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Abstract

The machine learning community has focused on computational efficiency, often1

leveraging lower-precision formats such as FP16, instead of the standard FP32. In2

contrast, little attention has been paid to higher-precision formats, such as FP64,3

despite their critical role in scientific domains like materials science, where even4

small numerical differences can lead to significant inaccuracies in physicochemical5

properties. This need for high precision extends to the emerging field of machine6

learning for scientific tasks, yet it has not been thoroughly investigated. Accord-7

ing to several studies and our toy experiment, models trained with FP32 show8

insufficient accuracy compared to those trained with FP64, indicating that higher9

precision is also crucial in scientific machine learning, as in traditional scientific10

computing. This precision issue limits the potential of scientific machine learning11

that can replace the traditional scientific computings in practical research. Our po-12

sition paper not only highlights these precision-related issues but also recommends13

reporting comparisons between FP32 and FP64 results, encouraging the release14

of FP64 models. We believe that these efforts can enable machine learning to15

contribute meaningfully to the natural sciences, ensuring both scientific reliability16

and practical applicability.17

1 Introduction18

The rapid advancements in natural language processing (NLP) and computer vision (CV) in19

the field of machine learning (ML) have accelerated the broad application across various do-20

mains [56, 73, 83, 51, 81]. Specifically, ML for scientific tasks–which has begun to resolve21

intellectually demanding problems in scientific fields–has been highlighted across disciplines, open-22

ing new possibilities for scientific breakthroughs. In recognition of these breakthroughs, the 202423

Nobel Prize in Chemistry honored the contributions of scientific ML, highlighting innovations such24

as AlphaFold and RoseTTAFold [39, 4, 99]. These models transformed scientific research by rapidly25

delivering results that once required significant resources and time-consuming experiments or sim-26

ulations. Building on these successes, scientific ML not only addresses traditional labor-intensive27

workflows but also finds hidden patterns within complex data, thereby providing human researchers28

with direct insights into novel discoveries across natural sciences [109, 67, 41, 117, 97, 116].29

In the context of methodology, the development of scientific ML naturally follows the broader trends30

and paradigms of the ML research field. In the early stages of NLP and CV, most work focused31

on discriminative tasks (e.g., named entity recognition and image classification) [107, 24] before32

gradually shifting to generative tasks (e.g., machine translation and text-to-image generation) [18, 89].33

Further, generative approaches have advanced sequentially, moving from variational autoencoders34

(VAEs) to generative adversarial networks (GANs), and more recently, to diffusion models [43, 32, 35,35

95]. In a similar manner, numerous scientific domains have rapidly adopted the latest advances from36
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the ML community. For example, among various areas of bioinformatics, research on DNA sequence37

data initially leveraged discriminative models such as DeepVariant [78] and DeepSEA [122], and38

over time, the trends moved to generative models including ExpressionGAN [124] and Evo [71].39

Similarly, material structure prediction in the field of materials and drug discovery has followed this40

trend from VAEs [85, 31, 55] and GANs [79, 42, 1] to diffusion models [36, 75, 118].41

In parallel with these advances, the scaling law, one of the most recent paradigm in ML research,42

emphasizes performance enhancement by progressively increasing the size of models, training43

datasets, and computational resources [40, 94]. Building upon this idea of incremental scale expansion,44

researchers have successfully tested the approach of bigger is better across diverse fields, including45

NLP, CV, reinforcement learning, and time-series forecasting [119, 22, 34, 70, 92]. Following this46

pattern, scientific ML is also adopting this paradigm, and in fact, large models designed to address47

scientific tasks have already begun to appear [71, 120].48

As these models grow larger and more complex, they require massive computational resources,49

presenting significant challenges for both training and inference processess. To address this, the50

lower numerical precision and quantization are a widely employed strategy, which helps reduce51

the computational expense [123, 65]. These approaches inevitably involve a trade-off between52

fidelity and resource efficiency, typically resulting in some accuracy degradation. To minimize53

such precision-related losses, techniques such as mixed precision training [65] and sophisticated54

quantization methods [7, 25, 58, 112] have been proposed, which allow researchers to conserve the55

original accuracy while achieving the advantages of reduced computational costs. Consequently,56

the ML community has accepted slight accuracy degradation as a natural trade-off for greater57

efficiency, thereby integrating these lower-precision techniques into real-world applications to balance58

performance and computational burden.59

However, the tolerance for lower-precision techniques raises substantial concerns in the field of60

scientific computing. Scientific computing primarily aims to solve fundamental physics equations61

that are difficult to solve manually by simplifying or discretizing the inherently continuous and62

infinite real-world phenomena to make them computationally tractable. As a consequence, even63

tiny differences in numerical precision can lead to significant issues regarding the reliability of64

computational results. Our experimental findings demonstrate that single precision’s sensitivity to65

numerical deviations can substantially influence the accuracy of fundamental physical equations.66

As a result of this high sensitivity, small numerical differences can cause significant changes in67

physicochemical properties, such as absorption coefficient, defect energies, or reaction pathway68

predictions, thereby reducing the reliability of results, especially when accurate predictions are69

crucial for critical decisions. One critical aspect is that these challenges related to numerical precision70

are not confined to traditional computational science, as ML models are increasingly being utilized in71

various studies to replace prevalent simulations. In other words, traditional computational science72

requires high precision, making it essential to verify whether FP32 produces valid results before73

using ML models, as numerical precision is key to maintaining reliability.74

In this position paper, we argue for the significant role of numerical precision in scientific75

ML research, emphasizing the need for evaluating and analyzing its impact on results derived76

from varying precision levels. To this end, we first highlight real-world examples from established77

computational simulations where numerical precision directly impacts on their results. We then78

explain that the importance of numerical precision is not confined to traditional scientific computing79

alone but is also deeply related to ML applications in scientific domains. Specifically, we provide80

examples involving ML potential models and physics-informed neural networks (PINNs), which81

are actively studied in both ML and science domains, demonstrating the critical role of numerical82

precision in these areas [82, 44, 50]. Additionally, we explore the implications of large language83

models (LLMs) in scientific ML on precision-related considerations.84

In conclusion, we present concrete recommendations for the ML community and potential research85

directions based on our discussions. We then provide alternative viewpoints to our position, offer86

responses, and conclude. Since the main role of ML in scientific research is to deepen understanding87

in traditional domains, the issues we raise must be rigorously examined. When relatively simple88

actions by ML researchers can remove barriers that hinder natural scientists from applying ML89

models, these measures become essential, not optional. As scientific machine learning is still in its90

early stages, we hope that thorough debate will help minimize trial-and-error in future research.91
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2 Importance of numerical precision in scientific computing92

The main goal of scientific computing is solving complex physics equations through computational93

power, especially when manual solutions are impractical or nonexistent. Specifically, many-body94

problems including multiple object interactions demonstrate the necessity of high-performance95

computing. Accordingly, various computational methods have emerged to solve fundamental physics96

equations: molecular dynamics for Newton’s Second Law, density functional theory (DFT) [38] for97

the Schrödinger equation, and the finite-difference time-domain (FDTD) [115] method for Maxwell’s98

equations. Despite the algorithmic progress outlined above, the fidelity of these simulations is99

bounded by how continuous physical variables are encoded on digital hardware. Modern digital100

processors represent real numbers as finite-length bit strings, so continuous equations—ranging from101

F = ma to the Schrödinger and Maxwell formulations—cannot be solved exactly. To bridge this102

gap, scientists adopt controllable approximations: reformulating the problem (e.g., the Kohn–Sham103

equation [45]) or discretising time and space (e.g., molecular dynamics). These methods remain104

trustworthy only when round-off error is tightly bounded, making double-precision arithmetic the105

de-facto compromise between cost and accuracy. For instance, Quantum ESPRESSO [29], a leading106

open-source DFT implementation, strictly enforces double precision throughout its code.107

To demonstrate the precision’s crucial role in scientific computing, we present examples showing how108

small numerical variations can significantly impact computational results, analyzing these effects in109

realistic research scenarios. Specifically, we illustrate the influence on materials research scenarios,110

thereby analyzing the implications and identifying the precise numerical accuracy-related challenges.111

2.1 Impact on density functional theory simulation112
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Figure 1: Geometry optimizations of a water
molecule using FP64 (top) and FP32 (bottom)
with HF (left) and DFT (right) methods. FP64
computations yield physically valid structures,
whereas FP32 leads to unrealistic geometries.

