
LeanTree: Accelerating White-Box Proof Search with
Factorized States in Lean 4

Matěj Kripner 1 Michal Šustr 2 Milan Straka 1

Abstract
Automated theorem proving (ATP) has been a
classical problem in artificial intelligence since
its inception, yet it remains challenging due to its
vast state and action space. Large language mod-
els (LLMs) have recently emerged as a promis-
ing heuristic for ATP, but they lack correctness
guarantees and thus require interaction with a
proof verifier. Such interactions typically follow
one of two approaches: black-box interaction,
which does not utilize intermediate proof states, or
white-box approaches, which allow for incremen-
tal proof construction and examination of interme-
diate states. While black-box approaches have
directly benefited from recent LLM advances,
white-box methods have comparatively lagged
behind. In this paper, we address this gap by intro-
ducing LeanTree, which consists of (i) a tool built
in the Lean 4 language that factorizes complex
proof states into simpler, independent branches,
and (ii) a dataset of these factorized intermediate
states. Our white-box tooling offers several ad-
vantages over black-box approaches: it simplifies
evaluation, reduces necessary context, generates
richer training data, enables parallel search across
multiple states, supports efficient reuse of states,
and provides feedback in case of errors. Our pre-
liminary results hint that white-box approaches
outperform black-box alternatives in some set-
tings.

1. Introduction
Automated theorem proving (ATP) has long been a founda-
tional task in artificial intelligence (Gelernter, 1959), with
applications ranging from the formalization of mathemat-
ics (van Doorn et al., 2023), physics (Tooby-Smith, 2024)

1Charles University, Faculty of Mathematics and Physics
2Czech Technical University, Faculty of Electrical Engineering.
Correspondence to: Matěj Kripner <kripner@ufal.mff.cuni.cz>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada.

and chemistry (Bobbin et al., 2024) to software verifica-
tion (Avigad et al., 2025), cryptography (Doussot, 2024),
SQL query verification (Chu et al., 2018), and general rea-
soning (Jiang et al., 2024).

Despite extensive research using logical formalisms, ATP
continues to face significant challenges due to the com-
binatorial explosion of its underlying state and action
spaces (Harrison, 2009; Baader, 2003; Barrett & Tinelli,
2018) and the infinite branching factor introduced by exoge-
nous term creation (Trinh et al., 2024).

Recent advances in large language models (LLMs) capable
of sophisticated reasoning in human languages (Guo et al.,
2025) have sparked interest in their application to ATP (Ren
et al., 2025), serving as a powerful heuristic in navigating
the proof search. Conversely, ATP and formal verification
present an avenue for improving reliability and interpretabil-
ity of LLMs (Achim & Tenev, 2023). Open-source tooling
and datasets are crucial in leveraging this synergy.

The existing approaches for ATP can be categorized into
two distinct methodologies. In white-box generation, the
prover interacts with a formal verifier iteratively, generat-
ing individual proof steps conditioned on the internal proof
state, interleaving proof search with verification. In contrast,
black-box provers only use the formal verifier to verify the
final proof, generating proof steps with no feedback about
the validity of preceding steps or the current internal proof
state. Thus, in a black-box search, it falls upon the proof
step generator to deduce the evolving proof state, as this
is a necessary precondition to determining the validity of a
subsequent proof step. This coupling of policy model and
world model increases complexity of proof step generation,
necessitating the use of more powerful models, while also re-
quiring the proof generator to be retrained when modifying
the formal verifier in case of upgrades or patches.

While black-box whole-proof generation methods directly
benefit from recent advances in LLMs (Wang et al., 2025),
white-box tree-search methods have seen comparatively
little improvement since their introduction. Notably, the
hypertree proof search approach introduced by Lample
et al. (2022) has not been replicated in open source or
built upon, except for follow-up work by the same research

1

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

group (Gloeckle et al., 2024). We attribute this primarily to
insufficient tooling and the lack of suitable datasets. Specifi-
cally, machine learning-based white-box techniques require
nontrivial preprocessing of existing proofs to extract inter-
mediate proof states. Additionally, the size of proof states
in verification languages like Lean tends to increase as the
proof search progresses, exacerbating the distribution shift
for LLMs pretrained on general text corpora. As such, it is
desirable to simplify proof states by factorizing them into
branches that can be solved independently. Although Lam-
ple et al. (2022) demonstrated the benefit of this white-box
approach using factorized states, their tooling and dataset
remain practically unusable for the ATP community (see
Section 5).

To address these challenges, we introduce LeanTree, which
is a) a tool for white-box interaction and data extraction
in Lean 4 (Moura & Ullrich, 2021), and b) a dataset of
preprocessed proofs from Mathlib (Community, 2020) and
DeepSeekProver-V1 (Xin et al., 2024a) in a unified format.
Our contributions are as follows:

• We build on top of Lean REPL (Community, 2025)
to enable programmatic proof search over factorized
proof states, meaning that independent goals can be
solved individually (Section 3.2). To enable this, we
detect dependence between goals caused by metavari-
able coupling (Section 3.3). Other improvements over
Lean REPL include better error reporting, richer in-
formation about open goals, and a new incremental
strategy for proof verification in Lean REPL using the
Lean’s verification kernel (Appendix B).

• We build a data extraction module by integrating Lean
REPL, PaperProof (Karunus & Kovsharov, 2024), and
a custom algorithm for proof tree building and tactic
simplification (Section 4.1). The extracted dataset also
contains information about the current Lean context for
each theorem and the distance to the end of the proof
for each step.

• We release the resulting suite of tools and datasets,
dubbed LeanTree, in a format directly accessible by
the community12 with a user-friendly Python interface.

• We present a preliminary experiment hinting that sup-
plying information about the intermediate proof state
to a pretrained model during proof search outperforms
black-box generation.

