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Abstract

The machine learning community has focused on computational efficiency, often
leveraging lower-precision formats such as FP16, instead of the standard FP32. In
contrast, little attention has been paid to higher-precision formats, such as FP64,
despite their critical role in scientific domains like materials science, where even
small numerical differences can lead to significant inaccuracies in physicochemical
properties. This need for high precision extends to the emerging field of machine
learning for scientific tasks, yet it has not been thoroughly investigated. Accord-
ing to several studies and our toy experiment, models trained with FP32 show
insufficient accuracy compared to those trained with FP64, indicating that higher
precision is also crucial in scientific machine learning, as in traditional scientific
computing. This precision issue limits the potential of scientific machine learning
that can replace the traditional scientific computings in practical research. Our po-
sition paper not only highlights these precision-related issues but also recommends
reporting comparisons between FP32 and FP64 results, encouraging the release
of FP64 models. We believe that these efforts can enable machine learning to
contribute meaningfully to the natural sciences, ensuring both scientific reliability
and practical applicability.

1 Introduction

The rapid advancements in natural language processing (NLP) and computer vision (CV) in
the field of machine learning (ML) have accelerated the broad application across various do-
mains [56, 73, 83, 51, 81]. Specifically, ML for scientific tasks—which has begun to resolve
intellectually demanding problems in scientific fields—has been highlighted across disciplines, open-
ing new possibilities for scientific breakthroughs. In recognition of these breakthroughs, the 2024
Nobel Prize in Chemistry honored the contributions of scientific ML, highlighting innovations such
as AlphaFold and RoseTTAFold [39, 4, 99]. These models transformed scientific research by rapidly
delivering results that once required significant resources and time-consuming experiments or sim-
ulations. Building on these successes, scientific ML not only addresses traditional labor-intensive
workflows but also finds hidden patterns within complex data, thereby providing human researchers
with direct insights into novel discoveries across natural sciences [109, 67, 41, 117, 97, 116].

In the context of methodology, the development of scientific ML naturally follows the broader trends
and paradigms of the ML research field. In the early stages of NLP and CV, most work focused
on discriminative tasks (e.g., named entity recognition and image classification) [107, 24] before
gradually shifting to generative tasks (e.g., machine translation and text-to-image generation) [18, 89].
Further, generative approaches have advanced sequentially, moving from variational autoencoders
(VAEs) to generative adversarial networks (GANs), and more recently, to diffusion models [43, 32, 35,
95]. In a similar manner, numerous scientific domains have rapidly adopted the latest advances from
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the ML community. For example, among various areas of bioinformatics, research on DNA sequence
data initially leveraged discriminative models such as DeepVariant [78] and DeepSEA [122], and
over time, the trends moved to generative models including ExpressionGAN [124] and Evo [71].
Similarly, material structure prediction in the field of materials and drug discovery has followed this
trend from VAEs [85, 31, 55] and GANs [79, 42, 1] to diffusion models [36, 75, 118].

In parallel with these advances, the scaling law, one of the most recent paradigm in ML research,
emphasizes performance enhancement by progressively increasing the size of models, training
datasets, and computational resources [40, 94]. Building upon this idea of incremental scale expansion,
researchers have successfully tested the approach of bigger is better across diverse fields, including
NLP, CV, reinforcement learning, and time-series forecasting [119, 22, 34, 70, 92]. Following this
pattern, scientific ML is also adopting this paradigm, and in fact, large models designed to address
scientific tasks have already begun to appear [71, 120].

As these models grow larger and more complex, they require massive computational resources,
presenting significant challenges for both training and inference processess. To address this, the
lower numerical precision and quantization are a widely employed strategy, which helps reduce
the computational expense [123, 65]. These approaches inevitably involve a trade-off between
fidelity and resource efficiency, typically resulting in some accuracy degradation. To minimize
such precision-related losses, techniques such as mixed precision training [65] and sophisticated
quantization methods [7, 25, 58, 112] have been proposed, which allow researchers to conserve the
original accuracy while achieving the advantages of reduced computational costs. Consequently,
the ML community has accepted slight accuracy degradation as a natural trade-off for greater
efficiency, thereby integrating these lower-precision techniques into real-world applications to balance
performance and computational burden.

However, the tolerance for lower-precision techniques raises substantial concerns in the field of
scientific computing. Scientific computing primarily aims to solve fundamental physics equations
that are difficult to solve manually by simplifying or discretizing the inherently continuous and
infinite real-world phenomena to make them computationally tractable. As a consequence, even
tiny differences in numerical precision can lead to significant issues regarding the reliability of
computational results. Our experimental findings demonstrate that single precision’s sensitivity to
numerical deviations can substantially influence the accuracy of fundamental physical equations.
As a result of this high sensitivity, small numerical differences can cause significant changes in
physicochemical properties, such as absorption coefficient, defect energies, or reaction pathway
predictions, thereby reducing the reliability of results, especially when accurate predictions are
crucial for critical decisions. One critical aspect is that these challenges related to numerical precision
are not confined to traditional computational science, as ML models are increasingly being utilized in
various studies to replace prevalent simulations. In other words, traditional computational science
requires high precision, making it essential to verify whether FP32 produces valid results before
using ML models, as numerical precision is key to maintaining reliability.

In this position paper, we argue for the significant role of numerical precision in scientific
ML research, emphasizing the need for evaluating and analyzing its impact on results derived
from varying precision levels. To this end, we first highlight real-world examples from established
computational simulations where numerical precision directly impacts on their results. We then
explain that the importance of numerical precision is not confined to traditional scientific computing
alone but is also deeply related to ML applications in scientific domains. Specifically, we provide
examples involving ML potential models and physics-informed neural networks (PINNs), which
are actively studied in both ML and science domains, demonstrating the critical role of numerical
precision in these areas [82, 44, 50]. Additionally, we explore the implications of large language
models (LLMs) in scientific ML on precision-related considerations.

