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ABSTRACT

Prompt-based learning has been demonstrated as a compelling paradigm con-
tributing to large language models’ tremendous success (LLMs). Inspired by their
success in language tasks, existing research has leveraged LLMs in embodied in-
struction following and task planning. However, not much attention has been paid
to embodied tasks with multimodal prompts, combining vision signals with text
descriptions. This type of task poses a major challenge to robots’ capability to un-
derstand the interconnection and complementarity between vision and language
signals. In this work, we introduce an effective framework that learns a policy
to perform robot manipulation with multimodal prompts from multi-task expert
trajectories. Our methods consist of a two-stage training pipeline that performs
inverse dynamics pretraining and multi-task finetuning. To facilitate multimodal
understanding, we design our multimodal prompt encoder by augmenting a pre-
trained LM with a residual connection to the visual input and model the depen-
dencies among action dimensions. Empirically, we evaluate the efficacy of our
method on the VIMA-BENCH (Jiang et al., 2023) and establish a new state-of-
the-art (10% improvement in success rate). Moreover, we demonstrate that our
model exhibits remarkable in-context learning ability.

1 INTRODUCTION

The unprecedented advancement of large language models (LLM) (Brown et al., 2020; OpenAI,
2023; Chowdhery et al., 2022; Anil et al., 2023; Chung et al., 2022; Touvron et al., 2023) has stim-
ulated rapid development of building instruction-following agents (Lynch & Sermanet, 2020; Ahn
et al., 2022; Driess et al., 2023; Guhur et al., 2023; Huang et al., 2022a). By leveraging LLM’s
remarkable zero-shot generalizability, various research initiatives Ahn et al. (2022); Huang et al.
(2022a;b) have developed powerful action planners to parse language instructions into a sequence
of sub-goals. A prominent example is the SayCan (Ahn et al., 2022), which employs PALM (Chowd-
hery et al., 2022) to transform abstract task descriptions into actionable step-by-step plans.

However, relying solely on language instructions can be inefficient for describing intricate task de-
tails. For instance, directing a household robot to tidy out a living room is more straightforward
with a combination of language and visual cues than using language alone. Also, when learning
new tasks, words simply cannot convey as much information as video demonstrations (Dasari &
Gupta, 2021). In addition, human communication is inherently multimodal, often combining speech
with expressive gestures and demonstrations (Drijvers & Holler, 2023). Therefore, we are motivated
to enhance a robot’s comprehension of multimodal task prompts that interleave text and images.

Training a robot to interpret multimodal prompts presents several challenges. The vision signals
in the prompt may simply represent target objects, delineate a specific sub-goal, or offer in-context
demonstrations. Here, the robot must first understand the underlying transition dynamics suggested
by the multimodal prompts before tackling the overall task objective. This requires the robot to infer
state transitions from language instructions, and also to be capable of inferring actions from image
signals, i.e., inverse dynamic prediction. Furthermore, it is essential for the robot to pay attention to
critical visual details, such as the orientation of an object shown in the image, as this can significantly
influence its action prediction.
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Figure 1: Model Architecture. Our model adopts a decoder-only architecture. The multimodal
prompt embeddings are concatenated with history tokens. We model each action dimension as an
individual token and predict them auto-regressively.

Matching object appearance with textual representation can be achieved by multi-task imitation
learning on a diverse set of tasks (Jiang et al., 2023). However, this method falls short in teaching
robots to predict inverse dynamics due to the masking of future observations in multi-task imitation
learning. To overcome this challenge, we introduce a two-stage training pipeline: inverse dynamic
pretraining and multi-task finetuning (FT). Our pretraining strategy first converts any robot trajectory
into a motion-following task and then trains the robot to recover the action sequences given the
observed image sequence. To capture fine-grained visual information, we design our multimodal
prompt encoder by augmenting a pretrained LM with a residual connection (RC) adding from the
input visual tokens to the encoded embeddings of the LM.

Figure 1 provides an overview of our model, which adopts a decoder-only architecture (Radford
et al., 2018). Specifically, we model each action dimension as individual action token and predict
them auto-regressively to capture dependencies among different dimensions. We dub our method
as Multi-modal Inverse Dynamics AgentS (MIDAS). Empirically, we evaluate our method on the
VIMA-BENCH (Jiang et al., 2023) and establish a new state-of-the-art, outperforming VIMA by
∼10% on all 4 evaluation protocols of VIMA-BENCH. Furthermore, we showcase the our multi-
task policy’s superior in-context learning ability by modifying the original VIMA-BENCH. We
emphasize this is novel, as simultaneously equipping a robot with multi-task and in-context learning
abilities has not been extensively explored.

In summary, our contributions can be summarized as follows:

• Introduction of the two-stage MIDAS training framework, which establishes a new state-
of-the-art on VIMA-BENCH (Jiang et al., 2023).

• An effective multimodal prompt encoder that can capture visual and textual details.
• Empirically highlighting the superior in-context learning ability of our multi-task policy.

2 PRELIMINARY

Problem Definition We consider the problem of learning a multimodal prompt-conditioned pol-
icy π : P × Ω → A that maps the multimodal prompt q ∈ P and the history trajectory
ωt = (o0, a0, o1, . . . , at−1, ot) ∈ Ω to the two-pose action primitive (Zeng et al., 2021) at =
(Tinitial, Ttarget) ∈ A ⊆ RNa , where ot ∈ O denotes the visual observation at timestep t and Na

denotes the number of action dimensions.

π(q, ωt) = π (q, o0, a0, o1, . . . , at−1, ot) → at = (Tinitial, Ttarget) ∈ A ⊆ RNa (1)

The action space A consists of primitive motor skills like “pick and place” and “push”. For the “pick
and place” primitive, Tinitial and Ttarget defines the space of pick pose and place pose, respectively.
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Figure 2: Task samples from the VIMA-BENCH. We refer readers to Appendix B of the VIMA
paper (Jiang et al., 2023) for detailed task description.

For “push”, they define the space of the starting and ending pose of push. The multimodal prompt
describes the task goal by interleaving texts and images.

In this paper, we aim to learn a multi-task policy πθ parameterized by θ from a dataset D =
{ζ1, . . . , ζN} with N expert demonstration. Each training sample ζi = (qi, ωi) contains the ex-
pert trajectory ωi =

(
oi0, a

i
0, o

i
1, . . . , a

i
T−1, o

i
T

)
corresponding to the multimodal task prompt qi.

VIMA policy Jiang et al. (2023) propose the VisuoMotor Attention (VIMA) agent to solve robot
manipulation from multimodal prompts with a Transformer (Vaswani et al., 2017) Encoder-Decoder
architecture. It encodes the multimodal prompts that interleave textual and visiual tokens with a pre-
trained LM by following the practice of Frozen (Tsimpoukelli et al., 2021). Its autoregressive action
decoding is conditioned on the prompt embedding via cross attention layers that alternate with the
causal self-attention. Instead of directly operating on the raw RGB images, VIMA adopts the object-
centric representation by cropping objects from both prompt and observation images and forming
them as a sequence of object tokens with pixel coordinate information as shown in Figure 3a. No-
tably, VIMA predicts each action dimension independently and trains its model via behavior cloning
with the loss function for a trajectory with T steps given by

L(θ) = −min
θ

T−1∑
t=0

log πθ(at|q, ωt) = −min
θ

T−1∑
t=0

Na−1∑
n=0

log πθ(a
n
t |q, ωt). (2)

We build our policy upon the VIMA policy. However, we model the dependencies among different
action dimensions (Giuliari et al., 2021; Vinyals et al., 2019) and decode each dimension autore-
gressively. We detail our motivation in Sec. 3.3 and demonstrate its empirical benefit in Sec. 4.

