
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ABAS-RAL: ADAPTIVE BATCH SIZE USING
REINFORCED ACTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Active learning reduces annotation costs by selecting the most informative sam-
ples, however fixed batch sizes used in traditional methods often lead to ineffi-
cient use of resources. We propose Adaptive BAtch Size using Reinforced Active
Learning, a novel approach that dynamically adjusts batch sizes based on model
uncertainty and performance. By framing the annotation process as a Markov De-
cision Process, the proposed method employs reinforcement learning to optimize
batch size selection, using two distinct policies: one targeting precision and bud-
get, and the other for adapting the batch size based on learning progress. The pro-
posed method is evaluated on both CIFAR-10, CIFAR-100 and MNIST datasets.
The performance is measured across multiple metrics, including precision, accu-
racy, recall, F1-score, and annotation budget. Experimental results demonstrate
that the proposed method consistently reduces annotation costs while maintain-
ing or improving performance compared to fixed-batch Active Learning methods,
achieving higher sample selection efficiency without compromising model qual-
ity.

1 INTRODUCTION

Active Learning (AL) reduces the effort required for image classification by selecting the most
informative samples for labeling (Zhan et al., 2022). However, labeling large datasets can be a costly
and time-consuming process, especially when expert knowledge is required (Mahmood et al., 2022).
Additionally, poor-quality annotations can negatively impact machine learning (ML) performance,
further increasing the complexity and cost of AL. Reinforcement Learning (RL) (Takezoe et al.,
2023; Ren et al., 2020) offers a promising solution to these challenges by dynamically adjusting
batch sizes and optimizing sample selection strategies. RL operates by learning from feedback,
rewarding actions that enhance performance and efficiency, making it well-suited for sequential
decision-making tasks, such as sample selection in AL, where outcomes are uncertain and evolve
over time. Despite these advantages, RL has not yet been widely used to optimize batch sizes in
AL. Most RL-based methods focus on broader decision-making tasks, leaving a gap in the dynamic
adjustment of batch sizes, which could potentially improve AL’s efficiency.

Reinforced Active Learning (RAL) (Takezoe et al., 2023; Ren et al., 2020) merges RL with AL by
enabling an agent to select the most relevant data based on rewards and penalties. This approach has
been successfully applied in fields such as robotics (Kober et al., 2023), natural language processing
(NLP) (Fang et al., 2017), and computer vision (Le et al., 2021), where it has improved learning effi-
ciency by focusing on the most useful data. In RAL, an RL agent autonomously replaces traditional
AL strategies such as uncertainty-based (Cao & Tsang, 2021; Kim et al., 2020; Sinha et al., 2019),
diversity-based (Sener & Savarese, 2017), or hybrid methods (Ash et al., 2019). Rather than rely-
ing on fixed rules, the agent dynamically adapts its sample selection based on learned experiences,
optimizing the learning process by concentrating on the most informative data.

Although the above-mentioned methods improve AL efficiency, mostly rely on fixed batch sizes or
predefined strategies, which can limit their adaptability and resource optimization. The proposed
method, Adaptive BAtch Size using Reinforced Active Learning (ABAS-RAL), addresses these
limitations by using RL to dynamically adjust batch sizes based on real-time feedback, resulting in
more efficient and effective sample selection. The key contributions of this work are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. Adaptive Batch Size Selection: We introduce a method that dynamically adjusts the batch
size based on real-time feedback, optimizing both efficiency and model performance.

2. Dual-Policy Design: A single RL agent manages precision and budget with one policy,
while another policy determines the optimal batch size for each iteration.

3. Optimized Learning: ABAS-RAL enhances learning efficiency by focusing on the most
relevant data, reducing annotation costs while maintaining high precision.

2 RELATED WORK

2.1 ACTIVE LEARNING

AL selects the most informative data points for labeling to enhance learning efficiency and reduce
costs, especially when labeled data is scarce. Uncertainty-based AL (Cao & Tsang, 2021; Kim et al.,
2020; Sinha et al., 2019) targets data points with high uncertainty, while hybrid (Ash et al., 2019)
and interpolation-based (Parvaneh et al., 2022) methods combine strategies or focus on samples
near labeled points. ALFA-Mix (Parvaneh et al., 2022) and LOC (Mahmood et al., 2022) are specific
methods that improve AL by evaluating label variability and optimizing data collection to balance
costs and performance.

2.2 REINFORCED ACTIVE LEARNING

RL has advanced AL by dynamically selecting the most informative samples. Key contributions
include Fang et al. (2017) for NLP, Woodward & Finn (2017) for image classification, Pang
et al. (2018) for meta-learning, and Sun & Gong (2019) for image selection. Wassermann et al.
(2019) introduced contextual-bandit models, Liu et al. (2019) developed a human-in-the-loop model,
and Wang et al. (2020) applied RL to medical imaging. Casanova et al. (2020) focused on seman-
tic segmentation, Hanane et al. (2022) on multi-agent RL for medical segmentation, and Ahmad
et al. (2021) on selecting informative image regions. Recent work includes Nilsson et al. (2021) on
lifelong visual perception, Slade & Branson (2022) on deep RL for medical image classification,
Cui et al. (2022) on human activity recognition, Katz & Kravchik (2022) on online stream-based
meta AL, Dodds et al. (2023) on molecular design, and Chun (2023) on data-efficient classification
frameworks.