• We identify and prevent false-positive errors in proof
search that result from the usage of library search tac-
tics such as apply? (Appendix A). For example, such
errors are present in the proofs presented by DeepSeek-
Prover-V2 (Ren et al., 2025).

1https://github.com/Kripner/leantree
2https://huggingface.co/datasets/ufal/

leantree

2. Related work
We give a brief overview of Lean, black-box and white-box
ATP approaches, and existing datasets and benchmarks.

Lean 4 (Moura & Ullrich, 2021) is a leading formal lan-
guage for theorem proving with applications both in the
formalization of mathematics (van Doorn et al., 2023) and
in numerous other domains (Tooby-Smith, 2024; Bobbin
et al., 2024; Doussot, 2024; Jiang et al., 2024). One of
the pleasant attributes of Lean is its extensibility, stemming
from the fact that its theorem proving component is written
in Lean itself, and the user can modify both its syntax and
its semantics. Such an approach is possible because Lean
4 is also a fully-fledged functional programming language.
This is in contrast to previous versions of Lean, where some
of the existing Lean interaction tools had to bind directly to
the Lean kernel written in C++.

Black-box ATP. Automated theorem proving can be for-
mulated as a text-to-text problem so that any existing ap-
proach based on a large language model (LLM) is directly
applicable. This approach to theorem proving was pio-
neered by Baldur (First et al., 2023). Recently, a LLM with
chain-of-thought refined using reinforcement learning was
utilized by DeepSeek-Prover-V2 (Ren et al., 2025), Kimina-
Prover (Wang et al., 2025), and InternLM-Math (Ying et al.,
2024b), securing top places on relevant benchmarks.

White-box ATP. In white-box ATP, the prover interacts with
the verification system iteratively during a proof search,
generating proof steps conditioned on the internal proof
state, with consequences discussed in the introduction
of this paper. In neural theorem proving, this approach
was pioneered by Holophrasm (Whalen, 2016) in Meta-
math (Megill & Wheeler, 2019), using a UCT-based (Koc-
sis & Szepesvári, 2006) AND-OR tree search with a RNN
sequence-to-sequence model for tactic enumeration and pay-
off prediction. This approach was extended by GPT-f (Polu
& Sutskever, 2020) and Evariste (Lample et al., 2022), with
the latter additionally targeting Lean 3. ABEL (Gloeckle
et al., 2024) extended Evariste with incremental improve-
ments and Lean 4 compatibility, but did not release their
code or dataset.

Datasets. The standard library of Lean, Mathlib (Commu-
nity, 2020), offers more than 107k formal definitions and
220k formal proofs. Together with numerous formaliza-
tion projects created by the community, this offers a sizable
human-written dataset for black-box theorem proving.

In contrast, white-box ATP approaches require data in a
more preprocessed format that reveals intermediate proof
states. First, such a dataset was provided by LeanStep (Han
et al., 2021) in Lean 3 by extracting tactic invocation data
from Mathlib. LeanDojo (Yang et al., 2023) extends this
for Lean 4, additionally containing information about the

2

https://github.com/Kripner/leantree
https://huggingface.co/datasets/ufal/leantree
https://huggingface.co/datasets/ufal/leantree

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

premises used in each tactic application, suitable for training
retrieval-augmented approaches. Similar datasets are also
offered by Pantograph (Aniva et al., 2024) and lean-training-
data (Morrison, 2023). Additionally, Lean-Workbook (Ying
et al., 2024a) and DeepSeek-Prover-V1 (Xin et al., 2024a)
provide large collections of automatically formalized proofs
of various quality. However, none of these datasets offers
tactic proofs in a structured, simplified way, which we de-
scribe in this paper.

Benchmarks. ATP benchmarks typically consist of a set
of formalized theorem statements, optionally accompanied
by their informal counterparts in natural language, where
the objective is to generate a valid proof. MiniF2F (Zheng
et al., 2021) offers 488 problems drawn from mathematical
olympiad and undergraduate mathematics courses, formal-
ized in parallel in Lean 3, Metamath, Isabelle, and HOL
Light. The benchmark was later ported to Lean 4 by Yang
et al. (2023), with some formalization errors corrected by
Wu et al. (2024).

Similarly, ProofNet (Azerbayev et al., 2023a) provides 371
problems formalized in Lean 3, together with their natural
language statement and natural language proof, making it
suitable also for evaluating autoformalization approaches.
This benchmark was ported to Lean 4 by Xin et al. (2024b).

PutnamBench (Tsoukalas et al., 2024) comprises of 1 099
problems formalized in Lean 4, Isabelle, and Coq. This
benchmark is comparatively difficult, with DeepSeek-
Prover-V2 (Ren et al., 2025), the current state-of-the-art,
attaining only 7.2 % success rate with pass@1024.3

Lean Tooling. The comparison of LeanTree with existing
tools is given in Section 5.

3. Lean programmatic interaction
We build on top of Lean REPL (Community, 2025) to enable
incremental proof execution. In this section, we describe
the LeanTree interaction module.

Preliminaries. In Lean, theorem proving consists of pro-
ducing a term whose type is equal to the theorem type. For
example, consider the following theorem:

theorem sub_zero (a b : N) (h : b = 0)
: a - b = a (1)

Proving Theorem 1 consists of supplying a term of type
a - b = a using available free variables a, b of type N
and h of type b = 0. While such a term can be written
down explicitly, it is common to utilize Lean’s tactic mode
to structure the proof in a format more aligned with human-

3https://trishullab.github.io/
PutnamBench/leaderboard.html (retrieved Jun 2025)

written proofs.

Upon entering tactic mode using the by keyword, Lean
creates a metavariable with the desired type a - b = a
and no value assigned yet. Metavariables can be thought
of as holes in a proof that have to be filled in before the
proof is considered finished. This gives us an intermediate
state in the proof construction, where the proof term is type-
correct but still contains holes to be filled in later. The still
unassigned metavariables are called open goals so that each
goal has a target type and a set of available free variables
called hypotheses. Because goals are metavariables, the two
terms are often used interchangeably.