VIMA-BENCH (Jiang et al., 2023) is built on top of the Ravens (Zeng et al., 2021; Shridhar
et al., 2023) simulator and contains 17 types of tabletop manipulation tasks. Figure 2 shows
6 representative tasks from the VIMA-BENCH. Each task type can instantiate thousands of in-
dividual task instances by combining various textures and objects. Specifically, each task in-
stance defines a multimodal prompt that interleaves texts and images and the type of end-effector
∈ {suction cup, spatula}. The suction cup corresponds to the primitive motor skill “pick and place”
while spatula corresponds to “wipe”. At each time step, the agent receives RGB images rendered
from both frontal and top-down views and predicts the initial and target pose of its end effector.

VIMA-BENCH establishes a four-level protocol to evaluate progressively stronger generalization,
ranging from placement generalization (L1), combinatorial generalization (L2), novel task general-
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Figure 3: (a) Object Encoder proposed in VIMA consists of a ViT (Dosovitskiy et al., 2020) that
extracts visual embedding from cropped object images and a MLP that encodes bounding boxes. The
two embeddings are concatenated before passing through a Fusion MLP to get the object tokens. (b)
Multimodal Prompt Encoder adds a RC from the input object tokens to the pretrained LM output.

ization (L3) and novel task generalization (L4). Expert demonstration are provided for 13 tasks as
the training data, with 50K trajectories per task. The other 4 tasks are included into the L4 task suite.

3 METHODS

We introduce our MIDAS framework that learns a multi-task policy to perform robot manipulation
with multimodal prompt. We propose a two-stage training pipeline that includes inverse dynamic
pretraining (Sec. 3.1) followed by multi-task FT. To capture fine-grained visual information, we
design our multimodal prompt encoder by augmenting a pretrained LM with a residual connection
to the input object token (Sec. 3.2). Moreover, we model each action dimension as an individual
action token and autoregressively decodes each dimension (Sec. 3.3). Sec. 3.4 summarizes our
training framwork, with an overview of our model architecture given in Figure 1.

3.1 PRETRAINING TASK: INVERSE DYNAMICS PREDICTION

Robot 
Trajectory

Prompt Follow this motion:

Ground truth actions

Figure 4: Given the any sequence of robot trajectory, we can always formulate a motion following
task that requires the agent to replicate the demonstration trajectory.

As mentioned in Sec. 1, images in the prompt can depict object appearance, appearances, outline
the sub-goals and success criteria of a task, or serve as in-context task demonstrations. To decipher
this underlying task information and learn from in-context examples, a robot needs to understand
the transition dynamics illustrated in a sequence of images. For instance, the robot should be able to
infer the action sequence required to transition from its current state to the target goal state.

In other words, the agent needs proficiency in inverse dynamics prediction. Given a sequence
of observations (o0, . . . , oT ), the robot should learn to infer the corresponding action sequence
(a0, . . . , aT−1). However, the skill cannot be directly acquired by imitating multi-task trajectories,
as future observations are often masked out when predicting actions with current observations.

To tackle the dilemma, we make a novel observation that every robot trajectory itself can be refor-
mulated into a motion following task. As shown in Figure 4, given any sequence of robot trajectory
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ωT = (o0, a0, o1, . . . , aT−1, oT ), we can always create a task with the prompt Follow this motion:
o0, . . . , oT and ground-truth actions (a0, . . . , aT−1), leading to the following pretraining loss

Lpretrain(θ) = −min
θ

T−1∑
t=0

log πθ(at|Follow this motion: o0, . . . , oT ;ωt) (3)

3.2 MULTI-MODAL PROMPT ENCODING

To capture visual and textual information from the multimodal prompt, VIMA proposes to encode
both the visual and language tokens in the prompt with a pretrained LM (T5-base) following the
practice of Frozen (Tsimpoukelli et al., 2021). While LLM has demonstrated a tremendous success
across various fields with superior generalizability (Li et al., 2022), our early experiments reveal that
this encoding strategy often fails to capture some fine-grained visual information, e.g., the rotation
angle of an object (Task 09, Figure 2). We hypothesize it is because the pretrained LM has never
been trained on visual data.

To overcome this challenge, we propose to augment the pretrained LM by adding a residual con-
nection (RC) from the input visual tokens to the encoded embeddings , as shown in Figure 3b. The
intuition is that by directly adding the original visual tokens to the embeddings produced by the pre-
trained LM, we can retain more detailed visual information that might be lost during the encoding
process. Our experiments in Sec. 4 validate this intuition, showing that the inclusion of the RC
significantly improves performance across different tasks.

3.3 MODELING THE DEPENDENCY AMONG EACH ACTION DIMENSION
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Figure 5: At t = 2, the robot can choose to move either the heart or the cross block. As the policy
predicts each action dimension independently, different dimensions do not consistently manipulate
the same object, resulting in a task failure.

Recall that the robot action is defined by the initial pose Tinitial and target pose Ttarget of the end
effector. Intuitively, Ttarget should depend on Tinitial. And thus independently predicting each action
dimension can be problematic. Consider the example in Figure 5, the robot is tasked to first rearrange
the objects to a desired arrangement and then restore them to original setup. When the robot begins
to restore at t = 2, it has the option to move either the heart or the cross block. As the policy
predicts each action dimension independently, the dimensions associated with the pick-up pose do
not align consistently with one specific object. Consequently, the distribution of pick-up position
assigns significant probability to both object locations. Similarly, the placement position distribution
allocates probability to both objects’ target positions. When sampling actions from this distribution,
the robot may either miss picking up an object or misplace it, leading to a task failure.

Therefore, we opt to model the dependency among action dimensions by modeling each dimension
as a single token and decode each token autoregressively as shown in Figure 1. And thus, the multi-
task imitation loss function can be reformulated into

LImitation(θ) = −min
θ

T−1∑
t=0

(
log πθ(a

0
t |q, ωt) +

Na−1∑
n=1

log πθ(a
n
t |q, ωt, a

0
t , . . . , a

n−1
t )

)
. (4)
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Table 1: We compared our methods with baseline approaches on the VIMA-BENCH across all four
evaluation levels. “Avg” represents the average success rate for all tasks within an evaluation level.
To determine the success rate for each method, we sampled 200 episodes from every task. Due to
limited space, we report the success rate for four representative tasks in this table. Full results can be
found in Appendix A. Our methods significantly outperform baseline methods and establish a new
state-of-the-art performance on the VIMA-BENCH.