2.3 ADAPTIVE BATCH SIZE APPROACHES

Research on adaptive batch sizes in AL includes Hacohen et al. (2022) on budget and query strate-
gies, Chakraborty et al. (2014) on optimizing batch size and selection criteria, and Ishibashi & Hino
(2017) on error stability-based stopping. Cai et al. (2017) focused on Expected Model Change Maxi-
mization to select informative samples. Konyushkova et al. (2018) developed a universal AL strategy
using RL and MDP frameworks. Fazakis et al. (2019) combined AL with semi-supervised learning
for efficient data utilization. Recent advancements by Haghighatlari et al. (2020) and Fauld (2022)
include EMCM (Expected Model Change Maximization) and AB-EMCM for adaptive batch size in
regression tasks.

ABAS-RAL utilizes RL to dynamically determine the optimal batch size for visual classification
tasks. The proposed method uses RL to adaptively select the batch size in a single, efficient step.
This is achieved with minimal additional cost or computational overhead, as RL agent not only
selects the batch size but also utilizes the classifier to fill it effectively. This approach ensures that
batch sizes are tailored in real-time to maximize learning efficiency and performance, addressing
the limitations of existing methods and advancing adaptive batch size techniques in a practical,
classification-focused manner.

3 ADAPTIVE BATCH SIZE SELECTION USING RL

The introduced RL-based approach uses an agent, called BatchAgent, which learns to select the
optimal number of samples to annotate. The BatchAgent operates within a defined state-space,
choosing actions (batch sizes) and receiving rewards based on improvements in model performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

By focusing on informative samples, this method reduces the number of annotations needed for
satisfactory performance.

3.1 FORMULATING AL AS A MARKOV DECISION PROCESS

Following state-of-the-art approaches (Konyushkova et al., 2018) we use the deep Q-network
(DQN) (Mnih et al., 2013) method and modify AL process based on this methodology. Based on
the work of Konyushkova et al. (2018), the proposed method also takes advantage of the benefits of
Q-learning (Watkins & Dayan, 1992). BatchAgent is trained with the goal of being able to identify
an optimal batch of samples at each iteration of an AL episode.

3.2 RL STATES

At the beginning of AL training, a subset V (state data) is designated from the unlabeled data pool
U0 and then update U0 to exclude V , resulting in U0 \V . At each iteration t, the state representation
is defined as a vector st consisting of the sorted margin scores m(xi) for each xi in V . The margin
scores, computed based on the classifier’s predictions for each sample in the state data V , are calcu-
lated as the difference between the highest and the second-highest predicted class probabilities for
each sample of the state data V , i.e., mi(xi) = P (y∗|xi) − P (y∗∗|xi), where y∗ and y∗∗ are the
most likely and the second most likely class labels for sample xi. Sorting the margin scores ensures
the input is consistent and structured, allowing RL agent to easily identify the most uncertain sam-
ples. This helps the agent to make better learning decisions, as an unsorted input would be harder to
interpret and generalize. The state representation captures essential details, like the mean prediction
and the level of classifier confidence, and is a simple form derived from the classifier and the dataset.

3.3 RL REWARDS CALCULATION

The reward rt for an action at taken at iteration t is defined as:

rt =

(
P (Bt+1)

Bt+1

)
−

(
P (Bt)

Bt

)
(1)

where Bt represents the current batch at iteration t for an AL run, and P (Bt) is the precision at
iteration t. The reward function rt (Equation 1) measures the improvement in precision per unit
of annotation effort. Comparing batch precisions in the reward function helps the agent to choose
batch sizes that improve performance. By focusing on calculating the improvement in precision
from one batch to the next, the agent learns to pick batch sizes that give the best results with the
least effort. This ensures that the model becomes more accurate without wasting too many labeled
samples. The latter helps the agent to select efficient annotation strategies by favoring actions that
result in significant precision improvements with minimal annotation cost. In other words, equation
1 compares the efficiency of the current total batch Bt+1 with the previous total batch Bt, guiding
the agent to choose batch sizes that maximize precision gains per annotated sample.

3.4 Q-VALUE UPDATE

Q-values are used in RL to estimate the potential future rewards of taking a specific action in a given
state (Watkins & Dayan, 1992). The goal is to maximize these rewards over time. In the context
of the suggested model, Q-values help the agent decide the best batch size to choose by predicting
which action will lead to the highest long-term improvement in precision. We use a DQN to estimate
these Q-values and update them as the model learns.

DQN updates its Q-values by minimizing the difference between the predicted and the target Q-
values. The target Q-value for a state-action pair is given by:

Qvalue = rt + γ ×max
a

Qtarget(st+1, a) (2)

where rt represents the reward obtained after taking action at in state st. The term γ is the discount
factor, which reflects the importance of future rewards in the current decision-making process. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Train the classifier
using the current
labeled dataset L.

