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ABSTRACT
Meta-learning is a technique to transfer learning from a pre-built
model on known tasks to build amodel for unknown tasks. Graident-
based meta-learning algorithms are one such family that use the
technique of gradient descent formodel updates. Thesemeta-learning
architectures are hierarchical in nature and hence incur large train-
ing times, which are prohibitive for industries relying on models
trained using the most recent data to make relevant predictions.
To address these issues, we propose MetaFaaS, a function-as-a-
service (FaaS) paradigm on public cloud to build a scalable and cost-
performance optimal deployment framework for gradient-based
meta-learning architectures. We propose an analytical model to
predict the cost and training time on cloud for a given workload.
We validate our approach on multiple meta-learning architectures,
(MAML, ANIL, ALFA) and attain a speed-up of over 5× in training
time on FaaS. We also propose eALFA, a compute-efficient meta-
learning architecture, which achieves a speed-up of > 9× as com-
pared to ALFA. We present our results with four quasi-benchmark
datasets in meta-learning, namely, Omniglot, Mini-Imagenet (Ima-
genet), FC100 (CIFAR), and CUBirds200.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms.

KEYWORDS
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1 INTRODUCTION AND MOTIVATION
One of the biggest challenges with machine learning (ML) or deep
learning (DL) models is the assumption that, once they are deployed,
they will continue to perform well forever. It is inevitable that data
changes over time, subsequently affecting the model performance
adversely. Domains such as automatic speech recognition (ASR)
[9, 32] and medical imaging [14, 24], use large and complex pre-
trained models for predictions. The models need to be continually
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re-trained when few, albeit unseen audio sample files or new medi-
cal images (CT Scans, X-Rays, Skin lesions, etc) are encountered.
Another domain, namely FinTech [7, 12, 13], frequently uses stress-
testing for scenarios involving risk-calculation, compliance checks
and fraud-detection. Such scenarios require frequent (re)training
of models, as data comes in at intervals. A meta-learning approach,
also known as learn-to-learn or few-shot paradigm [6], is ideally
suited for training models to generalize on new unseen tasks using
just a few examples. In contrast, deep learning works best when a
high volume of good quality data is available and performance im-
proves as the data grows. However, a challenge with meta-learning
architectures is the large training times incurred, especially by
gradient based algorithms (a widely used school of thought in
meta-learning) owing to their hierarchical nature. In [16] the au-
thors have explored the idea of distributed training for accelerating
meta-learning architectures on a bare-metal setup. This results in
a limited scalability of the application and incurs of a fixed setup
cost.

With the advent of cloud providers and their offerings, virtual
machines (VMs) can be provisioned to facilitate scalability and
accelerate the process of distributed training.

Figure 1: Cost incurred on VMs vs Serverless

However in the Fintech stress-testing scenario outlined above,
data arrives at intervals and the model needs to be retrained each
time. A virtual machine will need to be continuously provisioned.
When there is no incoming data, the VM will stay idle or remain
under-utilized, while the cost incurred keeps increasing. Function-
as-a-Service (FaaS) [18] or serverless architecture is a cost-effective
solution, that enables better scalability by adjusting and tuning
the number of servers as the business grows. Figure 1 illustrates
the utility of FaaS architectures in such scenarios, that enable cost
optimization.

Data comes in at irregular intervals (Figure 1), and over time
(refer the x-axis), the cost incurred when using VMs drastically
increases as the VMs need to stay connected, while a serverless
setup is cost-effective as one pays only for whatever is used, i.e.,
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unlike traditional cloud providers, FaaS providers do not charge
for idle computation time [2]. Another issue is that gradient-based
meta-learning algorithms are compute-intensive, thus increasing
the overall training time [25, 28, 36], both on bare-metal and a
serverless setup. The challenge lies in optimizing meta-learning
architectures for compute-efficient performance, to improve the
training time.

To address the challenges discussed above, we propose MetaFaaS,
a meta-learning based scalable architecture using serverless dis-
tributed setup. We leverage the hierarchical nature of gradient-
based architectures to facilitate distributed training on a serverless
setup. We propose our compute-efficient architecture, eALFA, for
meta-learning, with a significantly reduced training time. While
FaaS enables unlimited scalability, we observe that there is an op-
timal number of FaaS instances that can reduce the training time.
We propose a generic analytical model for gradient based meta-
learning architectures for predicting the number of FaaS instances
(and hence the cost incurred) necessary for minimizing the overall
training time and validate it using quasi-benchmark datasets in the
field of meta-learning. To summarize, our key contributions in this
paper are as follows

(1) MetaFaaS : Cost-performance optimal deployment of gradi-
ent based meta-learning architectures using FaaS.

(2) eALFA : An efficient version of ALFA, that provides improved
accuracy and optimal training times.