We then proceed by applying a tactic to the list of open goals.
A tactic is a procedure that assigns values to one or more
open goals, with each of the values possibly containing new
unassigned metavariables. In this way, a tactic invocation
transforms the list of open goals into a new list of open
goals. Typically, a tactic only affects the main goal (defined
to be the first goal), either solving it or reducing it to one
or more simpler sub-goals. The proof is finished once there
are no more open goals, i.e., every metavariable has been
assigned.

3.1. LeanTree interaction module

LeanTree offers a Python interface, where the user can initi-
ate a proof search either from an individual theorem state-
ment or from a Lean file. After applying a Lean tactic to a
proof state, LeanTree returns a list of resulting sub-states.
This interface is suitable for tree search and backtracking as
the interaction can be started from any intermediate proof
state. Additionally, given the high CPU requirements of
Lean 4, LeanTree implements a dynamic pool of environ-
ments suitable for parallel execution.

3.2. Factorized proof states

We follow Lample et al. (2022) in factorizing proof states
into independent goals, which can be explored and proven
individually. Note that in this section, we disregard metavari-
able coupling, which is then addressed in Section 3.3.

The utility of proof state factorization has been identified by
Lample et al. (2022), citing the “re-use and parallelization
in the proof search algorithm” as their primary motivation.
An example of potential state reuse is shown in Figure 1,
where the same node is reached using two different search
paths. To illustrate proof search parallelization, consider the
following theorem:

theorem mul_eq_zero_iff (n m : N)
: n * m = 0 ↔ n = 0 ∨ m = 0 (2)

A possible strategy to prove Theorem 2 is to branch out
based on the values of n and m. We achieve this by execut-

3

https://trishullab.github.io/PutnamBench/leaderboard.html
https://trishullab.github.io/PutnamBench/leaderboard.html

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

ing the tactic cases n <;> cases m. Since each of
the two numbers can be either zero or a successor of another
number following the Peano axioms, the resulting proof
state consists of four goals. For example, one of the states
is (n′ + 1) · 0 = 0 ↔ n′ + 1 = 0 ∨ 0 = 0, corresponding
to the case where n is a successor and m is zero.

To complete the proof, all four goals must be closed. In
a non-factorized setting, the proof state consisting of four
goals is assessed by the policy and critic models as a whole.
Since tactics typically affect only the main goal, the last
goal can only be worked on once all others have been closed.
In contrast, factorized states allow the search algorithm to
focus on the goals individually, in any order the algorithm
deems fit.

As a final advantage, simplifying states reduces the difficulty
of the policy task, deciding which tactic to apply next, and
of the critic task, estimating the value of the current goal.
Note that proof states can grow arbitrarily complex during
proof search since each state corresponds to a list of goals.

AND-OR Search. Search over factorized states naturally
leads to an AND-OR tree, where a prover selects a tactic
in an OR node and subsequently has to prove all goals in
an AND node. Figure 1 shows an example where choosing
either the rw tactic or the cases tactic in the root leads to
a proof. For a more in-depth introduction to proof search in
Lean, we recommend (Limperg & From, 2023).

3.3. Metavariable coupling

Contrary to the simplified view presented in Section 3.2, it
is not always possible to fully factorize the proof state into
individual goals that can be proven independently. Subse-
quently, nodes in the proof tree are allowed to contain more
than one goal. Specifically, this occurs when two goals share
the same metavariable. For example, applying the transi-
tivity lemma Nat.le trans to the goal 2 ≤ 5 produces
goals 2 ≤ ?m and ?m ≤ 5 sharing a metavariable ?m whose
value has not yet been decided.4 Subsequently, choosing
a value for ?m in one of the goals affects the provability
of the other goal, and therefore the two goals cannot be
explored independently. For a more in-depth explanation of
this phenomenon, we recommend Aniva et al. (2024).

LeanTree detects all dependencies between goals caused
by metavariables and offers strategies to deal with them
during proof search. By default, goals are factorized to the
maximum extend allowed by metavariable coupling.

3.4. Proof verification

Originally, the Lean REPL did not utilize Lean verification
kernel to type-check assignments introduced by tactic exe-

4A third goal of type N is created for technical reasons.

cutions, leading to incorrect proofs being accepted in some
cases. Our prover managed to exploit these inconsistencies,
finding 12 incorrect proofs on MiniF2F that passed veri-
fication in the REPL. We describe these incorrect proofs
and recent approaches to fix Lean REPL in the appendix.
Note that all proofs found by our prover are also indepen-
dently verified directly using Lean, which guarantees their
correctness.

4. Supervised data extraction
To enable machine learning-based approaches to imitate
proofs without interfacing with Lean, LeanTree offers a data
extraction module to create supervised data from existing
Lean proofs. The data extraction module is fully compatible
with the interaction module in the sense that the extracted
proof trees can be directly executed and verified.

4.1. Proof tree building

To achieve compatibility with the interaction module, the
proof states extracted from supervised data must be factor-
ized into independent branches as described in Section 3.2.
This process yields a proof tree where each node contains
a list of goals (typically a singleton list), and each edge
corresponds to a tactic application.

To illustrate some challenges in building a proof tree, con-
sider the Lean proof and its corresponding proof tree shown
in Figure 2, where we prove n < 2n under the condition
n > 0. For the purposes of this illustration, we do not utilize
powerful tactics like linarith, which would solve this
trivial theorem nearly automatically. Instead, we illustrate
branching, metavariable coupling, and the introduction of a
new hypothesis.

Note that in the original Lean proof in Figure 2, tactics are
nontrivially structured via branching using cases, focusing
a goal via the center-dot operator, and merging multiple
rw commands into one. Additionally, each Lean tactic
consumes the set of currently open goals – the unfactorized
proof state – and produces a new set of open goals – a new
proof state. In contrast, each edge of the constructed proof
tree corresponds to a simple tactic applied to a minimal
list of goals that cannot be split further due to metavariable
coupling.