Initialize the
labeled data
(L) and the
unlabeled

data pool (U).

Calculate the margin scores for
a portion of the unlabeled data

to define the state s.

STATE DATA

Margin score 1

Margin score 2

…

CLASSIFIER

The RL agent chooses the
batch size (action a) for

annotation based on the
current state.

AGENT

The classifier
identifies the
samples with
the highest
uncertainty

using the
margin scores.

Chosen batch of
samples for
annotation.👤

The chosen samples are forwarded
to the human annotator for

labeling.

ANNOTATOR

REWARD

Calculate the reward based on
the increase in precision and the

annotation budget used.

Verify if the target precision
and budget have been

achieved.

NORe-train the classifier
using the updated

labeled data.

YES

End the process.

Figure 1: Flowchart of RL agent’s decision process in ABAS-RAL.

expression Qtarget(st+1, a) refers to the maximum Q-value associated with the next state st+1, as
determined by the target network, over all possible actions a that could be taken in that state.

3.5 RL ACTION SELECTION

DQN selects actions that maximize the Q-value, guiding the agent to choose batch sizes that yield
the highest cumulative reward. By updating Q-values based on received rewards, DQN optimizes
the annotation process for efficient and effective learning.

At each iteration t, the action at is defined as selecting k samples for annotation, where k ∈
{1, 2, . . . , ⌊0.1 × |Ut|⌋}, and |Ut| is the total number of available unlabeled samples. Limiting
the action space to 10% of the dataset per iteration encourages thorough data exploration, prevents
overfitting, and ensures efficient use of annotation resources. This approach also provides more
frequent feedback, helping the agent to quickly identify informative samples and refine the model
iteratively.

3.6 RL AGENT DECISION PROCESS

To better illustrate the decision-making process of RL agent, Fig. 1 provides a flowchart that outlines
each step from state representation to reward calculation. RL agent begins by training the classifier
on the currently labeled dataset L. It then evaluates the uncertainty of samples in the unlabeled pool U
to represent the current state s. Based on this state, the agent selects an optimal batch size (action a)
for annotation. The most uncertain samples are then forwarded to the human annotator for labeling,
after which the datasets are updated. The agent receives a reward based on the improvement in
precision relative to the annotation budget, guiding future batch size selections.

3.7 WARM-START EPISODES

Warm-start episodes are crucial for initializing the AL algorithm and training the BatchAgent. Dur-
ing these episodes, the BatchAgent tests different batch sizes to learn their effects on performance.
An episode ends when:

• Two consecutive rewards decrease, or

• All samples have been used.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Two consecutive reward decreases signal the end of an episode because it shows the model is no
longer improving. Stopping here avoids wasting time on ineffective batches, allowing the model to
explore new ones and use them to better train DQN agent. The details of the warm-start episode
process are outlined in Algorithm 1.

Following these warm-start episodes, key benchmarks are set:

• Target Precision: The highest precision achieved during warm-start episodes.
• Target Budget: The minimum number of samples required to achieve this precision.

These benchmarks help guide the BatchAgent’s training, ensuring it can maintain or exceed the
target precision efficiently while staying within resource limits.

Algorithm 1 Warm-Start Episode Process

Require: L labeled data, D training set, b batch, c classifier, r reward, s state
Ensure: Trained classifier

1: Randomly choose the first b of samples from D and train c.
2: repeat
3: Fill the selected b with random samples.
4: Compute the s (margin scores for the state data) using c.
5: Re-train the c with the new L.
6: Compute the r based on the precision of the c and the selected b size.
7: Store current s, selected b, and r in the Replay Buffer.
8: until termination condition is met when two consecutive rewards decrease or the samples are

exhausted.
9: return Trained c, Target precision, Target budget

3.8 POLICY

The BatchAgent’s policy determines the batch size for each annotation episode, aiming to balance
exploration of new batch sizes with exploitation of existing knowledge to maximize precision. An
episode concludes when:

• Target Precision is achieved, ensuring optimal performance without over-training or
under-training.

• Target Budget is reached, keeping annotation within resource constraints.

This approach ensures that the BatchAgent operates effectively within budget limits while striving
for high precision.

3.9 PROCEDURE

As described in Algorithm 2, the BatchAgent is trained with the goal of being able to identify an
optimal batch of samples at each iteration of an AL episode. Specifically, during model training, a
predefined number of epochs are executed, consisting of a predefined number of episodes.

These steps repeat until a terminal state sT is reached. Using the best precision score p as the
best precision score that was achieved from the warm-start episodes, the target precision is defined.
Using the smallest achieved budget from the warm-start episodes, the target budget is defined. Thus,
the terminal state sT is reached when the target precision and the target budget are achieved.

By selecting and labeling samples, updating the classifier, and calculating rewards in each step, the
BatchAgent improves its performance and adjusts to changes in the model’s predictions.