In conclusion, we present concrete recommendations for the ML community and potential research
directions based on our discussions. We then provide alternative viewpoints to our position, offer
responses, and conclude. Since the main role of ML in scientific research is to deepen understanding
in traditional domains, the issues we raise must be rigorously examined. When relatively simple
actions by ML researchers can remove barriers that hinder natural scientists from applying ML
models, these measures become essential, not optional. As scientific machine learning is still in its
early stages, we hope that thorough debate will help minimize trial-and-error in future research.
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2 Importance of numerical precision in scientific computing

The main goal of scientific computing is solving complex physics equations through computational
power, especially when manual solutions are impractical or nonexistent. Specifically, many-body
problems including multiple object interactions demonstrate the necessity of high-performance
computing. Accordingly, various computational methods have emerged to solve fundamental physics
equations: molecular dynamics for Newton’s Second Law, density functional theory (DFT) [38] for
the Schrodinger equation, and the finite-difference time-domain (FDTD) [115] method for Maxwell’s
equations. Despite the algorithmic progress outlined above, the fidelity of these simulations is
bounded by how continuous physical variables are encoded on digital hardware. Modern digital
processors represent real numbers as finite-length bit strings, so continuous equations—ranging from
F' = ma to the Schrodinger and Maxwell formulations—cannot be solved exactly. To bridge this
gap, scientists adopt controllable approximations: reformulating the problem (e.g., the Kohn—Sham
equation [45]) or discretising time and space (e.g., molecular dynamics). These methods remain
trustworthy only when round-off error is tightly bounded, making double-precision arithmetic the
de-facto compromise between cost and accuracy. For instance, Quantum ESPRESSO [29], a leading
open-source DFT implementation, strictly enforces double precision throughout its code.

To demonstrate the precision’s crucial role in scientific computing, we present examples showing how
small numerical variations can significantly impact computational results, analyzing these effects in
realistic research scenarios. Specifically, we illustrate the influence on materials research scenarios,
thereby analyzing the implications and identifying the precise numerical accuracy-related challenges.

2.1 Impact on density functional theory simulation

Quantum mechanics, beginning with Planck’s
quantum hypothesis [76], revolutionized our un-
derstanding of microscopic phenomena. While
exact calculations are only possible for sim-
ple systems like the hydrogen atom, the Kohn-
Sham equation introduced DFT as an efficient ap-
proach for many-body electron problems. Using
Python-based Simulations of Chemistry Frame-
work (PySCF) [98], we performed geometry op-
timization calculations for water (HyO) using
both Hartree-Fock (HF) and DFT calculations
with B3LYP functional and 6-311++G(d,p) basis
set [2, 102, 13, 113].

Figure 1 shows the results of geometry-optimized

HF DFT (B3LYP)

0.421A

Figure 1: Geometry optimizations of a water

water molecules obtained from HF and DFT cal-
culations under FP32 and FP64 numerical pre-
cision conditions. When utilizing FP64, both

molecule using FP64 (top) and FP32 (bottom)
with HF (left) and DFT (right) methods. FP64
computations yield physically valid structures,

HF and DFT calculations successfully converged ~Whereas FP32 leads to unrealistic geometries.

within three optimization steps with satisfying

the convergence criteria. Since DFT explicitly accounts for electron correlation effects [12], it is
generally expected to provide more accurate results than HF, a trend that is also reflected in our
findings. Comparing bond lengths, the reference [19] O-H bond length is 0.957 A, while HF exhibits
a deviation of 0.016 A (1.7 % error), and DFT yields a smaller deviation of 0.005 A (0.5 % error).
Similarly, for the bond angle, HF deviates by 1.7° (0.7 % error) from the reference value of 104.52°,
whereas DFT shows a smaller deviation of 0.55° (0.5 % error). However, when using FP32, sig-
nificant numerical instabilities arise, preventing the convergence of optimization steps. In the case
of HF calculations, the gradient of hydrogen atoms stagnates between 0.2-0.4 Ha/Bohr, which is
significantly above the desired convergence threshold of 10~ Ha/Bohr. For DFT calculations, the
issue becomes even more pronounced, as the gradient values rapidly diverge beyond 10° Ha/Bohr,
resulting in termination before reaching the maximum step. As a result, when using FP32, the
HF calculation exhibits a substantial 50 % error, while the DFT calculation produces a molecular
structure impossible to exist in reality, as illustrated in Figure 1. A detailed examination using the
atomic coordinates is shown in Appendix B.1.
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Figure 2: (a) Transmittance spectra comparison between FP32 (top) and FP64 (bottom) in Kerr media,
showing FP32’s failure to accurately model higher harmonics and low-power wave patterns below
10~1° W/m?2. (b) Computed second harmonic susceptibility shown in FP64 (green solid) and FP32
lines (orange dashed) compared to theoretical quadratic behavior (black). FP64 maintains accuracy to
10~ m/V, while FP32 deviates above 10~% m/V, making it unsuitable for typical nonlinear materials.

2.2 Impact on finite difference time domain simulation

Electromagnetism, established by Maxwell’s equations [64, 63], provides the theoretical foundation
for understanding electromagnetic waves. However, solving Maxwell’s equations for complex
phenomena is computationally challenging. To address this, FDTD discretizes Maxwell’s equations
in time and space. Using Meep [72], an open-source FDTD software, we investigated numerical
precision effects on electromagnetic simulations, comparing FP32 and FP64 in nonlinear Kerr media
simulations. We simulated a Kerr medium (refractive index= 1.65) excited by an electromagnetic
wave source (A = 1.55 um, AX = 0.15 um).