Quantum mechanics, beginning with Planck’s113

quantum hypothesis [76], revolutionized our un-114

derstanding of microscopic phenomena. While115

exact calculations are only possible for sim-116

ple systems like the hydrogen atom, the Kohn-117

Sham equation introduced DFT as an efficient ap-118

proach for many-body electron problems. Using119

Python-based Simulations of Chemistry Frame-120

work (PySCF) [98], we performed geometry op-121

timization calculations for water (H2O) using122

both Hartree-Fock (HF) and DFT calculations123

with B3LYP functional and 6-311++G(d,p) basis124

set [2, 102, 13, 113].125

Figure 1 shows the results of geometry-optimized126

water molecules obtained from HF and DFT cal-127

culations under FP32 and FP64 numerical pre-128

cision conditions. When utilizing FP64, both129

HF and DFT calculations successfully converged130

within three optimization steps with satisfying131

the convergence criteria. Since DFT explicitly accounts for electron correlation effects [12], it is132

generally expected to provide more accurate results than HF, a trend that is also reflected in our133

findings. Comparing bond lengths, the reference [19] O-H bond length is 0.957 Å, while HF exhibits134

a deviation of 0.016 Å (1.7 % error), and DFT yields a smaller deviation of 0.005 Å (0.5 % error).135

Similarly, for the bond angle, HF deviates by 1.7◦ (0.7 % error) from the reference value of 104.52◦,136

whereas DFT shows a smaller deviation of 0.55◦ (0.5 % error). However, when using FP32, sig-137

nificant numerical instabilities arise, preventing the convergence of optimization steps. In the case138

of HF calculations, the gradient of hydrogen atoms stagnates between 0.2–0.4 Ha/Bohr, which is139

significantly above the desired convergence threshold of 10−6 Ha/Bohr. For DFT calculations, the140

issue becomes even more pronounced, as the gradient values rapidly diverge beyond 105 Ha/Bohr,141

resulting in termination before reaching the maximum step. As a result, when using FP32, the142

HF calculation exhibits a substantial 50 % error, while the DFT calculation produces a molecular143

structure impossible to exist in reality, as illustrated in Figure 1. A detailed examination using the144

atomic coordinates is shown in Appendix B.1.145
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Figure 2: (a) Transmittance spectra comparison between FP32 (top) and FP64 (bottom) in Kerr media,
showing FP32’s failure to accurately model higher harmonics and low-power wave patterns below
10−10 W/m2. (b) Computed second harmonic susceptibility shown in FP64 (green solid) and FP32
lines (orange dashed) compared to theoretical quadratic behavior (black). FP64 maintains accuracy to
10−8 m/V, while FP32 deviates above 10−6 m/V, making it unsuitable for typical nonlinear materials.

2.2 Impact on finite difference time domain simulation146

Electromagnetism, established by Maxwell’s equations [64, 63], provides the theoretical foundation147

for understanding electromagnetic waves. However, solving Maxwell’s equations for complex148

phenomena is computationally challenging. To address this, FDTD discretizes Maxwell’s equations149

in time and space. Using Meep [72], an open-source FDTD software, we investigated numerical150

precision effects on electromagnetic simulations, comparing FP32 and FP64 in nonlinear Kerr media151

simulations. We simulated a Kerr medium (refractive index= 1.65) excited by an electromagnetic152

wave source (λ = 1.55 µm, ∆λ = 0.15 µm).153

Figure 2 (a) presents the transmission spectrum of the nonlinear Kerr medium under FP32 and154

FP64 precision settings. From left to right, the spectral peaks correspond to the fundamental155

generation induced by the source, the second harmonic generation (SHG), and the third harmonic156

generation (THG). While the fundamental peak exhibits minimal differences between FP32 and157

FP64, notable discrepancies arise in the SHG and THG regions. Specifically, FP32 calculations158

display pronounced background signal instability and intensity variations in harmonic generation,159

which result from imprecise numerical computation. A particularly notable difference appears in160

the behavior of the background signal. In FP64 calculations, the background follows a well-defined161

periodic pattern governed by the electromagnetic wave, whereas in FP32, the background signal162

appears as unstructured Gaussian-like noise. This phenomenon indicates that the lack of numerical163

precision in FP32 significantly disrupts the accurate computation of low-intensity transmitted power,164

particularly for electromagnetic waves in the range of 10−11 W/m2. These findings highlight the165

fundamental limitations of single precision in reliably capturing weak electromagnetic signals and166

nonlinear optical effects.167

To further analyze the impact of numerical precision, we examined the relationship between second-168

order nonlinear susceptibility (χ2) and the transmittance-to-incident power ratio. As shown in169

Figure 2 (b), the black upward-sloping line represents a quadratic line, serving as a reference line170

indicating the expected computational trend of transmittance over incident power ratio as nonlinear171

susceptibility varies. Ideally, the computationally simulated values should align with this reference172

trend, maintaining the same slope. Comparing the results obtained from FP64 (green solid line) and173

FP32 (orange dashed line), we observe that as nonlinear susceptibility decreases beyond a certain174

threshold, the ratio begins to saturate. This saturation point effectively defines the lower bound of175

computational precision achievable under each numerical setting.176

Specifically, for values of χ2 above 10−6, both FP64 and FP32 provide reliable computational177

precision. However, for values below this threshold, FP32 results begin to exhibit saturation, rendering178

further calculations meaningless due to the loss of numerical resolution. In contrast, FP64 maintains179

simulation accuracy down to approximately 10−8, demonstrating a computational precision that180

is at least two orders of magnitude higher than that of FP32. This result implies that for most181

nonlinear materials with χ2 values below 10−6, transmittance spectrum simulations using FP32182
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become inherently unreliable. These findings highlight the critical role of numerical precision in183

computational science, particularly in fields where small numerical deviations can lead to substantial184

errors. As demonstrated in both DFT and FDTD simulations, the limitations of single precision185

introduce significant inaccuracies, especially in cases involving highly sensitive physical properties.186

This also highlights the necessity of carefully selecting numerical precision levels when conducting187

computational simulations, particularly in scientific machine-learning applications where maintaining188

the reliability of results is essential. While FP32 is adequate for various routine or weakly nonlinear189

calculations, our benchmarks show that in strongly nonlinear regimes it can introduce critical artifacts;190

the exact thresholds and representative case studies are provided in Appendix B.2.191

3 Numerical precision issue in scientific ML192

As demonstrated in the previous section, numerical precision can significantly affect the outcomes193

of traditional scientific simulations and potentially influence the results of scientific research. This194

naturally leads to an important question: Do ML models designed for scientific tasks also suffer195

from similar precision-related issues? To investigate this question, we survey various studies that196

apply ML to scientific research, searching for cases where the precision issue has been reported. We197

also conduct simple toy experiments to further assess the impact of numerical precision in ML-based198

scientific tasks. Through these analyses, we seek to determine whether the precision issue is a199

significant challenge or just a theoretical concern.200

3.1 Impact on machine learning potential201

The first example we present is an ML potential1 [44, 50], which is closely related to Section 2.1.202

Fundamentally, ML potential models aim to compute potential energy and the associated forces203

for a given material structure, offering a much faster alternative to traditional quantum mechanical204

calculations. Due to their wide range of applications, ML potentials have been extensively studied205

not only in physics, materials science, chemistry, and biology but also within the ML community [14,206

80, 93, 30, 90, 10, 9]. In addition, property prediction and generation for material or drug discovery207

have also been actively explored, making ML potentials a familiar subject for ML researchers. In our208

position paper, we focus specifically on neural network potentials, a class of ML potentials built on209

neural architectures. Since ML research often treats energy and force values in the same manner as210

other material properties, our discussion extends naturally to broader property prediction tasks.211