L1 L2 L3 L4

Method Avg T5 T9 T16 T17 Avg T5 T9 T16 T17 Avg T5 T9 T16 T17 Avg T10

Gato 57.0 44.5 14.0 43.0 1.5 53.9 46.0 10.5 42.0 1.0 45.6 36.0 17.0 41.5 0.0 13.5 0.0
Flamingo 47.2 41.0 3.0 38.0 2.0 47.1 43.0 4.5 40.0 1.0 42.1 36.5 6.0 45.5 0.5 11.1 0.0
GPT 47.9 45.0 8.0 33.0 1.0 47.4 43.0 10.5 34.0 3.0 42.6 32.0 5.0 37.5 0.0 12.1 0.5

VIMA 87.2 65.0 13.5 88.0 77.0 87.0 61.0 12.5 87.5 77.5 84.0 63.0 12.0 58.5 78.0 49.6 0.0
Gato OBJ 87.5 62.0 17.0 92.5 80.5 87.5 62.5 16.0 91.5 80.0 84.4 65.5 15.5 46.5 87.5 49.6 0.0

Ours
w/o Pretrain 91.6 88.0 20.5 93.0 98.0 91.8 87.0 23.5 92.0 98.0 88.3 90.0 20.5 50.5 99.5 49.1 0.0
w/ Pretrain 97.8 94.0 100 94.0 96.5 97.9 96.5 100 93.0 96.0 93.4 94.0 97.0 47.0 98.0 59.1 41.0

That is, the distribution for each action dimension should be conditioned on the other action dimen-
sions that have already been decoded.

3.4 ALGORITHM SUMMARY

To this end, we have introduced our pretraining strategies and model design. To learn our multi-
task policy πθ, we assume the access to a dataset D = {ζ1, . . . , ζN} with N expert demonstration.
First, we pretrain πθ by minimizing Lpretrain(θ) over Npretrain iterations. Subsequently, we perform
multi-task fine-tuning on D to minimize LImitation(θ). The pseudo-codes (Algorithm 1) and detailed
hyper-parameters (HP) are available in Appendix B.

4 EXPERIMENTAL RESULTS

Our experiments focus on the VIMA-BENCH (Jiang et al., 2023), addressing two primary questions:
1) Does our model design and training pipeline enhance the zero-shot generalization of the learned
model? 2) Can our model effectively utilize in-context examples to tackle novel tasks? To answer
the first question, we evaluate our methods on the VIMA-BENCH (Sec. 4.1) and conduct extensive
ablation studies (Sec. 4.2). To answer the second question, we modify the VIMA-BENCH by
holding out more tasks with in-context examples from the training set to test our methods (Sec. 4.3).

4.1 STANDARD EVALUATION ON THE VIMA-BENCH

We compare our methods with various baselines from the original VIMA paper (Jiang et al., 2023)
on the VIMA-BENCH. All baseline methods only conduct multi-task imitation learning without
pretraining. We directly report results for Gato (Reed et al., 2022), Flamingo (Alayrac et al., 2022)
and GPT (Radford et al., 2018) from the VIMA paper. Notably, these three methods directly operate
on the raw image observation. In contrast, VIMA, Gato OBJ and our methods adopt an object-centric
representation. The Gato OBJ policy is constructed by replacing the encoder-decoder architecture
of the VIMA policy with a decoder-only architecture (Radford et al., 2018). And the difference
between our policy and Gato OBJ is that we augments the pretrained LM with a RC and model each
action dimension as an individual action token. As we do not focus on the visual understanding
part of general robot control, we assume the access to the ground truth instance segmentation masks
provided by the VIMA-BENCH for all methods with an object-centric representation. And the
results of VIMA and Gato OBJ are reproduced by us.

Table 1 presents the evaluation results by following VIMA-BENCH’s 4-level evaluation protocols.
Due to the limited space, we only report the individual task success rates for representative tasks on
which different methods exhibit a significant performance difference. Avg denotes the task success
rate across all tasks from an evaluation level. Full evaluation results with individual task success
rate can be found in Appendix A. We can observe that our methods already outperforms all baseline
methods even without pretraining, particularly on Task 5 (Rearrange the Restore) and Task 17 (Pick
up then Restore), which demonstrates the effectiveness of our multimodal prompt encoder and the
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Figure 6: Ablation study on the pretraining strategy. We show that the BERT-style pretraining
strategy (Our Method w/ Masked Pretrain) that performs masked action modeling does not benefit
the learning of a multi-task policy to understand multimodal prompts.

Figure 7: Ablation on the prompt encoder. We compare the performance of our methods with
different prompt encoders. Our proposed T5 + RC prompt encoder that augments a pretrained T5
with a residual connection (RC) to the input visual tokens achieves a higher computational efficiency
by requiring less pretraining iterations to reach a decent performance on L1, L2, and L3.

importance of modeling the dependencies between initial and target pose of the action. With pre-
training, the performance of our methods improves significantly, especially on the difficult Task 9
(Twist) and Task 10 (Follow Motion). As shown in Figure 2, Twist requires the robot to first deduct
the target rotation angles from the in-context examples before operating on the correct objects de-
scribed by text. Similarly, Follow Motion requires the robot to deduce the actions corresponding to
the image sequence in the prompt and apply them to the same object in robot’s current observation.
Without pretraining, models have to learn the skills for inverse dynamics prediction solely from the
multi-task data, lacking enough supervision.

4.2 ABLATION STUDIES

We conduct extensive experiments to study how our model design and training pipeline impacts the
robot manipulation, focusing on the effectiveness of our pretraining strategy and prompt encoding.
We also examine the impact of data scaling and model size. Appendix A presents individual task
success rate for all methods and further ablate the decoder-only architecture of our model.

Pretraining Strategy Figure 6 compared our pretraining strategy with a BERT-style masking pre-
diction method (Devlin et al., 2018), which still performs the task of inverse dynamics prediction.
Specially, we modify the decoding mask of the transformer to allow its attention to all future ob-
servation but mask all prompt and future action tokens. However, this pretraining strategy does not
benefit the downstream multitask learning, as it does not explicitly train the model to reason the
image sequences presented in the prompt.

Multimodal Prompt Encoding Recall that our multimodal prompt encoder (T5 + RC) augments a
pretrained LM (T5-Base (Raffel et al., 2020)) with a RC to the input visual tokens. To investigate its
efficacy, we compare its performance with two variants that respectively adopt a pretrained T5 and
VL-T5 (Cho et al., 2021) to encode the multimodal prompt. Note that T5 is pretrained on pure text
data while VL-T5 is pretrained on both vision and language data. As shown in Figure 7, our method
achieves an overall better performance and computational efficiency by requiring less pretraining
iterations. The comparison between the performance of T5 and VL-T5 shows that a pretrained
encoder that better understands input visual tokens can benefit more from our pretraining phase.
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Figure 8: Ablation on model and data sizes. Top: For model sizes ranging from 2M to 92M, our
pretraining can always learn a representation that leads to better multitask performance. Bottom:
Model size is fixed to 92M. The benefit of pretraining increases as we increase training data size.

Model & Data Scalability Figure 8 illustrates the performance of our methods in relation to varia-
tions in model and data size. As the model size is scaled from 2M to 92M, we maintain a constant
prompt encoder and exclude it from the parameter count, adhering to VIMA practices. Conversely,
while adjusting the data size, the model remains fixed at 92M, and performance is evaluated using
10%, 50%, and 100% of the data available in VIMA-BENCH. Notably, the enhancements derived
from our pretraining remain evident in low parameter regime. Additionally, a larger dataset corre-
spondingly amplifies the performance gains achieved through our pretraining techniques.

4.3 EVALUATING THE IN-CONTEXT LEARNING ABILITY

Previous experiments already demonstrate the superior generalizability of our methods on L1, L2
and L3, which differs from the training tasks in object placement, combination and types. When
exposed to novel tasks from L4, we expect our framework imbues the agent with a human-like
intuition to learn from in-context examples. This expectation holds even if none of the training
tasks explicitly present few-shot demonstrations within their prompts. To access this capability, we
modify the original VIMA-BENCH by carefully constructing a new set of L4 tasks, ensuring each of
the L4 tasks contain in-context examples in the prompt. Specifically, we hold out Twist and Follow
Order from the training tasks, combining them with Follow Motion to form the new L4 task suites.
The first row of Figure 2 showcases samples from these designated tasks.

