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ABSTRACT

Recent works reveal that Chain-of-Thought may not faithfully reflect the model’s
actual reasoning, as the semantics can diverge from model’s underlying “implicit
thoughts”. In this work, using a synthetic dataset with controllable complexity, we
find signs of implicit thinking in models after supervised finetuning (SFT) on CoT
rationales, that is, the models have internally identified all necessary variables to
be solved before generating the actual CoT. This implicit thinking ability sharply
degrades as the required CoT steps exceed those seen during training, hence pre-
venting the model from generalizing to more complex problems. To understand
why implicit thinking emerges during SFT on explicit CoT rationales, we first
define “information gap” within a CoT based on the ratio of unexplored actions
and all admissible actions at each state. We hypothesize that a large information
gap (a lot of admissible but unexplored actions) force LLMs to justify the actions
explored in golden CoT by looking for clues in its internal representation, hence
leading to implicit thinking. We benchmark 4 types of CoT, each based on a dif-
ferent graph traversal heuristic, and observe a positive correlation between the
magnitude of information gap in CoTs and the implicit thinking ability in mod-
els finetuned on these CoTs. We further support this hypothesis by showing that
actively reducing the information gap by including multiple CoT trajectories per
question can reduce implicit thinking and enhance generalization to more complex
questions. Overall, our findings suggest rethinking the role of CoT in LLM rea-
soning and understanding the necessary condition of learning generalizable COTEI

1 INTRODUCTION

Chain-of-thought (CoT) enables large language models (LLMs) to generate a sequence of interme-
diate reasoning steps in natural languages before predicting a final answer (Wei et al., 2022). It is the
foundation of recent advancement of LLM in reasoning-heavy tasks such as solving olympiad-level
math and coding problems. Researchers (Baker et al. 2025) have also argued that by monitoring
the generated CoT rationales, humans, or other models can better interpret the “thinking process” of
LLMs and hence reliably verify the soundness of machine reasoning.

However, findings from recent work challenge the aforementioned interpretation of CoT as the
human-like “thoughts” of LLMs: Sun et al.| (2025) show that models trained with SFT cannot ex-
ploratively generalize to solve more complex problems requiring the same set of knowledge as the
training data; while another line of work (Arcuschin et al.l 2025} |Stechly et al., 2025} |Barez et al.
2025) finds that CoT sometimes is a post-hoc rationalization of the implicit thinking already done
by LLMs: it only reveals partial thinking processes or even has little to no causal effects on the
final predicted answer. Building upon these previous findings, we hypothesize that LLM’s ability to
generalize to more complex problems is negatively correlated with the amount of implicit thinking
they perform prior to generating the CoT. We further study which data factors in CoT supervision
give rise to implicit thinking and whether we can control it to unlock more generalizable reasoning.

To isolate the core reasoning ability from confounders like domain knowledge/tool-usage and to
eliminate the chance of data contamination in evaluation, we synthesize WORLDOFBOXES (WOB),

"We aim to open-source our code and data upon publication.
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a grade-school-level math dataset following the same principles used for iGSM (Ye et al., [2024):
as shown in Fig. |1} for each question, we randomly create a dependency tree graph of “boxes”
and assign every box a weight between O to 23 randomly. The question asks for either the weight
of a source box at leaf given only the weight of the target box at root (R2L) or the weight of the
source box at root given only the weight of the target box at leaf (L.2R). Solving a question in WOB
requires searching for the path connecting the source box to the target box and performing addi-
tion/subtraction between positive integers less than 24 to calculate boxes’ weight. Compared to
iGSM, our WORLDOFBOXES further encompasses a significantly simplified parameter structure
(e.g., with only one type of instance parameter: the weight of boxes) and a considerably larger
graphs (e.g., as many as 800 parameters/boxes as opposed to 28 in iGSM-hard). This allows us to
evaluate generalization of reasoning within complex, unseen environments with a large number of
possible states but without confounding factors from pretrained knowledge.

First, to understand LLM’s reasoning ability on WORLDOFBOXES, we finetune 3 different base
models of 7B parameters using different types of CoT rationale: (1) FORWARD-COT that only solve
the boxes along the ground-truth path connecting the source to the target box, (2) BACKTRACK-
COT that first backtracks from the target box to the source box, (3) RsS-COT that traverses the
entire dependency graph in random order, and (4) DFS-COT that traverses the graph following a
depth-first-search procedure. We then supervised-finetune (SFT) pre-trained language models on
WORLDOFBOXES questions with at most 5 layers in its dependency graph and evaluate them on test
questions with as many as 8 layers. On WOB-R2L, we observe that while all models reach perfect
accuracy on in-distribution (ID) test questions of 5 layers, models trained with FORWARD-COT
degrades sharply on out-of-distribution (OOD) questions of more than 5 layers. Search-enabled
models trained on RS-COT or DFS-COT score significantly better results on OOD questions, while
BACKTRACK-COT models achieves almost perfect generalization to questions with dependency
graphs up to 8 layers.

Next, to investigate how implicit thinking emerges during CoT learning and hampers generalization,
we train a linear probe on frozen models’ internal representations to predict whether a box is neces-
saryﬂ (e.g., box PRU in Fig.|1)) in computing the target box’s weight or not (e.g., box FEB). On top of
FORWARD-COT models, the linear probe achieves > 95% accuracy on ID questions, revealing the
fact that, before generating the first token in CoT, the model has already implicitly identified a com-
plete list of necessary boxes. However, the probe accuracy drops dramatically on OOD questions of
deeper dependency graphs. This indicates that the implicit thinking ability cannot length-generalize
and potentially explains the FORWARD-COT models’ catastrophic degradation when facing OOD
questions: they rely on their implicit reasoning, not CoTs to find the path connecting the source and
target box. On the other hand, RS-COT and DFS-COT models show less implicit thinking as the
probe’s accuracy is significantly lower on ID questions. On BACKTRACK-COT models, the probe’s
accuracy stays at random chance. These findings overall show a negative correlation between their
implicit thinking ability and the generalization to more complex questions.

To understand why implicit thinking emerges during SFT on explicit CoT rationales, we propose
a hypothesis explaining that language models acquire implicit reasoning ability when there exist
reasoning gaps between CoT steps. We then show a positive correlation between the magnitude of
the information gap within training-set CoTs and the implicit thinking ability measured by probing
accuracy. Finally, we show that a recently proposed SFT improvements, DFT (Wu et al., |2025), in
fact closes the reasoning gaps by scaling down the loss of off-policy CoT tokens. Empirically, we
observe a significant drop in the probing performance in after applying the DFT objective. Hence,
we hypothesize that a potential reason behind DFT’s successes on real-world reasoning tasks is that
it effectively suppress the learning of implicit thinking from information gaps within CoT rationales.