3.10 DQN IMPLEMENTATION DETAILS

RL is implemented using non-linear Q-function approximation inspired by DQN (Watkins & Dayan,
1992) and incorporate key techniques for effective learning:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 BatchAgent Training Algorithm

Require: L0 initial labeled data, U0 initial unlabeled data, D dataset, π policy, Target precision
Ptarget, Target budget Btarget, E training epochs, T episodes per epoch

Ensure: Trained agent DQNT , Trained classifier cT
1: for e = 0 to E − 1 do ▷ For each epoch.
2: for t = 0 to T − 1 do ▷ For each episode.
3: repeat
4: Train classifier ct using labeled data Lt.
5: Characterize state st based on ct.
6: Select action at ∈ A following policy π : st → at to define batch Xt ⊆ Ut.
7: Retrieve labels Yt for Xt from D.
8: Update labeled set Lt+1 = Lt ∪ (Xt, Yt).
9: Update unlabeled set Ut+1 = Ut \Xt.

10: Use classifier ct to fill batch action based on uncertainty scores.
11: Assign reward rt+1 based on empirical performance.
12: Update agent’s DQNt weights.
13: until Precision Pt ≥ Ptarget and Budget Bt ≤ Btarget or the samples are exhausted.
14: end for
15: end for
16: return DQNT , cT

• Target Network: A separate target network with a slow update rate (0.01) (Watkins &
Dayan, 1992) stabilizes learning by decoupling it from the main Q-network.

• Replay Buffer: A buffer of size 50,000 (Watkins & Dayan, 1992) mitigates correlated
updates by providing diverse data for training.

• Double DQN: Used to reduce overestimation bias in Q-value estimates by separating ac-
tion selection from value estimation (Watkins & Dayan, 1992).

• Prioritized Experience Replay: Experiences are prioritized based on temporal-difference
errors (Watkins & Dayan, 1992), with the prioritization exponent set to 3 to balance explo-
ration and prioritization.

Additionally, the bias of the final neural network layer is initialized to the average reward from
warm-start episodes, which helps to stabilize learning in environments with negative rewards. State
representation is preprocessed for compatibility with fully connected layers, and scores within the
state are sorted. The network uses sigmoid activations in the final layer, while the output layer
employs a linear activation to estimate Q-values.

4 EXPERIMENTAL EVALUATION

To evaluate the performance of ABAS-RAL, a series of experiments is conducted comparing it
with Random Sampling (RS) and several fixed-batch size methods on three datasets: CIFAR-
10, CIFAR-100 (Alex & Hinton, 2009), and MNIST (Lecun et al., 1998). Each method is tested
using 20% of the training set as evaluation data. For every method and dataset, 50 experiments are
performed, recording precision, accuracy, recall, F1-score, and the annotation budget (expressed as
a percentage of the evaluation samples).

The experiments are organized into three main comparisons across all datasets:

• ABAS-RAL vs. Random sampling: Both methods are tested using the same pre-trained
ResNet50 (He et al., 2016) classifiers for each dataset.

• ABAS-RAL vs. Fixed-batch size methods: ABAS-RAL is compared with Entropy Sam-
pling (ES), Uncertainty Sampling (US), and ALFA-Mix (Parvaneh et al., 2022). The same
pre-trained ResNet50 classifiers are used for all comparisons for each dataset.

• Training from scratch: ABAS-RAL and the fixed-batch methods are further evaluated by
training the classifiers from scratch. For all datasets (CIFAR-10, CIFAR-100, and MNIST),
ResNet50 is used. Each method aims to achieve 85% of the target precision.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 PARAMETERS

• Dataset: Each dataset (CIFAR-10, CIFAR-100, MNIST) is split randomly, maintaining an
equal number of samples per class. The 10% of each dataset’s training data is used as state
data, 10% for warm-start episodes, 60% for DQN training, and 20% for evaluation. This
split is consistent across all methods to ensure fair comparisons.

• BatchAgent: 50 epochs are executed with 5 episodes per epoch and 100 neural network
updates.

• Classifier:

– CIFAR-10: Pre-trained ResNet50 on ImageNet, modified for 32x32x3 input, global
average pooling, and a 10-class softmax layer. The classifier is trained for 10 epochs,
with a learning rate of 0.01 and a batch size of 64.

– CIFAR-100: Pre-trained ResNet50 on ImageNet, modified for 32x32x3 input, global
average pooling, and a 100-class softmax layer. The classifier is trained for 10 epochs,
with a learning rate of 0.01 and a batch size of 64.

– MNIST: Pre-trained ResNet50 on ImageNet, modified for 32x32x3 input, global av-
erage pooling, and a 10-class softmax layer. MNIST images are converted to RGB
and resized to 32x32. The classifier is trained for 10 epochs, with a learning rate of
0.01 and a batch size of 64.

• Metrics: Performance is evaluated using weighted average precision, accuracy, recall, F1-
score, and annotation budget (as a percentage of the evaluation samples).

4.2 ABAS-RAL VS. RANDOM SAMPLING

ABAS-RAL is compared against RS across the CIFAR-10, CIFAR-100, and MNIST datasets.
ABAS-RAL consistently outperforms RS in terms of precision, while using significantly fewer la-
beled samples.