A key challenge in ML potential studies lies in effectively representing and processing atomic212

information in three-dimensional space while ensuring rotational and translational equivariance213

or invariance. To tackle this, the field has evolved from vanilla graph neural networks [88] and214

transformers [106] to more specialized architectures that satisfy these constraints, achieving higher215

prediction accuracy [90, 28, 86, 10, 9, 27, 100, 54, 26]. As a result, many recent models are216

now integrated into widely used libraries or simulation software, such as the Atomic Simulation217

Environment (ASE) [5, 52] and LAMMPS [77, 101]. This demonstrates that ML potential models218

are increasingly employed in practical research; thus, any numerical precision issues arising in these219

models could have significant implications for scientific discoveries.220

Consequently, we aimed to investigate whether existing ML potential models suffer from precision221

issues. To this end, we surveyed the pretrained checkpoints of various ML potential models available222

in the ASE library to determine whether they support FP64 precision. Interestingly, among several223

models, only MACE [9] provides pretrained checkpoints trained in FP64, while other models appear224

not to have considered FP64 training. Even before detailed analysis, this observation suggests that the225

ML potential community may not be fully aware of the potential significance of numerical precision.226

To preliminarily understand the effect of precision, we conducted two toy experiment using MACE,227

the only model that provides FP64-trained parameters. In the first experiment, we examined the228

impact of numerical precision on the accuracy of potential energy surface (PES) reconstruction. We229

selected an ethanol molecule as a representative small organic system containing multiple atom types230

(C, H, and O). Then, by moving one of its carbon atoms along a certain path, we observed changes in231

the potential energy and forces. We compared FP32 and FP64 predictions by applying the built-in232

type conversion in the MACE code to the FP64-trained checkpoint. The results indicate that the233

1In other domains, the term machine learning interatomic potential (MLIP) is also used.
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differences between FP32 and FP64 remain within approximately 1 meV for energy and 0.02 meV/Å234

for force, which are margins typically considered acceptable in small-molecule simulations. Further235

experimental details can be found in Appendix B.3 and Figure 4.236

Afterwards, we turned on a more advanced task, predicting vibrational properties, which contains237

richer information than the PES itself. To make the setting more realistic, we computed the vibrational238

modes of the oseltamivir molecule, which is the active ingredient of the anti-influenza drug Tamiflu.239

Table 2 summarize a subset of the calculated vibrational-mode frequencies; for modes 10 and 11, the240

discrepancies reach about 1.7 and 1.4 cm−1, respectively. The differences up to 1.7 cm−1 seems not241

significant, but this value may affect huge influence when analyzing the vibrational mode from the242

measured data. In general, the spectral resolution of Raman and infrared spectroscopy instruments,243

which generally utilized to measure the vibrational properties of materials, is varied from few cm−1244

for 10,000-50,000 USD to sub cm−1 for over 100,000 USD. These comparable spectral resolutions245

of real-world instruments suggest that researchers may encounter ambiguous cases when interpreting246

marginal values of certain vibrational modes. For instance, consider a scenario where a researcher247

obtain a measured vibrational frequency of 78.2 cm−1 for the oseltamivir molecule. Which vibrational248

mode should be assigned to this value? Calculations performed using FP32 precision would suggest249

mode 10, with a difference of only 0.36 cm−1. Conversely, FP64 precision calculations would favor250

assignment to mode 11, despite the slightly larger difference of 0.59 cm−1.251

The aforementioned results suggest that while FP32 calculations may suffice for tasks such as molec-252

ular dynamics simulations based solely on PES, they may fall short when predicting more sensitive253

physical properties such as vibrational spectra. This emphasizes the importance of task-specific254

evaluation and precision-aware analysis, particularly when moving beyond PES-level predictions255

toward richer, experimentally comparable observables.256

Nevertheless, our experimental framework was intentionally simplified, and these findings should257

not be overinterpreted as definitive evidence regarding machine learning models’ sensitivity or258

insensitivity to numerical precision variations. Furthermore, the FP32 model evaluated in this study259

was initially trained using FP64 precision and subsequently converted to FP32 for inference purposes.260

A model trained exclusively in FP32 from initialization could exhibit different behavior. In fact,261

Batatia et al. [8] report that NequIP [10] exhibits different numerical sensitivity when trained in262

FP32 versus FP64, and Maxson et al. [62] also discuss similar issues. These observations highlight263

the importance of carefully assessing numerical precision in ML potential models and the need for264

systematic benchmarks regarding precision.265

3.2 Impact on physics-informed neural network266

Beyond the fundamental equations mentioned in the previous section, various subfields of natural267

science describe natural phenomena using differential equations. For example, in fluid dynamics,268

including weather prediction, Navier-Stokes, continuity, and heat transfer equations are used [105, 11].269

Moreover, differential equations such as the Black-Scholes equation [17] are also employed in fields270

beyond natural sciences, such as financial engineering. Many of these equations either lack general271

analytical solutions or are too complex to be solved manually. As a result, numerical methods have272

been developed over time, leading to techniques such as the Euler method, Runge-Kutta methods, and273

Picard method [20, 96]. These techniques have also influenced modern approaches in ML, including274

diffusion models, NeuralODEs, and deep equilibrium models (DEQs) [35, 95, 21, 6].275

The concept of the PINNs [82] leverages automatic differentiation (autograd), fundamental to276

backpropagation, to solve differential equations using neural networks. Due to its simple yet powerful277

approach, PINNs have been widely adopted in scientific domains that rely on numerical methods.278

This section explores whether numerical precision issues also arise in PINNs and investigates related279

challenges through a literature survey.280

First, Nakamura et al. [68] explicitly discussed the impact of numerical precision in scientific research,281

reporting that training PINNs with FP32 failed, whereas FP64 did not: from a comprehensive282

standpoint, FP32 computation has a risk of failure for the present problem compared with FP64.283

This work applies PINNs to a specific fluid dynamics problem involving surface tension modeling,284

which requires up to fourth-order derivatives, making it a specialized case of differential equations.285

Although this is a specific scenario, it is a real-world scientific study, demonstrating that precision286

issues can significantly impact the practical use of PINNs.287
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Meanwhile, Sharma and Shankar [91] were well aware of precision issues and leveraged this un-288

derstanding to improve the methodology of PINNs. The key idea of their work is to replace certain289

autograd operations in PINNs with a specialized finite difference method, reducing the computational290

cost associated with autograd. Here, to compensate for the loss of accuracy introduced by finite291

difference approximations, the authors proposed using high-precision (FP64) training. As a result,292

the reduction in computational cost from bypassing autograd exceeds the overhead introduced by293

FP64 operations, leading to an overall speedup that makes their approach faster than a vanilla PINN294

in FP32. Beyond the fields of PINNs and scientific ML, this study introduces a novel perspective on295

utilizing high-precision models in neural network research.296

Thus, in the context of PINNs, a comprehensive study is needed to systematically assess the impact297

of numerical precision issues on scientific research. Fortunately, many fields share similar types of298

differential equations, e.g., Laplace equation in electrostatics and fluid dynamics, where it describes299

electric potential distribution and velocity potential in inviscid flow, respectively. By focusing on the300

precision challenges of commonly used differential equations and rigorously validating PINNs in this301

context, such research could have a substantial impact across multiple domains.302

3.3 Challenges for large language models303

The emergence of LLMs in scientific applications is accelerating, further raising concerns about304

numerical precision in such domains. To investigate these concerns, we examine both existing studies305

and empirical evidence that highlight precision-related challenges in LLM applications. The integra-306

tion of LLMs in scientific domains follows two distinct approaches. The first involves direct inference307

without architectural modifications, where scientific data is transformed into natural language format308

for existing LLM architectures [84, 37, 59]. The second approach develops specialized architectures309

that combine domain-specific encoders with fine-tuned language models, preserving the intrinsic310

properties of scientific data while leveraging LLM capabilities [53, 74].311

Regarding the first approach, unlike conventional scientific models, LLMs generate outputs based312

on tokens, which may compromise prediction accuracy. Numerous studies have demonstrated that313

