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1 Introduction

Reinforcement learning (RL) with natural language context poses important opportunities and chal-
lenges. Language provides an expressive and accessible conduit for task specification, so that RL
agents can address a broad set of tasks, rather than learn a single behavior. For natural language pro-
cessing (NLP), RL is a promising avenue for language use and acquisition with world interaction.
Fulfilling this potential requires addressing core reasoning challenges: the RL agent must reason
about both high-level language concepts, low-level actions, and the relations between them.

Despite significant interest and promising approaches, it has been challenging to create expressive
RL benchmarks with natural language. Existing approaches often make various simplifications, such
as using synthetic language [Côté et al., 2018, Co-Reyes et al., 2019] or heuristic approximation, for
example via demonstration data [Misra et al., 2017]. While these approaches open new avenues for
research, they either do not explore the full complexity of natural language or introduce unexpected
artifacts into learning through meaning approximations.

We present lilGym,1 a reinforcement learning benchmark for natural language visual reasoning that
addresses the above issues. It includes the semantically diverse natural language of the Natural
Language for Visual Reasoning (NLVR) corpus [Suhr et al., 2017], which has highly compositional
human-written language and requires complex grounded reasoning. lilGym provides an executable
evaluation function for every statement in the NLVR corpus, and these annotations align the reward
function with the language semantics of the agent’s underlying reasoning task. We experiment with
standard on-policy RL algorithms. Our experimental results show that while existing methods are
able to achieve non-trivial performance, the complex visual reasoning required by lilGym forms a
challenging open problem.

2 The lilGym Benchmark

lilGym consists of a collection of environments that share a common backbone. The backbone is a
2D plane that is manipulated by placing and removing objects of different types. Each environment
instance is a Markov Decision Process (MDP) created by pairing a natural language statement and a
target boolean value with a configuration of the shared backbone. The goal of the agent in each en-
vironment is to manipulate it by adding and removing objects so that the truth-value of the statement
with regard to the environment is the target boolean.

The learning problem lilGym presents is to induce a policy that generalizes across MDPs. We split
the MDPs to training, development, and held-out testing sets. The training environments are to be
used for parameter estimation, while the two other sets are for testing during development and for
final held-out testing to report approach performance.2

1lilGym stands for Language, Interaction, and Learning Gym.
2We recommend reporting both development and held-out test results in future work for easy comparison.
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Figure 1: Overview of an example for one CMDP, SCATTER-FLIPIT. The context c consists of
a text statement and a target boolean. The leftmost image depicts the initial state s0. The agent π
is presented with (s0, c), and chooses an action a0 ∼ π(·|s0, c). The environment transitions to the
next updated state s1, the context remaining the same.

There are two dimensions of configuration: appearance and starting condition. The appearance de-
termines the state space, transition function, and action space. The appearance of the environment
can be (a) TOWER: the objects include squares only, and they can be stacked into towers in specific
positions only; or SCATTER: objects of different types can be freely distributed. The starting condi-
tion determines the agent’s goal. The starting condition and agent objective can be: (a) SCRATCH:
the environment starts without any objects and the goal is to modify it so that the statement’s truth-
value is True; or (b) FLIPIT: the environment starts with a set of objects and the agent’s goal is
to flip the truth-value of the statement.

There are four configurations: TOWER-SCRATCH, TOWER-FLIPIT, SCATTER-SCRATCH, and
SCATTER-FLIPIT. Each configuration forms a Contextual Markov Decision Process [CMDP;
Hallak et al., 2015]. CMDP is an abstraction over a set of MDPs to account for a context that remains
constant throughout the interaction with an MDP. We set the context to include the statement and the
target boolean the interaction is conditioned on. A CMDP is a tuple (C,S,A,M(c)), where C is the
context space, S the state space, A the action space, and M a function mapping a context c ∈ C to
an MDP M(c) = (S,A, T,Rc, βc). Here, T : S×A → S is a transition function, Rc : S×A → R
the reward function, and βc an initial state distribution. This means that a CMDP is a set of MDPs
that share the same states and actions. Table 2 in Appendix A shows the number of MDPs under
each configuration. The policy takes as input both the current state and the context that created the
MDP. The learning problem is to estimate parameters θ for a policy πθ : S × C → A.