Figure 2 (a) presents the transmission spectrum of the nonlinear Kerr medium under FP32 and
FP64 precision settings. From left to right, the spectral peaks correspond to the fundamental
generation induced by the source, the second harmonic generation (SHG), and the third harmonic
generation (THG). While the fundamental peak exhibits minimal differences between FP32 and
FP64, notable discrepancies arise in the SHG and THG regions. Specifically, FP32 calculations
display pronounced background signal instability and intensity variations in harmonic generation,
which result from imprecise numerical computation. A particularly notable difference appears in
the behavior of the background signal. In FP64 calculations, the background follows a well-defined
periodic pattern governed by the electromagnetic wave, whereas in FP32, the background signal
appears as unstructured Gaussian-like noise. This phenomenon indicates that the lack of numerical
precision in FP32 significantly disrupts the accurate computation of low-intensity transmitted power,
particularly for electromagnetic waves in the range of 10~ W/m?. These findings highlight the
fundamental limitations of single precision in reliably capturing weak electromagnetic signals and
nonlinear optical effects.

To further analyze the impact of numerical precision, we examined the relationship between second-
order nonlinear susceptibility (x?) and the transmittance-to-incident power ratio. As shown in
Figure 2 (b), the black upward-sloping line represents a quadratic line, serving as a reference line
indicating the expected computational trend of transmittance over incident power ratio as nonlinear
susceptibility varies. Ideally, the computationally simulated values should align with this reference
trend, maintaining the same slope. Comparing the results obtained from FP64 (green solid line) and
FP32 (orange dashed line), we observe that as nonlinear susceptibility decreases beyond a certain
threshold, the ratio begins to saturate. This saturation point effectively defines the lower bound of
computational precision achievable under each numerical setting.

Specifically, for values of x? above 107, both FP64 and FP32 provide reliable computational
precision. However, for values below this threshold, FP32 results begin to exhibit saturation, rendering
further calculations meaningless due to the loss of numerical resolution. In contrast, FP64 maintains
simulation accuracy down to approximately 108, demonstrating a computational precision that
is at least two orders of magnitude higher than that of FP32. This result implies that for most
nonlinear materials with x? values below 107, transmittance spectrum simulations using FP32
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become inherently unreliable. These findings highlight the critical role of numerical precision in
computational science, particularly in fields where small numerical deviations can lead to substantial
errors. As demonstrated in both DFT and FDTD simulations, the limitations of single precision
introduce significant inaccuracies, especially in cases involving highly sensitive physical properties.
This also highlights the necessity of carefully selecting numerical precision levels when conducting
computational simulations, particularly in scientific machine-learning applications where maintaining
the reliability of results is essential. While FP32 is adequate for various routine or weakly nonlinear
calculations, our benchmarks show that in strongly nonlinear regimes it can introduce critical artifacts;
the exact thresholds and representative case studies are provided in Appendix B.2.

3 Numerical precision issue in scientific ML

As demonstrated in the previous section, numerical precision can significantly affect the outcomes
of traditional scientific simulations and potentially influence the results of scientific research. This
naturally leads to an important question: Do ML models designed for scientific tasks also suffer
from similar precision-related issues? To investigate this question, we survey various studies that
apply ML to scientific research, searching for cases where the precision issue has been reported. We
also conduct simple toy experiments to further assess the impact of numerical precision in ML-based
scientific tasks. Through these analyses, we seek to determine whether the precision issue is a
significant challenge or just a theoretical concern.

3.1 Impact on machine learning potential

The first example we present is an ML potential' [44, 50], which is closely related to Section 2.1.
Fundamentally, ML potential models aim to compute potential energy and the associated forces
for a given material structure, offering a much faster alternative to traditional quantum mechanical
calculations. Due to their wide range of applications, ML potentials have been extensively studied
not only in physics, materials science, chemistry, and biology but also within the ML community [14,
80, 93, 30, 90, 10, 9]. In addition, property prediction and generation for material or drug discovery
have also been actively explored, making ML potentials a familiar subject for ML researchers. In our
position paper, we focus specifically on neural network potentials, a class of ML potentials built on
neural architectures. Since ML research often treats energy and force values in the same manner as
other material properties, our discussion extends naturally to broader property prediction tasks.

A key challenge in ML potential studies lies in effectively representing and processing atomic
information in three-dimensional space while ensuring rotational and translational equivariance
or invariance. To tackle this, the field has evolved from vanilla graph neural networks [88] and
transformers [106] to more specialized architectures that satisfy these constraints, achieving higher
prediction accuracy [90, 28, 86, 10, 9, 27, 100, 54, 26]. As a result, many recent models are
now integrated into widely used libraries or simulation software, such as the Atomic Simulation
Environment (ASE) [5, 52] and LAMMPS [77, 101]. This demonstrates that ML potential models
are increasingly employed in practical research; thus, any numerical precision issues arising in these
models could have significant implications for scientific discoveries.

Consequently, we aimed to investigate whether existing ML potential models suffer from precision
issues. To this end, we surveyed the pretrained checkpoints of various ML potential models available
in the ASE library to determine whether they support FP64 precision. Interestingly, among several
models, only MACE [9] provides pretrained checkpoints trained in FP64, while other models appear
not to have considered FP64 training. Even before detailed analysis, this observation suggests that the
ML potential community may not be fully aware of the potential significance of numerical precision.

To preliminarily understand the effect of precision, we conducted two toy experiment using MACE,
the only model that provides FP64-trained parameters. In the first experiment, we examined the
impact of numerical precision on the accuracy of potential energy surface (PES) reconstruction. We
selected an ethanol molecule as a representative small organic system containing multiple atom types
(C, H, and O). Then, by moving one of its carbon atoms along a certain path, we observed changes in
the potential energy and forces. We compared FP32 and FP64 predictions by applying the built-in
type conversion in the MACE code to the FP64-trained checkpoint. The results indicate that the

'In other domains, the term machine learning interatomic potential (MLIP) is also used.
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differences between FP32 and FP64 remain within approximately 1 meV for energy and 0.02 meV/ A
for force, which are margins typically considered acceptable in small-molecule simulations. Further
experimental details can be found in Appendix B.3 and Figure 4.