LLMs struggle with symbolic tasks [110, 114], similar to their difficulties in numerical predictions.314

For instance, these models often fail to accurately count the occurrences of specific characters315

within words (e.g., counting the letter ‘r’ in ‘strawberry’) or comparing the size of decimal numbers316

(e.g., determining whether 3.9 is larger than 3.112). This limitation stems from their fundamental317

architecture, where words are processed as sequences of tokens rather than as individual alphabetic318

characters or numbers. Although various studies [110, 46, 114, 15] have been proposed to address319

these challenges, symbolic manipulation remains a significant obstacle for LLMs. Consequently,320

their application in scientific tasks requires careful consideration and validation.321

Another critical consideration in LLM deployment is the continuous increase in model size. For in-322

stance, the open-source Llama series demonstrates this trend clearly: LLaMA (65B parameters) grew323

to Llama-2 (70B) and further to Llama-3.1 (405B) [103, 104, 60], and more recently, DeepSeek-v3 has324

pushed this expansion even further, reaching 671B [23]. Such explosive growth in model sizes across325

LLMs has resulted in a substantial increase in computational costs for both training and inference. To326

mitigate the budget, researchers commonly employ parameter quantization techniques by reducing327

model precision to lower-bit formats [57, 25, 58], sometimes even 1-bit representations [112].328

However, these optimization strategies fundamentally conflict with the stringent precision require-329

ments of scientific computing applications, as emphasized throughout our analysis. This issue is330

particularly critical for the second approach, where domain-specific encoders, which are often derived331

from scientific ML models, serve as feature extractors. If quantization significantly reduces the preci-332

sion of the extracted features, the LLM may fail to process them accurately, potentially degrading333

overall model performance. For example, Li et al. [53] employed UniMol [121], a model broadly334

categorized as an ML potential, as an encoder. Even if the encoder provides highly precise features,335

the LLM’s lower precision representations may obscure this information, leading to inaccurate336

final predictions. This inherent trade-off between computational efficiency and numerical precision337

highlights the necessity of careful consideration when integrating LLM into scientific applications.338

2Recent large language models exhibit systematic errors in decimal comparison due to tokenization artifacts.
When comparing 3.9 and 3.11, models tokenize these as [‘3’, ‘.’, ‘9’] and [‘3’, ‘.’, ‘11’] respectively, leading to
incorrect digit-wise comparison (9 vs. 11) rather than proper decimal evaluation. As of early 2025, while GPT-4
has resolved this specific case, Claude 3.7 continues to incorrectly identify 3.11 as larger than 3.9.
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4 Suggestions for Advancing Scientific ML339

Building upon previous discussions, we present key suggestions for the scientific ML community.340

Benchmarking and reporting FP32 vs. FP64 results Scientific ML typically necessitate higher341

precision than general ML tasks to ensure reliability. While predictive accuracy is the primary focus,342

other factors such as training time, inference latency, and energy consumption remain significant343

constraints. Consequently, researchers should explicitly report the numerical precision used in their344

studies, conduct comparative analyses between the implementations of FP32 and FP64 where applica-345

ble, and publicly release FP64-trained models to improve reproducibility and facilitate collaborative346

research. To support meaningful evaluations, standardized benchmarks that capture precision sen-347

sitivity across diverse scientific tasks are essential. Such benchmarks would provide a consistent348

framework for quantifying trade-offs between numerical precision, computational efficiency, and349

reproducibility in scientific ML research.350

Exploring high-precision models and mixed high-precision training Inspired by mixed-precision351

training [65], we propose extending this concept to high-precision training by identifying precision-352

sensitive layers and selectively training them using FP64 arithmetic. This approach mirrors con-353

ventional mixed-precision strategies that utilize reduced precision (e.g., FP32 and FP16) for most354

network layers while maintaining higher precision for numerically sensitive operations such as batch355

normalization and softmax. This direction holds significance from an energy efficiency perspective, as356

FP64 training inherently consumes more energy than FP32. While scientific ML offers computational357

advantages over traditional scientific computing methods, energy consumption remains a persistent358

concern. Investigating novel model architectures and training techniques that preserve high numerical359

precision while enhancing energy efficiency will be essential for broader adoption of scientific ML.360

Collaboration with natural scientists Achieving meaningful progress in scientific ML requires361

interdisciplinary collaboration with with natural scientists. This is not merely a conceptual argument362

but a practical requirement, as ML researchers often lack the domain-specific intuition to determine363

the appropriate level of numerical precision for a given scientific task. For instance, research on ML364

potential is published in both traditional scientific journals and ML conferences, yet the evaluation365

criteria and priorities differ substantially between these communities [9, 48]. Strengthening the366

collaboration will help bridge this gap, ensuring that precision requirements align with both scientific367

validity and practical usability.368

Integrating ML into traditional computational methods Rather than exclusively developing369

high-precision ML models, one of the alternative approaches is to integrate ML into traditional370

computational methods to achieve both accuracy and efficiency. One promising strategy is to employ371

ML models while acknowledging their inherent numerical limitations and using them to generate372

an approximate solution [3, 87, 69]. These ML-generated approximations subsequently serve as373

an initial guess for traditional computational methods, significantly accelerating convergence while374

preserving numerical precision. This hybrid approach presents a compelling solution for scientific375

applications where both computational speed and numerical accuracy are necessary.376

5 Alternative Views377

This section presents alternative views challenging our position and offers responses to these concerns.378

Q1: Is the extra computation cost due to higher precision tolerable? The most straightforward379

negative impact of using higher precision is the increased computational burden. For example, on380

NVIDIA A100 and H100 GPUs, FP64 operations are approximately twice as slow as FP32 operations.381

While this overhead may be acceptable for training that takes only a few hours, it becomes prohibitive382

for large-scale models trained across multiple GPUs over longer periods spanning several weeks or383

months. In addition, certain classes of GPUs (e.g., RTX A6000) feature intentionally constrained384

FP64 performance, with throughput ranging from 1/32 to 1/64 of their FP32 capabilities. This385

hardware limitation makes consistent development of scientific ML models using double precision386

computationally inefficient. Therefore, as discussed in Section 4, a systematic analysis of numerical387
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precision’s impact on model accuracy becomes essential, enabling practitioners to selectively optimize388

the balance between accuracy and computational efficiency.389

Q2: Is the issue really about numerical precision, or could it be a capacity limitation of the390

model? An alternative perspective suggests that observed inaccuracies originate from fundamental391

limitations in network architecture or training methodologies rather than numerical precision con-392

straints. This viewpoint posits that neural networks may lack sufficient expressivity to solve a given393

task, regardless of precision considerations. To distinguish numerical issues from capacity concerns,394

we can employ numerical analysis tools including condition numbers and numerical sensitivity analy-395

sis (e.g., interval arithmetic [33]), to determine whether errors arise from numerical instability. Since396

modern neural networks heavily rely on matrix operations, existing research on matrix sensitivity397

provides a robust analytical foundation. These insights can help clarify the relationship between398

numerical stability and model expressivity.399

Q3: If certain scientific computing tasks are not sensitive to numerical precision, does it matter?400

While not all scientific tasks require high numerical precision, focus should be directed toward401

fields where high precision is essential, such as quantum chemistry, materials science, and nonlinear402

physics, where even slight inaccuracies can lead to significant deviations. Currently, there is still403

limited understanding of which tasks, models, and environments are most affected by numerical404

precision and what factors contribute to these sensitivities. A systematic analysis is necessary to405

identify precision-critical cases before making broad assumptions about acceptable precision levels.406

Until a clear understanding is established, a precision-aware approach should be considered, while407

relaxed conditions can be applied only to tasks that demonstrably insensitive to precision.408

Certain scientific tasks may not require explicit consideration of numerical precision, particularly409

those where logical reasoning is more critical than numerical accuracy, such as tasks relying on410