As L4 tasks contain novel scenes/objects that does not exist in the training data, we leverage data
augmentation during pretraining phase to improve model generalizability. Additionally, we propose
Modified FT that randomly replace the object image in the prompt with text description provided by
the VIMA-BENCH during multi-task finetuning. At inference time, we edit the prompt of Twist and
Follow Order to make them closer to the pretraining prompt without adding extra task information.
Appendix C provides detailed experiment setup.

As shown in Table 2, our method considerably outperforms baseline methods for the Twist and Fol-
low Motion without decreasing its performance on L1, L2 and L3 (shown in Appendix C). Twist
requires the model to first infer the rotation angle from prompt image sequence and then identify
the target object described with text. While the imitation-learned policy (Our Method w/o Pretrain)
shows limited performance on these tasks, our pretrained policy (Our Method w/ Pretrain Only) ex-
hibits some capability, particularly in Follow Order which does not necessitate understanding object
descriptions. However, it has difficulties with Twist and Follow Motion because it has never trained
to tackle the visual and textual object. In contrast, the multi-task FT phase helps the model to under-
stand diverse multimodal prompts and solicit its ability to translate action sequences derived from
in-context examples to target objects. This is akin to the improvement seen in pretrained language
models’ instruction following abilities due to instruction-fining, as highlighted by (Sanh et al., 2021;

8



Under review as a conference paper at ICLR 2024

Table 2: Evaluating the in-context learning capability of the learned model. We hold out Twist and
Follow Order from the training data.

Task T9: Twist T10: Follow Motion T11: Follow Order Overall

Our Method 26.5% 74.0% 8.0 % 36.2%

Our Method w/o Modified FT 10.0% 43.5 % 16.5% 23.3%

Our Method w/ Pretrain Only 8.0 % 2.0% 15.5 % 8.5 %

Our Method w/o Pretrain 1.5 % 0.5 % 0.0% 0.7 %

Ouyang et al., 2022; Wei et al., 2021). Moreover, our Modified FT significantly improves model’s
grounding capability, contributing to a remarkable performance increase in Twist and Follow Motion.

Appendix D provides additional results, where we design 4 new tasks with in-context examples in
the prompt to solidify our findings.

5 RELATED WORK

Multi-Task Pretraining via Sequence Modeling. The development of the Transformer architec-
ture (Vaswani et al., 2017) paved the way for large-scale pretraining, which has become a standard
practice to enable better generalization across different domains (Brown et al., 2020; Chen et al.,
2021; Radford et al., 2021; Devlin et al., 2018; Lu et al., 2022). Specifically, these models employ
the sequential modeling (Sutskever et al., 2014) techniques to capture temporal dependencies in
the data. By training on massive web-scale data, the trained models demonstrate emergent behav-
iors (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023), e.g., the ability to perform
in-context learning. While multi-task pretraining has been extensively employed in natural language
processing (NLP) and computer vision (CV), its applications in robotic systems are also gaining in-
creasing attention (Driess et al., 2023; Brohan et al., 2022; 2023; Radosavovic et al., 2023). In our
work, we pretrain our model by converting diverse robot trajectories into inverse dynamics predic-
tion tasks, facilitating the in-context learning and multi-task performance of the our learned model.

Multimodal Learning. The field of multimodal learning, which focuses on integrating data from
various modalities, has seen remarkable advancements (Radford et al., 2021; Wang et al., 2022;
Jaegle et al., 2021). Flamingo, for instance, trains a model to generate textual completion based on
multimodal prompts (Alayrac et al., 2022). The Perceiver framework (Jaegle et al., 2021) offers an
adaptable method to process structured input and output. Moreover, Gato (Reed et al., 2022) intro-
duces a versatile agent proficient in NLP, CV, and robotics. Our research tackles robot manipulation
given interleaved image and text task prompt. Concurrently, MUTEX (Shah et al., 2023) learns a
policy to tackle task prompts from multiple modalities (image, video, text, and speech).

Inverse Dynamics Modeling (IDM) for Representation Learning. IDM has proved to be an effec-
tive approach for learning from high-dimensional demonstration data. Training the model on an IDM
task of predicting the agent’s actions given the high-dimensional observations allows effective learn-
ing of a feature space that represents only the information relevant to the actions (Brandfonbrener
et al., 2023). Pathak et al. (2017) uses IDM to generate intrinsic reward signals with self-supervision
for efficient exploration. Efroni et al. (2021); Lamb et al. (2022) use a multi-step inverse dynamics
model to enable representation learning robust to exogenous information. Most recently, Baker et al.
(2022); Venuto et al. (2023); Thomas et al. (2023) use IDM for data-efficient multi-task pre-training
on complex sequential decision-making domains. Our method leverages IDM to facilitate robot’s
in-context learning capability and its understanding on the transition dynamics.

6 CONCLUSION

In this paper, we introduce our MIDAS framework that trains a robot to comprehend multimodal
prompts. The pretraining phase trains the agent to perform inverse dynamics prediction, facilitating
robot’s understanding of transition dynamics. To capture fine-grained visual infomration from the
prompt images, we augment a pretrained LM with a RC to the object token. We further model the
dependency among different action dimensions. Empirically, we establish a new state-of-the-art on
the VIMA-BENCH and also demonstrate the in-context learning capability of our learned policy.
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REPRODUCIBILITY STATEMENT
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Appendix

A INDIVIDUAL TASK SUCCESS RATE OF DIFFERENT METHODS

In this section, we support all experimental results in Sec. 4 of our main paper with individual
task success rates for all four levels of evaluation protocol. Specifically, the results for Table 1
and the ablation on Pretraining strategies can be found in Table 3, 4, 5 and 6. Figure 7 that ablates
multimodal prompt encoding is based on the results from Table 7, 8, 9 and 10. The results in Figure 8
that ablate model and data sizes are based on the results from Table 11, 12, 13, 14, 15, 16, 17, and
18.

Additionally, we further conduct an ablation study on the transformer architecture of our policy by
replacing the decoder-only architecture with encoder-decoder architecture (Our Method w/ Encoder-
Decoder). Experimental results in Table 3, 4, 5 and 6 show that this variant does not perform as well
as our method on the L1, L2, and L3 tasks, mainly due to its inability to tackle Task 09 (Twist) that
requires deducting rotation angles from the prompt image sequence (Figure 2). However, it achieves
a superior performance on the L4 Task 10 (Follow Motion). We hypothesize that it is due to the limit
of model capacity. This policy learns a control policy that predicts its action dependent on the object
bounding box, while lacking the capability to capture fine-grained visual information that contains
the information of object rotation.

Table 3: L1 level generalization results. All methods share the same amount of parameters 92M.
Integers in the first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023)

Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

VIMA 100 100 100 100 65.0 99.5 100 13.5 96.0 94.5 100 88.0 77.0 87.2
Gato OBJ 100 100 100 100 75.5 100 100 16.5 88.5 93.0 100 92.5 80.0 88.2

Our Method
w/o Pretrain 100 100 100 98.5 88.0 100 100 20.5 100 94.0 99.0 93.0 98.0 91.6
w/ Pretrain 98.5 100 100 99.5 94.0 100 100 100 100 94.0 95.5 94.0 96.5 97.8
w/ Masked Pretrain 100 99.5 100 99.5 97.5 99.5 100 17.5 74.5 94.5 97.0 42.5 96.5 86.0
w/ Encoder-Decoder 100 100 99.5 99.5 96.5 100 100 19.5 99.5 93.5 99.0 93.0 82.5 91.0

Table 4: L2 level generalization results. All methods share the same amount of parameters 92M.
Integers in the first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023).

Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

VIMA 100 100 100 99.5 61.0 100 100 12.5 97.5 95.0 100 87.5 77.5 87.0
Gato OBJ 100 100 100 100 73.0 100 100 17.5 88.5 95.0 99.0 94.0 80.5 88.3

Our Method
w/o Pretrain 100 100 100 99.0 87.0 100 100 23.5 100 94.0 99.5 92.0 98.0 91.8
w/ Pretrain 98.5 100 100 99.0 96.5 99.5 100 100 100 95.5 95.0 93.0 96.0 97.9
w/ Masked Pretrain 99.5 100 100 99.5 96.5 100 99.5 19.5 75.5 95.5 97.0 43.5 96.5 86.3
w/ Encoder-Decoder 99.5 100 99.0 99.5 96.5 100 100 15.5 99.5 94.0 98.5 92.0 82.5 90.5

Table 5: L3 level generalization results. All methods share the same amount of parameters 92M.
Integers in the first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023).

Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T15 T16 T17 Overall

VIMA 99.5 100 100 99.5 63.0 99.5 100 12.0 98.5 99.5 58.5 78.0 84.0
Gato OBJ 99.5 100 100 100 72.5 97.5 100 7.5 95.0 99.5 44.5 72.0 82.3

Our Method
w/o Pretrain 99.5 100 100 100 90.0 100 100 20.5 100 99.5 50.5 99.5 88.3
w/ Pretrain 98.0 99.0 100 99.5 94.0 97.5 99.0 97.0 96.5 95.0 47.0 98.0 93.4
w/ Masked Pretrain 99.0 100 100 100 96.5 99.5 99.0 20.5 76.5 99.0 42.0 100 86.0
w/ Encoder-Decoder 99.0 99.5 100 98.5 95.5 99.5 98.0 20.0 100 95.0 56.0 86.0 87.2
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Table 6: L4 level generalization results. All methods share the same amount of parameters 92M.
Integers in the first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023).

Method T8 T10 T13 T14 Overall

VIMA 98.5 0.0 0.0 100 49.6
Gato OBJ 99.5 0.0 0.0 98.0 49.4

Our Method
w/o Pretrain 97.0 0.0 0.0 99.5 49.1
w/ Pretrain 97.5 41.0 1.0 97.0 59.1
w/ Masked Pretrain 95.0 0.0 0.0 99.0 48.5
w/ Encoder-Decoder 96.5 85.5 0.0 97.0 69.8

Table 7: Comparison of the performance of our method with different multimodal prompt encoder
on L1 level generalization. All methods share the same amount of parameters 92M. Integers in the
first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023)

Pretrain iter. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

0.0K T5 + RC (Ours) 100 100 100 98.5 88.0 100 100 20.5 100 94.0 99.0 93.0 98.0 91.6
0.0K T5 100 99.5 98.5 99.0 84.5 100 100 16.0 100 94.5 98.0 49.5 97.0 87.4
0.0K VL-T5 100 100 98.5 99.5 66.0 100 100 18.0 100 93.0 96.5 94.0 96.0 89.3

3.1K T5 + RC (Ours) 100 100 100 98.5 85.5 100 99.0 52.0 100 93.5 96.0 93.0 96.0 93.3
3.1K T5 100 100 100 100 98.5 100 100 18.5 100 93.5 97.0 43.5 96.5 88.3
3.1K VL-T5 100 99.5 100 100 70.0 99.5 100 23.5 100 94.5 99.5 43.5 96.5 86.7

5.2K T5 + RC (Ours) 100 100 100 99.0 92.0 99.5 100 99.5 100 95.5 95.0 93.0 97.0 97.7
5.2K T5 100 100 100 98.5 98.0 100 100 19.5 100 94.0 98.5 42.0 96.5 88.2
5.2K VL-T5 100 99.5 100 99.0 94.0 99.5 99.5 21.0 100 94.0 95.5 43.0 96.5 87.8

10.3K T5 + RC (Ours) 98.5 100 100 99.5 94.0 100 100 100 100 94.0 95.5 94.0 96.5 97.8
10.3K T5 99.5 99.5 100 97.0 98.0 99.0 99.5 22.0 100 94.0 99.5 41.0 97.0 88.2
10.3K VL-T5 99.5 99.0 100 100 97.5 99.0 100 100 100 93.5 98.0 43.0 97.0 94.3

Table 8: Comparison of the performance of our method with different multimodal prompt encoder
on L2 level generalization. All methods share the same amount of parameters 92M. Integers in the
first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023)

Pretrain iter. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

0.0K T5 + RC (Ours) 100 100 100 99.0 87.0 100 100 23.5 100 94.0 99.5 92.0 98.0 91.8
0.0K T5 99.5 100 99.0 99.5 87.0 100 99.5 20.0 100 93.5 98.5 48.0 95.0 87.7
0.0K VL-T5 100 100 98.5 99.0 66.5 99.0 99.5 19.0 100 94.0 96.5 92.0 95.0 89.2

3.1K T5 + RC (Ours) 99.5 100 100 98.5 89.5 100 99.5 52.0 100 94.0 92.5 92.0 96.0 93.3
3.1K T5 99.0 100 100 100 97.0 99.0 99.5 22.5 100 94.5 96.0 41.5 96.5 88.1
3.1K VL-T5 98.0 99.5 99.5 98.5 67.5 99.0 99.5 24.0 100 94.0 96.5 44.0 95.5 85.8

5.2K T5 + RC (Ours) 100 100 100 97.5 91.0 98.5 99.5 99.5 100 95.5 93.0 92.5 96.5 97.2
5.2K T5 98.5 100 100 98.0 96.5 99.0 98.5 21.5 100 94.0 93.5 40.0 95.0 87.3
5.2K VL-T5 99.5 100 100 98.5 94.0 98.5 97.5 20.0 100 94.0 94.0 43.5 96.5 87.4

10.3K T5 + RC (Ours) 98.5 100 100 99.0 96.5 99.5 100 100 100 95.5 95.0 93.0 96.0 97.9
10.3K T5 100 100 100 97.0 97.0 100 97.0 19.5 100 94.5 97.0 43.0 95.0 87.7
10.3K VL-T5 99.0 99.5 100 99.5 97.0 99.0 99.0 99.5 100 94.5 97.5 43.0 95.5 94.1
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Table 9: Comparison of the performance of our method with different multimodal prompt encoder
on L3 level generalization. All methods share the same amount of parameters 92M. Integers in the
first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023)

Pretrain iter. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T15 T16 T17 Overall

0.0K T5 + RC (Ours) 99.5 100 100 100 90.0 100 100 20.5 100 99.5 50.5 99.5 88.3
0.0K T5 98.5 98.5 100 100 85.5 99.5 98.5 19.5 100 98.5 42.0 57.5 83.2
0.0K VL-T5 98.5 98.5 100 100 68.5 99.5 100 21.5 100 99.0 54.5 99.5 86.6