(3) Analytical model for performance evaluation ofmeta-learning
architectures on FaaS.

The rest of the paper is structured as follows. We discuss the
related work in Section 2. We present the MetaFaaS architecture in
Section 3. Section 4 details the setup for the experiments and the
results are presented in Section 5. We present the analytical model
in Section 6. Lastly, we conclude with directions for future work in
Section 7.

2 RELATEDWORK
Meta-learning, also known as learning-to-learn has three schools
of thought: model-based [20, 23, 31], metric-based [15, 27, 34, 35],
and gradient-based [4, 8, 37]. Among them, gradient-based meta-
learning algorithms are receiving increasingly more attention due
to their potential to generalize across different tasks. A popular
gradient-based algorithm namely, MAML [8] and its variants [3, 28]
focuses on finding a good initialization of parameters, which is
necessary for a model to converge quickly on unseen tasks at test
time. However, the hierarchical nature of gradient based algorithms,
makes them compute-intensive increasing the training time. Mul-
tiple efforts [5, 16] and [25, 28, 36] have proposed methodologies
from systems and algorithmic perspectives respectively to accel-
erate or decrease the computation required for the meta-learning
training process. [16] distributed meta-algorithms [8, 25, 28] on
bare-metal using Ray [22] and Horovod [26] to achieve a speedup of
3x benchmarked against serial setup for the same set of algorithms.
However, [16] is an on-premise approach, thus, it is limited in terms
of scalability and is usually not very cost-effective.

With the advent of multiple cloud providers [2, 10, 19], ML/DL
models can be trained in a highly cost-effective and scalable manner
by provisioning VMs or cloud clusters in a distributed training setup.

Recent works [33],[38] propose communication and/or resource ef-
ficient distributed training for ML models. A cost-optimal approach
for easy deployment and scalability is FaaS. A few efforts [30] in
the literature focus on using the FaaS architecture to provide a cost-
efficient, resource provisioning framework, enabling predictable
performance for ML/DL workloads. A recent work [11], builds a
framework for implementing federated learning using FaaS, which
is slower albeit cheaper and more resource efficient in the long run.
In spite of meta-learning architectures being compute-intensive and
having relatively large training times, we have not come across any
work in the literature, that employs FaaS to accelerate the training
or re-training process of meta-learning architectures.

3 METAFAAS ARCHITECTURE

Figure 2: The MetaFaaS Architecture

WeproposeMetaFaaS (Figure 2), a generic serverless architecture
for accelerating meta-learning algorithms. 1 Tasks are distributed
across serverless instances and a copy of the model is trained at
each instance. The storage, AWS S3 (in this case), will consolidate
gradients from all workers, merge gradients and return the updated
model parameters. Data at each worker can be read from any file
system on the cloud. (eg: Elastic File System provided by AWS.) The
data may be temporal in nature and arrive at irregular intervals
as shown in the figure. We now outline how the meta-learning
algorithm is distributed using MetaFaaS to optimize the training
time and achieve scalability.

Algorithm 1 outlines a generic view of a gradient based meta-
learning algorithm which have a hierarchical structure. They usu-
ally comprise of two loops (1) Inner loop (2) Outer loop. A meta-
batch represents the number of tasks that will be processed in each
iteration of the inner loop. A task [8] represents a distribution
over input data samples, their corresponding labels and the loss
function. Inside the inner loop, weight updates are collected from
each task, and each set of weight updates will update parameters
1A serverless architecture is an event-driven computing service, where the developer
can run a service in the backend without provisioning or managing servers.
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Algorithm 1 Gradient based meta-learning
1: for 𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝 = 1, 2, . . . do
2: for 𝑖𝑛𝑛𝑒𝑟𝑙𝑜𝑜𝑝 = 1, 2, . . . ,𝑚𝑒𝑡𝑎𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 do
3: Base model adapts to a new task.
4: Task specific parameters are updated.
5: Compute adapted parameters with gradient descent.
6: end for
7: Update base model/neural network parameters with gradi-

ent descent.
8: end for

of the model. The outer loop calculates the loss for each model
(from the inner loop), determines gradients and updates the model
parameters. MetaFaaS architecture (Figure 2) depicts multiple work-
ers, i.e., serverless instances. For every inner loop iteration, a task
is loaded on the instance and the model copy at that instance is
trained. Thus, each worker will train a copy of the model, using data
(tasks) present at the worker. This differs from distributed training;
where a model is trained on each instance with the batch of data
that is loaded on the instance at the beginning of all epochs. For each
epoch, batches are sampled from the subset of data present at each
instance. In contrast, MetaFaaS loads tasks at each instance from
the meta-batch. A new meta-batch of tasks is loaded at the end
of an epoch. The tasks are distributed across workers. Serverless
instances cannot communicate with each other, hence the gradients
are consolidated using any storage (eg: S3 in this case) mechanism.
Model parameters are updated (outer loop) and updated copies of
the model parameters are sent to all workers. This signifies the end
of an epoch (also known as the outer loop). In this manner, the
model is trained to convergence.