The results of the 50 experiments, summarized in Table 1, show that, for CIFAR-10, CIFAR-100,
and MNIST, ABAS-RAL achieves comparable or higher perfomance metrics, but with a far smaller
annotation budget compared to RS. These results highlight ABAS-RAL’s advantage over RS in both
effectiveness and cost-efficiency.

Table 1: Comparison of ABAS-RAL and RS results across 50 experiments on CIFAR-10, CIFAR-
100, and MNIST. Each experiment involves using the pre-trained ResNet50 classifier (from DQN
agent’s training phase). The budget represents the percentage of samples used from the total evalu-
ation data.

Dataset: CIFAR10 — Target Precision: 44.66%, Target Budget: 98.03%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 46.17% 43.47% 43.47% 42.67% 5.12%
Max 50.00% 45.26% 45.26% 45.24% 11.17%

RS Mean 45.89% 44.00% 44.00% 42.97% 50.79%
Max 47.85% 45.62% 45.62% 45.08% 97.49%

Dataset: CIFAR100 — Target Precision: 28.01%, Target Budget: 99.94%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 32.02% 32.14% 32.14% 31.54% 1.98%
Max 32.52% 32.53% 32.55% 31.93% 1.98%

RS Mean 31.89% 32.47% 32.47% 31.68% 48.71%
Max 32.47% 33.02% 33.02% 32.21% 99.22%

Dataset: MNIST — Target Precision: 94.11%, Target Budget: 96.34%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 95.11% 95.05% 94.98% 95.04% 7.07%
Max 95.23% 95.24% 95.24% 95.23% 8.18%

RS Mean 95.02% 95.01% 94.90% 95.02% 60.13%
Max 95.21% 95.20% 95.20% 95.19% 95.15%

Figure 2 shows the batch sizes selected by DQN model, revealing the model’s preference for certain
sizes that it has learned to associate with higher expected returns for CIFAR-10, CIFAR-100 and
MNIST.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0-9
9

10
0-1

99

20
0-2

99

30
0-3

99

40
0-4

99

50
0-5

99

60
0-6

99

70
0-7

99

80
0-8

99

90
0-9

99

Batch Size Range

0

20

40

60

80

100

Fr
eq

ue
nc

y

CIFAR-10

0-9
9

10
0-1

99

20
0-2

99

30
0-3

99

40
0-4

99

50
0-5

99

60
0-6

99

70
0-7

99

80
0-8

99

90
0-9

99

Batch Size Range

Fr
eq

ue
nc

y

CIFAR-100

0-9
9

10
0-1

99

20
0-2

99

30
0-3

99

40
0-4

99

50
0-5

99

60
0-6

99

70
0-7

99

80
0-8

99

90
0-9

99

Batch Size Range

Fr
eq

ue
nc

y

MNIST

Figure 2: Distribution of batch sizes selected by ABAS-RAL agent across 50 experiments, grouped
into 100-intervals for CIFAR-10, CIFAR-100 and MNIST. The histogram shows the frequency of
selections within each range, highlighting the agent’s preference for certain batch sizes during AL.

4.3 ABAS-RAL VS. FIXED-BATCH SIZE METHODS

The comparisons between ABAS-RAL and fixed-batch size methods, including ES, US, and ALFA-
Mix, are conducted across the CIFAR-10, CIFAR-100, and MNIST datasets, using the same pre-
trained classifier from the DQN agent’s training phase.

As shown in Table 2, ABAS-RAL consistently outperforms the fixed-batch size methods across
all datasets, achieving higher performance metrics while using fewer labeled samples. Its dy-
namic batch size adjustment allows for more efficient use of the annotation budget, particularly in
CIFAR-10 and CIFAR-100, where ABAS-RAL significantly reduces the required budget. Overall,
ABAS-RAL proves to be both highly effective and resource-efficient compared to the fixed-batch
approaches.

Table 2: Comparison of ABAS-RAL with fixed-batch size methods using the same (pretrained)
classifier from the BatchAgent’s training phase.

CIFAR10 — Target Precision: 44.66%, Target Budget: 98.03%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 46.17% 43.47% 43.47% 42.67% 5.12%
Max 50.00% 45.26% 45.26% 45.24% 11.17%

ES Mean 45.04% 42.96% 42.95% 42.17% 11%
Max 47.36% 44.14% 44.13% 43.67% 11%

US Mean 46.04% 43.96% 43.96% 43.17% 11%
Max 48.36% 45.14% 45.14% 44.67% 11%

ALFA-Mix Mean 45.67% 43.54% 43.92% 42.08% 11%
Max 47.44% 44.56% 45.13% 44.32% 11%

CIFAR100 — Target Precision: 28.01%, Target Budget: 99.94%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 32.02% 32.14% 32.14% 31.54% 1.98%
Max 32.52% 32.53% 32.55% 31.93% 1.98%