Contexts A context c ∈ C is a pair c = (x̄, b), where x̄ is a natural language statement and
b ∈ {True,False} is a target boolean value for the statement x̄ with respect to the state s. The
target boolean value in SCRATCH is always True. In FLIPIT, the target boolean value can either
be True or False.

States A state s ∈ S is an RGB image. Images in lilGym are divided into three box regions of
identical dimensions by two gray separators (Figure 1). The objects in lilGym have three properties,
each can take multiple values: shape (CIRCLE, SQUARE or TRIANGLE), color (BLACK, BLUE, or
YELLOW), and size (SMALL, MEDIUM or LARGE). In TOWER, states are constrained to have stacks of
up to four SQUAREs of MEDIUM size and any color at the center of each box. SCATTER states support
all object shapes, sizes, and colors, and they may be positioned freely. In both conditions, objects
cannot cross image boundaries or into the separators. The choice between SCRATCH or FLIPIT
does not influence the state space.

Actions and Transitions There are three action types STOP, ADD, and REMOVE. STOP terminates
the episode and does not require any parameters. The truth-value of the statement is only evaluated
and compared to the target boolean after the STOP action is taken. ADD adds objects to the environ-
ment, and REMOVE removes objects. They take different arguments for TOWER and SCATTER:

TOWER: Similar to the state space of TOWER, the actions are also more constrained. Both ADD
and REMOVE take a position argument, which has three possible values corresponding
to the three box regions. Objects are always added or removed at the top of the stack.
Adding an object on top of a stack of four objects or removing an object from an empty
box are both invalid actions. ADD also takes a color argument. Including STOP, there are
1 + (3 + 1)× 3 = 13 actions.
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SCATTER: Unlike TOWER, objects of any type can be placed freely in the box regions. Both ADD and
REMOVE take 2D coordinates that specify the pixel location. Adding an object places it so
that its top-left coordinates are the given coordinates. Removing an object will remove
the object at the given coordinates. Adding also requires specifying the shape, color,
and size. If adding results in objects overlap or boundary crossing with the separators or
image boundaries, the action is invalid. Removing from a position that does not include
an object is also an invalid action. The native resolution of images is 380×100 pixels.
Including STOP, there are 1+(380×100)×((3×3×3)+1) = 1,064,001 actions. In our
experiments (Section 4), we use a grid of 19×5, giving a total number of 2,661 actions.

The environment transitions are controlled by the transition function T : S × A → S. T depends
on the choice between TOWER and SCATTER, because this choice determines the action space. The
transition function does not modify the context, which is fixed for a given MDP.

Reward Function The reward function Rc is computed with respect to the context pair c = (x̄, b),
and is based on evaluating the truth-value of the natural language statement x̄ with respect to a state
s, and comparing it to the target boolean b. lilGym includes an executable evaluation function
E x̄ : S ×A → {True,False} for every statement x̄. We describe how we create these evaluation
functions in Section A.3.

The agent receives a positive reward for terminating the episode using the STOP action with the
statement evaluation E x̄(s) equal to the target boolean value b. If the statement boolean value E x̄(s)
does not equal the target boolean b value when taking the STOP action, the agent receives a negative
reward. If the episode terminates because the current time step t reached the action horizon H or
because of an invalid action, the agent also receives a negative reward. Action validity depends on
the current state s and on the configuration, because TOWER and SCATTER have different action
spaces. There is also a verbosity penalty of δ for every other action. Formally, the reward is:

Rc(s, a) =


1.0 a = STOP ∧ E x̄(s) = b

−1.0 a = STOP ∧ E x̄(s) ̸= b

−1.0 (a is invalid in s) ∨ (t = H)

−δ otherwise

.

Initial State Distribution The initial state distribution βc is parameterized by the context c ∈ C,
which is different between SCRATCH and FLIPIT. In SCRATCH, the agent modifies an empty
environment to satisfy the truth-condition of the statement x̄ in the context c, so the initial state
s0 is always an empty image. The set of initial states βc for every context c ∈ C is the set of
images associated with the statement x̄ in the NLVR data. In practice, for FLIPIT, this set includes
between 1 to 43 images.