Next, we discuss general terminology in the field ofmeta-learning
and then outline 3 popular meta-learning architectures, namely,
MAML, ANIL andALFA, followed by our proposed compute-efficient
architecture, eALFA.

3.1 Preliminaries
Meta-learning is a few-shot learning paradigm to efficiently learn
on unseen tasks given very few samples during training. A well-
knownmeta-learning architecture,Model-agnosticMeta Learner
(MAML) [8] tries to find a good initialization point for the model pa-
rameters. MAML performs two optimizations via two loops: Outer
Loop and Inner Loop. In Inner Loop, MAML performs task-specific
updates. It performs gradient update steps using SGD for input
training samples of each task.

Another architecture, ANIL - Almost No Inner Loop [28] is a
simplified version of MAML, where the parameter updates of the
inner loop are considered redundant. ANIL thus removes the inner
loop updates for the network body and applies inner loop adaptation
only to the head. This is because, the head is task-specific, and thus
varies each inner loop iteration to align with different classes in
each task.

Because of its similarity with MAML, ANIL can easily be adapted
to the serverless architecture, similar to MAML. The tasks in the
meta-batch are distributed across multiple workers. However since
computation in the inner-loop is already optimized (only the head

layer is updated), we do not expect to see a very high speed-up in
the distributed serverless setup for ANIL.

ALFA [3] is a gradient-based meta-learning algorithm, that fo-
cuses on adaptive learning of hyperparameters for fast adaptation,
i.e., inner-loop optimization. It achieves this by making the weight
decay and learning rate hyper-parameters adaptive, to the current
state of the base learner. ALFA is initialization-agnostic because
the initial weights 𝜃 for 𝑓𝜃 do not need to be updated throughout
the training process, i.e., ALFA can be trained to adapt from any
given initialization (e.g., random initializations). Naturally, ALFA
can be used with a technique such as MAML that searches for the
best model initialization to get even better performance. A detailed
study of all the three meta-learning algorithms MAML, ANIL, and
ALFA is discussed in Appendix A sub-sections A.1, A.2 and A.3
respectively.

3.2 eALFA
We now propose a compute-efficient variant of ALFA called effi-
cient ALFA (eALFA). The ALFA algorithm is known to have a huge
computational overhead due to the inclusion of an additional neural
network in the training loop (Refer Figure 3a). The challenge is to
reduce the computational overhead while maintaining the advan-
tage of rapid learning using ALFA. Our experiments in freezing
layers of the neural network gave us insights into parameters that
were updated in the inner-loop training. CCA Similarity [21]2 was
used to validate the training.

Proposed Algorithm
We trained ALFA on FC100 dataset using a 4-layered CNN (CONV4)
having a classifier layer as a head for 100 iterations. In each iteration,
we computed the CCA Similarity of the model parameters before
and after the inner loop update. Figure 3c shows the results of our
CCA Similarity experiments on the CONV4 model. As seen the
CCA score for all four layers is above 0.9, meaning that the weights
are not updated significantly in the inner loop. However, the head
layer shows a low CCA score. This is because, the classes change
for every input task, thus the head layer has to adapt to the classes.
Thus, during the inner loop, we can freeze all the layers except the
head layer, and still achieve nearly the same accuracy on the input
dataset as shown in Equation 1:

𝜃
𝑙𝑘
T𝑖 = 𝛽𝑙𝑘𝜃

𝑙𝑘
T𝑖 − 𝛼𝑙𝐾∇𝜃L

Dtrain
𝜃𝑙T𝑖

(𝑓𝜃 ),∀𝑘 = {1, 2, ...𝑁 }

𝜃ℎ𝑒𝑎𝑑T𝑖 = 𝛽ℎ𝑒𝑎𝑑𝜃ℎ𝑒𝑎𝑑T𝑖 − 𝛼ℎ𝑒𝑎𝑑∇𝜃LDtrain
𝜃𝑙T𝑖

(𝑓𝜃 )
(1)

we would only update the head layer as in Equation 2

𝜃
𝑙𝑘
T𝑖 = 𝜃

𝑙𝑘
T𝑖 ,∀𝑘 = {1, 2, ...𝑁 }

𝜃ℎ𝑒𝑎𝑑T𝑖 = 𝛽ℎ𝑒𝑎𝑑𝜃ℎ𝑒𝑎𝑑T𝑖 − 𝛼ℎ𝑒𝑎𝑑∇𝜃LDtrain
𝜃𝑙T𝑖

(𝑓𝜃 )
(2)

The eALFA algorithm is described in Algorithm 2.