Afterwards, we turned on a more advanced task, predicting vibrational properties, which contains
richer information than the PES itself. To make the setting more realistic, we computed the vibrational
modes of the oseltamivir molecule, which is the active ingredient of the anti-influenza drug Tamiflu.
Table 2 summarize a subset of the calculated vibrational-mode frequencies; for modes 10 and 11, the
discrepancies reach about 1.7 and 1.4 cm ™1, respectively. The differences up to 1.7 cm™—! seems not
significant, but this value may affect huge influence when analyzing the vibrational mode from the
measured data. In general, the spectral resolution of Raman and infrared spectroscopy instruments,
which generally utilized to measure the vibrational properties of materials, is varied from few cm ™!
for 10,000-50,000 USD to sub cm~! for over 100,000 USD. These comparable spectral resolutions
of real-world instruments suggest that researchers may encounter ambiguous cases when interpreting
marginal values of certain vibrational modes. For instance, consider a scenario where a researcher
obtain a measured vibrational frequency of 78.2 cm ™! for the oseltamivir molecule. Which vibrational
mode should be assigned to this value? Calculations performed using FP32 precision would suggest
mode 10, with a difference of only 0.36 cm ™. Conversely, FP64 precision calculations would favor
assignment to mode 11, despite the slightly larger difference of 0.59 cm™!.

The aforementioned results suggest that while FP32 calculations may suffice for tasks such as molec-
ular dynamics simulations based solely on PES, they may fall short when predicting more sensitive
physical properties such as vibrational spectra. This emphasizes the importance of task-specific
evaluation and precision-aware analysis, particularly when moving beyond PES-level predictions
toward richer, experimentally comparable observables.

Nevertheless, our experimental framework was intentionally simplified, and these findings should
not be overinterpreted as definitive evidence regarding machine learning models’ sensitivity or
insensitivity to numerical precision variations. Furthermore, the FP32 model evaluated in this study
was initially trained using FP64 precision and subsequently converted to FP32 for inference purposes.
A model trained exclusively in FP32 from initialization could exhibit different behavior. In fact,
Batatia et al. [8] report that NequlP [10] exhibits different numerical sensitivity when trained in
FP32 versus FP64, and Maxson et al. [62] also discuss similar issues. These observations highlight
the importance of carefully assessing numerical precision in ML potential models and the need for
systematic benchmarks regarding precision.

3.2 Impact on physics-informed neural network

Beyond the fundamental equations mentioned in the previous section, various subfields of natural
science describe natural phenomena using differential equations. For example, in fluid dynamics,
including weather prediction, Navier-Stokes, continuity, and heat transfer equations are used [105, 11].
Moreover, differential equations such as the Black-Scholes equation [17] are also employed in fields
beyond natural sciences, such as financial engineering. Many of these equations either lack general
analytical solutions or are too complex to be solved manually. As a result, numerical methods have
been developed over time, leading to techniques such as the Euler method, Runge-Kutta methods, and
Picard method [20, 96]. These techniques have also influenced modern approaches in ML, including
diffusion models, NeuralODEs, and deep equilibrium models (DEQs) [35, 95, 21, 6].

The concept of the PINNs [82] leverages automatic differentiation (autograd), fundamental to
backpropagation, to solve differential equations using neural networks. Due to its simple yet powerful
approach, PINNs have been widely adopted in scientific domains that rely on numerical methods.
This section explores whether numerical precision issues also arise in PINNs and investigates related
challenges through a literature survey.

First, Nakamura et al. [68] explicitly discussed the impact of numerical precision in scientific research,
reporting that training PINNs with FP32 failed, whereas FP64 did not: from a comprehensive
standpoint, FP32 computation has a risk of failure for the present problem compared with FP64.
This work applies PINNS to a specific fluid dynamics problem involving surface tension modeling,
which requires up to fourth-order derivatives, making it a specialized case of differential equations.
Although this is a specific scenario, it is a real-world scientific study, demonstrating that precision
issues can significantly impact the practical use of PINNs.
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Meanwhile, Sharma and Shankar [91] were well aware of precision issues and leveraged this un-
derstanding to improve the methodology of PINNs. The key idea of their work is to replace certain
autograd operations in PINNs with a specialized finite difference method, reducing the computational
cost associated with autograd. Here, to compensate for the loss of accuracy introduced by finite
difference approximations, the authors proposed using high-precision (FP64) training. As a result,
the reduction in computational cost from bypassing autograd exceeds the overhead introduced by
FP64 operations, leading to an overall speedup that makes their approach faster than a vanilla PINN
in FP32. Beyond the fields of PINNs and scientific ML, this study introduces a novel perspective on
utilizing high-precision models in neural network research.

Thus, in the context of PINNs, a comprehensive study is needed to systematically assess the impact
of numerical precision issues on scientific research. Fortunately, many fields share similar types of
differential equations, e.g., Laplace equation in electrostatics and fluid dynamics, where it describes
electric potential distribution and velocity potential in inviscid flow, respectively. By focusing on the
precision challenges of commonly used differential equations and rigorously validating PINNs in this
context, such research could have a substantial impact across multiple domains.

3.3 Challenges for large language models

The emergence of LLMs in scientific applications is accelerating, further raising concerns about
numerical precision in such domains. To investigate these concerns, we examine both existing studies
and empirical evidence that highlight precision-related challenges in LLM applications. The integra-
tion of LLMs in scientific domains follows two distinct approaches. The first involves direct inference
without architectural modifications, where scientific data is transformed into natural language format
for existing LLM architectures [84, 37, 59]. The second approach develops specialized architectures
that combine domain-specific encoders with fine-tuned language models, preserving the intrinsic
properties of scientific data while leveraging LLM capabilities [53, 74].