LLMs. These include explaining or summarizing experimental results or literature [111], generating411

hypotheses for scientific research [49, 61], providing guidance for tasks where the methodology is412

not clearly defined (e.g., retrosynthesis), and assisting scientific educations [16]. In such cases, the413

role of ML extends beyond numerical fidelity, emphasizing knowledge synthesis and interpretability.414

Q4: Is it possible to design models that can avoid precision-related issues? Numerical instability415

in scientific computing frequently originates from precision-sensitive operations including numerical416

differentiation, integration, and eigendecomposition. Designing scientific ML models that avoid417

these operations and instead directly predict their outcomes can help mitigate such instability. ML418

potentials exemplify this approach by directly predicting energies from atomic structures, bypassing419

the numerically sensitive integration and eigendecomposition required in DFT. This perspective420

extends to examining whether individual neural network layers are numerically stable, similar to421

spectral normalization [66] which enforces Lipschitz continuity to stabilize training.422

However, avoiding numerical instability through model design is not always practical, as scientists423

require understanding of underlying processes rather than just final predictions. This has led to ML424

models that mimic traditional scientific computations, such as NeuralODEs and DEQs [21, 6, 108],425

which explicitly model computational processes and align better with scientific domains emphasizing426

interpretability. While end-to-end approaches remain effective when predictive accuracy is the primary427

concern, many scientific domains continue to depend on numerical precision and computational428

understanding, making precision-related issues an important ongoing research area.429

6 Conclusions430

Scientific ML has become a major field in modern ML research, with the goal of developing models431

that contribute to scientific discovery. This position paper highlights the impact of precision issues,432

which can affect the practical usability of scientific ML models but have been largely overlooked.433

The precision issues in scientific ML are closely tied to ethical concerns regarding the reliability434

and explainability of scientific findings. In summary, our contribution lies in a practical step toward435

making scientific ML models more reliable, reducing the risk of misleading scientific insights due436

to numerical inaccuracies. If our simple yet easily actionable proposal becomes widely adopted in437

scientific ML research field, it can enhance the practicality and thereby accelerate scientific discovery.438
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Csányi. Mace-off: Short-range transferable machine learning force fields for organic molecules.593

Journal of the American Chemical Society, 2025. (Cited on page 22)594

[48] Dávid Péter Kovács, Ilyes Batatia, Eszter Sára Arany, and Gábor Csányi. Evaluation of the595

mace force field architecture: From medicinal chemistry to materials science. The Journal of596

Chemical Physics, 159(4):044118, 2023. (Cited on page 8)597

[49] Shrinidhi Kumbhar, Venkatesh Mishra, Kevin Coutinho, Divij Handa, Ashif Iquebal, and598

Chitta Baral. Hypothesis generation for materials discovery and design using goal-driven and599

constraint-guided llm agents. arXiv preprint arXiv:2501.13299, 2025. (Cited on page 9)600

[50] Silvan Käser, Luis Itza Vazquez-Salazar, Markus Meuwly, and Kai Töpfer. Neural network601

potentials for chemistry: concepts, applications and prospects. Digital Discovery, 2:28–58,602

2023. (Cited on page 2, 5)603

[51] Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and Philip S. Yu. Large language models604

in law: A survey. AI Open, 5:181–196, 2024. (Cited on page 1)605

[52] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Chris-606

tensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, Eric D607

Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leon-608

hard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson,609

Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob610

Schiøtz, Ole Schütt, Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelmsen,611

Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen. The atomic simulation environ-612

ment—a python library for working with atoms. Journal of Physics: Condensed Matter,613

29(27):273002, 2017. (Cited on page 5, 22)614

[53] Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng615

Chua, and Qi Tian. Towards 3d molecule-text interpretation in language models. In Proc. the616

International Conference on Learning Representations (ICLR), 2024. (Cited on page 7)617

[54] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d618

atomistic graphs. In Proc. the International Conference on Learning Representations (ICLR),619

2023. (Cited on page 5)620

[55] Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative621

model based on conditional variational autoencoder for de novo molecular design. Journal of622

Cheminformatics, 10(1):31, 2018. (Cited on page 2)623

[56] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,624

Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken,625

and Clara I. Sánchez. A survey on deep learning in medical image analysis. Medical Image626

Analysis, 42:60–88, 2017. (Cited on page 1)627

[57] Fangxin Liu, Wenbo Zhao, Zhezhi He, Yanzhi Wang, Zongwu Wang Wang, Changzhi Dai, Xi-628

aoyao Liang, and Li Jiang. Improving neural network efficiency via post-training quantization629

with adaptive floating-point. In Proc. of the IEEE international conference on computer vision630

(ICCV), 2021. (Cited on page 7)631

13



[58] Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting Cheng. LLM-632

FP4: 4-bit floating-point quantized transformers. In Proc. of the Conference on Empirical633

Methods in Natural Language Processing (EMNLP), pages 592–605, 2023. (Cited on page 2,634

7)635

[59] Siyu Liu, Tongqi Wen, Beilin Ye, Zhuoyuan Li, and David J Srolovitz. Large language models636

for material property predictions: elastic constant tensor prediction and materials design. arXiv637

preprint arXiv:2411.12280, 2024. (Cited on page 7)638

[60] AI @ Meta Llama Team. The llama 3 herd of models, 2024. (Cited on page 7)639

[61] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The640

ai scientist: Towards fully automated open-ended scientific discovery. arXiv preprint641

arXiv:2408.06292, 2024. (Cited on page 9)642

[62] Tristan Maxson, Ademola Soyemi, Benjamin W. J. Chen, and Tibor Szilvási. Enhancing643

the quality and reliability of machine learning interatomic potentials through better reporting644

practices. The Journal of Physical Chemistry C, 128(16):6524–6537, 2024. (Cited on page 6)645

[63] James Clerk Maxwell. Viii. a dynamical theory of the electromagnetic field. Philosophical646

Transactions of the Royal Society of London, 155:459–512, 1865. (Cited on page 4)647

[64] James Clerk Maxwell. On physical lines of force. Philosophical magazine, 90(S1):11–23,648

2010. (Cited on page 4)649

[65] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David650

Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.651

Mixed precision training. In Proc. the International Conference on Learning Representations652

(ICLR), 2018. (Cited on page 2, 8)653

[66] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normaliza-654

tion for generative adversarial networks. In Proc. the International Conference on Learning655

Representations (ICLR), 2018. (Cited on page 9)656

[67] Dane Morgan and Ryan Jacobs. Opportunities and challenges for machine learning in materials657

science. Annual Review of Materials Research, 50(1):71–103, 2020. (Cited on page 1)658

[68] Yo Nakamura, Suguru Shiratori, Ryota Takagi, Michihiro Sutoh, Iori Sugihara, Hideaki659

Nagano, and Kenjiro Shimano. Physics-informed neural network applied to surface-tension-660

driven liquid film flows. International Journal for Numerical Methods in Fluids, 94(9):1359–661

1378, 2022. (Cited on page 6)662

[69] Kevin J Napier. Improved initial guesses for numerical solutions of kepler’s equation. arXiv663

preprint arXiv:2411.15374, 2024. (Cited on page 8)664

[70] Oren Neumann and Claudius Gros. Scaling laws for a multi-agent reinforcement learning665

model. In Proc. the International Conference on Learning Representations (ICLR), 2023.666

(Cited on page 2)667

[71] Eric Nguyen, Michael Poli, Matthew G. Durrant, Brian Kang, Dhruva Katrekar, David B. Li,668

Liam J. Bartie, Armin W. Thomas, Samuel H. King, Garyk Brixi, Jeremy Sullivan, Madelena Y.669

Ng, Ashley Lewis, Aaron Lou, Stefano Ermon, Stephen A. Baccus, Tina Hernandez-Boussard,670

Christopher Ré, Patrick D. Hsu, and Brian L. Hie. Sequence modeling and design from671

molecular to genome scale with evo. Science, 386(6723):eado9336, 2024. (Cited on page 2)672