2CCA Similarity is a technique that makes use of linear combinations of neurons
present in activations of two given layers and maximizes the correlation between the
two layers.
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(a) ALFA. (b) eALFA. (c) CCA Similarity

Figure 3: (a,b) Architecture for ALFA, eAFlfa. (c) CCA Similarity plot

Algorithm 2 Efficient ALFA (eALFA)
Require: A Task Distribution P(T ), learning rate 𝛾
1: Randomly initialize 𝜃 and 𝜙
2: while not DONE do
3: Sample batches of tasks T𝑖 ∼ P(T )
4: for tasks T𝑖 do
5: Initialize 𝜃T𝑖 ,0 = 𝜃
6: 𝜃1, 𝜃2, ..., 𝜃head = 𝜃T𝑖 ,0
7: Randomly sample two sets: Dtrain,Dtest ∈ T𝑖
8: for adaptation steps 𝑗 := 0 to AS − 1 do
9: Compute loss LDtrain

T𝑖 (𝑓𝜃T𝑖 ,0 ) w.r.t. K ∈ Dtrain
10: Compute task-specific hyperparameters:
11: (𝛼T𝑖 , 𝑗 , 𝛽T𝑖 , 𝑗 ) = 𝑔𝜙 (∇𝜃headL

Dtrain
T𝑖 (𝑓𝜃T𝑖 ,𝑗 ), 𝜃head, 𝑗 )

12: Perform gradient descent on the head layer:
13: 𝜃head, 𝑗+1 = 𝛽T𝑖 , 𝑗𝜃head, 𝑗+1 − 𝛼T𝑖 , 𝑗L

Dtrain
T𝑖 (𝑓𝜃T𝑖 ,𝑗 )

14: end for
15: Compute loss LDtest

T𝑖 (𝑓𝜃 ′T𝑖 ,𝑗 ) w.r.t. K ∈ Dtest
16: Update weights: 𝜃 ′T𝑖 = 𝜃T𝑖 ,𝐴𝑆
17: end for
18: Perform gradient-descent on regularizer:
19: 𝜙 := 𝜙 − 𝛾∇𝜙

∑
T𝑖 L

Dtest
T𝑖 (𝑓𝜃 ′T𝑖 )

20: end while

4 EXPERIMENT SETUP
We benchmark our results for multiple quasi-benchmark datasets
(Omniglot, Miniimagenet, FC100, CUBirds) in the field of meta-
learning. We compare the performance of meta-learning architec-
tures on bare-metal, with serverless. For the serverless architecture
setup, we use AWS lambda instances. We study the performance
by varying the number of instances (1,2,4,8,16) to increase paral-
lelism during the training process. Our bare-metal experiments
are conducted on a Linux CentOS7 server, with 256GB RAM and
56 core CPUs. The AWS lambda instance has 6 cores and a maxi-
mum memory of 10 GB can be allocated to the instance. Memory
usage varies according to the input task and can be varied in the
range of 128 MB to 10 GB to avoid additional costs. Each lambda
instance can execute for 15 minutes once it is instantiated. We fix
the metatbatch size to 16 (i.e., there are 16 tasks in each batch) and
we conduct experiments with 1shot-5ways and 5shots-1way. The
Mini-Imagenet dataset [29, 35] comprises 60K images of size 84x84.

The dataset has 64 training classes, 16 validation classes and 20
testing classes, each having 600 samples. Omniglot [17] dataset is
made up of 50 alphabets belonging to 1623 character classes, each
containing 20 samples. The default setup of the learn2learn library3
has 1100 classes in the train set, 100 classes for validation and 428
classes in the test set. We have used this default setup for our ex-
periments. The CU-Birds [39] dataset contains 11,788 images of 200
bird species. The data is split into 200 classes that are divided into
100, 50 and 50 for meta-training, meta-validation and meta-testing,
respectively. FC100 is a few-shot classification dataset built on CI-
FAR100 [27]. The dataset is split into 100 classes which are divided
into 60 classes for meta-training, 20 classes for meta-validation, 20
classes for meta-testing, with each class containing 20 images.

5 RESULTS AND DISCUSSION
We conduct an extensive study with multiple meta-learning archi-
tectures (MAML, ANIL, ALFA and eALFA), across image datasets
from varied domains. We benchmark the performance on bare-
metal where the algorithms are trained in a serial setup, i.e., the
model is trained sequentially on tasks in a meta-batch using two
configurations (1) 5 ways, 1 shot (2) 5 ways, 5 shots, on increasing
number of serverless lambda instances (1, 2, 4, 8).