To illustrate metavariable coupling, observe that applying
Nat.le trans yields three goals that are not split due to
a shared metavariable ?m. However, once the metavariable
is assigned using exact, the remaining two goals are now
independent and can be split.

Finally, note that in the proof tree, the tactic case succ
n’ and its parent node are synthetic in the sense that they do
not have a counterpart in the original proof. This synthetic

4

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

OR ORAND AND

⊢ a - 0 = a

 h : b’ + 1 = 0
 ⊢ a - (b’ + 1) = a

h : b = 0
⊢ a - b = a

⊢ a - 0 = a rw [Nat.sub_zero]

 rw [Nat.sub_zero]

 contradiction

 rw [h]

 cases b

Figure 1: Example of an AND-OR proof tree for Theorem 1. Nodes connected with a dashed line could potentially be
merged and correspond to transpositions in board games. This is possible thanks to factorization (see Section 3.2).

tactic is necessary to assign the name n’ to the otherwise
inaccessible variable – denoted n† before the assignment –
so that it can be referenced by later tactics.

Other Lean features not shown in Figure 2 that further com-
plicate proof tree construction include tactic combinators
such as try, iterate, and any goals, where the set of
affected goals is determined in runtime, constructs such as
all goals and <;> that go against the tree formulation
by operating on multiple goals, or tactics like switch and
rotate left that change the order of open goals.

We implement the transformation illustrated in Figure 2 in
three stages described in the following three subsections.

4.1.1. SINGLETON TREES

In the first stage of proof tree building, a Lean proof is
transformed into a singleton tree, where each node contains
a single goal, by matching tactic applications with the goals
they affect. This is nontrivial, because, in general, a tactic
application transforms a list of open goals into an entirely
new list of empty goals without any guarantees about the
transformation.

To build the singleton tree, we integrate Lean REPL with the
BetterParser module of PaperProof (Karunus & Kovsharov,
2024), which solves the analogous problem for the purposes
of visualization.

4.1.2. TACTIC SIMPLIFICATION

In the second stage, the singleton tree is modified so that
complex tactics are broken down into simpler ones and each
tactic is a valid self-contained proof step. Here we describe
some of these modifications.

Nested Tactics. Tactics parametrized by a term can them-
selves contain nested tactic blocks. For example, consider
the following tactic from the Complex Analysis module in
Mathlib.

exact ⟨by
rw [aeval_algHom_apply, hw, map_zero],
rfl⟩

(3)

In Listing 3, the exact tactic is parametrized by a term
which contains a tactic block introduced using the by key-
word. We break down this complex proof step by masking
the nested tactic block and instead spawning a child goal,
yielding the following series of simpler proof steps.

exact ⟨by sorry, rfl⟩
rw [aeval_algHom_apply]
rw [hw]
rw [map_zero]

(4)

Note that the rfl tactic is not masked since it is used as a
term instead of as a tactic.

Structuring tactics. The cases and induction tactics
introduce syntactic branching by partitioning a proof based
on the value of an inductive type. The respective tactic
optionally contains a solving branch for each constructor
of such type. For example, the cases tactic in Listing 2
provides separate proofs for the zero and succ construc-
tors of variable n. This cases tactic spans 10 lines, which
is contrary to our effort of breaking down the proof into
simple steps. For this reason, we move the individual proof
branches from the cases tactic into their separate proof
steps.

However, branches corresponding to parametrized construc-
tors can optionally assign names to some of the constructors’
parameters. For example, in Listing 2, the succ constructor
is parametrized by a single natural number which is given
the name n’. When the cases tactic is broken down, the
name n’ has to be assigned manually, since Lean disallows
referring to variables with no explicitly assigned name. We
achieve this by adding a synthetic tactic case which has
no direct tactic counterpart in the original proof. Note that
the same effect could be achieved using the rename tactic,
which is, however, rare in human-written proofs.

Merged rw tactics. In Lean, subsequent rw tactics can
be merged into a single tactic, which is commonplace in
human-writen proofs. We partition such composite tactics
back into individual rw tactics. This is also the case for the
rwa tactic, where we additionally add the assumption
tactic to preserve semantics.

5

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

⊢ n > 0 → n < 2 * n

intro h

h : n > 0
⊢ n < 2 * n

cases n

case zero
h : 0 > 0
⊢ 0 < 2 * 0

case succ
h : n✝ + 1 > 0
⊢ n✝ + 1 < 2 * (n✝ + 1)

case succ n'

h : n' + 1 > 0
⊢ n' + 1 < 2 * (n' + 1)

apply Nat.le_trans

h : n' + 1 > 0
⊢ (n' + 1).succ ≤ ?m
⊢ ?m ≤ 2 * (n' + 1)
⊢ ℕ

case m => exact n' + 2

h : n' + 1 > 0
⊢ (n' + 1).succ ≤ n' + 2

h : n' + 1 > 0
⊢ n' + 2 ≤ 2 * (n' + 1)

rfl

have h1 : 1 ≤ n' + 1

h : n' + 1 > 0
⊢ 1 ≤ n' + 1

h : n' + 1 > 0
h1 : 1 ≤ n' + 1
⊢ (n' + 1).succ ≤ n' + 1 + (n' + 1)

apply h

theorem succ_less_double_succ (n : Nat) :
 n > 0 → n < 2 * n := by
 intro h
 cases n with
 | zero => apply h
 | succ n' =>
 apply Nat.le_trans
 case m => exact n' + 2
 · rfl
 · rw [two_mul, add_succ]
 have h1 : 1 ≤ n' + 1
 · apply Nat.succ_le_succ (Nat.zero_le _)
 · exact add_le_add_left h1 (n' + 1)

1. Factorize proof states using PaperProof.
2. Simplify

nested tactics,
structuring tactics,
composite rw tactics
...