Regarding the first approach, unlike conventional scientific models, LLMs generate outputs based
on tokens, which may compromise prediction accuracy. Numerous studies have demonstrated that
LLMs struggle with symbolic tasks [110, 114], similar to their difficulties in numerical predictions.
For instance, these models often fail to accurately count the occurrences of specific characters
within words (e.g., counting the letter ‘r’ in ‘strawberry’) or comparing the size of decimal numbers
(e.g., determining whether 3.9 is larger than 3.11%). This limitation stems from their fundamental
architecture, where words are processed as sequences of tokens rather than as individual alphabetic
characters or numbers. Although various studies [110, 46, 114, 15] have been proposed to address
these challenges, symbolic manipulation remains a significant obstacle for LLMs. Consequently,
their application in scientific tasks requires careful consideration and validation.

Another critical consideration in LLM deployment is the continuous increase in model size. For in-
stance, the open-source Llama series demonstrates this trend clearly: LLaMA (65B parameters) grew
to Llama-2 (70B) and further to Llama-3.1 (405B) [103, 104, 60], and more recently, DeepSeek-v3 has
pushed this expansion even further, reaching 671B [23]. Such explosive growth in model sizes across
LLMs has resulted in a substantial increase in computational costs for both training and inference. To
mitigate the budget, researchers commonly employ parameter quantization techniques by reducing
model precision to lower-bit formats [57, 25, 58], sometimes even 1-bit representations [112].

However, these optimization strategies fundamentally conflict with the stringent precision require-
ments of scientific computing applications, as emphasized throughout our analysis. This issue is
particularly critical for the second approach, where domain-specific encoders, which are often derived
from scientific ML models, serve as feature extractors. If quantization significantly reduces the preci-
sion of the extracted features, the LLM may fail to process them accurately, potentially degrading
overall model performance. For example, Li et al. [53] employed UniMol [121], a model broadly
categorized as an ML potential, as an encoder. Even if the encoder provides highly precise features,
the LLM’s lower precision representations may obscure this information, leading to inaccurate
final predictions. This inherent trade-off between computational efficiency and numerical precision
highlights the necessity of careful consideration when integrating LLM into scientific applications.

Recent large language models exhibit systematic errors in decimal comparison due to tokenization artifacts.
When comparing 3.9 and 3.11, models tokenize these as [‘3°, <, ‘9] and [3’, <, ‘11°] respectively, leading to
incorrect digit-wise comparison (9 vs. 11) rather than proper decimal evaluation. As of early 2025, while GPT-4
has resolved this specific case, Claude 3.7 continues to incorrectly identify 3.11 as larger than 3.9.
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4 Suggestions for Advancing Scientific ML
Building upon previous discussions, we present key suggestions for the scientific ML community.

Benchmarking and reporting FP32 vs. FP64 results Scientific ML typically necessitate higher
precision than general ML tasks to ensure reliability. While predictive accuracy is the primary focus,
other factors such as training time, inference latency, and energy consumption remain significant
constraints. Consequently, researchers should explicitly report the numerical precision used in their
studies, conduct comparative analyses between the implementations of FP32 and FP64 where applica-
ble, and publicly release FP64-trained models to improve reproducibility and facilitate collaborative
research. To support meaningful evaluations, standardized benchmarks that capture precision sen-
sitivity across diverse scientific tasks are essential. Such benchmarks would provide a consistent
framework for quantifying trade-offs between numerical precision, computational efficiency, and
reproducibility in scientific ML research.

Exploring high-precision models and mixed high-precision training Inspired by mixed-precision
training [65], we propose extending this concept to high-precision training by identifying precision-
sensitive layers and selectively training them using FP64 arithmetic. This approach mirrors con-
ventional mixed-precision strategies that utilize reduced precision (e.g., FP32 and FP16) for most
network layers while maintaining higher precision for numerically sensitive operations such as batch
normalization and softmax. This direction holds significance from an energy efficiency perspective, as
FP64 training inherently consumes more energy than FP32. While scientific ML offers computational
advantages over traditional scientific computing methods, energy consumption remains a persistent
concern. Investigating novel model architectures and training techniques that preserve high numerical
precision while enhancing energy efficiency will be essential for broader adoption of scientific ML.

Collaboration with natural scientists Achieving meaningful progress in scientific ML requires
interdisciplinary collaboration with with natural scientists. This is not merely a conceptual argument
but a practical requirement, as ML researchers often lack the domain-specific intuition to determine
the appropriate level of numerical precision for a given scientific task. For instance, research on ML,
potential is published in both traditional scientific journals and ML conferences, yet the evaluation
criteria and priorities differ substantially between these communities [9, 48]. Strengthening the
collaboration will help bridge this gap, ensuring that precision requirements align with both scientific
validity and practical usability.

Integrating ML into traditional computational methods Rather than exclusively developing
high-precision ML models, one of the alternative approaches is to integrate ML into traditional
computational methods to achieve both accuracy and efficiency. One promising strategy is to employ
ML models while acknowledging their inherent numerical limitations and using them to generate
an approximate solution [3, 87, 69]. These ML-generated approximations subsequently serve as
an initial guess for traditional computational methods, significantly accelerating convergence while
preserving numerical precision. This hybrid approach presents a compelling solution for scientific
applications where both computational speed and numerical accuracy are necessary.

S Alternative Views
This section presents alternative views challenging our position and offers responses to these concerns.

Q1: Is the extra computation cost due to higher precision tolerable? The most straightforward
negative impact of using higher precision is the increased computational burden. For example, on
NVIDIA A100 and H100 GPUs, FP64 operations are approximately twice as slow as FP32 operations.
While this overhead may be acceptable for training that takes only a few hours, it becomes prohibitive
for large-scale models trained across multiple GPUs over longer periods spanning several weeks or
months. In addition, certain classes of GPUs (e.g., RTX A6000) feature intentionally constrained
FP64 performance, with throughput ranging from 1/32 to 1/64 of their FP32 capabilities. This
hardware limitation makes consistent development of scientific ML models using double precision
computationally inefficient. Therefore, as discussed in Section 4, a systematic analysis of numerical
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precision’s impact on model accuracy becomes essential, enabling practitioners to selectively optimize
the balance between accuracy and computational efficiency.