5.1 Performance acceleration on serverless
In this experiment, we compare the performance of MAML and
ANIL using the serverless setup against a serial implementation on
bare-metal. We plot the training time achieved for MAML running
in a serial manner on a bare-metal setup and compare this with the
serverless execution of the MAML and ANIL architectures on an
increasing number of serverless instances on 4 datasets (Figure 4).
As the number of instances increase, we observe that serverless
MAML achieves an acceleration of more than 5X as compared
to serial MAML. Serverless ANIL performs even better. This is
because by default ANIL is computationally optimal as compared
to MAML. However as the number of instances goes to 16, we
observe an increase in the training time for small datasets, because
the communication overhead for consolidating gradients at the
end of every epoch increases. Thus, there is a trade-off between
the speed-up in training time with scalability and communication
overhead. Additional experiments are presented in Appendix C.1

3https://github.com/learnables/learn2learn/
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Table 1: Accuracy comparision - Omniglot (OG) and FC100 (FC), 5shots/1shot on Serverless and Sr(Serial)

MAML ANIL ALFA eALFA
2w 4w 8w 16w Sr 2w 4w 8w 16w Sr 2w 4w 8w 16w Sr 2w 4w 8w 16w Sr

OG 1s 0.92 0.91 0.92 0.92 0.94 0.87 0.86 0.87 0.85 0.94 0.94 0.95 0.84 0.95 0.96 0.96 0.96 0.96 0.96 0.96
5s 0.94 0.92 0.91 0.91 0.97 0.89 0.89 0.88 0.87 0.96 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99

FC 1s 0.36 0.35 0.36 0.35 0.36 0.33 0.32 0.34 0.35 0.38 0.39 0.37 0.38 0.37 0.41 0.34 0.34 0.34 0.35 0.37
5s 0.45 0.44 0.45 0.45 0.49 0.35 0.34 0.34 0.34 0.47 0.50 0.51 0.51 0.50 0.53 0.49 0.49 0.49 0.49 0.50

(a) Omniglot 5w5s. (b) FC100 5w5s. (c) Mini-Imagenet 5w1s. (d) CUBirds200 5w1s.

(e) Omniglot 5w5s. (f) FC100 5w5s. (g) Mini-Imagenet 5w1s. (h) CuBirds200 5w1s.

Figure 4: Comparison of performance of meta-learning algorithms on FaaS and Serial Setup.

We now benchmark the performance of our proposed approach
eALFA and illustrate how eALFA is computationally optimal leading
to a significant reduction in the training time. As observed from the
graphs (Figure 4), ALFA shows an improvement in training time
with an increase in serverless instances, while eALFA, outperforms
ALFA on a serverless setup. As discussed in Section 3.2, eALFA
updates only the head layer of the network and as a result reduces
the compute overhead. This also leads to a further reduction in
training time.

From Figure 4, we also infer that as the difficulty of input tasks
increases, the speedup gained on a serverless platform also in-
creases. We obtain a speedup of more than 5x for MAML and ALFA
meta-learning algorithms for datasets such as Mini-Imagenet and
CUBirds.We notice a communication overhead for ANIL and eALFA
datasets for easier datasets such as Omniglot. However, in general,
we achieve a speedup of 2x-4x for MAML and ALFA algorithms,
and a speedup of 1.5x-2.5x for ANIL and eALFA algorithms.

Table 1 presents the comparison between the accuracy achieved
on serial bare-metal setup versus the accuracy observed across dif-
ferent instances on serverless for Omniglot (OG) and FC100 (FC)
datasets, for 1 shot (1s) and 5 shot (5s). We observe that the model
performance is not affected significantly evenwhen subject tomulti-
ple instances. Furthermore, we achieve a huge speedup on different
meta-learning architectures trained across various datasets.

6 ANALYTICAL MODEL
Based on the empirical study in Section 5, we devise an analytical
model that captures the cost/performance trade-off for multiple
configurations of meta-learning architectures, both on bare-metal
and cloud and empirically validate the output of our analytical
model. Given a meta-learning algorithm A, for which the task size
is ’t’, model backbone is ’m’, let number of workers instantiated
be ’w’. Furthermore, let ’I’ be the number of iterations required
for convergence. Assume that the training function on lambda is
invoked ’x’ times, where:

𝑥 = 𝐼

No. of epochs completed in 15 min (3)

then, a generalized equation of the analytical model for a given
meta-learning algorithm ’A’ is given as:
𝐹𝑎𝑎𝑆(𝑤) :

= 𝑥
[
𝑡𝑠 (𝑤) +𝐶𝐹 (𝑤) +

𝐼

𝑥

[𝑀𝐵𝑆
𝑤

( 𝑡

𝐵𝑆3
+𝐴𝑆 ∗ 𝐼𝐿(𝑤) + 𝐵𝐾 (𝑤))