[72] Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J.D. Joannopoulos, and673

Steven G. Johnson. Meep: A flexible free-software package for electromagnetic simulations674

by the fdtd method. Computer Physics Communications, 181(3):687–702, 2010. (Cited on675

page 4, 19)676

[73] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer. Deep learning for677

financial applications : A survey. Applied Soft Computing, 93:106384, 2020. (Cited on page 1)678

14



[74] Jinyoung Park, Minseong Bae, Dohwan Ko, and Hyunwoo J. Kim. LLamo: Large lan-679

guage model-based molecular graph assistant. In Proc. the Advances in Neural Information680

Processing Systems (NeurIPS), 2024. (Cited on page 7)681

[75] Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. MolDiff: Addressing the atom-682

bond inconsistency problem in 3D molecule diffusion generation. In Proc. the International683

Conference on Machine Learning (ICML), pages 27611–27629, 2023. (Cited on page 2)684

[76] Max Planck. Zur theorie des gesetzes der energieverteilung im normalspektrum. Berlin, pages685

237–245, 1900. (Cited on page 3)686

[77] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of687

Computational Physics, 117(1):1–19, 1995. (Cited on page 5)688

[78] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Alexander689

Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T. Afshar, Sam S. Gross, Lizzie690

Dorfman, Cory Y. McLean, and Mark A. DePristo. A universal snp and small-indel variant691

caller using deep neural networks. Nature Biotechnology, 36(10):983–987, 2018. (Cited on692

page 2)693

[79] Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous,694

Esben Jannik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation695

method using latent vector based generative adversarial network. Journal of Cheminformatics,696

11(1):74, 2019. (Cited on page 2)697

[80] A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and698

R. Komanduri. Simultaneous fitting of a potential-energy surface and its corresponding force699

fields using feedforward neural networks. The Journal of Chemical Physics, 130(13):134101,700

2009. (Cited on page 5)701

[81] Maithra Raghu and Eric Schmidt. A survey of deep learning for scientific discovery. arXiv702

preprint arXiv:2003.11755, 2020. (Cited on page 1)703

[82] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep704

learning framework for solving forward and inverse problems involving nonlinear partial705

differential equations. Journal of Computational Physics, 378:686–707, 2019. (Cited on page706

2, 6)707

[83] Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang708

Wang. Deep learning-based weather prediction: A survey. Big Data Research, 23:100178,709

2021. (Cited on page 1)710

[84] Andre Niyongabo Rubungo, Kangming Li, Jason Hattrick-Simpers, and Adji Bousso Dieng.711

Llm4mat-bench: Benchmarking large language models for materials property prediction. arXiv712

preprint arXiv:2411.00177, 2024. (Cited on page 7)713

[85] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine714

learning: Generative models for matter engineering. Science, 361(6400):360–365, 2018. (Cited715

on page 2)716

[86] Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural717

networks. In Proc. the International Conference on Machine Learning (ICML), 2021. (Cited718

on page 5)719

[87] Luca Saverio. Accelerating convergence of linear iterative solvers using machine learning.720

Master’s thesis, Politecnico di Milano, 2023. (Cited on page 8)721

[88] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-722

dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,723

2009. (Cited on page 5)724

15



[89] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,725

Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick726

Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmar-727

czyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next generation728

image-text models. In Proc. the Advances in Neural Information Processing Systems (NeurIPS),729

2022. (Cited on page 1)730

[90] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre731

Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural732

network for modeling quantum interactions. In Proc. the Advances in Neural Information733

Processing Systems (NeurIPS), 2017. (Cited on page 5)734

[91] Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neural net-735

works (pinns) using meshless discretizations. In Proc. the Advances in Neural Information736

Processing Systems (NeurIPS), 2022. (Cited on page 7)737

[92] Jingzhe Shi, Qinwei Ma, Huan Ma, and Lei Li. Scaling law for time series forecasting. In738

Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2024. (Cited on739

page 2)740

[93] J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural network potential with741

dft accuracy at force field computational cost. Chem. Sci., 8:3192–3203, 2017. (Cited on page742

5)743

[94] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-744

mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,745

2024. (Cited on page 2)746

[95] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data747

distribution. In Advances in Neural Information Processing Systems, 2019. (Cited on page 1,748

6)749

[96] Walter A Strauss. Partial differential equations: An introduction. John Wiley & Sons, 2007.750

(Cited on page 6)751

[97] Hyeong Chan Suh, Jaekak Yoo, Kangmo Yeo, Dong Hyeon Kim, Yo Seob Won, Taehoon Kim,752

Youngwoo Cho, Ki Kang Kim, Seung Mi Lee, Heejun Yang, Dong-Wook Kim, and Mun Seok753

Jeong. Probing nanoscale structural perturbation in a ws2 monolayer via explainable artificial754

intelligence. Applied Physics Reviews, 12(2):021406, 04 2025. (Cited on page 1)755

[98] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong756

Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma, Sebastian Wouters,757

and Garnet Kin-Lic Chan. Pyscf: the python-based simulations of chemistry framework.758

WIREs Computational Molecular Science, 8(1):e1340, 2018. (Cited on page 3, 19)759

[99] The Royal Swedish Academy of Sciences. The nobel prize in chemistry 2024, 2024. (Cited760

on page 1)761

[100] Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based762

molecular potentials. In Proc. the International Conference on Learning Representations763

(ICLR), 2022. (Cited on page 5)764

[101] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael765

Brown, Paul S. Crozier, Pieter J. in ’t Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac766

Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian Trott, and Steven J. Plimpton.767

Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso,768

and continuum scales. Computer Physics Communications, 271:108171, 2022. (Cited on page769

5)770

[102] Julian Tirado-Rives and William L. Jorgensen. Performance of b3lyp density functional771

methods for a large set of organic molecules. Journal of Chemical Theory and Computation,772

4(2):297–306, 2008. (Cited on page 3)773

16



[103] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-774

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,775

Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation776

language models, 2023. (Cited on page 7)777

[104] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,778

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas779

Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,780

Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony781

Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian782

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut783

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-784

haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi785

Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,786

Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,787

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,788

Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open789

foundation and fine-tuned chat models, 2023. (Cited on page 7)790

[105] David J Tritton. Physical fluid dynamics. Springer Science & Business Media, 2012. (Cited791

on page 6)792

[106] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,793

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. the Advances in794

Neural Information Processing Systems (NeurIPS), 2017. (Cited on page 5)795

[107] Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. Ace 2005 multilin-796

gual training corpus, 2006. (Cited on page 1)797

[108] Zun Wang, Chang Liu, Nianlong Zou, He Zhang, Xinran Wei, Lin Huang, Lijun Wu, and798

Bin Shao. Infusing self-consistency into density functional theory hamiltonian prediction via799

deep equilibrium models. In Proc. the Advances in Neural Information Processing Systems800

(NeurIPS), pages 89652–89681, 2024. (Cited on page 9)801

[109] Sarah Webb et al. Deep learning for biology. Nature, 554(7693):555–557, 2018. (Cited on802

page 1)803

[110] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,804

Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language805

models. In Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2022.806

(Cited on page 7)807

[111] Tong Xie, Yuwei Wan, Yixuan Liu, Yuchen Zeng, Wenjie Zhang, Chunyu Kit, Dongzhan Zhou,808

and Bram Hoex. Darwin 1.5: Large language models as materials science adapted learners.809

arXiv preprint arXiv:2412.11970, 2024. (Cited on page 9)810

[112] Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu,811

and Wanxiang Che. Onebit: Towards extremely low-bit large language models. In Proc. the812

Advances in Neural Information Processing Systems (NeurIPS), 2024. (Cited on page 2, 7)813

[113] Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchange–correlation814

functional using the coulomb-attenuating method (cam-b3lyp). Chemical Physics Letters,815

393(1):51–57, 2004. (Cited on page 3, 19)816

[114] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and817

Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language818

models. In Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2023.819

(Cited on page 7)820

[115] Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s821

equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302–307,822

1966. (Cited on page 3)823

17



[116] Jaekak Yoo, Youngwoo Cho, Byeonggeun Jeong, Soo Ho Choi, Ki Kang Kim, Seong Chu824