Q2: Is the issue really about numerical precision, or could it be a capacity limitation of the
model? An alternative perspective suggests that observed inaccuracies originate from fundamental
limitations in network architecture or training methodologies rather than numerical precision con-
straints. This viewpoint posits that neural networks may lack sufficient expressivity to solve a given
task, regardless of precision considerations. To distinguish numerical issues from capacity concerns,
we can employ numerical analysis tools including condition numbers and numerical sensitivity analy-
sis (e.g., interval arithmetic [33]), to determine whether errors arise from numerical instability. Since
modern neural networks heavily rely on matrix operations, existing research on matrix sensitivity
provides a robust analytical foundation. These insights can help clarify the relationship between
numerical stability and model expressivity.

Q3: If certain scientific computing tasks are not sensitive to numerical precision, does it matter?
While not all scientific tasks require high numerical precision, focus should be directed toward
fields where high precision is essential, such as quantum chemistry, materials science, and nonlinear
physics, where even slight inaccuracies can lead to significant deviations. Currently, there is still
limited understanding of which tasks, models, and environments are most affected by numerical
precision and what factors contribute to these sensitivities. A systematic analysis is necessary to
identify precision-critical cases before making broad assumptions about acceptable precision levels.
Until a clear understanding is established, a precision-aware approach should be considered, while
relaxed conditions can be applied only to tasks that demonstrably insensitive to precision.

Certain scientific tasks may not require explicit consideration of numerical precision, particularly
those where logical reasoning is more critical than numerical accuracy, such as tasks relying on
LLMs. These include explaining or summarizing experimental results or literature [111], generating
hypotheses for scientific research [49, 61], providing guidance for tasks where the methodology is
not clearly defined (e.g., retrosynthesis), and assisting scientific educations [16]. In such cases, the
role of ML extends beyond numerical fidelity, emphasizing knowledge synthesis and interpretability.

Q4: Is it possible to design models that can avoid precision-related issues? Numerical instability
in scientific computing frequently originates from precision-sensitive operations including numerical
differentiation, integration, and eigendecomposition. Designing scientific ML models that avoid
these operations and instead directly predict their outcomes can help mitigate such instability. ML
potentials exemplify this approach by directly predicting energies from atomic structures, bypassing
the numerically sensitive integration and eigendecomposition required in DFT. This perspective
extends to examining whether individual neural network layers are numerically stable, similar to
spectral normalization [66] which enforces Lipschitz continuity to stabilize training.

However, avoiding numerical instability through model design is not always practical, as scientists
require understanding of underlying processes rather than just final predictions. This has led to ML
models that mimic traditional scientific computations, such as NeuralODEs and DEQs [21, 6, 108],
which explicitly model computational processes and align better with scientific domains emphasizing
interpretability. While end-to-end approaches remain effective when predictive accuracy is the primary
concern, many scientific domains continue to depend on numerical precision and computational
understanding, making precision-related issues an important ongoing research area.

6 Conclusions

Scientific ML has become a major field in modern ML research, with the goal of developing models
that contribute to scientific discovery. This position paper highlights the impact of precision issues,
which can affect the practical usability of scientific ML models but have been largely overlooked.
The precision issues in scientific ML are closely tied to ethical concerns regarding the reliability
and explainability of scientific findings. In summary, our contribution lies in a practical step toward
making scientific ML models more reliable, reducing the risk of misleading scientific insights due
to numerical inaccuracies. If our simple yet easily actionable proposal becomes widely adopted in
scientific ML research field, it can enhance the practicality and thereby accelerate scientific discovery.
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A Details of computational methods

This section provides detailed information on the DFT and FDTD calculations.

A.1 Density functional theory calculation

Computational environment Quantum mechanical calculations were performed using PySCF
version 2.7.0 [98]. To evaluate the impact of numerical precision, we conducted the same calcula-
tions using both single precision and double precision by declaring np.float32 and np.float64,
respectively. All simulations were conducted using two nodes of an AMD EPYC 7543 32-Core
Processor.

Simulation setup The input water molecule consists of a single oxygen atom at (0.000000,
0.000000, 0.000000) and two hydrogen atoms at (0.757000, 0.586000, 0.000000) and (-0.757000,
0.586000, 0.000000), respectively. To compare the geometry optimization result of a water molecule
based on different exchange functionals, we performed both Hartree-Fock calculations and density
functional theory calculations using the B3LYP functional [13, 113]. For both methods, we employed
the 6-311++G(d,p) basis set [2]. The default convergence tolerances for structural stabilization
were set as follows: [AE| < 1.00 x 107¢, RMS-Grad < 3.00 x 10~%, Max-Grad < 4.50 x 1074,
RMS-Disp < 1.20 x 1073, and Max-Disp < 1.80 x 1073,

A.2 Finite-difference time-domain calculation

Nonlinear material properties Kerr media were modeled with a second-order nonlinear sus-
ceptibility (x?) ranging from 1072 to 10~2 and the refractive index was set to 1.65 to mimic the
conventional nonlinear materials like beta barium borate. The nonlinear polarization of the material
was expressed as:

P=e(xXVE+xPE2+x®E 4+ ) (1)

And the second-order nonlinear polarization term is represented as: P(?) = ¢yx(?)E2. Meep
incorporates such nonlinear polarization terms into Maxwell’s equations to simulate interactions
between electromagnetic waves and the material in the time domain

oK op

VXH:GOE‘F(% 2
oOH
VX E= —MOE 3

Simulation setup The simulation domain consisted of a 100 m medium, a 1 gm thick boundary
layer, and 2 pm buffer regions at both ends. The spatial resolution was user-defined to capture fine
electromagnetic field characteristics. Kerr media were placed at the center of the domain, with 2
explicitly defined. The calculations were performed using Meep v1.29.0 [72], an open-source FDTD
software, with both FP32 and FP64 precisions on a single core of an AMD Ryzen 5 8500G processor.