3.1K T5 + RC (Ours) 97.0 98.0 99.0 99.0 90.5 96.0 99.5 45.5 98.0 97.0 47.5 96.5 88.6
3.1K T5 96.0 99.0 99.5 100 98.0 97.0 96.0 21.5 100 95.5 42.0 99.5 87.0
3.1K VL-T5 96.5 97.0 99.5 99.5 69.0 94.5 95.0 21.0 99.5 96.5 42.0 100 84.2

5.2K T5 + RC (Ours) 99.5 99.0 100 99.0 93.0 98.0 99.0 98.0 98.0 95.5 46.0 97.0 93.5
5.2K T5 96.5 96.0 99.5 100 97.5 98.5 97.0 17.5 100 97.0 38.5 100 86.5
5.2K VL-T5 96.0 98.5 99.5 100 96.5 95.5 95.5 21.0 100 98.0 41.5 100 86.8

10.3K T5 + RC (Ours) 98.0 99.0 100 99.5 94.0 97.5 99.0 97.0 96.5 95.0 47.0 98.0 93.4
10.3K T5 99.0 97.5 100 99.5 96.5 96.0 95.0 15.5 100 95.5 43.5 99.5 86.5
10.3K VL-T5 98.0 97.0 100 99.5 96.0 97.0 96.5 84.5 100 99.5 41.0 99.5 92.4

Table 10: Comparison of the performance of our method with different multimodal prompt encoder
on L4 level generalization. All methods share the same amount of parameters 92M. Integers in the
first row refer to indices of tasks defined in the VIMA paper (Jiang et al., 2023)

Pretrain iter. Method T8 T10 T13 T14 Overall

0.0K T5 + RC (Ours) 97.0 0.0 0.0 99.5 49.1
0.0K T5 95.0 0.0 0.0 98.5 48.4
0.0K VL-T5 99.0 0.0 0.0 97.5 49.1

3.1K T5 + RC (Ours) 97.5 12.5 0.0 98.5 52.1
3.1K T5 98.0 45.0 0.0 95.5 59.6
3.1K VL-T5 98.5 64.0 0.0 96.0 64.6

5.2K T5 + RC (Ours) 98.0 40.5 0.0 96.5 58.8
5.2K T5 98.5 55.5 0.0 96.0 62.5
5.2K VL-T5 98.0 37.5 0.0 96.5 58.0

10.3K T5 + RC (Ours) 97.5 41.0 1.0 97.0 59.1
10.3K T5 98.5 39.5 0.0 98.5 59.1
10.3K VL-T5 97.5 53.5 0.0 98.0 62.3

Table 11: Comparison of the performance of our method with different model sizes ranging from
2M to 92M on L1 level generalization results. Integers in the first row refer to indices of tasks
defined in the VIMA paper (Jiang et al., 2023)

Model size. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

2M Ours w/o Pretrain 100 98.5 99.0 89.5 48.5 100 100 19.5 97.0 91.0 98.0 36.0 24.0 77.0
2M Ours 99.5 99.0 97.5 99.0 67.5 100 99.5 18.5 91.5 93.0 99.0 38.0 64.5 82.0

4M Ours w/o Pretrain 100 100 99.5 97.0 55.0 100 100 18.0 96.0 95.0 99.5 44.0 40.0 80.3
4M Ours 100 100 86.5 99.0 63.5 99.5 100 20.5 92.0 95.5 98.0 83.5 57.0 84.2

9M Ours w/o Pretrain 100 100 96.0 99.0 57.0 100 100 23.0 98.0 94.0 98.5 47.0 94.0 85.1
9M Ours 100 100 99.0 99.0 87.0 100 100 19.0 100 95.5 98.5 92.5 97.0 91.3

20M Ours w/o Pretrain 100 100 100 98.5 67.5 100 100 30.5 98.5 95.0 99.0 49.5 85.0 86.4
20M Ours 100 100 100 97.0 90.0 100 99.5 19.0 100 94.0 99.5 93.5 97.5 91.5

43M Ours w/o Pretrain 100 100 100 98.5 67.0 100 100 17.0 100 94.0 99.0 92.5 96.5 89.6
43M Ours 99.5 100 99.5 95.5 89.0 97.5 100 100 100 94.5 96.0 94.5 96.5 97.1

92M Ours w/o Pretrain 100 100 100 98.5 88.0 100 100 20.5 100 94.0 99.0 93.0 98.0 91.6
92M Ours 98.5 100 100 99.5 94.0 100 100 100 100 94.0 95.5 94.0 96.5 97.8
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Table 12: Comparison of the performance of our method with different model sizes ranging from
2M to 92M on L2 level generalization results. Integers in the first row refer to indices of tasks
defined in the VIMA paper (Jiang et al., 2023)

Model size. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

2M Ours w/o Pretrain 95.5 84.5 99.0 87.0 50.0 96.5 91.0 21.0 97.0 91.0 88.0 33.5 11.5 72.7
2M Ours 99.5 98.5 98.5 98.5 59.0 100 98.5 20.5 92.0 92.5 99.0 39.5 61.5 81.3

4M Ours w/o Pretrain 99.0 98.5 100 97.0 55.0 99.5 98.5 21.0 96.5 95.5 97.0 44.0 35.0 79.7
4M Ours 100 100 87.0 99.0 67.5 99.5 99.5 19.0 92.5 95.5 97.0 84.0 60.0 84.7

9M Ours w/o Pretrain 100 100 96.5 98.5 58.0 99.5 99.0 25.5 97.5 94.5 94.5 47.0 88.0 84.5
9M Ours 100 100 99.5 98.5 86.5 99.5 100 19.0 100 94.5 97.0 91.5 95.0 90.8

20M Ours w/o Pretrain 100 100 100 98.5 72.0 100 100 29.5 98.0 95.5 99.0 46.0 83.5 86.3
20M Ours 100 100 100 97.0 86.5 99.0 99.0 19.5 100 95.0 97.0 91.5 96.5 90.8

43M Ours w/o Pretrain 100 100 100 98.5 72.5 100 100 18.5 100 93.5 99.5 92.0 96.0 90.0
43M Ours 99.0 100 100 97.0 90.5 98.0 100 99.5 100 95.5 94.0 93.0 96.5 97.2

92M Ours w/o Pretrain 100 100 100 99.0 87.0 100 100 23.5 100 94.0 99.5 92.0 98.0 91.8
92M Ours 98.5 100 100 99.0 96.5 99.5 100 100 100 95.5 95.0 93.0 96.0 97.9

Table 13: Comparison of the performance of our method with different model sizes ranging from
2M to 92M on L3 level generalization results. Integers in the first row refer to indices of tasks
defined in the VIMA paper (Jiang et al., 2023)

Model size. Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T15 T16 T17 Overall

2M Ours w/o Pretrain 97.0 91.0 100 92.5 46.0 96.5 95.5 15.5 95.5 95.0 36.0 8.0 72.4
2M Ours 99.0 98.5 99.5 99.5 67.0 99.5 99.5 16.5 83.5 98.5 33.5 54.0 79.0

4M Ours w/o Pretrain 98.5 98.0 100 94.5 53.5 95.0 99.0 17.0 99.0 87.5 47.0 5.5 74.5
4M Ours 95.5 99.0 75.5 95.5 61.0 95.5 96.5 19.0 92.5 79.5 42.0 32.0 73.6

9M Ours w/o Pretrain 93.5 97.5 96.0 100 64.0 95.0 96.0 17.5 97.5 85.0 43.0 44.0 77.4
9M Ours 97.0 97.0 100 96.5 86.0 99.0 99.0 23.5 98.5 96.0 52.5 100 87.1

