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Abstract

Notions of counterfactual invariance (CI) have proven essential for predictors that are fair,
robust, and generalizable in the real world. We propose graphical criteria that yield a
sufficient condition for a predictor to be counterfactually invariant in terms of a conditional
independence in the observational distribution. In order to learn such predictors, we
propose a model-agnostic framework, called Counterfactually Invariant Prediction (CIP),
building on the Hilbert-Schmidt Conditional Independence Criterion (HSCIC), a kernel-based
conditional dependence measure. Our experimental results demonstrate the effectiveness of
CIP in enforcing counterfactual invariance across various simulated and real-world datasets
including scalar and multi-variate settings.

1 Introduction
Invariance, or equivariance to certain data transformations, has proven essential in numerous applications of
machine learning (ML), since it can lead to better generalization capabilities (Arjovsky et al., 2019; Chen et al.,
2020; Bloem-Reddy & Teh, 2020). For instance, in image recognition, predictions ought to remain unchanged
under scaling, translation, or rotation of the input image. Data augmentation, an early heuristic to promote
such invariances, has become indispensable for successfully training deep neural networks (DNNs) (Shorten &
Khoshgoftaar, 2019; Xie et al., 2020). Well-known examples of “invariance by design” include convolutional
neural networks (CNNs) for translation invariance (Krizhevsky et al., 2012), group equivariant NNs for
general group transformations (Cohen & Welling, 2016), recurrent neural networks (RNNs) and transformers
for sequential data (Vaswani et al., 2017), DeepSet (Zaheer et al., 2017) for sets, and graph neural networks
(GNNs) for different types of geometric structures (Battaglia et al., 2018).

∗Part of this work was done while Francesco Quinzan visited the Max Planck Institute for Intelligent Systems, Tübingen,
Germany.
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Many applications in modern ML, however, call for arguably stronger notions of invariance based on causality.
This case has been made for image classification, algorithmic fairness (Hardt et al., 2016; Mitchell et al.,
2021), robustness (Bühlmann, 2020), and out-of-distribution generalization (Lu et al., 2021). The goal is
invariance with respect to hypothetical manipulations of the data generating process (DGP). Various works
develop methods that assume observational distributions (across environments or between training and test)
to be governed by shared causal mechanisms, but differ due to various types of distribution shifts encoded by
the causal model (Peters et al., 2016; Heinze-Deml et al., 2018; Rojas-Carulla et al., 2018; Arjovsky et al.,
2019; Bühlmann, 2020; Subbaswamy et al., 2022; Yi et al., 2022; Makar et al., 2022). Typical goals include to
train predictors invariant to such shifts, to learn about causal mechanisms and to improve robustness against
spurious correlations or out of distribution generalization. The term “counterfactual invariance” has also
been used in other out of distribution learning contexts unrelated to our task, e.g., to denote invariance to
certain symmetry transformations (Mouli & Ribeiro, 2022).

While we share the broader motivation, these works are orthogonal to ours, because even though counterfactual
distributions are also generated from the same causal model, they are fundamentally different from such shifts
(Peters et al., 2017). Intuitively, counterfactuals are about events that did not, but could have happened had
circumstances been different in a controlled way. A formal discussion of what we mean by counterfactuals
is required to properly position our work in the existing literature and describe our contributions. The
main contribution of this work is combining a solid theoretical foundation provided in Theorem 3.2 and the
flexible, easy-to-use, practical learning framework. Specifically, our work provides a graphical criterion for
counterfactual causal inference under specific injectivity conditions, alongside a new model-agnostic learning
framework named Counterfactually Invariant Prediction (CIP), which employs a kernel-based conditional
dependence measure effective across mixed variable types. We empirically assess CIP in (semi-)synthetic
settings and show that it effectively enforces counterfactual invariance.

2 Problem setting and related work
2.1 Preliminaries and terminology

Definition 2.1 (Structural causal model (SCM)). A structural causal model is a tuple S = (U, V, F, PU) such
that U is a set of background variables that are exogenous to the model; V is a set of observable (endogenous)
variables; F = {fV }V ∈V is a set of functions from (the domains of) pa(V )∪UV to (the domain of) V , where
UV ⊂ U and pa(V ) ⊆ V\{V } such that V = fV (pa(V ), UV ); PU is a probability distribution over the domain
of U. Further, the subsets pa(V ) ⊆ V \ {V } are chosen such that the graph G over V where the edge V ′ → V
is in G if and only if V ′ ∈ pa(V ) is a directed acyclic graph (DAG).