Lim, Seung Mi Lee, Jaegul Choo, and Mun Seok Jeong. Explainable artificial intelligence825

approach to identify the origin of phonon-assisted emission in wse2 monolayer. Advanced826

Intelligent Systems, 5(7):2200463, 2023. (Cited on page 1)827

[117] Jaekak Yoo, Youngwoo Cho, Dong Hyeon Kim, Jaeseok Kim, Tae Geol Lee, Seung Mi Lee,828

Jaegul Choo, and Mun Seok Jeong. Unraveling the role of raman modes in evaluating the829

degree of reduction in graphene oxide via explainable artificial intelligence. Nano Today,830

57:102366, 2024. (Cited on page 1)831

[118] Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu,832

Zilong Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, Roberto Sordillo, Lixin833

Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah Lewis, Chin-Wei Huang, Ziheng834

Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Chunlei Yang, Wenjie Li, Ryota Tomioka,835

and Tian Xie. A generative model for inorganic materials design. Nature, Jan 2025. (Cited on836

page 2)837

[119] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-838

formers. In Proc. of the IEEE conference on computer vision and pattern recognition (CVPR),839

pages 12104–12113, 2022. (Cited on page 2)840

[120] Qiang Zhang, Keyan Ding, Tianwen Lv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu,841

Yuhao Wang, Xiaotong Li, Zhuoyi Xiang, et al. Scientific large language models: A survey on842

biological & chemical domains. ACM Computing Surveys, 2024. (Cited on page 2)843

[121] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng844

Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.845

In Proc. the International Conference on Learning Representations (ICLR), 2023. (Cited on846

page 7)847

[122] Jian Zhou and Olga G. Troyanskaya. Predicting effects of noncoding variants with deep848

learning–based sequence model. Nature Methods, 12(10):931–934, 2015. (Cited on page 2)849

[123] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression850

for large language models. Transactions of the Association for Computational Linguistics,851

12:1556–1577, 2024. (Cited on page 2)852

[124] Jan Zrimec, Xiaozhi Fu, Azam Sheikh Muhammad, Christos Skrekas, Vykintas Jauniskis,853

Nora K. Speicher, Christoph S. Börlin, Vilhelm Verendel, Morteza Haghir Chehreghani, Dev-854

datt Dubhashi, Verena Siewers, Florian David, Jens Nielsen, and Aleksej Zelezniak. Control-855

ling gene expression with deep generative design of regulatory dna. Nature Communications,856

13(1):5099, 2022. (Cited on page 2)857

18



A Details of computational methods858

This section provides detailed information on the DFT and FDTD calculations.859

A.1 Density functional theory calculation860

Computational environment Quantum mechanical calculations were performed using PySCF861

version 2.7.0 [98]. To evaluate the impact of numerical precision, we conducted the same calcula-862

tions using both single precision and double precision by declaring np.float32 and np.float64,863

respectively. All simulations were conducted using two nodes of an AMD EPYC 7543 32-Core864

Processor.865

Simulation setup The input water molecule consists of a single oxygen atom at (0.000000,866

0.000000, 0.000000) and two hydrogen atoms at (0.757000, 0.586000, 0.000000) and (-0.757000,867

0.586000, 0.000000), respectively. To compare the geometry optimization result of a water molecule868

based on different exchange functionals, we performed both Hartree-Fock calculations and density869

functional theory calculations using the B3LYP functional [13, 113]. For both methods, we employed870

the 6-311++G(d,p) basis set [2]. The default convergence tolerances for structural stabilization871

were set as follows: |∆E| < 1.00× 10−6, RMS-Grad < 3.00× 10−4, Max-Grad < 4.50× 10−4,872

RMS-Disp < 1.20× 10−3, and Max-Disp < 1.80× 10−3.873

A.2 Finite-difference time-domain calculation874

Nonlinear material properties Kerr media were modeled with a second-order nonlinear sus-875

ceptibility (χ2) ranging from 10−12 to 10−2 and the refractive index was set to 1.65 to mimic the876

conventional nonlinear materials like beta barium borate. The nonlinear polarization of the material877

was expressed as:878

P = ϵ0(χ
(1)E + χ(2)E2 + χ(3)E3 + ...) (1)

And the second-order nonlinear polarization term is represented as: P (2) = ϵ0χ
(2)E2. Meep879

incorporates such nonlinear polarization terms into Maxwell’s equations to simulate interactions880

between electromagnetic waves and the material in the time domain881

▽×H = ϵ0
∂E

∂t
+

∂P

∂t
(2)

▽× E = −µ0
∂H

∂t
(3)

Simulation setup The simulation domain consisted of a 100 µm medium, a 1 µm thick boundary882

layer, and 2 µm buffer regions at both ends. The spatial resolution was user-defined to capture fine883

electromagnetic field characteristics. Kerr media were placed at the center of the domain, with χ2884

explicitly defined. The calculations were performed using Meep v1.29.0 [72], an open-source FDTD885

software, with both FP32 and FP64 precisions on a single core of an AMD Ryzen 5 8500G processor.886

Source and monitor definition The source was defined as a Gaussian plane wave with a central887

wavelength of 1.55 µm and a bandwidth of 0.15. Both the source and monitors were positioned 1 µm888

outside the nonlinear medium, with the electric field oscillating along the x-axis. Simulations were889

executed to allow sufficient decay of the fields after the source was turned off to confirm accurate890

measurements.891

Harmonic generation and analysis Using the Meep’s add flux function, the optical flux outside the892

nonlinear medium was measured, and the transmitted power spectra of the fundamental frequency (ω)893

and harmonic components (2ω, 3ω) were calculated. The add flux function records the time-domain894

values of electric and magnetic fields at specific locations, then performs a Fourier transform to895

convert them into the frequency domain to compute flux. This process allows precise analysis of896

the intensity of each frequency component within the user-defined frequency range and intervals.897

The analysis frequency range extended from ω/2 to 3.5ω, encompassing all relevant frequency bands898

of interest. Flux measurements were particularly useful for understanding the interaction between899
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newly generated harmonic components and existing frequency components caused by the material’s900

nonlinearity.901

Results and reproducibility Simulation results demonstrated how the intensity and distribution902

of harmonic components varied with changes in χ2. The nonlinear modeling capabilities of Meep903

enabled precise analysis of harmonic generation characteristics in nonlinear optical materials.904

B Additional experimental results905

In this section, we provide additional experimental results that supplement the results presented in906

the main text.907

B.1 Atomic coordination difference between FP32 and FP64908

A detailed examination of the atomic coordinates in Table 1 further highlights the differences. While909

the coordinates obtained from FP64 differ only by approximately 0.01 Å for oxygen and hydrogen910

atoms, FP32 results display considerable deviation. Notably, the FP32-calculated atomic positions911

deviate by up to 0.4 Å from those obtained using FP64, a significant difference considering that the912

O-H bond length itself is only 0.957 Å. In addition, the total energy difference between FP32 and913

FP64 calculations is approximately 1.1 Hartree (equivalent to 29.93 eV), which exceeds the formation914

energy of water (2.9 eV) by more than an order of magnitude. This clearly indicates that the FP32915

result corresponds to a structure that is impossible to exist in reality. These results demonstrate that916

FP32 lacks the numerical precision necessary to achieve sufficient convergence tolerance in scientific917

computations. The failure of a simple molecular system such as water to reach an optimized structure918

under FP32 precision indicates its fundamental limitations in scientific calculations.

Table 1: Comparison of atomic coordinates and total energy for geometry-optimized water molecule
at FP32 and FP64 precision levels. Both calculations used the 6-311++G(d,p) basis set. As indicated
by an asterisk (*), FP32 calculations failed to converge for both HF and DFT methods, while FP64
results show compatibility between HF and DFT.