20M Ours w/o Pretrain 99.5 100 100 100 71.5 100 100 26.0 98.5 98.5 43.5 87.5 85.4
20M Ours 97.0 97.0 99.5 99.5 89.0 98.0 98.0 24.0 100 99.0 53.5 98.0 87.7

43M Ours w/o Pretrain 99.5 100 100 100 74.0 100 99.5 25.0 100 99.5 54.0 99.0 87.5
43M Ours 95.0 98.0 99.5 96.5 86.0 95.5 96.5 97.0 99.5 96.0 40.0 99.0 91.5

92M Ours w/o Pretrain 99.5 100 100 100 90.0 100 100 20.5 100 99.5 50.5 99.5 88.3
92M Ours 98.0 99.0 100 99.5 94.0 97.5 99.0 97.0 96.5 95.0 47.0 98.0 93.4

Table 14: Comparison of the performance of our method with different model sizes ranging from
2M to 92M on L4 level generalization results. Integers in the first row refer to indices of tasks
defined in the VIMA paper (Jiang et al., 2023)

Model size. Method T8 T10 T13 T14 Overall

2M Ours w/o Pretrain 78.5 0.0 0.0 95.5 43.5
2M Ours 47.5 35.5 0.5 97.5 45.2

4M Ours w/o Pretrain 99.5 0.0 0.0 95.5 48.8
4M Ours 96.0 0.5 0.0 92.5 47.2

9M Ours w/o Pretrain 96.5 1.0 0.0 95.0 48.1
9M Ours 99.5 15.5 0.5 98.0 53.4

20M Ours w/o Pretrain 99.0 0.0 0.0 99.0 49.5
20M Ours 97.0 22.0 0.0 95.5 53.6

43M Ours w/o Pretrain 99.0 0.0 0.0 98.5 49.4
43M Ours 95.5 6.0 0.0 96.0 49.4

92M Ours w/o Pretrain 97.0 0.0 0.0 99.5 49.1
92M Ours 97.5 41.0 1.0 97.0 59.1
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Table 15: Comparison of the performance of our method with different scales of training data on L1
level generalization results. Integers in the first row refer to indices of tasks defined in the VIMA
paper (Jiang et al., 2023)

Data Size Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

10% Ours w/o Pretrain 100 98.5 96.5 97.0 74.0 97.5 100 19.0 100 93.0 93.0 88.0 93.0 88.4
10% Ours 100 99.5 96.5 89.0 65.5 98.0 98.5 73.5 97.5 93.5 92.0 89.0 93.0 91.2

50% Ours w/o Pretrain 100 99.5 97.5 98.0 74.0 99.5 99.5 20.0 100 92.5 98.0 82.0 91.0 88.6
50% Ours 100 99.5 98.5 98.0 86.5 99.5 99.5 98.5 100 93.5 96.5 95.5 96.5 97.1

100% Ours w/o Pretrain 100 100 100 98.5 88.0 100 100 20.5 100 94.0 99.0 93.0 98.0 91.6
100% Ours 98.5 100 100 99.5 94.0 100 100 100 100 94.0 95.5 94.0 96.5 97.8

Table 16: Comparison of the performance of our method with different scales of training data on L2
level generalization results. Integers in the first row refer to indices of tasks defined in the VIMA
paper (Jiang et al., 2023)

Data Size Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T12 T15 T16 T17 Overall

10% Ours w/o Pretrain 99.5 99.0 97.0 95.5 72.5 97.5 99.5 20.5 98.5 93.0 91.5 88.5 91.0 88.0
10% Ours 99.0 99.5 94.5 90.0 62.5 98.5 99.0 77.5 98.5 94.0 90.0 87.0 89.0 90.7

50% Ours w/o Pretrain 98.5 100 97.0 98.0 72.0 99.5 99.5 16.5 100 91.5 97.5 84.5 88.5 87.9
50% Ours 100 100 99.0 97.5 88.5 99.0 99.0 98.5 100 95.0 96.0 95.5 96.5 97.3

100% Ours w/o Pretrain 100 100 100 99.0 87.0 100 100 23.5 100 94.0 99.5 92.0 98.0 91.8
100% Ours 98.5 100 100 99.0 96.5 99.5 100 100 100 95.5 95.0 93.0 96.0 97.9

Table 17: Comparison of the performance of our method with different scales of training data on L3
level generalization results. Integers in the first row refer to indices of tasks defined in the VIMA
paper (Jiang et al., 2023)

Data Size Method T1 T2 T3 T4 T5 T6 T7 T9 T11 T15 T16 T17 Overall

10% Ours w/o Pretrain 98.0 97.0 97.5 98.5 74.5 97.5 99.0 18.0 100 96.5 53.5 99.0 85.8
10% Ours 90.0 93.5 98.5 93.0 71.0 90.0 90.5 56.0 90.0 83.0 52.0 20.5 77.3

50% Ours w/o Pretrain 97.5 99.5 99.0 99.5 70.5 98.5 99.0 19.0 100 97.0 57.5 93.5 85.9
50% Ours 97.0 97.5 99.0 99.5 86.0 97.5 96.5 95.5 98.0 97.0 47.5 100 92.6

100% Ours w/o Pretrain 99.5 100 100 100 90.0 100 100 20.5 100 99.5 50.5 99.5 88.3
100% Ours 98.0 99.0 100 99.5 94.0 97.5 99.0 97.0 96.5 95.0 47.0 98.0 93.4

Table 18: Comparison of the performance of our method with different scales of training data on L4
level generalization results. Integers in the first row refer to indices of tasks defined in the VIMA
paper (Jiang et al., 2023)

Data Size Method T8 T10 T13 T14 Overall

10% Ours w/o Pretrain 92.0 0.0 0.0 94.5 46.6
10% Ours 91.0 39.0 0.0 88.0 54.5

50% Ours w/o Pretrain 91.5 0.0 0.0 97.0 47.1
50% Ours 95.0 12.5 0.0 96.0 50.9

100% Ours w/o Pretrain 97.0 0.0 0.0 99.5 49.1
100% Ours 97.5 41.0 1.0 97.0 59.1
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B PSEUDO-CODES & TRAINING DETAILS

Algorithm 1 Robot Control with multimodal prompts through pretraining and multitask FT
Input: Dataset D = {ζ1, ζ2, . . .}, policy parameter θ, number of pretraining iterations Npretrain,
number of multi-task imitation finetuning iterations NFT

1: for i = 1, . . . , Npretrain do
2: Sample a mini-batch B from D
3: Minimize Lpretrain(θ) defined in Eq. 3 on B
4: end for
5: for i = 1, . . . , NFT do
6: Sample a mini-batch B from D
7: Minimize LImitatation(θ) defined in Eq. 4 on B
8: end for

Figure 9: Ablation on the number of action tokens.

Algorithm 1 presents the pseudo-codes for the training pipeline, which includes a pretraining phase
and a multi-task FT phase. We set our training HP following the recipe provided by VIMA, which
open-sourced its policy architectures without providing the training codes. We conduct our exper-
iments on cluster nodes, each with 8 NVIDIA-A10G. Table 19 presents the HP for our training
pipeline. As we build our policy based on the VIMA Policy, we refer interested readers to Tables 2
and 3 in Appendix C of VIMA paper (Jiang et al., 2023) for all model parameters.