3. Merge metavariable-dependent goals.

··· ···

···

Figure 2: Proof tree builder in LeanTrees transforms a Lean proof with complex structure (left) into a proof tree (right) with
simple states (lists of goals that cannot be split further) and transitions (tactics). Synthetic elements in the proof tree are
marked using dashed border.

4.1.3. MERGING METAVARIABLE-DEPENDENT GOALS

To obtain the final proof tree, sibling nodes in a singleton
tree are merged if they share a metavariable. This corre-
sponds to the fact that metavariable-dependent goals cannot
be explored independently.

During this merging process, the entire proof tree is executed
in Lean REPL starting from the root state and following
each tree edge, verifying that each proof branch ends in
a proven state. In this way, we ensure the correctness of
the whole proof tree building process. Proof trees that fail
this verification are not included in the final dataset (cf.
Section 4.2).

4.2. LeanTree dataset

We release the extracted proof tree data in an unified format
from two sources: 1) a recent version of Mathlib 4,5 the
standard library of human-written proofs in Lean, and 2) a
collection of 27.5K proofs autoformalized by DeepSeek-
Prover-V1.6 Importantly, each sample in the LeanTree
dataset corresponds to a Lean file rather than just an in-
dividual theorem. This is necessary to capture the structure
of a real-world Lean project like Mathlib where a proof can
depend on any definition located above it in the source file.

5leanprover/lean4:v4.19.0, under Apache-2.0 li-
cense

6https://huggingface.co/datasets/
deepseek-ai/DeepSeek-Prover-V1, MIT License

6

https://huggingface.co/datasets/deepseek-ai/DeepSeek-Prover-V1
https://huggingface.co/datasets/deepseek-ai/DeepSeek-Prover-V1

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

Each file in the LeanTree dataset contains a list of theorems,
and each theorem contains a list of all tactic proofs in its
proof term. Note that there can be more than one tactic proof
for a theorem if its proof contains more than one non-nested
by-blocks. For each tactic proof, LeanTree then contains
a proof tree with nodes corresponding to factorized proof
states and edges corresponding to tactic applications.

To demonstrate a possible use case for proof trees, the
dataset also contains the size and depth for each proof tree
node. These can serve as objectives for a critic model in
various proof search algorithm.

Additionally, the LeanTree dataset contains information
about the surrounding context, namely the list of imported
modules for each Lean file and the list of open namespaces
for each theorem. The correspondence between samples in
the dataset and the underlying Lean repository is given by
character offsets specifying the span of each theorem, proof,
and tactic execution.

Overall, LeanTree contains 74 706 factorized tactic proofs
from Mathlib and 26 201 from DeepSeek-Prover-V1. Since
Lean was not designed to enable factorized proof tree search
out-of-the-box, there are a large number of small techni-
cal challenges to overcome during the proof tree building.
While we are continually working on perfecting this process,
not all tactic proofs can currently be converted. Specifically,
23.0% of tactic proofs in Mathlib and 4.7% in DeepSeek-
Prover-V1 were not converted. We note that for Mathlib,
28.6% of the issues stem from the usage of calc and conv
tactics that fundamentally change the structure of a proof.

5. Comparison to existing tools
Several tools have recently emerged both for programmatic
interaction with Lean and machine learning data extraction
from human-written Lean proofs. In this section, we com-
pare them to LeanTree. We argue that LeanTree is unique
in its data extraction capabilities.

Evariste (Lample et al., 2022) corresponds most closely
to LeanTree. Evariste enables factorizing proof state into
individual goals, which can be explored independently. In
addition, Evariste detects metavariable coupling and does
not split metavariable-dependent goals, similar to LeanTree.

However, the Evariste dataset has not been released and the
tool itself is available only in a limited, nonexecutable for-
mat.7 This makes it challenging to build on top of Evariste’s
contributions.

Importantly, Evariste was only implemented for Lean 3,

7Specifically, the codebase states: “code does NOT run
out of the box as we removed references to Meta-internal
systems” https://github.com/facebookresearch/
Evariste

which is now deprecated. Since its core logic is imple-
mented using C++, directly binding to Lean 3 internals, its
migration to Lean 4 would be difficult. In contrast, the core
logic of LeanTree is implemented in Lean 4 itself, which
is a common Lean 4 paradigm (Moura & Ullrich, 2021).
Furthermore, LeanTree builds on top of the semi-official
Lean REPL project, and it is therefore set to benefit from
future improvements by the community.

LeanDojo (Yang et al., 2023) offers both an interaction
module and a supervised data extraction module. The ex-
tracted data also contains information about the premises
used in each tactic application, enabling training of retrieval-
augmented generation models. The extracted datasets are
available for both Lean 3 and Lean 4.

However, LeanDojo does not offer proof state factorization,
tactic simplification, or proof tree building. First, this means
that a tactic can only be applied to a whole proof state
consisting of a list of goals, yielding a new set of goals.
This prevents parallel search over independent goals.

Second, tactics in the LeanDojo dataset are left in the form
in which they appear in the abstract syntax tree of a Lean
source code. This includes complex or nested tactics that
span multiple lines. For example, the cases tactic shown
in Figure 2 is left unaltered. The user of the dataset can then
choose to filter out such samples, losing valuable training
data, or keep them in the training set, but increase the diffi-
culty of the modeling task and reduce the granularity of the
inference-time proof search.

Third, LeanDojo does not contain information about the sub-
proof size and sub-proof depth for each node, and provides
tactics in an unstructured format that is not conducive to
proof tree building.

Pantograph (Aniva et al., 2024) In contrast to LeanDojo,
Pantograph’s interaction and data extraction modules offer
proof state factorization, meaning that independent goals
can be explored independently. Pantograph also provides
information about which goals are coupled via a shared
metavariable.

However, tactic simplification and proof tree building are
not supported by the data extraction module, leading to
the same drawbacks as described for the case of LeanDojo.
Information about sub-proof size and sub-proof depth is
also not provided.