3 Experimental Setup

We consider two RL algorithms paired with two models for a total of four algorithm-model pairs.

3.1 Models

In our experiments, we consider two models: C+BERT and ViLT. These two models learn a joint
visuo-linguistic representation, which is necessary to solve the proposed CMDP configurations.

C+BERT We process the statement x̄ using BERT [Devlin et al., 2019], and do mean pool-
ing across all layers and tokens to get the statement representation. We use a three-layer
CNN [Fukushima and Miyake, 1982] to embed the image of the current state s. We concatenate
the statement representation, image representation, and an embedding for the target boolean b, and
process the vector through a multi-layer perceptron (MLP) to compute the action distribution.

ViLT ViLT is a pretrained multi-modal Transformer that jointly processes text and image in-
puts [Kim et al., 2021]. We create a sequence of tokens by concatenating the statement, a token
for the target boolean, and image patches, separated by special tokens. The image patches are the
same size as the 19×5 grid cells, including in TOWER, where the action space does not use a grid.
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Table 1: Accuracies for all the four CMDP, with both models (C+BERT and ViLT) and both algo-
rithms (PPO and PPO+SF). Evaluation is done without stop forcing (i.e. with PPO).

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

Dev Test Dev Test Dev Test Dev Test

PPO
C+BERT 71.78 63.27 35.95 34.78 39.08 48.39 0.00 0.00
ViLT 81.60 76.54 67.60 65.80 35.63 41.29 3.51 6.09

PPO+SF
C+BERT 80.98 78.70 27.22 26.75 70.12 74.84 8.31 8.46
ViLT 84.05 82.41 65.09 62.91 64.37 70.97 27.48 29.95

3.2 Algorithms

We use PPO [Schulman et al., 2017] for parameter estimation,3 with a separate network as a critic.
The critic network is identical to the policy, except that we add a tanh activation for the value out-
put. Because of the large action space, especially for SCATTER, the agent rarely observes positive
reward, which requires taking a STOP action at an appropriate state. We design a simple variant of
PPO called PPO+SF (PPO with stop forcing) to study this issue. PPO+SF is identical to PPO, except
that during training, we mask all actions except STOP when the agent reaches a state where selecting
STOP will give a positive reward. This modification is present only during training. All testing is
done under the same conditions, without stop forcing.

4 Experiments

For the experiments we focus on two questions.

How do the algorithm-model pairs perform? For every CMDP, we report accuracy on the de-
velopment and test sets for both PPO and PPO+SF and both C+BERT and ViLT. For every config-
uration, we randomly sample 10% of the training data as a held-out validation set kept unchanged
throughout the experiments. We stop training using this validation set with early stopping and select
the model with the best validation accuracy.

In Table 1, we observe that the additional guidance of PPO+SF compared to PPO helps with explo-
ration, especially on SCATTER CMDPs. On SCATTER-FLIPIT, PPO+SF improves performance
by 23.86% compared to PPO. This illustrates the hard exploration problem that SCATTER CMDPs
pose. ViLT generally outperforms C+BERT, except on SCATTER-SCRATCH. This is relatively
expected given the joint reasoning architecture and multi-modal pre-training of ViLT.

What types of mistakes do PPO models make? We sample 50 erroneous development examples
from configurations in the SCATTER-FLIPIT and SCATTER-SCRATCH CMDPs, and analyze
their mistakes. In SCATTER-SCRATCH trained with PPO, we found that for C+BERT, 76% of the
mistakes are due to invalid actions, and 24% due to early termination. Among the invalid actions,
58% are due to trying to put an item that cannot fit in the box, 24% are due to trying to perform
an action on a separator, and 18% due to trying to remove an object from a position that does not
include an object. For other configurations, the error causes are similar.