The contributions of this work are: (1) we introduce how we create the WORLDOFBOXES dataset
and different types of CoT rationales (Sec. [3); (2) we show LLMs’ failure in generalization on
WORLDOFBOXES and conduct a probing analysis that exposes these models’ implicit thoughts
(Sec. f); (3) we propose a hypothesis that “information gap” within CoT rationales induces im-
plicit thinking support it with empirical evidence (Sec. [5). While we refrain from overclaiming
that implicit thinking causally hinders LLMs from generalizing, we present multiple pieces of evi-
dence that suggests a negative correlation between these two factors. Overall, our findings indicate
rethinking the role of CoT (especially in SFT) in achieving generalizable reasoning.

2 An unknown box is necessary if it is the ancestor of the target box.
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2 RELATED WORK

The faithfulness of Chain-of-Thought. Chain-of-Thought rationale is widely regarded as a in-
terpretability tool (Wei Jie et al.,|2024) that reveals the reasoning process of LLMs and an extension
to their reasoning boundary (Zhou et al., 2023). However, more recent work (Turpin et al., 2023;
Chen et al.|[2025) finds that CoT sometimes is not totally faithful to the model’s underlying thinking
process. Sometimes it is merely a post-hoc rationalization of the implicit thinking already done by
LLMs: it only reveals partial thinking processes or even having little to no causal effects on the final
predicted answer (Arcuschin et al.l 2025} |Stechly et al. 2025). Most notably, Barez et al.| (2025)
summarize the evidence of unfaithful CoT in a wide range of work mentioned above and beyond,
and challenge the soundness of treating CoT as being sufficient for interpretability.

Probing for internal reasoning of LLMs. In order to “read models’ mind” and expose the inter-
nal reasoning behavior that may deviate from their generated CoT rationales, previous works have
leveraged probing for different indicator quantities from models’ intermediate representations. |Afzal
et al. (2025) show that a probe can predict a model’s success before it generates the first token in
CoT, while another work (Dong et al.| 2025)) uses linear probe to successfully predict global struc-
ture attributes (e.g., response length, reasoning steps) in the future. Most relevantly, | Ye et al.| (2024
use v-probing to find that language models trained with SFT on synthetic CoTs already know the
full list of necessary parameters before generating the CoT.

The learnability and generalizability of CoTs in synthetic reasoning tasks. A number of pre-
vious works (Liu et al., [2022b; Kazemi et al.| 2023 |Feng et al., 2023; |Wang et al., 2024; Mirzadeh
et al., 2025} [Shojaee et al., 2025 Malek et al.,2025) have studied the learnability of CoTs in solving
reasoning-heavy tasks and the undesired shortcuts (e.g., memorization (Zhang et al.,|2025b), implicit
thinking (Liu et al.| [2022a} Qin et al., 2025))) that arise from models’ trying to imitate demonstra-
tions of reasoning traces. [Minegishi et al.| (2025) extract reasoning graph by clustering hidden-state
representation of CoT steps and reveal the relationship between the graph topology and underly-
ing reasoning ability. [Mirtaheri et al.| (2025) compare sequential versus parallel scaling CoTs on the
graph connectivity problem. Most notably, Bachmann & Nagarajan|(2024) demonstrate that teacher-
forcing can let the model overfit “lookahead tasks™ similar to our WOB and fail in generalization.
Abbe et al.| (2024) show that learning knowledge extraction and simple multihop reasoning is more
challenging for problems with larger “branching factors” (e.g., the number of possible next steps)
compared to those with a smaller action space. [Zhang et al.|(2025a) further reveal that for the same
problem, reasoning in the direction with lower conditional entropy is always easier for language
models. A recent benchmark OMEGA (Sun et al., 2025) includes olympiad-level questions that
require applying learned problem-solving skills to more complex instances. They show that LLMs
cannot, for example, count rectangles in an dodecagon after trained to count in octagon, similar to
our finding regarding the failure in length generalization on WORLDOFBOXES after SFT.

3 SYNTHETIC MATH DATASET

To isolate the core reasoning ability from confounders like domain knowledge and tool-usage in
evaluation, we synthesize a grade-school math dataset called WORLDOFBOXES (WOB). It requires
only commonsense (e.g., if the prompt in Fig. [I] states that box PRU weighs 1 pound less than box
RYH and the box RYH weighs 22 pounds, then the models needs to generate Wpry = 22 — 1 = 21
to solve the weight of box PRU) and addition/subtraction between positive integers less than 24.

3.1 CONSTRUCTING A WORLD OF BOXES FROM A DEPENDENCY GRAPH

In WORLDOFBOXES, the prompt of every data point describes a unique imaginary world made of
boxes only. We first build a tree of a certain depth (as shown in the right panel of Fig. [I)) as the
dependency graph between all boxes with every tree node representing a box. During the creation
of the tree, we randomly select the branching factor E] of each node from the range 1-4. We then
assign every box a random integer weight between O to 23 pounds and a unique name made by a
random permutation of three capital letters (e.g., “box FEB”). The prompt (as shown in the left panel
of Fig. [1) describes the relationship between every two connected boxes (e.g., “box PRU weighs 1

3A tree node with k descendants has a branching factor of k.
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What is the weight of Box EYU?

Figure 1: An example in WORLDOFBOXES-R2L dataset that requires solving the weight of a target
leaf box (shown in red) by finding the path connecting it and the only box (root) with known weight.
Every question (shown abbreviated on the left) describes a unique world of boxes with its underlying
dependency graph (shown on the right). Each statement in the question either describes the weight
of the source box or the relationship between two connected boxes. Those bold statements in the
question describe the path connecting the source box RYH to the target box EYU. In the dependency
graph, the boxes that are NOT on this path are shaded in grey.

pound less than box RYH”) and reveals the exact weight of one source box (e.g., “box RYH weighs
22 pounds”). Based on these dependency tree graphs, we create two sub-tasks that differ in the
direction of ground-truth graph traversal:

WORLDOFBOXES-R2L. Based on a randomly sampled tree, a Root2Leaf (WOB-R2L) question
asks for the weight of a specific leaf box (target box) given only the weight of the root box (source
box). The graph descriptions (e.g., box BGA weighs 2 pounds less than box LWR) and question
(What is the weight of box EYU) shown on the left of Fig. [ form a prompt in WOB-R2L.