ES Mean 31.64% 32.02% 32.01% 31.23% 11%
Max 32.41% 32.11% 32.13% 31.43% 11%

US Mean 31.73% 32.05% 32.05% 31.31% 11%
Max 32.05% 32.30% 32.31% 31.53% 11%

ALFA-Mix Mean 31.82% 32.29% 32.29% 31.53% 11%
Max 32.43% 32.47% 32.47% 31.57% 11%

MNIST — Target Precision: 94.11%, Target Budget: 96.34%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 95.11% 95.05% 94.98% 95.04% 7.07%
Max 95.23% 95.24% 95.24% 95.23% 8.18%

ES Mean 95.10% 94.09% 94.95% 94.99% 7.76%
Max 95.22% 95.17% 95.23% 95.20% 7.76%

US Mean 95.12% 94.13% 94.89% 94.98% 7.76%
Max 95.22% 95.15% 95.20% 95.20% 7.76%

ALFA-Mix Mean 95.01% 94.97% 94.79% 94.95% 7.76%
Max 95.10% 95.10% 95.08% 95.08% 7.76%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.4 EXPERIMENTS WITH CLASSIFIER TRAINING FROM SCRATCH

Table 3 presents the results of training classifiers from scratch, comparing ABAS-RAL with fixed-
batch size methods (ES, US, and ALFA-Mix) across CIFAR-10, CIFAR-100, and MNIST datasets.
Each experiment aims to reach 85% of the target precision for each classifier and dataset.

In all cases, ABAS-RAL demonstrates better resource efficiency by achieving comparable perfor-
mance metrics with a lower overall cost. These results confirm that ABAS-RAL is more efficient in
terms of both performance and resource use across the datasets.

Table 3: Performance comparison of ABAS-RAL and fixed-batch size methods (ES, US, ALFA-
MIX) when training the classifier from scratch.

CIFAR10 — Target Precision: 37.96%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 39.69% 36.17% 36.17% 34.52% 7.74%
Max 44.73% 39.53% 39.53% 38.46% 47.67%

ES Mean 35.30% 28.35% 28.24% 26.08% 100%
Max 43.35% 32.96% 32.96% 32.44% 100%

US Mean 36.30% 29.35% 29.24% 27.08% 100%
Max 44.35% 33.96% 33.96% 33.43% 100%

ALFA-MIX Mean 34.30% 27.35% 29.24% 27.24% 100%
Max 42.35% 31.96% 31.44% 31.96% 100%

CIFAR100 — Target Precision: 23.81%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 25.60% 25.73% 25.73% 24.57% 1.98%
Max 27.20% 27.17% 27.17% 26.11% 1.98%

ES Mean 24.11% 25.14% 24.65% 23.08% 70%
Max 25.43% 25.96% 26.12% 23.44% 92%

US Mean 24.12% 25.14% 24.71% 23.23% 71%
Max 25.50% 26.65% 24.91% 23.43% 91%

ALFA-MIX Mean 22.55% 23.84% 23.34% 21.98% 61%
Max 23.35% 23.96% 23.84% 22.12% 72%

MNIST — Target Precision: 79.99%

Precision Accuracy Recall F1-Score Budget

ABAS-RAL Mean 81.85% 81.65% 80.97% 80.91% 26.67%
Max 82.97% 82.91% 81.25% 81.24% 29.18%

ES Mean 80.87% 79.23% 79.02% 78.01% 34.10 %
Max 81.23% 79.46% 79.52% 79.06% 37.10 %

US Mean 80.20% 79.30% 79.50% 78.90% 32.10%
Max 81.00% 80.00% 80.30% 79.70% 39.10%

ALFA-MIX Mean 80.21% 80.71% 80.71% 80.47% 40.32%
Max 81.42% 81.40% 81.11% 81.21% 41.40%

As shown in Fig. 3, for each dataset, DQN agent consistently meets precision targets while min-
imizing annotation costs. The histograms with KDE (Kernel Density Estimate) curves show how
DQN agent optimizes learning through budget-efficient decisions.

38 39 40 41 42 43 44 45
Precision (%)

0
2
4
6
8

10
12

Co
un

t

Precision Distribution

28 30 32 34 36 38 40
Accuracy (%)

0

5

10

15

Co
un

t

Accuracy Distribution

28 30 32 34 36 38 40
Recall (%)

0

5

10

15

Co
un

t

Recall Distribution

24 26 28 30 32 34 36 38
F1 Score (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Co
un

t

F1 Score Distribution

0 10 20 30 40 50
Budget (%) - As percentage of the total number of samples.

0

5

10

15

20

25

Co
un

t

Budget Distribution

CIFAR-10

25.50 25.75 26.00 26.25 26.50 26.75 27.00 27.25
Precision (%)

0

10

20

30

40

Co
un

t

Precision Distribution

25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2
Accuracy (%)

0

10

20

30

40

50

Co
un

t

Accuracy Distribution

25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2
Recall (%)

0

10

20

30

40

50

Co
un

t

Recall Distribution

24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0
F1 Score (%)

0

10

20

30

40

50

Co
un

t

F1 Score Distribution

1.5 1.6 1.7 1.8 1.9 2.0
Budget (%) - As percentage of the total number of samples.