In addition, the Pantograph API is not well suited for gradu-
ally building the current Lean context by interleaving def-
initions and theorems that can depend on any previously
declared ones. Instead, theorems are treated as independent
units.

7

https://github.com/facebookresearch/Evariste
https://github.com/facebookresearch/Evariste

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

Approach MiniF2F-test

Whole-proof 9.59 % ± 0.71
Black-box rollout 5.32 % ± 0.37
White-box rollout 18.36 % ± 0.60

Best-first search∗ 26.23 %
∗Reported by Azerbayev et al. (2023b).

Black-box
Rollout

White-box
Rollout

0

5

10

15

20

25

M
in

iF
2F

 (%
)

best-first search

whole-proof generation

Figure 3: Performance on MiniF2F using linear rollouts with the Llemma-7B model. Error bars show standard deviation
over 5 runs.

6. Experiments
We investigate the utility of white-box approach in proof
search using the Llemma-7B model (Azerbayev et al.,
2023b) (MIT license), reporting the success rate on MiniF2F
test set (Zheng et al., 2021) modified for Lean 4 by Wu et al.
(2024). For each input theorem, we run N = 10 inde-
pendent linear rollouts, starting from an empty proof and
sequentially sampling tactics proposed by the model for a
maximum of M = 25 steps. The search is successful if the
concatenated tactics from a rollout are a valid proof of the
input theorem. If no proof is found during the N rollouts,
the search is unsuccessful.

In Figure 3, we report the results for the black-box and
white-box rollouts averaged over 5 runs with error bars of
one standard deviation. We additionally report the success
rate of black-box whole proof generation, where the model
is prompted to generate the entire proof at once. All our mea-
surements are averaged over 5 runs. Lastly, we include the
success rate of proof generation using best-first search (Polu
& Sutskever, 2020) reported by Azerbayev et al. (2023b),
which performs white-box rollouts in a tree fashion and is
therefore a natural upper bound on the white-box rollout
performance.

Our results show that in our specific setting, supplying the
prover with internal proof states improves proof search per-
formance. Interestingly, black-box linear rollouts achieve
worse performance than black-box whole-proof generation,
indicating that constraining the model to generate only one
tactic at a time hurts its performance. However, rollouts
with access to the internal state consistently outperform
both black-box methods.

We run all our experiments on a single node equipped with 8
AMD MI210 accelerators and 192 CPU nodes, parallelizing
both model inference and Lean interaction. In total, our ex-
periments necessitated 59 GPU-hours and 450 CPU-hours.

7. Conclusion
In this work, we introduced LeanTree, a novel white-box
tool designed to accelerate white-box approaches to auto-
mated theorem proving in Lean 4 via factorized proof states
and structured proof trees. Our approach addresses limita-
tions of existing black-box methods by leveraging interme-
diate proof states, enabling parallelized and efficient proof
search, and providing structured feedback during theorem
proving. LeanTree’s integration with Lean REPL ensures
that it will continue to benefit from patches and fixes by the
Lean community.

Additionally, we released a unified dataset of factorized in-
termediate proof states derived from Mathlib and DeepSeek-
Prover-V1. A limitation of LeanTree is that currently not all
tactic proofs can be converted; however, we are working on
expanding the coverage.

Finally, our preliminary experiments hint that white-box
approaches, facilitated by LeanTree, can outperform black-
box methods in automated theorem proving. We hope that
LeanTree serves as a stepping stone toward more efficient,
parallelizable, and reliable proof search and encourages
further research into white-box automated theorem proving.

Acknowledgements
Matěj Kripner was supported by the grant no. 25-18031S
of the Czech Science Foundation (GAČR). This research
was partially supported by SVV project number 260 821.
We acknowledge VSB – Technical University of Ostrava,
IT4Innovations National Supercomputing Center, Czech
Republic, for awarding this project access to the LUMI
supercomputer, owned by the EuroHPC Joint Undertaking,
hosted by CSC (Finland) and the LUMI consortium through
the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ (grant ID: 90254). The
authors thank Martin Suda, Matej Straka, Tomáš Čı́žek,

8

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

Radovan Haluška, Martin Schmid, and the Lean community
for helpful suggestions and corrections.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achim, T. and Tenev, V. Harmonic: Building mathematical

superintelligence. https://harmonic.fun/, 2023.
Accessed: 2025-05-14.

Aniva, L., Sun, C., Miranda, B., Barrett, C., and Koyejo,
S. Pantograph: A machine-to-machine interaction in-
terface for advanced theorem proving, high level rea-
soning, and data extraction in lean 4. arXiv preprint
arXiv:2410.16429, 2024.

Avigad, J., Goldberg, L., Levit, D., Seginer, Y., and Titel-
man, A. A proof-producing compiler for blockchain appli-
cations. J. Autom. Reason., 69(2), April 2025. ISSN 0168-
7433. doi: 10.1007/s10817-025-09723-y. URL https:
//doi.org/10.1007/s10817-025-09723-y.

Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W.,
Radev, D., and Avigad, J. ProofNet: Autoformalizing
and formally proving undergraduate-level mathematics
(2023). URL https://arxiv. org/abs/2302.12433, 2023a.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics. arXiv preprint arXiv:2310.10631, 2023b.

Baader, F. The description logic handbook: Theory, imple-
mentation and applications. Cambridge university press,
2003.

Barrett, C. and Tinelli, C. Satisfiability modulo theories.
Handbook of model checking, pp. 305–343, 2018.

Bobbin, M. P., Sharlin, S., Feyzishendi, P., Dang, A. H.,
Wraback, C. M., and Josephson, T. R. Formalizing chem-
ical physics using the lean theorem prover. Digital Dis-
covery, 3(2):264–280, 2024.