+ (3𝑤 − 2)
𝑐3

𝑚

𝐵𝑆3
+ 𝐿𝑆3

]
+ 𝑆𝐶 (𝑤)

]
+ 𝑐

(4)

where 𝑡𝑠 (𝑤 ) is the startup time of a lambda instance, 𝐶𝐹 (𝑤 ) and
𝑆𝐶 (𝑤 ) are the loading and saving model time, MBS is the meta batch
size, ’AS’ is the number of adaptation steps in the inner loop of
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(a) MAML - ALFA. (b) ANIL - eALFA. (c) MAML - over 1000 iters. (d) ALFA - over 1000 iters.

Figure 5: Empirical vs Theoretical Time using Analytical Model on FC100 5w1s Dataset.

the meta-learning algorithm, IL(w) is the inner loop update time
that varies across the different meta-learning algorithms. 𝐵𝑆3, 𝐿𝑆3
is the bandwidth and latency observed on S3. Lastly, 𝑐 is a constant
and 𝐵𝐾 (𝑤 ) is the time required for back-propagating gradients
and updating model parameters after each iteration. Again, the
equation for 𝐵𝐾 (𝑤 ) varies across the meta-learning algorithms.
Detailed equations for each of the respective algorithms is discussed
in Appendix B.

The graphs in Figure 4 clearly depict the trade-off between train-
ing the architecture on bare-metal and serverless, and the threshold
beyond which we do not derive the benefits of training on server-
less owing to the communication overhead. We now discuss the
derivation of the communication cost for each worker.

Symbol Configurations Values
𝑡𝑠 (𝑤) w=1,2,4,8,16 (1.2 ± 0.1)s
𝐵𝑆3 Amazon 𝑆3 Bandwidth (65 ± 7)MB/s
𝐿𝑆3 Amazon 𝑆3 Latency (8 ± 2)×10−2 s
MBS Meta-batch-size 4, 16, 32
AS Adaptation Steps 1, 3, 5
I Number of iterations 1k, 10k, 30k

Table 2: Constants for the analytical model

Workers on FaaS do not have any communication channel amongst
themselves on invoking the lambda function, thus rendering it in-
feasible to accumulate gradients learned on each instance using
conventional methods. We address this issue by making use of a
disk-based object storage device such as S3 which enables read and
write operations of the gradients. However our analytical model can
easily be extended to other storage systems as well. The communica-
tion works as follows: (1) Each instance stores the gradients/current
state in a temporary file and uploads it to S3. (2) One worker iterates
over all the temporary files and merges them into a single file. (3)
All other workers, except for the worker that has already read the
file, read the final merged file from the storage system. (4) Lastly,
the model parameters in each of the workers are updated with the
latest aggregated parameters.

Thus, the equation for the communication time is given by:

comm_time(w) = (3𝑤 − 2) 𝑡

𝐵𝑆3

𝐼

𝑐𝑠
(5)

where, 𝑐𝑠 is a scaling factor that varies across the meta-learning
algorithms. However the empirical results may vary depending on

the size of the input dataset. And hence, we incorporate the scaling
factor in the above equation for 1) number of workers; 2) dataset
size.

Using suggested constants from Table 2, the analytical model
approximates quite well to our empirical results as seen from the
graphs in Figure 5. Figures 5a and 5b depict how the analytical
model scales on FC100 dataset across an increasing number of in-
stances on the 4 meta-learning algorithms. We observe in Figures
5c and 5d that the analytical model also scales well over increasing
iterations for the communication, inner-loop and back-propagation
time. Thus, our analytical model is generic across gradient based
meta-learning architectures and provides useful insights into train-
ing cost incurred with scale.

7 CONCLUSIONS AND FUTUREWORK
The hierarchical nature of gradient-based meta-learning architec-
tures enables them to scale well on a serverless setup. Limited

Table 3: Speedup observed onMini-Imagenet andCUBirds200
on FaaS. ’w’ denotes the number of instances.