0

10

20

30

40

50
Budget Distribution

CIFAR100

81.6 81.8 82.0 82.2 82.4 82.6 82.8 83.0
Precision (%)

0

2

4

6

8

10

12

Co
un

t

Precision Distribution

81.25 81.50 81.75 82.00 82.25 82.50 82.75
Accuracy (%)

0

2

4

6

8

10

Co
un

t

Accuracy Distribution

80.6 80.7 80.8 80.9 81.0 81.1 81.2
Recall (%)

0

2

4

6

Co
un

t

Recall Distribution

80.9 81.0 81.1 81.2 81.3
F1 Score (%)

0

2

4

6

8

Co
un

t

F1 Score Distribution

19 20 21 22 23 24 25
Budget (%) - As percentage of the total number of samples.

0

2

4

6

8

10

Co
un

t

Budget Distribution

MNIST

Figure 3: Distribution of metrics for ABAS-RAL for training the classifier from scratch for CIFAR-
10, CIFAR-100 and MNIST.

4.5 DISCUSSION

The experimental results demonstrate that ABAS-RAL is an efficient AL method across various
datasets. Key findings are:

1. Precision and Cost Efficiency: ABAS-RAL consistently achieves precision scores com-
parable to or higher than other methods like RS and fixed-batch approaches. Importantly,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

it requires significantly less annotation budget across CIFAR-10, CIFAR-100, and MNIST,
making it particularly useful when data annotation is expensive. ABAS-RAL’s ability to
maintain high performance with fewer labeled samples highlights its efficiency.

2. Dynamic Batch Size: Unlike fixed-batch methods (RS, US, and ALFA-Mix), which often
require a large portion of the dataset, ABAS-RAL dynamically adjusts batch sizes based on
the model’s learning needs. This flexibility allows ABAS-RAL to reach target performance
without excessive annotation, making it more resource-efficient.

In all experiments, including CIFAR-10, CIFAR-100, and MNIST, ABAS-RAL outperforms other
approaches, particularly in scenarios with limited annotation budgets. Its ability to maintain high
precision while minimizing costs makes ABAS-RAL an ideal choice for AL tasks that demand both
performance and resource efficiency.

4.6 SYSTEM SETUP

The ResNet50 model, pre-trained on ImageNet (TensorFlow 1.14, Python 3.6), is used to evaluate
the CIFAR-10, CIFAR-100, and MNIST datasets. The classifier achieves precisions of approxi-
mately 45% for CIFAR-10, 29% for CIFAR-100, and 95% for MNIST when trained for 10 epochs
on the full training set of each dataset. All experiments were conducted on an NVIDIA GTX 1080
Ti GPU.

5 CONCLUSION AND FUTURE WORK

In this study, we introduce ABAS-RAL, a method for optimizing data sampling in AL that improves
precision while efficiently managing annotation budgets. By utilizing RL, ABAS-RAL enhances
model performance and resource utilization, proving effective in resource-constrained settings. Fu-
ture work could explore its application to diverse datasets and real-world scenarios to test its robust-
ness and practical effectiveness. Additionally, investigating hybrid approaches that combine RL with
other AL strategies and incorporating domain-specific knowledge could further refine ABAS-RAL’s
adaptability and performance across various tasks.

REFERENCES

Usmani Usman Ahmad, Junzo Watada, Jafreezal Jaafar, Izzatdin Abdul Aziz, and Arunava Roy. A
reinforced active learning algorithm for semantic segmentation in complex imaging. IEEE., 2021.

Krizhevsky Alex and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report, University of Toronto., 2009.

T. Jordan Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. In Proceedings of the 8th
International Conference on Learning Representations (ICLR)., 2019.

Wenbin Cai, Muhan Zhang, and Ya Zhang. Batch mode active learning for regression with expected
model change. IEEE Transactions on Neural Networks and Learning Systems., 2017.

Xiaofeng Cao and Ivor W. Tsang. Bayesian active learning by disagreements: A geometric perspec-
tive. CoRR., 2021.

Arantxa Casanova, Pedro O. Pinheiro, Negar Rostamzadeh, and Christopher J. Pal. Reinforced
active learning for image segmentation. In International Conference on Learning Representations
(ICLR)., 2020.

Shayok Chakraborty, Vineeth Balasubramanian, and Sethuraman Panchanathan. Adaptive batch
mode active learning. IEEE Transactions on Neural Networks and Learning Systems., 2014.

Xaolin Chun. Active learning with reinforcement learning for data-efficient classification. Available:
https://osf.io/preprints/osf/qj94x., 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yulai Cui, Shruthi K. Hiremath, and Thomas Plötz. Reinforcement learning based online active
learning for human activity recognition. In Proceedings of the 2022 ACM International Sympo-
sium on Wearable Computers, 2022.

Michael Dodds, Jeff Guo, Thomas Löhr, Alessandro Tibo, Ola Engkvist, and Jon Paul Janet. Sample
efficient reinforcement learning with active learning for molecular design. Chem. Sci., 2023.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement learning
approach. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP)., 2017.