5 Conclusion

We introduce lilGym, a reinforcement learning benchmark focused on natural language visual rea-
soning. lilGym is designed to be accessible for RL researchers, while still displaying the reasoning
richness of natural language. Our data annotation approach allows including expressive and diverse
natural language, while still providing accurate and automatic reward computation. Our strong base-
lines show that existing methods can achieve non-trivial performance on lilGym, but there remain
significant challenges to be solved and progress to be made.

3We use the PPO implementation of Kostrikov [2018].
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Table 2: Data statistics per CMDP configuration and data split. The number of MDPs corresponds
to the number of contexts under each CMDP. For FLIPIT, “Init.” corresponds to the total number
of initial states across all MDPs for this CMDP.4

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

MDPs MDPs Init. MDPs MDPs Init.

Train 989 1,910 5,704 1,241 2,340 6,696
Dev 163 317 676 87 164 313
Test 324 619 1,383 155 285 591

Total 1,476 2,846 7,763 1,483 2,789 7,600

A The lilGym Data

The data used for lilGym is based on the Natural Language for Visual Reasoning (NLVR) cor-
pus [Suhr et al., 2017]. The NLVR data was initially collected as a supervised learning benchmark.
We formalize an interactive task on top of the NLVR data and collect additional annotations for
reward computation.

A.1 Background: the NLVR Corpus

NLVR includes human-written natural language statements paired with synthetic images. Each pair
is annotated with the boolean truth-value of the statement with regard to the image (i.e., True if
the statement is true with regard to the image, or False otherwise). The images are designed to
support complex reasoning, including about spatial and set relations. The original learning task
posed by NLVR is to classify statement-image pairs as True to indicate the statement is true with
regard to the image, or False otherwise. Various approaches were developed to address the NLVR
challenge [Suhr et al., 2017, Tan and Bansal, 2018, Goldman et al., 2018, Pavez et al., 2018, Yao
et al., 2018, Hudson and Manning, 2018, Perez et al., 2018, Dasigi et al., Zheng et al., 2020, Gupta
et al., 2021], and a separate version using photos was also released [Suhr et al., 2019].5 NLVR is
roughly balanced, and the current state-of-the-art using the raw images is 80.6% accuracy [Zheng
et al., 2020], leaving significant room for improvement and illustrating the reasoning challenges the
NLVR data presents.

Qualitative analysis of the data [Table 2 in Suhr et al., 2017] shows a more diverse representation of
semantic and compositional phenomena compared to related corpora [Antol et al., 2015], including
requiring joint visual-linguistic reasoning about spatial relations, quantities, and sets of objects.
NLVR also provides an underlying structured representation for every image, which supports easy
image manipulation. The combination of a simple interface for image manipulation with complex
reasoning via natural language makes NLVR ideal to support an interactive benchmark environment.

A.2 Constructing lilGym from NLVR

We use the NLVR data to create each of the CMDPs (Table 2). SCRATCH CMDPs include contexts
for all natural language statements from NLVR, each paired with the empty initial state containing no
shapes. FLIPIT CMDPs include the natural language statements with their corresponding images,
both from NLVR (an example from SCATTER-FLIPIT in Figure 1). The images are used as initial
states. The target boolean is set so that the initial state does not fulfil it.

The split between TOWER and SCATTER also follows from NLVR. Statements corresponding to
TOWER images in NLVR are included in our TOWER CMDPs, and the same for SCATTER sentences.

4NLVR includes a total of 18,322 images. This allows further expanding the number of initial states to
92,179 initial states through box element permutations. We do not manipulate this property in this work, but
future work could take advantage of it. Our reward computation is invariant to such permutations.

5We do not use the photographic NLVR2 in this work.
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There are two towers with the same height
but their base is not the same in color.

exist(filter_obj(
all_boxes, lambda x: x.is_tower() and
exist(filter_obj(

all_boxes, lambda y:
y.is_tower() and
count(x.all_items_in_box()) ==

count(y.all_items_in_box()) and
get_set_colors(filter_obj(

y.all_items_in_box(),
is_bottom)) !=

get_set_colors(filter_obj(
x.all_items_in_box(),
is_bottom))))))

There is a box with all 3 different colors and
a black triangle touching the wall with its top.

exist(filter_obj(
all_boxes, lambda x:

count(get_set_colors(
x.all_items_in_box())) == 3 and

exist(filter_obj(
x.all_items_in_box(), lambda y:

is_black(y) and
is_triangle(y) and
is_touching_wall(y, Side.TOP)))))

Figure 2: Example sentences with the example images displayed alongside them during annotation
(left), and their annotated Python program representation (right). Both sentences and logical forms
are True for the corresponding image.