Dataset MAML ANIL ALFA eALFA
Mini-Imagenet 4.96x

(16w)
2.16x
(8w)

4.93x
(16x)

9.14x
(8w)

CUBirds200 5.68x
(16w)

1.79x
(8w)

5.04x
(16x)

9.39x
(8w)

memory and duration of serverless instances, render such archi-
tectures well suited for re-training meta-learning architectures on
a few shots of data. This leads to a significant reduction in the
overall training time (speed-up of 5X for large datasets such as
Mini-Imagenet. Refer Table 3). eALFA achieves a speed-up of 9x on
serverless, as compared to the original ALFA on a bare-metal serial
setup. Our analytical model is largely generic and can be adapted to
gradient-based meta-learning architectures with minor variations.
As a part of the future work, we plan to improve upon the compute
efficiency of meta-learning architectures, thus directly impacting
their scalability, training time and cost incurred on the cloud.
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A PRELIMINARIES
Meta-learning is often used in few-shot learning paradigm to effi-
ciently learn on unseen tasks given very few samples during train-
ing. To be specific, given an input data D, the model converges
well on test task (𝑥𝑖 , 𝑦𝑖 )𝐾𝑖=1, where 𝐾 is a small number. Thus, given
a training data Dtrain = (𝑥𝑖 , 𝑦𝑖 )𝑆𝑖=1, the goal of the meta-learning
algorithmA is to estimate the optimal initialization for parameters
𝜃 of the model 𝑓 such thatL(𝑦, 𝑓 (𝑥 ;𝜃 )), i.e., loss is minimized on the
unseen test set Dtest = (𝑥𝑖 , 𝑦𝑖 )𝑄𝑖=1. In meta-learning literature, nor-
mally, the test and train set are sampled from the same distribution:
T𝑖 ∼ 𝑝(T ). However, we also consider the cross-domain scenario
where test and train set are sampled from different distributions:
T𝑖 ∼ 𝑝train(T );T𝑗 ∼ 𝑝test(T ). In meta-learning, we consider the
scenario of N-way K-shot learning. Here, N means the number of
classification classes, and K are the number of samples per class.
Thus, we can write Dtrain = {(𝑥𝑘𝑛 , 𝑦𝑘𝑛 )𝑁𝑛=1 |𝑘 = 1, 2, 3, ...𝐾}.

A.1 MAML
Model-agnostic Meta Learner (MAML) [8] tries to find a good ini-
tialization point for the model parameters. MAML works on the
intuition that a good starting point results in learning on new tasks
efficiently using very few samples. For each gradient update step,
parameters are updated as follows:

𝜃T𝑖 = 𝜃T𝑖 − 𝛼∇𝜃L
Dtrain
T𝑖 (𝑓𝜃 ) (6)

Whereas, in outer loop, MAML updates the initialization pa-
rameters of the model to an optimal point which results in fast
convergence of loss to global minima. The meta-loss is defined as:

Lmeta(𝜃 ) =
𝐵∑︁
𝑏=1

LDtest
𝑇𝑏

(𝑓𝜃𝑏 (𝜃 )) (7)

Using this loss the outer loop is updated as:
𝜃 = 𝜃 − 𝜂∇𝜃Lmeta(𝜃 ) (8)

where, B (also known as the metabatchsize) is the number of tasks
model is trained on in the current iteration and 𝜂 is the meta learn-
ing rate of the outer loop. In the distributed training setup on FaaS,
each task or a set of tasks in the meta-batch B, is executed on a
worker. A copy of the model is trained on each worker. This is the
inner loop of MAML. We achieve an acceleration in training time
using serverless, as the tasks in the meta-batch are distributed and
hence executed simultaneously on each worker.

A.2 ANIL
The ANIL [28] algorithm is a simplified version of MAML, where
the parameter updates of the inner loop are considered redundant.

Mathematically, let𝜃 = (𝜃1, 𝜃2, 𝜃3, ..., 𝜃𝑙 ) be the (meta-initialization)
parameters for the 𝑙 layers of the network. Then,

𝜃T𝑖 = (𝜃1, ..., 𝜃𝑙 )T𝑖 − 𝛼∇𝜃L
Dtrain
𝜃𝑙T𝑖

(𝑓𝜃 ) (9)

i.e. only the final layer gets the inner loop updates. The meta-
loss, and outer-loop gradient update are same as in Equation 7, and
Equation 8. ANIL is distinct to the freezing experiments, where the
inner loop is removed only at the inference time. All the models are

updated in the outer loop. Because of it’s similarity with MAML,
ANIL can be easily adapted to the serverless architecture, similar to
MAML. The tasks in the meta-batch are distributed across multiple
workers. However since computation in the inner-loop is already
optimized (only the head layer is updated), we do not expect to see
a very high speed-up in the distributed serverless setup for ANIL.