WORLDOFBOXES-L2R. Based on a randomly sampled tree, a Leaf2Root (WOB-L2R) question
asks for the weight of the root box (target box) given only the weight of a leaf box (source box).
Based on the dependency tree graph shown in Fig.[I] a valid L2R question could ask for the weight
of the root box RYH given the weight of any one of the leaf box (e.g., ABL or EYU).

3.2 SYNTHESIZING COT RATIONALES

To answer a question, a CoT must (1) find a path connecting the source and target box and (2)
solve the weights of all boxes on the path. We construct four types of CoT rationale with different
graph traversal strategies: (1) FORWARD-COT that only solve the boxes along the ground-truth path
connecting the source to the target box, (2) BACKTRACK-COT that first backtracks from the target
box to the source box, (3) RS-COT that traverses the entire dependency graph in random order, and
(4) DFS-COT that traverses the graph following a depth-first-search procedure. We discuss each
type CoT in details in Appendix [A-T|and show example CoTs in Table[2}

4 DIAGNOSING IMPLICIT THINKING IN COT LEARNING

After introducing the WORLDOFBOXES dataset with different types of CoT rationales, we now
turn to examine how training on these CoTs shapes the reasoning ability in LLMs. To this end, we
evaluate post-SFT models on ID and OOD datasets and use linear probing to investigate how implicit
thinkingﬁ emerges in these models. We show that the choice of CoT supervision systematically
influences implicit reasoning in LLMs these hidden computations hamper models’ generalization to
more complex questions. Our experimental setup is explained in Appendix [B.1]

*We provide a working definition of implicit thinking in Definition.
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Figure 2: Test accuracy on WORLDOFBOXES of models trained with FORWARD-COT,
BACKTRACK-COT, RS-COT, and DFS-COT. All models are trained on 100k questions with max-
imum dependency graph depth of 5 and evaluated on questions with depth 5 to 8. On WOB-L2R,
both RS-COT and DFS-COT reduce to FORWARD-COT because there is only one admissible next
box (the predecessor of the current box). Full results are shown in Table E] and Table E}

4.1 LENGTH GENERALIZATION RESULTS ON WORLDOFBOXES

For each WORLDOFBOXES task (R2L and L2R), we first finetune the base models on 100k questions
based on dependency graphs up to 5 layers and one of the four types of CoT (FORWARD-COT,
BACKTRACK-COT, RS-COT, DFS-COT). We then evaluate them on the corresponding ID and
OOD test questions based on dependency graphs with up to 8 layers.

Observation: BACKTRACK-COT generalizes in R2L while FORWARD-COT generalizes in
L2R. Asshown in Fig. 2] all finetuned models show strong in-distribution (ID) questions based on
dependency graphs of 5 layers only. However, on WORLDOFBOXES-R2L task, models trained with
FORWARD-COT fail to generalize to out-of-distribution (OOD) questions with deeper dependency
graphs than those seen in training: their performance drops to <10% on questions with 8-layer de-
pendency graphs. In contrast, models trained with BACKTRACK-COT generalize to OOD questions
significantly better, achieving at least 91% accuracy on questions with 8-layer dependency graphs.

On WORLDOFBOXES-L2R, we observe a reversed trend: models trained with FORWARD-COT gen-
eralize to more complex questions significantly better than models trained with BACKTRACK-COT.
For example, LLaMA3.1-8B finetuned with FORWARD-COT only suffers a minimal performance
drop (100%—94.5%) when the number of CoT steps increases from 5 to 8, while the same model
trained with BACKTRACK-COT only achieves 12.7% accuracy on questions requiring 8 steps.

Observation: DFS-COT generalizes better than RS-COT on WORLDOFBOXES-R2L. We
then finetune the three base models on the same WORLDOFBOXES-R2L training set used above,
but with Rs-COT and DFS-COT as the output supervision. Compared to FORWARD-COT and
BACKTRACK-COT, these two types of CoT allow the model to explore the entire dependency graph
following the order defined by a graph traversing algorithm and solving the weight of visited boxes
along the way. As shown in Fig. 2] models trained with DFS-COT outperform their corresponding
models trained with RS-COT in every OOD test (with dependency graphs of 6, 7, or 8§ layers), while
both obtain a significant advantage over FORWARD-COT: LLaMA3.1-8B’s performance improves
from 5.3% to 44.4% after we replaced the FORWARD-COT with DFS-COT as the training labels.

Finding I: Reasoning in the direction with lower branching factor yields stronger generaliza-
tion. Reflecting upon the two observations above, we find that the length-generalization potential
of CoT supervision depends on the interaction between CoT’s traversal direction and the depen-
dency graph’s topology. Specifically, when the CoT traverses the dependency tree graph from leaf
to root (e.g., BACKTRACK-COT in R21L), the post-SFT models generalize well to solve questions
with dependency graphs deeper than those seen in training. This trend also aligns with the finding
in (Zhang et al., 2025a), which states that given a question, it is easier to approach it from the direc-
tion with lower branching factor (e.g., traversing a tree from leaf to root has a branching factor of 1
at each step while traversing from root to leaf has a dynamic branching factor that equals the number
of successors of the current node). In real-world reasoning scenarios, the underlying dependency
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Figure 3: Probing accuracy of predicting whether a box described in the instruction is necessary
(box PRU in Fig.[T) or not (box CRU/FEB/JZF in Fig.[I)) in computing the target box. All models
are trained on 100k questions with at most 5 layers in their dependency graph and then frozen. All
linear probes are trained and evaluated on questions with dependency graphs of 5-8 layers. Full
results are shown in Table[5and Table

graph is rarely as simple as a tree: some nodes could have multiple predecessors and successors
and hence it is difficult to predict the optimal CoT direction. Therefore we need CoTs with a more
general, error-tolerant traversal strategy like RS-COT and DFS-COT that can generalize well even
when traversing the graph in the direction of large branching factor. Next, in Sec. we will probe
into the internal representations of models that learned different types of CoT and explain what
factors enable/disable models’ generalization.