Additionally, the action space A includes initial pose Tinitial ∈ R6 and Ttarget ∈ R6. Each pose
is a 6-dimension vector with 2 for xy position and 4 for rotation represented in quaternion. Since
the VIMA-BENCH focuses on tabletop manipulation, the rotation quaternion of Tinitial is always a
constant vector. So is the first two dimensions of the rotation quaternion of Tinitial. Therefore, we
only tokenize the other 6 action dimensions to improve computational efficiency. Thus, each action
worth 6 tokens. Moreover, we conduct an ablation study to show that this choice will not affect the
task success rate. As shown in Figure 9, modeling each of the 12 action dimensions as a single token
achieves almost the same performance as modeling the 6 active action dimensions.
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Table 19: Hyper-parameters for our training pipeline

Phase Hyperparameter Value

Learning Rate (LR) 1e-4
Minimum LR 1e-7
Warmup Steps 7K

Shared Weight Decay 0
Dropout 0.1
Gradient Clip Threshold 1.0
Optimizer AdamW (Loshchilov & Hutter, 2017)
Batch Size 128
Iterations per epochs 5158

Pretrain Training epochs 20
Training iterations Npretrain 20 × Iterations per epochs = 103160
LR Cosine Annealing Steps Npretrain - Warmup Steps = 96160

Finetune LR Cosine Annealing Steps 17K
Training epochs 10
Training iterations NFT 10 × Iterations per epochs = 51580
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C DETAILS OF EVALUATING THE IN-CONTEXT LEARNING ABILITY

Figure 10: The new set of L4 tasks with in-context examples and modified prompts.

We provide training details for the experiments conducted in Sec. 4.3 by introducing the data aug-
mentation strategies, pretraining, our Modified FT, and how we edit the task prompt for Task 09
(Twist) and Task 10 (Follow Order). Moreover, the L1, L2 and L3 success rate in this settings are
given by 97.6%, 97.7%, and 93.0%, respectively.

Data Augmentation To improve the generalizability of the pretrained model, we randomly apply
the standard random data augmentation techniques, including Color Jitter and Gray Scale (He et al.,
2020) to the prompt images. Since we adopt an object-centric representation, we randomly shift the
bounding box location for all objects in the whole trajectory with the same constant value. Note that
we only augment the prompt images without modifying the observation images.

Pretraining We empirically find that further dividing the pretraining phase into two steps can im-
prove the performance. We first pretrain a policy for 20 epochs and only extract the object encoder
from it. Next, we use the pretrained object encoder to initialize another policy and pretrain it for 5
epochs. And the FT phase remains unchanged.

Modified FT To improve the model’s ability to understand both visual and textual object descrip-
tions, we randomly replace the object images in the multimodal prompts with text descriptions
during multi-task FT. For example, the task prompt for Follow Motion in Figure 10 can be rephrased
as

Follow this motion for the white and purple striped V: {frame1}, {frame2}, {frame3}.

Note that only object images will be converted into text descriptions. Images depicted the scene,
e.g., frame1, frame2, frame3, will never be converted to text. We randomly apply this operation to
the task prompt of the pretraining tasks during the FT phase.

Edit Prompts As shown in Figure 10, we modify the task prompt for both Twist and Follow order
to make them similar to the pretraining prompts. Specifically, the task prompt for Twist is modified
as below

Original: “Twist” is defined as rotating object a specific angle. For examples:
From {before twist1} to {after twist1}. From {before twist2} to {after twist2}. From
{before twist3} to {after twist3}. Now twist all [TEXT OBJ DESCRIPTION] objects.

Modified: Follow this motion: {before twist1} to {after twist1} for all [TEXT OBJ DE-
SCRIPTION] objects.

Similarly, the task prompt for Follow Order is modified as below:

Original: Stack objects in this order {frame1}, {frame2}, {frame3}.

Modified: Follow this motion: {frame1}, {frame2}, {frame3}.
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D ADDITIONAL L4 UNSEEN TASKS WITH IN-CONTEXT EXAMPLES

We augment the L4 task suite of VIMA-BENCH by designing 4 new tasks with in-context examples
provided in the prompt. These tasks are within the One-shot Video Imitation category of VIMA-
BENCH (Appendix B.4, Jiang et al. (2023)). Next, we will first provide the task definitions. Then,
we take our policy that is trained on the full data of VIMA-BENCH and evaluate it on these tasks.
Notably, we never use trajectories collected from these tasks to train our policy.

Figure 11: Task samples from our designed tasks. Each task is paired with in-context demonstration
in the prompt.

D.1 TASK DEFINITION

To evaluate the in-context learning ability of a policy, we design four tasks to incorporate a demon-
stration trajectory in the task prompt. Specifically, these tasks share the same prompt template

Follow this motion for {target object}: {frame1}, {frame2}, {frame3}.

Note that we did not inject language variety to the task prompt, as we can always paraphrase the
task prompt to the unified prompt defined above given demonstration trajectory.

Image placeholder {target object} is the target object to be manipulated and {{framei}} a set of
workspace-like scene placeholders to represent a video trajectory. Distractor objects are spawned
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at the center of the workspace and the prompt video. However, the distractor in the workspace is
different from the distractor in the prompt video. The initial position of the target object matches
that in {frame1}.

Task 18: Move then Rotate. The robot should first move the target object to a specific location and
then rotate the target object by a certain degree, according to the demonstration trajectory.

Task 19: Rotate then Move. The robot should first rotate the target object by a certain degree and
then move the target object to a specific location according to the demonstration trajectory.

Task 20: Move then Stack. The robot should first stack the target object on the distractor and then
move the target object to a specific location according to the demonstration trajectory.

Task 21: Rotate then Move. The robot should first move the target object to a specific location and
then stack the target object on the distractor according to the demonstration trajectory.

D.2 EXPERIMENTAL RESULTS ON THE UNSEEN TASKS

Table 20: Evaluating the in-context learning capability of the learned model on the four unseen tasks
proposed in Appendix D.1. All policies are trained on the full data of VIMA-BENCH.

Method Task 18 Task 19 Task 20 Task 21 Overall
Our Method 13.5% 14.5% 22.0% 10.0% 15.0%

Our Method w/ Pretrain Only 4.5% 0.5% 20.5% 1.5% 5.3%

Our Method w/o Pretrain 0.0% 0.0% 0.0% 0.5% 0.1%

VIMA 0.0% 0.0% 0.0% 0.5% 0.1%

We take policies trained on the full VIMA-BENCH data and directly compare their performance
on these four new tasks. As shown in Table 20, Our Method significantly outperforms the baseline
methods. On the other hand, the VIMA policy struggles to perform well on these tasks, showing its
inability to learn from the in-context demonstration. Moreover, comparing the performance of Our
Method with Our Method w/ Pretrain Only, we can conclude that our two-stage training pipeline
produces a better in-context learner.

23


	Introduction
	Preliminary
	Methods
	Pretraining task: Inverse Dynamics Prediction
	Multi-modal Prompt Encoding
	Modeling the dependency among each action dimension
	Algorithm Summary

	Experimental results
	Standard Evaluation on the VIMA-BENCH
	Ablation Studies
	Evaluating the in-context learning ability

	Related Work
	Conclusion
	Individual task success rate of different methods
	Pseudo-codes & training details
	Details of evaluating the in-context learning ability
	Additional L4 unseen tasks with in-context examples
	Task definition
	Experimental results on the unseen tasks