A.3 ALFA
ALFA [3] is a gradient-based meta-learning algorithm, that focuses
on adaptive learning of hyperparameters for fast adaptation, i.e.,
inner-loop optimization. It incorporates an 𝑙2 regularization term
𝜆
2 | |𝜃 | |2 to the loss function LT𝑖 to address potential overfitting.
Thus, the MAML inner loop Equation 6 differs from ALFA inner
loop equation as follows:

𝜃T𝑖 = 𝜃T𝑖 − 𝛼(∇𝜃L
Dtrain
𝜃𝑙T𝑖

(𝑓𝜃 ) + 𝜆𝜃T𝑖 )

= 𝛽𝜃T𝑖 − 𝛼∇𝜃L
Dtrain
𝜃𝑙T𝑖

(𝑓𝜃 )
(10)

where 𝛽 = 1 − 𝛼𝜆. The adaptation process depends on the hy-
perparameters in the inner-loop update equation, which are scalar
constants of learning rate 𝛼 and regularization hyperparameter 𝛽 .
The dynamic variables 𝛼𝑖, 𝑗 and 𝛽𝑖, 𝑗 are generated using a learnable
neural network 𝑔𝜙 in every inner loop iteration. The parameters of
𝑔𝜙 are updated in the outer loop after every iteration.

B ANALYTICAL MODEL FOR
META-LEARNING ARCHITECTURES

The execution time in the analytical model varies slightly for each of
the gradient-based meta-learning algorithms. Equation 4 is largely
generic, with changes to 𝐼𝐿(𝑤 ) and 𝐵𝐾 (𝑤 ). The communication
time is architecture agnostic, and dependent on the size of input
task, model, and number of instances invoked. We now turn our
attention to the cost (in dollars) incurred during training. The cost is
calculated as a scaling factor of execution time and memory utilized
on lambda instances. Additional cost is computed as a function
of the read/write operations on S3 and size of data transferred
from S3 to EFS using DataSync 4. Thus our analytical model is also
capable of providing an accurate estimate of the cost incurred across
a range of datasets, algorithms, and training iterations. We now
outline the analytical model equations for each of the meta-learning
architectures.

(11)
𝑀𝐴𝑀𝐿/𝐴𝑁𝐼𝐿(𝑤) := 𝑥

[
𝑡𝑠 (𝑤) + 4𝑚𝑡𝑐1 +

𝐼

𝑥

[𝑀𝐵𝑆
𝑤

( 𝑡

𝐵𝑆3

+ 𝑐2(1 +𝐴𝑆)
𝑡

2 + (3𝑤 − 2)
𝑐3

𝑚

𝐵𝑆3

)
+ 𝐿𝑆3

] ]
+ 𝑐

The values of the constants 𝑐1, 𝑐2, 𝑐3 vary depending on the
dataset and model used. For ANIL, the only change in the Equation
11 will be the decrease in the number of parameters (𝑚′) model is
being trained on. This reduced model size results in the observed
speedup of ANIL over MAML.

(12)
𝐴𝐿𝐹𝐴/𝑒𝐴𝐿𝐹𝐴(𝑤) := 𝑥

[
𝑡𝑠 (𝑤) + 4𝑚0𝑡𝑐1 +

𝐼

𝑥

[𝑀𝐵𝑆
𝑤

( 𝑡

𝐵𝑆3

+ 𝑐2(1 +𝐴𝑆)
𝑡

2 + (3𝑤 − 2)
𝑐3

𝑚

𝐵𝑆3
+ 𝑐4(𝑚 + 𝑁 + 6𝑁 2)𝐴𝑆

)
+ 𝐿𝑆3

] ]
+ 𝑐

4Datasync is a fast and efficient method to transfer data across various file systems on
AWS [1].
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Figure 6: Additional results - Performance of meta-learning algorithms on FaaS and Serial Setup.

(a) Omniglot 5w1s.MAML-ANIL (b) FC100 5w1s.MAML-ANIL (c) Omniglot 5w1s. ALFA-eALFA (d) FC100 5w1s. ALFA-eALFA

where,𝑚0 is the size of the neural network 𝑔𝜙 and 𝑁 represents
the number of layers in the base model. ALFA updates model param-
eters in inner loop using dynamically generated hyper-parameters
for each layer. Thus we need to incorporate the additional param-
eters in our model. In the outer loop, only the 𝑔𝜙 parameters are
updated. The base model parameters are not updated. eALFA differs
from ALFA in Equation 12 only in the inner loop, where we only
update the weights of the head layer.

Using the suggested constants from Table 2, the analytical model
approximates quite well to our empirical results as seen from the fig-
ures in Figure 5. Figures 5a and 5b depict how the analytical model
scales on FC100 dataset across increasing number of instances on
the 4 meta-learning algorithms. We observe in Figures 5c and 5d

that the analytical model also scales well over increasing iterations
for the communication, inner-loop and back-propagation time. Thus,
our analytical model is generic across gradient based meta-learning
architectures and provides useful insights in training cost incurred
with scale.

C RESULTS
C.1 Performance acceleration on serverless
We present additional results (Figure 6) for 5ways-1shot, depicting
the performance of MAML, ANIL, ALFA and eALFA on serverless
and bare-metal. The discussion of the results is found in Section
5.1.
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