4.2 MEASURING IMPLICIT THINKING WITH LINEAR PROBE

In order to understand how the fine-tuned model internally decides which box to explore at a certain
CoT step, we train a linear probe on the model’s internal state for the binary classification task:
whether a box is necessary for computing the weight of the target box (probing task nece(A) in (Ye
et al.|[2024)). Further details of probing experiment’s setup is discussed in Appendix [C.T]

Observation: FORWARD-COT models implicitly think ahead on WOB-R2L while
BACKTRACK-COT models implicitly think ahead on WOB-L2R. We present our probing re-
sults in Fig.[3] Similar to the findings in|Ye et al.|(2024), probing on WORLDOFBOXES-R2 L requir-
ing 5 CoT steps indicates that, by the end of the problem description and before generating the first
token in CoT, the FORWARD-COT model has already identified the full list of necessary boxes (the
shortest path connecting the source root node to the target leaf node). This reveals that the gener-
ated CoT is simply following the result of the models’ implicit thinking. In contrast to the results
on WORLDOFBOXES-R2L, probing on the the L2R subtask, where the FORWARD-COT models
achieve significantly better generalization, shows that they do not learn to implicitly plan ahead: for
both ID questions requiring 5 CoT steps and OOD questions requiring up to 8 steps, the probe’s ac-
curacy remains around random chance (50%). The probing results of the BACKTRACK-COT models
are exactly opposite of the FORWARD-COT models: as shown in Fig. [3] the probe’s accuracy re-
mains around random chance at ID questions (depth=5) on WORLDOFBOXES-R2L while achieving
> 90% accuracy on L2R.

Observation: The implicit thinking ability cannot generalize to OOD questions. While
we observe hints of strong implicit thinking ability from probing FORWARD-COT models and
BACKTRACK-COT models on R2L and L2R subtasks respectively, the probe’s accuracy drops sig-
nificantly on OOD questions with deeper dependency graphs. As shown in Fig.[3] the probing accu-
racy of all 3 FORWARD-COT models (orange lines) on WOB-R2L (upper half of the figure) drops to
below 60% on questions with dependency graphs of 8 layers. It indicates that implicit thinking can
only support questions of the same or lower complexity as those seen during training. This drop in
implicit thinking ability also aligns the same trend as their degrading performance shown in Fig. 2]

Finding II: Implicit thinking negatively impacts length generalization. Compared to the re-
sults of probing FORWARD-COT models on R2L subtask, we observe lower accuracy when prob-
ing models trained on search traces (RS-COT or DFS-COT) on in-distribution questions of depth
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5. For example, the probe only achieves an accuracy of 62% on Qwen2.5-7B-Rs-COT and 51%
on Qwen2.5-7B-DFS-COT. Overall, probing these models trained with different types of CoT on
WORLDOFBOXES reveals a negative correlation between their generalization to more complex ques-
tions and their implicit thinking ability: models that do not implicitly plan ahead (FORWARD-COT
on L2R, BACKTRACK-COT and DFS-COT on R2L) achieve better generalization to questions re-
quiring more CoT steps than those seen in training. In other words, it suggests that implicit reasoning
is a static capability with a fixed capacity, while explicit reasoning in the token space can dynam-
ically extend its capacity beyond the training distribution. In the next section, we will propose a
hypothesis based on information theory to explain what causes the models to/to not acquire the
implicit reasoning ability on WORLDOFBOXES tasks.

5 TOWARDS GENERALIZABLE COT BY ENCOURAGING EXPLICIT THINKING

In this section, we first propose a hypothesis regarding the "information gap” in CoT (Sec. [5.I)) and
show that it positively correlates with the implicit thinking ability of post-SFT models (Sec. [5.2).
Finally, we show that a recent improvement to the SFT objective can reduce the implicit thinking of
models trained on WORLDOFBOXES (Sec.[5.3).

5.1 THE HYPOTHESIS OF INFORMATION GAP IN CHAIN-OF-THOUGHT RATIONALE

Notations. We denote a directed acyclic dependency graph with N nodes as g = {ny,ng, ...,nN }.
A trajectory T = [71, T2, ..., Tp] traverses g by visiting nodes 71, 7o, ..., Tp sequentially. A trajectory
¢7 follows a graph traversing heuristic ¢ (e.g., depth-first search) that cannot jump over an unvisited
node to directly visit its children. For non-deterministic heuristic ¢ (e.g., DFS used in creating DFS-
CoT), *T = {#7} is the collection of all possible trajectories 7 that could be produced by ¢. At any

step 4, (Cf is the list of admissible nodes that can be visited at step ¢ according to ¢. For the example
in Fig.[1} CPFS = CRS = {RYH} (because the first step has to visit the root) and CP¥ = CES =
{CRU,FEB, JZF, PRU}. Assuming 75 = FEB, then CY¥S = {CPU, JRF} because DFS must
prioritize successors of the last visited node, while C£° = {CRU, JZF, PRU,CPU, JRF}. We
first formally define implicit thinking on a dependency graph:

Definition 1 (Implicit thinking on a dependency graph.) Given a dependency graph g and the
task of finding a path T = |11, T2, ..., Tp), we say the model “implicitly thinks” if the representa-
tions v(7;|g) and r(c|g) V1; € T,¢ € C; \ T are linearly separable.

Note that the representations r(7;|g) and r(c|g) are only conditioned on the graph without any
generated CoT tokens. Therefore, Definition. [T] aligns with our approach to use a linear probe to
quantify the magnitude of “implicit thinking” (i.e., the linear separability) within models. Next, we
define the Information Gap within a CoT trajectory that traverses the dependency graph:

Definition 2 (Information Gap within a CoT trajectory) Given a dependency graph g, the infor-
mation gap I of a trajectory T following a graph traversal heuristic ¢ is defined as:

1 cinr
LS eglemin), @i = S0
P i=1,...,P ICY

I(r) =
where P is the number of nodes visited by 7 and ¢?(7;|7) is the ratio between “explored admissible
nodes” ((Cf) N 1) and “all admissible nodes” ((C?) at step ¢. Intuitively, Definition. measures both
the “branching factor” and the “completeness” of the exploration at any point of the trajectory. A
large branching factor corresponds to a large set of admissible nodes C; and hence contributes to a
larger denominator for ¢?(7;|7). On the other hand, a more complete exploration of the dependency
graph contributes to a larger numerator. For example in Fig. [1} if all of the four admissible boxes
at layer 1 (CRU,FEB, JZF, PRU) are visited by the end of the DFS-COT (.e., (C(Qb € 7), then
|C¢ N 7| = |C%] and hence ¢ (75|7) = 1, yields an information gap of 0 at step 2. However, if
only CRU and FEB are explored through the DFS-COT, then |C3 N 7| = 2 at step 2, which would
contribute to a positive information gap of —log(1/2).
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Figure 4: Answer accuracy on questions with 8-layer dependency graph, information gap of the
training set, and probing accuracy averaged over the 3 base models. Full results are shown in Table[7}

Hypothesis 1 (Information Gap in CoT induces implicit thinking) Given a language model M,
a dataset G = [(g;, ¢37’)] j=1,...,s of J dependency graphs and trajectories sampled from a traversal

heuristic ¢;. SFT M on G yields Mg,. IfVg; € G, I(¢;T) < I(¢j7), then M®1 has less implicit
thinking (measured by probing) than M y,.