Chu, S., Murphy, B., Roesch, J., Cheung, A., and Suciu,
D. Axiomatic foundations and algorithms for deciding
semantic equivalences of sql queries. Proc. VLDB Endow.,
11(11):1482–1495, July 2018. ISSN 2150-8097. doi: 10.
14778/3236187.3236200. URL https://doi.org/
10.14778/3236187.3236200.

Community, L. Lean 4 repl. https://github.com/
leanprover-community/repl, 2025. Accessed:
2025-04-28.

Community, M. The lean mathematical library. In Pro-
ceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2020,
pp. 367–381, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450370974.
doi: 10.1145/3372885.3373824. URL https://doi.
org/10.1145/3372885.3373824.

Doussot, G. Cryptography experiments in lean 4: SHA-
3 implementation. Cryptology ePrint Archive, Paper
2024/1880, 2024. URL https://eprint.iacr.
org/2024/1880.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
Whole-proof generation and repair with large language
models. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1229–1241,
2023.

Gelernter, H. L. Realization of a geometry theorem-proving
machine. In Proceedings of the First International Con-
ference on Information Processing (IFIP), pp. 273–281,
1959.

Gloeckle, F., Limperg, J., Synnaeve, G., and Hayat, A.
ABEL: Sample efficient online reinforcement learning
for neural theorem proving. In The 4th Workshop on
Mathematical Reasoning and AI at NeurIPS’24, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Han, J. M., Rute, J., Wu, Y., Ayers, E. W., and Polu, S. Proof
artifact co-training for theorem proving with language
models. arXiv preprint arXiv:2102.06203, 2021.

Harrison, J. Handbook of practical logic and automated
reasoning. Cambridge University Press, 2009.

Jiang, D., Fonseca, M., and Cohen, S. B. Leanreasoner:
Boosting complex logical reasoning with lean. North
American Chapter of the Association for Computational
Linguistics, 2024. doi: 10.48550/arxiv.2403.13312.

Karunus, E. and Kovsharov, A. Paperproof: A new
proof interface for lean 4. https://github.com/
Paper-Proof/paperproof, 2024. URL https:
//github.com/Paper-Proof/paperproof.
Accessed: 2025-04-30.

9

https://harmonic.fun/
https://doi.org/10.1007/s10817-025-09723-y
https://doi.org/10.1007/s10817-025-09723-y
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.14778/3236187.3236200
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://eprint.iacr.org/2024/1880
https://eprint.iacr.org/2024/1880
https://github.com/Paper-Proof/paperproof
https://github.com/Paper-Proof/paperproof
https://github.com/Paper-Proof/paperproof
https://github.com/Paper-Proof/paperproof

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
tree proof search for neural theorem proving. Advances in
neural information processing systems, 35:26337–26349,
2022.

Limperg, J. and From, A. H. Aesop: White-box best-
first proof search for lean. In Proceedings of the
12th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2023, pp. 253–266,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9798400700262. doi: 10.1145/
3573105.3575671. URL https://doi.org/10.
1145/3573105.3575671.

Megill, N. and Wheeler, D. A. Metamath: a computer
language for mathematical proofs. Lulu. com, 2019.

Morrison, K. lean-training-data: Tools for extracting
training-data from lean libraries. https://github.
com/kim-em/lean-training-data, 2023. Ac-
cessed: 2025-07-01.

Moura, L. d. and Ullrich, S. The Lean 4 theorem prover
and programming language. In Automated Deduction–
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings
28, pp. 625–635. Springer, 2021.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Ren, Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W.,
Zhang, L., Fu, Z., Zhu, Q., Yang, D., et al. Deepseek-
prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv
preprint arXiv:2504.21801, 2025.

Tooby-Smith, J. Formalization of physics index no-
tation in lean 4. ArXiv, abs/2411.07667, 2024.
URL https://api.semanticscholar.org/
CorpusID:273970152.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M., Jen-
nings, M., Thakur, A., and Chaudhuri, S. Putnambench:
Evaluating neural theorem-provers on the putnam mathe-
matical competition. arXiv preprint arXiv:2407.11214,
2024.

van Doorn, F., Massot, P., and Nash, O. Formalis-
ing the h-principle and sphere eversion. In Proceed-
ings of the 12th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2023,
pp. 121–134, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400700262.
doi: 10.1145/3573105.3575688. URL https://doi.
org/10.1145/3573105.3575688.

Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., Santos,
M. D., Sung, F., Vinyes, M., Ying, Z., Zhu, Z., et al.
Kimina-prover preview: Towards large formal reason-
ing models with reinforcement learning. arXiv preprint
arXiv:2504.11354, 2025.

Whalen, D. Holophrasm: a neural automated theo-
rem prover for higher-order logic. arXiv preprint
arXiv:1608.02644, 2016.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and
Chen, K. Internlm2. 5-stepprover: Advancing automated
theorem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700, 2024.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W., and Liang, X. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024a.

Xin, H., Ren, Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu,
B., Zhang, L., Lu, X., Du, Q., et al. Deepseek-prover-v1.5:
Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. arXiv preprint
arXiv:2408.08152, 2024b.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
LeanDojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36:21573–21612, 2023.

Ying, H., Wu, Z., Geng, Y., Wang, J., Lin, D., and Chen,
K. Lean workbook: A large-scale lean problem set for-
malized from natural language math problems. arXiv
preprint arXiv:2406.03847, 2024a.

Ying, H., Zhang, S., Li, L., Zhou, Z., Shao, Y., Fei, Z.,
Ma, Y., Hong, J., Liu, K., Wang, Z., et al. Internlm-
math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv
preprint arXiv:2109.00110, 2021.

10

https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://github.com/kim-em/lean-training-data
https://github.com/kim-em/lean-training-data
https://api.semanticscholar.org/CorpusID:273970152
https://api.semanticscholar.org/CorpusID:273970152
https://doi.org/10.1145/3573105.3575688
https://doi.org/10.1145/3573105.3575688

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

A. False-positives with library search tactics
The apply? tactic8 is intended for searching the Lean library for lemmas applicable in the current context during interactive
proof construction, similar to exact? and rw?. However, the apply? tactic must not be left in a final proof, as it has the
same semantics as the sorry keyword, leaving such a proof incomplete.