Anthony L. Fauld. Adaptive batch size selection in active learning for regression. Math. Comput.
Sci., 2022.

Nikos Fazakis, Vasileios G. Kanas, Christos K. Aridas, Stamatis Karlos, and Sotiris Kotsiantis. Com-
bination of active learning and semi-supervised learning under a self-training scheme. Entropy.,
2019.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies
suit high and low budgets. arXiv preprint arXiv:2202.02794., 2022.

Mojtaba Haghighatlari, Gaurav Vishwakarma, Doaa Altarawy, Ramachandran Subramanian, Bhar-
gava U. Kota, Aditya Sonpal, Srirangaraj Setlur, and Johannes Hachmann. Chemml: A machine
learning and informatics program package for the analysis, mining, and modeling of chemical
and materials data. ChemRxiv., 2020.

Allioui Hanane, Mazin Abed Mohammed, Benameur Narjes, Al-Khateeb Belal, and Karrar Hameed
Abdulkareem. A multi-agent deep reinforcement learning approach for enhancement of covid-19
ct image segmentation. Journal of Personalized Medicine., 2022.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

Hideaki Ishibashi and Hideitsu Hino. Stopping criterion for active learning based on error stability.
arXiv 2021;1:1–32. Available: http://arxiv.org/abs/2104., 2017.

Michael Katz and Eli Kravchik. Reinforced meta active learning. arXiv preprint arXiv:2203.04573.,
2022.

Kwanyoung Kim, Dongwon Park, Kwang In Kim, and Se Young Chun. Task-aware variational
adversarial active learning. arXiv:2002.04709., 2020.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research., 2023.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Discovering general-purpose active learn-
ing strategies. arXiv preprint arXiv:1810.04114., 2018.

Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa Luu, and Marios Savvides. Deep rein-
forcement learning in computer vision: A comprehensive survey. Artificial Intelligence Review.,
2021.

Y. Lecun, Bottou, L., Bengio, Y., and Haffner P. Gradient-based learning applied to document
recognition. In IEEE, 1998.

Zimo Liu, Jingya Wang, Shaogang Gong, Huchuan Lu, and Dacheng Tao. Deep reinforcement active
learning for human-in-the-loop person re-identification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). IEEE., 2019.

J. Rafid Mahmood, James Lucas, Jose M Alvarez, Sanja Fidler, and Marc T Law. Optimising
data collection for machine learning. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS)., 2022.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602., 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

David Nilsson, Aleksis Pirinen, Erik Gartner, and Cristian Sminchisescu. Embodied learning for
lifelong visual perception. arXiv preprint, vol. abs/2112.14084., 2021.

Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy Hospedales. Meta-learning transferable active
learning policies by deep reinforcement learning. AutoML Workshop at ICML., 2018.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Gholamreza Reza Haffari, Anton Van Den Hen-
gel, and Javen Qinfeng Shi. Active learning by feature mixing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang. A survey of deep active
learning. ACM Computing Surveys (CSUR)., 2020.

O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set approach.
arXiv:1708.00489., 2017.

S. Sinha, S. Ebrahimi, and T. Darrel. Variational adversarial active learning. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV)., 2019.

Emma Slade and Kim M. Branson. Deep reinforced active learning for multi-class image classifica-
tion. arXiv preprint arXiv:2206.13391., 2022.

Le Sun and Yihong Gong. Active learning for image classification: A deep reinforcement learn-
ing approach. In 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence
(CCHI). IEEE., 2019.

R. Takezoe, X. Liu, S. Mao, MT. Chen, Z. Feng, S. Zhang, and X. Wang. Deep active learning for
computer vision: Past and future. APSIPA Transactions on Signal and Information Processing.,
2023.

Jingwen Wang, Yuguang Yan, Yubing Zhang, Guiping Cao, and Mingyuan Yang. Deep reinforce-
ment active learning for medical image classification. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2020: 23rd International Conference., 2020.

Sarah Wassermann, Thibaut Cuvelier, and Pedro Casas. Ral – improving stream-based active learn-
ing by reinforcement learning. In European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Database, Workshop on Iterative Adaptive Learning., 2019.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine learning., 1992.

Mark Woodward and Chelsea Finn. Active one-shot learning. NIPS Deep RL Workshop., 2017.

X. Zhan, Q. Wang, K. h. Huang, H. Xiong, D. Dou, and A. B. Chan. A comparative survey of deep
active learning. arXiv:2203.13450., 2022.

12

	Introduction
	Related Work
	Active Learning
	Reinforced Active Learning
	Adaptive Batch Size Approaches

	Adaptive batch size selection using RL
	Formulating AL as a Markov Decision Process
	RL states
	RL Rewards Calculation
	Q-Value update
	RL action selection
	RL agent decision process
	Warm-start episodes
	Policy
	Procedure
	DQN Implementation details

	Experimental Evaluation
	Parameters
	ABAS-RAL vs. Random Sampling
	ABAS-RAL vs. Fixed-batch size methods
	Experiments with classifier training from scratch
	Discussion
	System Setup

	Conclusion and Future Work