Intuitively, a large information gap between two consecutive CoT steps ¢ — 1, ¢ indicates that, given
the previous ¢ —1 steps, there are many possible nodes which can be explored at step ¢ and the current
CoT 7 only explores a few by the end (i.e., (Cf Nl << |(Cf|). Therefore, simply optimizing the
likelihood of explored nodes |(Cf5 N | could encourage the model to search for clues from its internal
representations, which are not explicitly stated in previous CoT steps, that could be utilized to justify
not exploring other admissible nodes.

5.2 SUPPORTING EVIDENCE OF THE INFORMATION GAP HYPOTHESIS

To support Hypothesis.[I] we present the next observation and finding that, although cannot establish
causality, exemplify the co-occurrence of the mitigating Information Gap in the CoT training data
and the reduction of the implicit thinking measured post-SFT.

Observation: SFT on multiple search traces per question reduces implicit thinking and im-
proves generalization. In Definition. 2] we defined Information Gap within a single trajectory
that traverses a dependency graph. When training an LLM to solve the target variable by traversing
a dependency graph, it is possible to sample multiple CoT trajectories as the labels for each question.
To gain more insights into the effect of learning from multiple CoTs per question, we define:

Definition 3 (Information Gap within multiple CoT trajectories of a single graph) Given a de-
pendency graph g with a list of K trajectories {T"} k=1,...,K that follow a graph traversal heuristic
&, the information gap T within one trajectory T is:

1 cinT
1) =-5 ¥ et wim =S5 T
i=1,...,P i k

where 7F is the i-th node’s id visited by 7%. According to Definition. [3| given multiple trajectories of
the same dependency graph, the information gap within each trajectory 7% could be reduced because
when exploring 7, nodes visited by other trajectories (7)) that are also within the admissible nodes
of the current step (C;) can increase the numerator (|(Cf5 N T). Therefore, Hypothesis. |1| suggests
that once a model is shown multiple CoT trajectories that sufficiently explore the admissible node
space at a state g, 7, it is less likely to develop implicit thinking.

To verify this hypothesis, we sample up to 16 DFS-COT trajectories per question and then then
finetune base models on this augmented training set with 3 CoTs per question. Based on the answer
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.. Math Accuracy Probe Accuracy
Training Loss 5 6 7 ] ‘ 5
SFT 96.7 704 399 304 52.7
DFT 982 715 431 367 50.2

Table 1: Test accuracy on WORLDOFBOXES-R2L of Qwen2.5-7B trained with RS-COT using either
standard SFT loss (cross entropy) or DFT loss (Wu et al., |2025). All models are trained on 100k
questions with maximum dependency graph depth of 5 and evaluated on questions with dependency
graphs of depth 5 to 8.

and probing accuracy in Fig. ] LLaMA and Mistral models trained with 3/16 trajectories per ques-
tion consistently obtain better length-generalization results and lower probing accuracy compared
to their counterparts trained with only 1 trajectory per question. This observation corroborates our
argument that mitigating the information gap by including multiple trajectories per question indeed
reduces implicit thinking and hence improves length-generalization.

We calculate the average Information Gap of FORWARD-COT, Rs-COT, and DFS-COT rationales
of the entire training set. We also create 3 hybrid CoT types xDFS+(1 — z)FwD-CoT: at each
step, we randomly select between DFS-COT and FORWARD-COT with probability z and 1 — x
respectively. As presented in Fig. [} DFS-COT has the lowest average Information Gap of 0.097,
while FORWARD-COT has the largest Information Gap of 0.793. For the augmented training set,
with 3 DFS-COT trajectories per question the average information gap reduces from 0.097 to 0.075,
while having 16 trajectories further lowers it down to 0.05. These measured information gaps (Z)
directly validate Corollary. [3] Combining Z and the probing accuracy reported in Fig. ] further
support our Hypothesis. |1} that information gap (Z) within CoT rationales induces implicit thinking
in post-SFT models. Drawing connection between Hypothesis. [T|and Finding [II] that showcase how
implicit thinking negatively impacts generalization further brings out our ultimate hypothesis:

Hypothesis 2 (Information Gap in CoT impair length generalization) Given a language model
M, a dataset G = [(g;, ?T)]j:17,,,)J of J dependency graphs with maximum depth of d and traversal

trajectories following traversal heuristic . SFT M on G yields M. IfVg; € G, I(%T) < I(d’j.T),
then M, can generalize better than My, on deeper dependency graphs g’ with depth d’ > d.

This hypothesis can be seen as the generalization of the conclusion in [Zhang et al.|(2025al), which
states that among forward and backward reasoning, decoding in the direction with lower branching
factor yields better results. By defining information gap based on the branching factor and explo-
ration ratio, we are able to measure any traversal strategy (beyond forward and backward reasoning)
and reveal that information gap in CoT supervision hurts generalization because it elicits static,
implicit thinking that cannot generalize beyond the dependency graph depth seen in training.

5.3 CONNECTION TO REASONING TASKS IN THE WILD

In Definition. [2} we assume the dependency graph of variables is known. Here we define Information
Gap within a CoT rationale for questions in the wild without a known dependency graph.

Definition 4 (Information Gap within a CoT in the wild) Given an instruction x, the information
gap T of a CoT rationale y is the average token-level log likelihood:

1
I(y) = Bz log(po (yily<i,x))
i=1,...,P
where pg (y;|y<q, ) is an LLM’s (parameterized by 6) output distribution given the previous i — 1
CoT tokens and instruction x. A large information gap is caused by low-likelihood tokens in CoT,

which intuitively means a large portion of token-level probability space is left unexplored.