For example, the proofs of putnam 2005 a4 and putnam 2007 b4 presented by DeepSeek-Prover-V2 (Ren et al.,
2025) utilize the apply? tactic and are thus incorrect. This highlights the potential of reinforcement learning to exploit
unchecked ambiguities in a proving environment. It also hints as to why a smaller DeepSeek-Prover-V2-7B model beat
DeepSeek-Prover-V2-671B in some contexts related to cardinal numbers, as the former might have learned to exploit the
apply? tactic while the latter did not (cf. Section Skill Discovery by Reinforcement Learning in Ren et al. (2025)).

In LeanTree, we prevent such errors by banning the usage of apply? by default, leaving it as opt-in for users who explicitly
want to integrate it into their proving system.

B. Incremental proof verification
Originally, the Lean REPL did not utilize the Lean verification kernel to type-check assignments introduced by tactic
applications, leading to incorrect proofs being accepted in some cases. Our prover managed to exploit these inconsistencies,
finding 12 incorrect proofs in the MiniF2F validation set that passed verification in the REPL when using the tactic mode.
One of these incorrect proofs is listed below.

theorem mathd_algebra_422 (x : R) (σ : Equiv R R) (h0 : ∀ x, σ.1 x = 5 * x - 12)
(h1 : σ.1 (x + 1) = σ.2 x) : x = 47 / 24 := by

rw [h0] at h1

by_contra! h
apply h.symm
simpa using h _

Lean correctly rejects the above proof with the error: “don’t know how to synthesize placeholder”. However, when executing
the proof in the tactic mode using the old version of Lean REPL, the proof passes as correct.

In a recent update,9 Lean REPL was extended to type-check the full proof term after each tactic application, mitigating all
false positives in the verification process, at the cost of introducing some drawbacks detailed below. We propose a different
strategy: Instead of verifying the type-correctness of the whole proof term, type-check only the new assignments introduced
by a tactic application.

To illustrate this difference, assume that we are searching for a proof of type T and have already constructed a term t : T
which still contains unassigned metavariables of types G1, . . . , Gn. Next, assume that we apply a tactic assigning terms
g1 : G1, . . . , gn : Gn to the metavariables in t. The current strategy of Lean REPL is to type-check the whole assignment
t : T , which contains the new terms g1, . . . , gn as subterms.

This leads to issues when the proof bifurcates into two branches. For example, consider applying the tactic have k :=
sorry in the REPL’s tactic mode.10 This corresponds to the assignment of the term ((fun k 7→ ?) sorry) to the
metavariable corresponding to the main goal, where ? is a new unassigned metavariable. Lean REPL then enables solving
the ? and sorry parts independently. However, assignments made in one of these two branches are not propagated to
the other one, meaning that, from the perspective of each branch, the root proof term will always contain at least one hole
introduced by an unassigned metavariable or the sorry keyword. This leads to the kernel always failing during a type
check for the duration of this proof. The end effect is that the current verification strategy leads to false negatives when the
proof being verified contains at least one syntactic branching.

In contrast, the proposed strategy implemented in LeanTree type-checks only the new assignments g1 : G1, . . . , gn : Gn

introduced by a tactic application. The type correctness of the whole proof term t : T then follows transitively. Most
importantly, this new verification strategy mitigates the false negatives described in the previous paragraph. Additionally,

8https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/#apply___
9Published on GitHub on Apr 10, 2025.

10This is the standard way to use the have tactic in the REPL – see for example https://github.com/
leanprover-community/repl/blob/master/test/have_by_sorry.in

11

https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/#apply___
https://github.com/leanprover-community/repl/blob/master/test/have_by_sorry.in
https://github.com/leanprover-community/repl/blob/master/test/have_by_sorry.in

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

the new strategy also decreases the time complexity of verifying a proof from quadratic to linear since each sub-assignment
is only verified once.

Note that all proofs found by our prover are independently verified directly using Lean, bypassing Lean REPL together with
the new verification algorithm described in this section.

C. Experiments setup
In all experiments, we prompt the Llema-7B model using the following prompt.

Complete the given Lean 4 code.
Directly output the completed Lean 4 code without any additional text,
comments, or reasoning.

When performing linear rollouts, we manually select only the first tactic from the model output.

During generation, we disable sampling of the sorry and admit keywords, together with syntax for comment sections.

12

LeanTree: Accelerating White-Box Proof Search with Factorized States in Lean 4

D. Dataset schema
The dataset is distributed in two files corresponding to the two data sources:

• lean-trees mathlib.jsonl

• lean-trees deepseek-prover-v1.jsonl

Both of these files share the following unified schema.

1 <sample> ::= {
2 "path": <string>,
3 "imports": [<string>],
4 "theorems": [<error> | {
5 "span": ,
6 "name": <string?>,
7 "context": [<string>],
8 "by_blocks": [{
9 "tree": <error> | {

10 "root": <proof_node>
11 }
12 }]
13 }]
14 }
15
16 <proof_node> ::= {
17 "id": <string>,
18 "proof_size": <int>,
19 "proof_depth": <int>,
20 "tactic": {
21 "tactic_string": <string>,
22 "span": ,
23 "children": [<string>],
24 "tactic_depends_on": [<string>]
25 }
26 "state": {
27 "goals": [{
28 "tag": <string?>,
29 "type": <string>,
30 "hypotheses": [{
31 "type": <string>,
32 "user_name": <string>,
33 "value": <string?>
34 }]
35 }]
36 }
37 }
38
39 ::= {
40 "start": <int>,
41 "finish": <int>
42 }
43
44 <error> ::= {
45 "error": <string>
46 }

13