HF
6-311++G(d,p)

DFT (B3LYP)
6-311++G(d,p)

FP32 FP64 FP32 FP64

A
to

m
ic

co
or

di
na

te
s

(Å
) Ox -0.000356* 0.000000 0.009524* 0.000000

Oy 0.246311* 0.014028 0.578655* 0.000780
Oz 0.000000* 0.000000 0.000000* 0.000000

H1x 0.453099* 0.752792 0.026584* 0.763642
H1y 0.534244* 0.578999 0.998814* 0.585902
H1z 0.000000* 0.000000 0.000000* 0.000000
H2x -0.453725* -0.752792 -0.024889* -0.763642
H2y 0.534404* 0.578999 0.998054* 0.585902
H2z 0.000000* 0.000000 0.000000* 0.000000

Total energy
(Ha) -74.938* -76.053 N/A* -76.458

*Not Converged
919

B.2 Absorbed power density of a SiO2 cylinder920

To validate our FDTD workflow against a well-characterised linear system, we also simulated the921

absorption of a single silica (SiO2) cylinder under normal-incidence plane-wave illumination.922

Geometry and material A two-dimensional square domain of side length 20 µm was created,923

containing one infinitely long cylinder of radius 1.0 µm centred at the origin. SiO2 was taken from924

the built-in SiO2 material in Meep, so its frequency-dependent permittivity—and hence refractive925

index—were implicitly evaluated at the simulation’s centre frequency. Vacuum surrounded the926

cylinder. Mirror symmetry along the y-axis halved the computational cost.927
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Source definition A continuous-wave Gaussian plane wave, polarized along ẑ (out-of-plane Ez),928

impinged from the left boundary. The central wavelength was 1.0 µm with a 10 % fractional929

bandwidth, wide enough to sample the vicinity of the design wavelength while narrow enough to930

approximate monochromatic excitation.931

Monitors and post-processing932

• Incident-flux monitor. A line segment at x = −2.0µm recorded the power of the incoming933

wave, serving as a reference for normalising absorption.934

• Absorbed-flux box. A closed rectangular contour wrapped tightly around the cylinder. By935

integrating the Poynting vector over this surface, net absorbed power Pabs was obtained936

directly.937

• DFT field monitor. A square region coincident with the flux box captured Ez and Dz fields938

in the frequency domain via Meep’s discrete Fourier transform facility. Absorbed power939

density was then evaluated volumetrically as940

pabs(f) = 2πf Im
(
Ez Dz

)
= 2πf Im(ε) |Ez|2.

where f is frequency, ε is the complex permittivity of SiO2, and the overbar denotes complex941

conjugation. Integrating pabs over the cylinder volume reproduced Pabs obtained from the942

flux box, providing a cross-check on numerical consistency.943

Simulation parameters The same spatial resolution used in the nonlinear study (i.e. user-defined)944

was retained to capture sub-wavelength field variations near the curved surface. Perfectly matched945

layers of 2 µm thickness enclosed the domain to eliminate spurious reflections.946

This linear-dielectric benchmark served two purposes: (i) it confirmed the accuracy of our absorption-947

post-processing pipeline before applying it to nonlinear scenarios, and (ii) it provided a reference948

scale against which to compare the additional harmonic-generation pathways introduced by the Kerr949

media.950

Figure 3: Absorbed power density of the SiO2 cylinder computed with FP32 and FP64.

Results and discussion In double precision (FP64) the spatially averaged absorbed–power density951

over the silica cylinder is ⟨pabs⟩ = 3.2475× 10−2 (W/m2), with a standard deviation σ = 3.4241×952

10−2. Using single precision (FP32) we obtained ⟨pabs⟩ = 3.2476× 10−2 and σ = 3.4243× 10−2.953

The absolute differences between the two datasets are, respectively, ∆⟨pabs⟩ = 1.96 × 10−5 and954

∆σ = 3.02× 10−5, which correspond to relative errors of 6.0× 10−2 % and 8.8× 10−2 %. These955

discrepancies are two orders of magnitude smaller than the intrinsic statistical spread of the fields and956

therefore negligible for any practical analysis.957

This near-identity arises because (i) SiO2 is essentially loss-free at the operating wavelength, so the958

dynamic range of Ez and Dz is modest; and (ii) the perfectly matched layers efficiently remove959

outgoing waves, preventing late-time reflections that could amplify numerical noise.960
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We therefore conclude that, for linear absorption in a dielectric cylinder, Meep’s single-precision961

kernel yields numerically indistinguishable results from double precision while offering lower memory962

usage and faster runtimes. This benchmark justifies the use of FP32 for the more demanding nonlinear963

Kerr-media simulations reported in the main text.964

B.3 Toy experiments using MACE potential965

Experimental setup Both toy experiments described in Section 3.1 were conducted under the same966

experimental setup. Among the various MACE model families, we used the MACE-OFF23 medium967

checkpoint [47]; the MACE codebase version was 0.3.10, and the ASE library [5, 52] version was968

3.24.0. Each experiment was completed within 10 minutes on a single NVIDIA H100 GPU.969

Figure 4: MACE model calculations showing energy (red) and force (blue) changes during carbon
atom displacement in ethanol. FP32 versus FP64 precision reveals minimal deviations (1 meV energy,
0.02 meV/Å force).

Ethanol experiment We selected one of the carbon atoms in the ethanol molecule, specifically970

the one closest to the oxygen atom, and displaced it along a predefined direction while computing971

the corresponding energies and forces. The top panel of Figure 4 visualizes this setup. The original972

ethanol structure is shown in the center, with the displaced structures placed on either side. The973

direction of the carbon atom’s movement is indicated by a dotted arrow.974

The PES resulting from this displacement is shown in the middle panel. The energy (left y-axis)975

reaches a minimum when the displacement is zero, increases as the carbon atom moves away from its976

original position due to growing structural deformation, and then decreases again. The force (right977

y-axis) exhibits a similar trend, increasing from near zero and then decreasing as the displacement978

reverses.979

The bottom panel shows the differences between FP32 and FP64 predictions for energy and force980

along the displacement path. The energy difference remains relatively uniform across the range. In981

contrast, the force difference is minimal near the equilibrium structure and increases gradually as the982

displacement moves the system farther from the optimal configuration.983

Oseltamivir experiment We downloaded the 3D structure of oseltamivir from PubChem3 and used984

it in our experiment. To compute the vibrational modes of a molecule, structural optimization is985

required prior to vibrational analysis. For this purpose, we performed geometry optimization using986

the MACE-OFF model and the ASE library, employing the BFGS optimizer with the maximum force987

threshold set to 0.01 eV/Å.988

3https://pubchem.ncbi.nlm.nih.gov/compound/Oseltamivir
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Table 2: Calculated vibrational modes of the oseltamivir molecule, the active ingredient in Tamiflu,
using the MACE framework. Out of 30 total modes, four imaginary phonon modes were excluded,
and only the 26 real phonon modes are presented.

Mode Frequency (cm−1)
FP32 FP64 ∆

1 0.418 0.060 0.357
2 2.003 1.403 0.600
3 20.729 21.107 0.377
4 23.581 23.481 0.099
5 30.129 30.058 0.071
6 32.152 31.345 0.807
7 42.711 42.550 0.161
8 59.571 58.907 0.663
9 60.734 60.132 0.602

10 77.851 76.113 1.738
11 80.128 78.696 1.431
12 92.388 92.069 0.318
13 94.896 94.720 0.176
14 103.763 103.375 0.387
15 113.600 113.514 0.085
16 144.647 144.908 0.260
17 153.184 153.488 0.304
18 180.164 179.934 0.230
19 183.479 183.414 0.065
20 212.501 212.516 0.014
21 228.214 228.076 0.138
22 240.207 240.086 0.121
23 250.314 250.124 0.190
24 255.417 256.290 0.873
25 263.003 262.807 0.195
26 270.000 269.875 0.124

Following the optimization, we computed the vibrational modes using the ASE library as well. A989

total of 30 modes were obtained, among which four modes were identified as imaginary phonon990

modes. The remaining 26 real phonon modes are reported in Table 2.991
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