Since it’s not a trivial task to establish a sequence of necessary variables for non-synthetic rea-
soning questions, we cannot measure the amount of implicit thinking in the wild by probing for
these variables in models’ internal representations. However, we observe that a recently proposed
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SFT objective called DFT (Wu et al.| |2025), which bring non-trivial gains in reasoning-heavy tasks
like math and coding, can also reduce implicit thinking on WORLDOFBOXES. Specifically, DFT
reweighs the token-level cross-entropy loss by the token’s own probability. According to Defini-
tion. [ low-likelihood tokens also contribute the most toward the overall information gap of the
CoT rationale. Therefore, scaling down the loss of these tokens is also mitigating the influence of
information gap in the gradients. We replace the cross-entropy loss with DFT loss in SFT and then
train a linear probe following the same procedure in Sec.[#.2] Using RS-COT as the supervision
in SFT, we observe stronger generalization to deeper graph and lower probing accuracy on models
trained with DFT loss (Table [I), indicating that suppressing the gradients from CoT tokens with
large information gap can indeed prevent models from developing implicit thinking during SFT.

6 CONCLUSION

In summary, we show that standard CoT training can mask non-causal “implicit” reasoning that
collapses under length extrapolation, and we make this failure mode concrete with a controlled
grade-school math benchmark (WORLDOFBOXES). SFT’d models solve in-distribution questions
yet rely on implicit backtracking that does not generalize to deeper trees, as revealed by linear probes
that recover the model’s internal plan before any CoT token is emitted. By contrast, training models
by adopting objectives that close information gaps (e.g., including multiple CoTs per question)
suppresses these shortcuts in training, aligns generated CoT with the model’s real computation,
and yields markedly stronger out-of-distribution performance. Taken together, our results argue
that length-generalizable reasoning emerges when supervision faithfully traces the causal steps the
model actually uses, not when CoT is treated as a decorative afterthought.
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A APPENDIX: SYNTHETIC MATH DATASET

A.1 FOUR TYPES OF COT RATIONALE

Forward-CoT. This type of CoT restricts reasoning to the boxes along the ground-truth path from
the source to the target node. It forms the shortest sequence of boxes the model needs to solve in
order to solve the target box. The CoT starts from the source box (the root for R2L or a leaf for
L2R) and, at each step, performs an arithmetic operation to calculate the weight of a successor box.

Backtrack-CoT. This type of CoT differs from a FORWARD-COT in that it first goes through the
shortest path in the backward direction (starting from the target box and reaching the source box
at the end) and then follows the exact steps in a FORWARD-COT. BACKTRACK-COT mimics the
process of backtracking the dependencies from the knowledge graph (e.g., “I need to find the weight
of Box X. Box X weighs 5 pounds more than Box H, so let me solve Box H first.”), which is often
adopted by humans in solving complex questions (Ye et al.,[2024).

Random-search (RS) CoT. For R21,, we also create Random-search (Rs-CoT) and DFS-CoOT
(introduced below), both of which can include boxes that are not necessary in solving the target box.
Specifically, for each CoT step, we uniformly sample from a list of solvable boxe{] and add the
corresponding arithmetic solution for this box to the CoT.

DFS-CoT. Depth-first-search (DFS) CoT differs from Rs-COT in that it traverses the dependency
graph following a DFS procedure. When the solved box at the current step has multiple children
boxes, we randomly select one of them to solve at the next stepE] Compared to random search, DFS
has a smaller search space at most CoT steps.

A.2 TRAINING AND TEST SETS

In constructing the training set, we first sample dependency tree graphs with the depth ranging from
3 to 5 and then create the prompt that describes all dependency between boxes. Fig. [I] shows a
dependency graph of depth 5 and the partial prompts of a WOB-R2L question. Our in-distribution
(ID) test set is created following the same procedure as the training set, with a fixed tree depth of
5. The random process in creating the dependency graph, box names, and box weights ensures that
every test question describes a novel world of boxes. Other than the ID test set, we also create 3
out-of-distribution (OOD) test sets by sampling dependency tree graphs of depth 6, 7, and 8 so that
solving these questions requires generating CoT longer than those seen in training.

>In R21L, a box is solvable if the weight of its parent is known. In L2R, a box is solvable if the weight of
one of its children is known.
SThis is achieved by randomizing the order of adding the children nodes to the stack during DFS.
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Type CoT Rationales

Each Box RYH weighs 22 pounds. Box PRU weighs 1 pounds less than Box RYH.
So Box PRU weighs 22 - 1 = 21 pounds. Box BXB weighs 6 pounds less than Box
PRU. So Box BXB weighs 21 - 6 = 15 pounds. [1 step omitted] Box EYU weighs
4 pounds more than Box OGS. So Box EYU weighs 6 + 4 = 10 pounds.

Box EYU weighs 4 pounds more than Box OGS. So I need to find out the weight
of Box OGS. Box OGS weighs 9 pounds less than Box BXB. So I need to find out

BACKTRACK-COT  the weight of Box BXB. [1 step omitted] Box PRU weighs 1 pounds less than Box
RYH. So I need to find out the weight of Box RYH. Now let’s solve these unknown
boxes one by one. [FORWARD-COT omitted]

Each Box RYH weighs 22 pounds. Box FEB weighs 22 pounds less than Box RYH.
So Box FEB weighs 22 - 22 = 0 pounds. Box CPU weighs 8 pounds more than Box
Rs-CoT FEB. So Box CPU weighs 0 + 8 = 8 pounds. Box CRU weighs 3 pounds less than
Box RYH. So Box CRU weighs 22 - 3 = 19 pounds. [20 steps omitted] Box EYU
weighs 4 pounds more than Box OGS. So Box EYU weighs 6 + 4 = 10 pounds.

Each Box RYH weighs 22 pounds. Box FEB weighs 22 pounds less than Box RYH.
So Box FEB weighs 22 - 22 = 0 pounds. Box CPU weighs 8 pounds more than Box
FEB. So Box CPU weighs 0 + 8 = 8 pounds. Box KRJ weighs 8 pounds less than
Box CPU. So Box KRJ weighs 8 - 8 = 0 pounds. Box CSC weighs 7 pounds more
than Box KRJ. So Box KRJ weighs 0 + 7 = 7 pounds. [18 steps omitted] Box EYU
weighs 4 pounds more than Box OGS. So Box EYU weighs 6 + 4 = 10 pounds.