NLVR has four splits for training, development, public testing, and hidden testing. We follow the
original splits for the training and development sets. Following the recent public release of the
hidden testing set, we merge the public and hidden testing sets into a single public test split.

A.3 Annotations for Reward Computation

The NLVR annotations include the truth-value of each statement with regard to the images paired
with it in the data. Once we manipulate an image (i.e., change the state in our interactive envi-
ronment), the truth-value annotation does not hold. A key challenge for creating an interactive
environment using the NLVR data is the need for an accurate evaluation of the natural language
statement for every possible state (i.e., image), as required for reward computation (Section 2).

We address this challenge by annotating each statement x̄ with an executable boolean Python pro-
gram representing its meaning, E x̄ in Section 2. The Python programs operate on the underlying
structured representation. Each program returns True for every image that satisfies the constraints
specified in the corresponding statement, and False otherwise. In general, there are many states
that satisfy any given statement, many more than provided with the original NLVR images.

The programs are written using an API defined over the structured representations. We base the API
design on the logical ontology designed for NLVR’s structured representations by Goldman et al.
[2018], which we extend to include a total of 66 functions. Figure 2 shows two examples of logical
forms paired with their corresponding statements.

We use the freelancing platform Upwork6 for annotation. We recruit three annotators based on
preliminary screening of their fluency in English and competency in Python. We de-duplicate the
naturally occurring sentences in the data, collect 2,666 annotations at a total cost of $3,756, and
keep 2,661 valid annotations.

All the sentences in the dataset are randomly distributed to the annotators, each with an example
image. Every sentence is annotated with a logical form by one annotator. Each logical form is
evaluated against a corresponding hidden validation set, and must pass all the tests.

6https://www.upwork.com

9

https://www.upwork.com


B Related Work

There is significant and increasing interest in RL conditioned on natural language. Various strategies
are deployed to resolve language semantics for reward computation, mostly by strict control of the
language or through approximations.

Maybe the most common approach is to control the language by using synthetic language backed
by a formal representation [Narasimhan et al., 2015, Johnson et al., 2017a,b, Côté et al., 2018,
Chevalier-Boisvert et al., 2019, Co-Reyes et al., 2019, Jiang et al., 2020]. Although synthetic lan-
guage allows studying the problem of learning high-level concepts, many of the complexities of
natural language are stripped away, and such approaches run the risk of reducing the language learn-
ing challenge to reverse engineering the hand-crafted generation process.

An alternative that allows for natural language while retaining the control of its semantics is to
generate the target sequence of decisions (i.e., task demonstration), and solicit post-hoc instructional
language [Shridhar et al., 2020, 2021, Hanjie et al., 2021]. While this process uses human-written
language, it potentially implicitly retains the regularities of the demonstration generation procedure.

Others have carefully designed the underlying environment to simplify termination state evaluation
given demonstrations, for example, with a sparse graph-based structure [Anderson et al., 2018, Chen
et al., 2019, Ku et al., 2020]. However, recent work shows the potential for evaluation fidelity issues
even in these settings [Jain et al., 2019].

In contrast to previous approaches, we emphasize using human-written natural language and avoid
constraining the task to simplify reward evaluation. We also opt to not use underlying hand-crafted
procedures as stimuli for the writing. lilGym prioritizes exact reward computation rather than auto-
mated approximations to allow for relatively clean benchmarking of learning methods.

Our annotation of natural language statements with programs is inspired by the annotation of data for
supervised learning of semantic parsers [Zelle and Mooney, 1996, Zettlemoyer and Collins, 2005,
Suhr et al., 2018]. The Python API of our environments is based on the semantic parsing work of
Goldman et al. [2018]. Robust semantic parsers can assist in automating our annotation process.
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