BOXES-R2L of models trained with FORWARD-CoT, Rs-CoT, and multiple DFS-CoT trajectories. All models are trained on 100k questions requiring at most 5 steps in CoT and evaluated on questions requiring 5, 6, 7, and 8 steps in CoT.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989

Models	Answer (acc.)				Information Gap	Probing (acc.)
	5	6	7	8	3-5	5
1 FORWARD-CoT						
Qwen2.5-3B	99.7	11.6	2.9	4.6		96.8
Qwen2.5-7B	99.9	22.0	6.2	2.8	0.793	97.2
Qwen2.5-14B	100	46.5	4.3	6.2		83.0
1 Rs-CoT						
Qwen2.5-3B	92.3	63.1	31.3	27.8		51.3
Qwen2.5-7B	96.7	70.4	39.9	30.4	0.573	52.7
Qwen2.5-14B	99.0	87.0	50.2	40.5		51.4
1 DFS-CoT						
Qwen2.5-3B	99.8	89.3	54.9	38.9		51.4
Qwen2.5-7B	100	97.1	72.1	54.9	0.097	51.7
Qwen2.5-14B	100	98.6	81.5	69.8		51.5

1005
 1006 Table 8: Test and Probing accuracy on WORLD OF BOXES-R2L of Qwen2.5-3B/7B/14B trained with
 1007 FORWARD-CoT, Rs-CoT, and multiple DFS-CoT trajectories. All models are trained on 100k
 1008 questions requiring at most 5 steps in CoT and evaluated on questions requiring 5, 6, 7, and 8 steps
 1009 in CoT.

1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 E APPENDIX: MORE DETAILS OF THE INFORMATION GAP HYPOTHESIS
10271028 E.1 COROLLARIES
10291030 Here, we present a few corollaries that follow Definition. 2.
10311032 **Corollary 1** $\forall(g, {}^{back}\tau) \in \text{WoB-R2L}$ s.t. ${}^{back}\tau$ follows BACKTRACK-CoT, $\mathcal{I}({}^{back}\tau) = 0$.
10331034 **Corollary 2** $\forall(g, {}^{fwd}\tau) \in \text{WoB-L2R}$ s.t. ${}^{fwd}\tau$ follows FORWARD-CoT, $\mathcal{I}({}^{fwd}\tau) = 0$.
10351036 Corollary. 1 holds because BACKTRACK-CoT follows a leaf-to-root path on WoB-R2L and then
1037 revisits this discovered path from root to leaf to calculate the box weights; hence it has only one
1038 possible node to visit next, that is $\forall i \leq P$, $|\mathbb{C}_i^{back}| = 1$ and thus $q^{back}(\tau_i|\tau) = 1$. Corollary. 2 can
1039 be proved in a similar manner as, when traversing a leaf-to-root path on WoB-L2R, FORWARD-CoT
1040 has only one possible visitable node at any step so that $\forall i \leq P$, $|\mathbb{C}_i^{fwd}| = 1$.
10411042 **Corollary 3** $\forall(g, {}^{dfs}\tau, {}^{rs}\tau) \in \text{WoB-R2L}$ with a constant branching factor for every node, s.t. ${}^{dfs}\tau$
1043 follows DFS-CoT and ${}^{rs}\tau$ follows RS-CoT, $\mathcal{I}({}^{dfs}\tau) \leq \mathcal{I}({}^{rs}\tau)$.
10441045 We back up Corollary. 3 by empirical evidence: we measure the average information gap of DFS-
1046 CoT and RS-CoT over the entire training set and present the results in Fig. 4 and Table 7.
10471048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079