FORWARD-COT

DFS-CoT

Table 2: Four types of CoT rationales we created for the WORLDOFBOXES-R2L question shown
in Fig.[T} “what is the weight of Box EYU?”. BACKTRACK-COT first backtracks from the target box
EYU to the source box RYH and then produces the FORWARD-COT (omitted). RS-COT traverses
the tree by randomly choosing a solvable boxes whose predecessor’s weight is known. DFS-COT
traverses the tree graph following a depth-first search heuristic until it reaches the target box EYU.
We omit some intermediate steps in each CoT rationale due to limited space.
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ROOT2LEAF (R2L) LEAF2ROOT (L2R)
5 6 71 8|5 6 1 8

FORWARD-COT

LLaMA3.1-8B 100 676 9.0 49 100 997 99 934
Mistral-7B-v0.3 | 99.7 196 7.8 124 | 100 99.7 969 90.7
Qwen2.5-7B 99.9 220 6.2 28 999 996 910 880

BACKTRACK-COT

LLaMA3.1-8B | 999 999 996 998 | 999 83.6 394 127
Mistral-7B-v0.3 | 999 995 977 94.1 | 99.7 674 27 11.6
Qwen2.5-7B 100 999 96.7 915 | 995 805 347 89

Models

Table 3: Test accuracy on WORLDOFBOXES of models trained with FORWARD-COT and
BACKTRACK-COT. All models are trained on 100k questions with maximum dependency graph
depth of 5 and evaluated on questions with dependency graphs of depth 5 to 8.

Rs-COT DFS-COT
Models ‘ s 6 7 8| s 6 1 8
LLaMA3.1-8B | 9.5 Ol1 576 482 | 999 990 860 6838
Mistral-7B-v0.3 | 99.1 920 648 539 | 1000 956 728 534
Qwen2.5-7B | 967 704 399 304 | 1000 97.1 721 549

Table 4: Test accuracy on WORLDOFBOXES-R2L of models trained with RS-COT and DFS-COT.
All models are trained on 100k questions with maximum dependency graph depth of 5 and evaluated
on questions with dependency graphs of depth 5 to 8.

B APPENDIX: EXPERIMENTS

B.1 EXPERIMENTAL SETUP
Base models. For all experiments in this work, we finetune and evaluate on three base models:
LLaMA3.1-8B (Dubey et al., [2024), Mistral-7B-v0.3 (Jiang et al.| [2023), and Qwen2.5-7B (Qwen

et al., [2025). During evaluation, we allow the models to generate up to 16384 tokens to minimize
the risk of failing the task by running out of token budget.

B.2 FULL RESULTS

We show the full results of evaluating post-SFT models on WORLDOFBOXES test sets in Table [3]
and Table[d]
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C APPENDIX: PROBING EXPERIMENTS

C.1 EXPERIMENTAL SETUP

In order to understand how the fine-tuned model internally decides which box to explore at a certain
CoT step, we train a linear probe on the model’s internal state for the binary classification task:
whether a box is necessary for computing the weight of the target box (probing task nece(A) in
(Ye et al., 2024)). Specifically, we append a box’s name to the problem description and feed the
last token’s final-layer representation as the input to the probe. With all model parameters frozen,
we train the linear probe on 100k WORLDOFBOXES (either R2L or L2R) questions requiring 3 to 8
CoT steps with a balanced class distribution The test set is comprised of unseen questions with a
balanced distribution of positive and negative classes.

C.2 MORE FINDINGS

Observation: FORWARD-COT models implicitly search backward while BACKTRACK-COT
models implicitly search forward. Other than the overall accuracy of probing for every necessary
box in the k-step CoT, we further break down the probe’s accuracy at classifying boxes at different
depths in the dependency graph. On WOB-R21 questions with out-of-distribution depths of 6 to §,
the probes on FORWARD-COT models consistently achieve strong performance in classifying boxes
in the last 5 layers. This observation indicates that FORWARD-COT models learn static, implicit
backtracking: before generating the CoT, they internally search backward from the target box to
uncover the last 5 necessary boxes. In contrast, on WOB-L2R, we can observe that the probes
on BACKTRACK-COT models remain accurate in the first 5 boxes from the leaf-to-root path, only
failing to classify boxes in the last £ — 5 layers (i.e., boxes that are closer to the root), suggesting
BACKTRACK-COT models learn static, implicit forward search that can discover the first 5 necessary
boxes that need to be solved in CoT.

Finding III: Implicit thinking traverse the dependency graph from leaf to root. Reflecting
on the symmetrical pattern observed above: FORWARD-COT models implicitly think backward on
R2L while BACKTRACK-COT models implicitly think forward on L2R, we find that models always
develop implicit thinking when the CoT rationales present the path from root to leaf. Moreover,
this implicit search always proceeds from bottom up (leaf to root), which has a branching factor
of 1, instead of attempting the much more complex task of traversing the entire graph from top
down (root to leaf). When the CoT rationales already traverse the tree graph from leaf to root, then
the models would not develop additional implicit search. In real-world reasoning scenarios, the
underlying dependency graph could encompass a mixture of R2L and L2R paths: some nodes may
have more predecessors than successors and some may have more successors than predecessors.
Therefore, a purely FORWARD-COT or BACKTRACK-COT may inevitably induce implicit thinking
in the models.

D MORE RESULTS

D.1 FULL RESULTS OF FIGURES IN THE MAIN PAPER

We show the full results of probing experiments in Table[5]and Table

D.2 IMPACT OF MODEL SIZES ON IMPLICIT THINKING

We also finetune Qwen2.5 models of different sizes (3B, 7B, and 14B) on our WOB training set with
graph depth up to 5. We show the OOD evaluation accuracy and ID probing accuracy in Table[§] We
observe that the larger model (14B) always achieve better accuracy on questions with graph depth
up to 8 under every CoT type, demonstrating a positive scaling in OOD length generalization. When
trained with FORWARD-COT, the probing accuracy is lower on Qwen2.5-14B (83%) compared to

"For each question of depth k, we create k — 1 positive examples by appending each of the necessary boxes,
except for the root box, to the question. We also create £ — 1 negative examples by appending one random
unnecessary sibling box of each necessary box.
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ROOT2LEAF (R2L) LEAF2ROOT (L2R)
5 6 71 8|5 6 1 8

FORWARD-COT

LLaMA3.1-8B | 99.6 973 872 553 | 522 543 528 509
Mistral-7B-v0.3 | 97.8 745 575 512 | 50.7 516 54 519
Qwen2.5-7B 972 602 506 493 | 562 482 505 493

BACKTRACK-COT

LLaMA3.1-8B | 51.3 528 51.5 498 | 99.8 972 777 495
Mistral-7B-v0.3 | 55.4 543 523 51.8 | 979 750 518 523
Qwen2.5-7B 53.7 53.1 513 525|901 700 583 483

Models

Table 5: Probing accuracy of predicting whether a box described in the instruction is necessary (box
PRU in Fig.[I) or not (box CRU/FEB/JZF in Fig.[I)) in computing the target box. All models are
trained on 100k questions with at most 5 layers in their dependency graph and then frozen. All linear
probes are trained and evaluated on questions with dependency graphs of depth 5-8.