Source and monitor definition The source was defined as a Gaussian plane wave with a central
wavelength of 1.55 um and a bandwidth of 0.15. Both the source and monitors were positioned 1 ym
outside the nonlinear medium, with the electric field oscillating along the x-axis. Simulations were
executed to allow sufficient decay of the fields after the source was turned off to confirm accurate
measurements.

Harmonic generation and analysis Using the Meep’s add flux function, the optical flux outside the
nonlinear medium was measured, and the transmitted power spectra of the fundamental frequency (w)
and harmonic components (2w, 3w) were calculated. The add flux function records the time-domain
values of electric and magnetic fields at specific locations, then performs a Fourier transform to
convert them into the frequency domain to compute flux. This process allows precise analysis of
the intensity of each frequency component within the user-defined frequency range and intervals.
The analysis frequency range extended from w/2 to 3.5w, encompassing all relevant frequency bands
of interest. Flux measurements were particularly useful for understanding the interaction between
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newly generated harmonic components and existing frequency components caused by the material’s
nonlinearity.

Results and reproducibility Simulation results demonstrated how the intensity and distribution
of harmonic components varied with changes in x2. The nonlinear modeling capabilities of Meep
enabled precise analysis of harmonic generation characteristics in nonlinear optical materials.

B Additional experimental results

In this section, we provide additional experimental results that supplement the results presented in
the main text.

B.1 Atomic coordination difference between FP32 and FP64

A detailed examination of the atomic coordinates in Table 1 further highlights the differences. While
the coordinates obtained from FP64 differ only by approximately 0.01 A for oxygen and hydrogen
atoms, FP32 results display considerable deviation. Notably, the FP32-calculated atomic positions
deviate by up to 0.4 A from those obtained using FP64, a significant difference considering that the
O-H bond length itself is only 0.957 A. In addition, the total energy difference between FP32 and
FP64 calculations is approximately 1.1 Hartree (equivalent to 29.93 eV), which exceeds the formation
energy of water (2.9 eV) by more than an order of magnitude. This clearly indicates that the FP32
result corresponds to a structure that is impossible to exist in reality. These results demonstrate that
FP32 lacks the numerical precision necessary to achieve sufficient convergence tolerance in scientific
computations. The failure of a simple molecular system such as water to reach an optimized structure
under FP32 precision indicates its fundamental limitations in scientific calculations.

Table 1: Comparison of atomic coordinates and total energy for geometry-optimized water molecule
at FP32 and FP64 precision levels. Both calculations used the 6-311++G(d,p) basis set. As indicated
by an asterisk (*), FP32 calculations failed to converge for both HF and DFT methods, while FP64
results show compatibility between HF and DFT.

HF DFT (B3LYP)
6-311++G(d,p) 6-311++G(d,p)
FP32 FP64 FP32 FP64

< 0, ~-0.000356% 0.000000 0.009524%  0.000000
Y 0, 0246311% 0014028 0.578655%  0.000780
£ 0,  0.000000% 0.000000 0.000000%  0.000000

S Hiz  0453099% 0752792  0.026584*  0.763642
5 Hyy 0534244 0578999  0.998814*  0.585902

S Hyz  0.000000% 0.000000 0.000000%  0.000000
2 Hozx  -0.453725% -0.752792 -0.024889% -0.763642
§ Hoy  0.534404*  0.578999  0.998054*  0.585902
< Hyz  0.000000%  0.000000  0.000000%  0.000000

Total energy ) ga3gx 76,053 N/A* 76.458

(Ha)

*Not Converged

B.2 Absorbed power density of a SiO; cylinder

To validate our FDTD workflow against a well-characterised linear system, we also simulated the
absorption of a single silica (SiO3) cylinder under normal-incidence plane-wave illumination.

Geometry and material A two-dimensional square domain of side length 20 um was created,
containing one infinitely long cylinder of radius 1.0 pm centred at the origin. SiO, was taken from
the built-in Si0, material in Meep, so its frequency-dependent permittivity—and hence refractive
index—were implicitly evaluated at the simulation’s centre frequency. Vacuum surrounded the
cylinder. Mirror symmetry along the y-axis halved the computational cost.
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Source definition A continuous-wave Gaussian plane wave, polarized along Z (out-of-plane E.),
impinged from the left boundary. The central wavelength was 1.0 um with a 10 % fractional
bandwidth, wide enough to sample the vicinity of the design wavelength while narrow enough to
approximate monochromatic excitation.

Monitors and post-processing

* Incident-flux monitor. A line segment at z = —2.0um recorded the power of the incoming
wave, serving as a reference for normalising absorption.

* Absorbed-flux box. A closed rectangular contour wrapped tightly around the cylinder. By
integrating the Poynting vector over this surface, net absorbed power P,j,s was obtained
directly.

* DFT field monitor. A square region coincident with the flux box captured E, and D, fields
in the frequency domain via Meep’s discrete Fourier transform facility. Absorbed power
density was then evaluated volumetrically as

Pabs(f) = 27 f Im(E, D,) = 2nf Tm(e) | E.|*

where f is frequency, ¢ is the complex permittivity of SiO,, and the overbar denotes complex
conjugation. Integrating p,ps over the cylinder volume reproduced P, obtained from the
flux box, providing a cross-check on numerical consistency.