Rs-COT DFS-CoT
Models ‘ 5 6 7 8|5 6 1 8
LLaMA3.1-8B | 903 723 526 510 | 90.1 765 59.0 485
Mistral-7B-v0.3 | 68.9 584 517 514 | 69.5 589 532 521
Qwen2.5-7B | 527 513 528 495 | 517 497 502 478

Table 6: Probing accuracy on WORLDOFBOXES-R2L of models trained with RS-COT and DFS-
COT. All models are trained on 100k questions with maximum dependency graph depth of 5 and
probed on questions with dependency graphs of depth 5 to 8.

smaller models while its answer accuracy on OOD questions with depth of 6 is significantly higher,
suggesting that scaling up the model size could elicit more explicit reasoning.
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‘ Answer (acc.) Information Gap  Probing (acc.)

Models
| 5 6 7 8 | 3-5 | 5
1 FORWARD-COT

LLaMA3.1-8B 100 676 9.0 49 94.9
Mistral-7B-v0.3 | 99.7 19.6 7.8 124 0.793 97.8
Qwen2.5-7B 99.9 220 6.2 2.8 97.2

1 (80%DFS-COT + 20%FORWARD-COT) trajectory
LLaMA3.1-8B 999 710 358 325 87.8
Mistral-7B-v0.3 100 70.8 428 353 0.642 85.5
Qwen2.5-7B 99.0 746 397 38.1 73.7

1 (90%DFS-CoOT + 10%FORWARD-COT) trajectory
LLaMA3.1-8B 99.7 722 415 394 85.4
Mistral-7B-v0.3 | 99.8  66.1 445 36.1 0.596 74.5
Qwen2.5-7B 98.6 759 455 36.1 67.3

1 Rs-CoT

LLaMA3.1-8B 99.5 91.1 57.6 482 90.3
Mistral-7B-v0.3 | 99.1 92.0 64.8 539 0.573 68.0
Qwen2.5-7B 96.7 704 399 304 52.7

1 (95%DFS-COT + 5%FORWARD-COT) trajectory
LLaMA3.1-8B 99.9 81.8 532 495 82.3
Mistral-7B-v0.3 | 99.9 923 66.7 572 0.284 65.9
Qwen2.5-7B 98.8 91 579 477 59.2

1 DFES-COT trajectory
LLaMA3.1-8B 999 990 86.0 68.8 90.1
Mistral-7B-v0.3 | 100.0 95.6 72.8 534 0.097 69.5
Qwen2.5-7B 100.0 97.1 72.1 549 51.7
3 DFS-COoT trajectories
LLaMA3.1-8B | 100.0 99.6 882 724 67.7
Mistral-7B-v0.3 | 99.9 989 827 66.0 0.075 60.0
Qwen2.5-7B 1000 97.1 747 619 52.6
16 DFS-COT trajectories

LLaMA3.1-8B | 100.0 99.8 904 76.0 53.7
Mistral-7B-v0.3 | 99.9 99.2 843 69.6 0.050 49.5
Qwen2.5-7B 100.0 98.6 769 653 51.3

Table 7: Test and Probing accuracy on WORLDOFBOXES-R2L of models trained with FORWARD-
CoT, Rs-CoOT, and multiple DFS-COT trajectories. All models are trained on 100k questions
requiring at most 5 steps in CoT and evaluated on questions requiring 5, 6, 7, and 8 steps in CoT.
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Models \ Answer (acc.) Information Gap  Probing (acc.)
\ 5 6 7 8 \ 3-5 \ 5
1 FORWARD-COT
Qwen2.5-3B | 99.7 11.6 29 4.6 96.8
Qwen2.5-7B | 99.9 220 6.2 2.8 0.793 97.2
Qwen2.5-14B | 100 465 43 6.2 83.0
1 Rs-CoT
Qwen2.5-3B | 92.3 63.1 31.3 2738 51.3
Qwen2.5-7B | 96.7 704 399 304 0.573 52.7
Qwen2.5-14B | 99.0 87.0 50.2 40.5 51.4
1 DFS-CoT
Qwen2.5-3B | 99.8 89.3 549 389 51.4
Qwen2.5-7B 100 97.1 72.1 549 0.097 51.7
Qwen2.5-14B | 100 98.6 81.5 69.8 51.5

Table 8: Test and Probing accuracy on WORLDOFBOXES-R2L of Qwen2.5-3B/7B/14B trained with
FORWARD-COT, Rs-CoT, and multiple DFS-COT trajectories. All models are trained on 100k
questions requiring at most 5 steps in CoT and evaluated on questions requiring 5, 6, 7, and 8 steps
in CoT.
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E APPENDIX: MORE DETAILS OF THE INFORMATION GAP HYPOTHESIS

E.1 COROLLARIES

Here, we present a few corollaries that follow Definition. E}

Corollary 1 V(g,%*7) € WOB-R2L s.t. *2*1 follows BACKTRACK-COT, Z(%a¢*1) = 0.
Corollary 2 V(g,7%%7) € WOB-L2R s.t. 1“1 follows FORWARD-COT, Z(/v4r) = 0.

Corollary. [T holds because BACKTRACK-COT follows a leaf-to-root path on WOB-R2L and then
revisits this discovered path from root to leaf to calculate the box weights; hence it has only one

possible node to visit next, that is Vi < P, |C?***| = 1 and thus ¢**°*(7;|7) = 1. Corollary. 2|can
be proved in a similar manner as, when traversing a leaf-to-root path on WOB-L2R, FORWARD-COT

has only one possible visitable node at any step so that Vi < P, |(C{ wd| =1

Corollary 3 V(g, ¥*7,757) € WOB-R2L with a constant branching factor for every node, s.t. ¥°1
follows DFS-COT and " follows Rs-COT, Z(¥*7) < Z("*1).

We back up Corollary. 3] by empirical evidence: we measure the average information gap of DFS-
CoT and Rs-COT over the entire training set and present the results in Fig. 4{and Table
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