Simulation parameters The same spatial resolution used in the nonlinear study (i.e. user-defined)
was retained to capture sub-wavelength field variations near the curved surface. Perfectly matched
layers of 2 um thickness enclosed the domain to eliminate spurious reflections.

This linear-dielectric benchmark served two purposes: (i) it confirmed the accuracy of our absorption-
post-processing pipeline before applying it to nonlinear scenarios, and (i) it provided a reference
scale against which to compare the additional harmonic-generation pathways introduced by the Kerr
media.

FP32 FP64
1 0.36
0.27 £
R ’ ’ 2
£ o- ‘ - ‘ 0.18 @
> [}
~ . e
0.09 g
o
o
-1 . . 0.00
-1 0 1 -1 0 1
X (um) X (um)

Figure 3: Absorbed power density of the SiO5 cylinder computed with FP32 and FP64.

Results and discussion In double precision (FP64) the spatially averaged absorbed—power density
over the silica cylinder is (paps) = 3.2475 x 1072 (W/m?), with a standard deviation o = 3.4241 x
10~2. Using single precision (FP32) we obtained (p.ps) = 3.2476 x 1072 and o = 3.4243 x 1072,
The absolute differences between the two datasets are, respectively, A(paps) = 1.96 x 1075 and
Ao = 3.02 x 1072, which correspond to relative errors of 6.0 x 1072 % and 8.8 x 1072 %. These
discrepancies are two orders of magnitude smaller than the intrinsic statistical spread of the fields and
therefore negligible for any practical analysis.

This near-identity arises because (i) SiO- is essentially loss-free at the operating wavelength, so the
dynamic range of E, and D, is modest; and (ii) the perfectly matched layers efficiently remove
outgoing waves, preventing late-time reflections that could amplify numerical noise.
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We therefore conclude that, for linear absorption in a dielectric cylinder, Meep’s single-precision
kernel yields numerically indistinguishable results from double precision while offering lower memory
usage and faster runtimes. This benchmark justifies the use of FP32 for the more demanding nonlinear
Kerr-media simulations reported in the main text.

B.3 Toy experiments using MACE potential

Experimental setup Both toy experiments described in Section 3.1 were conducted under the same
experimental setup. Among the various MACE model families, we used the MACE-0FF23 medium
checkpoint [47]; the MACE codebase version was 0.3.10, and the ASE library [5, 52] version was
3.24.0. Each experiment was completed within 10 minutes on a single NVIDIA H100 GPU.

&)

(&)
S _a21s] — z
3 —4.215 Force -0.02 3
Y4 Q
~ vy
o =3
—4.220 1 v
T T T T T - 0.00
—0.6 A -0.02 Z
S <
: 5
£ —08- -0.00 g
o £
< w
1.0 --0.02 <
T T T T T
—-0.50 -0.25 0.00 0.25 0.50
Displacement (A)
—— AE=Erpea —Erpz2 —— AF =Frpea — Frp32

Figure 4: MACE model calculations showing energy (red) and force (blue) changes during carbon
atom displacement in ethanol. FP32 versus FP64 precision reveals minimal deviations (1 meV energy,

0.02 meV/A force).

Ethanol experiment We selected one of the carbon atoms in the ethanol molecule, specifically
the one closest to the oxygen atom, and displaced it along a predefined direction while computing
the corresponding energies and forces. The top panel of Figure 4 visualizes this setup. The original
ethanol structure is shown in the center, with the displaced structures placed on either side. The
direction of the carbon atom’s movement is indicated by a dotted arrow.

The PES resulting from this displacement is shown in the middle panel. The energy (left y-axis)
reaches a minimum when the displacement is zero, increases as the carbon atom moves away from its
original position due to growing structural deformation, and then decreases again. The force (right
y-axis) exhibits a similar trend, increasing from near zero and then decreasing as the displacement
reverses.

The bottom panel shows the differences between FP32 and FP64 predictions for energy and force
along the displacement path. The energy difference remains relatively uniform across the range. In
contrast, the force difference is minimal near the equilibrium structure and increases gradually as the
displacement moves the system farther from the optimal configuration.

Oseltamivir experiment We downloaded the 3D structure of oseltamivir from PubChem?® and used
it in our experiment. To compute the vibrational modes of a molecule, structural optimization is
required prior to vibrational analysis. For this purpose, we performed geometry optimization using
the MACE-OFF model and the ASE library, employing the BFGS optimizer with the maximum force
threshold set to 0.01 eV/A .

*https://pubchem.ncbi.nlm.nih.gov/compound/Oseltamivir
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Table 2: Calculated vibrational modes of the oseltamivir molecule, the active ingredient in Tamiflu,
using the MACE framework. Out of 30 total modes, four imaginary phonon modes were excluded,
and only the 26 real phonon modes are presented.

Frequency (cm™1)
FP32 FP64 A

1 0.418 0.060 0.357
2 2.003 1.403  0.600
3 20.729  21.107 0.377
4 23.581  23.481 0.099
5 30.129  30.058 0.071
6
7
8

Mode

32.152  31.345 0.807
42711 42550 0.161
59.571 58.907 0.663
60.734  60.132  0.602
10 77851 76.113 1.738
11 80.128  78.696 1.431
12 92.388  92.069 0.318
13 94.896  94.720 0.176
14 103.763 103.375 0.387
15 113.600 113.514 0.085
16 144.647 144908 0.260
17 153.184 153.488 0.304
18 180.164 179.934 0.230
19 183.479 183.414 0.065
20 212.501 212516 0.014
21 228.214 228.076 0.138
22 240.207 240.086 0.121
23 250.314 250.124 0.190
24 255.417 256.290 0.873
25 263.003 262.807 0.195
26 270.000 269.875 0.124

O

989 Following the optimization, we computed the vibrational modes using the ASE library as well. A
990 total of 30 modes were obtained, among which four modes were identified as imaginary phonon
991 modes. The remaining 26 real phonon modes are reported in Table 2.
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