Observational distribution. An SCM implies a unique observational distribution over V, which can be
thought of as being generated by transforming the distribution over PU via the deterministic functions in F
iteratively to obtain a distribution over V.1

Interventions. Given a variable A ∈ V, an intervention A ← a amounts to replacing fA in F with the
constant function setting A to a. This yields a new SCM, which induces the interventional distribution under
intervention A ← a.2 Similarly, we can intervene on multiple variables V ⊇ A ← a. For an outcome (or
prediction target) variable Y ⊂ V, we then write Ya for the outcome in the intervened SCM, also called
potential outcome. Note that the interventional distribution PYa(y) differs in general from the conditional
distribution PY|A(y | a).3 This is typically the case when Y and A have a shared ancestor, i.e., they are
confounded. In interventional distributions, potential outcomes are random variables via the exogenous
variables u, i.e., Ya(u) where u ∼ PU. Hence, interventions capture “population level” properties, i.e., the
action is performed for all units u.

Counterfactuals. Counterfactuals capture what happens under interventions for a “subset” of possible
units u that are compatible with observations W = w for a subset of observed variables W ⊆ V. This can
be described in a three step procedure. (i) Abduction: We restrict our attention to units compatible with the

1Note that all randomness stems from PU. The observational distribution is well-defined and unique, essentially because
every DAG allows for a topological order.

2The observational distribution in an intervened SCM is called interventional distribution of the base SCM.
3We use P for distributions (common in the kernel literature) and Ya instead of the do notation.
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observations, i.e., consider the new SCM Sw = (U, V, F, PU|W=w). (ii) Intervention: Within Sw, perform
an intervention A← a on some variables A (which need not be disjoint from W). (iii) Prediction: Finally,
we are typically interested in the outcome Y in an interventional distribution of Sw, which we denote by
PY∗

a|W=w(y) and call a counterfactual distribution: “Given that we have observed W = w, what would Y
have been had we set A← a, instead of the value A has actually taken?”. In this notation the conditioning set
W is conditioned on in the pre-interventional world. Counterfactuals capture properties of a “subpopulation”
u ∼ PU|W=w compatible with the observations.4 Even for fine-grained W, there may be multiple units u
in the support of this distribution. In contrast, “unit level counterfactuals” often considered in philosophy
contrast Y∗

a(u) with Y∗
a′(u) for a single unit u. Such unit level counterfactuals are too fine-grained in our

setting. Hence, our used definition of counterfactual invariance is:
Definition 2.2 (Counterfactual invariance). Let A, W be (not necessarily disjoint) sets of nodes in a given
SCM. Then, Y is counterfactually invariant in A w.r.t. W if PY∗

a|W=w(y) = PY∗
a′ |W=w(y) almost surely,

for all a, a′ in the domain of A and all w in the domain of W.5

Predictors in SCMs. Ultimately, we aim at learning a predictor Ŷ for the outcome Y. Originally, the
predictor Ŷ is not part of the DGP, because we get to learn fŶ from data. Using supervised learning, the
predictor fŶ depends both on the chosen inputs X ⊂ V as well as the target Y. However, once fŶ is fixed, it
is a deterministic function with arguments X ⊂ V, so (U, V∪{Ŷ}, F ∪{fŶ}, PU) is a valid SCM and we can
consider Ŷ an observed variable with incoming arrows from only X. Hence, the definition of counterfactual
invariance can be applied to the predictor Ŷ.

Kernel mean embeddings (KME). Our method relies on kernel mean embeddings (KMEs). We describe
the main concepts pertaining KMEs and refer the reader to Smola et al. (2007); Schölkopf et al. (2002);
Berlinet & Thomas-Agnan (2011); Muandet et al. (2017) for details. Fix a measurable space Y with respect to
a σ-algebra FY , and consider a probability measure P on the space (Y ,FY ). Let H be a reproducing kernel
Hilbert space (RKHS) with a bounded kernel kY : Y × Y → R, i.e., kY is such that supy∈Y k(y, y) < ∞.
The kernel mean embedding µP of P is defined as the expected value of the function k( · , y) with respect to y,
i.e., µP := E [k( · , y)]. The definition of KMEs can be extended to conditional distributions (Fukumizu et al.,
2013; Grünewälder et al., 2012; Song et al., 2009; 2013). Consider two random variables Y, S, and denote
with (ΩY,FY) and (ΩS,FS) the respective measurable spaces. These random variables induce a probability
measure PY,S in the product space ΩY × ΩS. Let HY be a RKHS with a bounded kernel kY(·, ·) on ΩY.
We define the KME of a conditional distribution PY|S(· | s) via µY|S=s := E [kY( · , y) | S = s]. Here, the
expected value is taken over y. KMEs of conditional measures can be estimated from samples (Grünewälder
et al., 2012).Pogodin et al. (2022) recently proposed an efficient kernel-based regularizer for learning features
of input data that allow for estimating a target while being conditionally independent of a distractor given
the target. Since CIP ultimately enforces conditional independence (see Theorem 3.2), we believe it could
further benefit from leveraging the efficiency and convergence properties of their technique, which we leave
for future work.

2.2 Related work and contributions
While we focus on counterfactuals in the SCM framework (Pearl, 2000; Peters et al., 2016), there are different
incompatible frameworks to describe counterfactuals (von Kügelgen et al., 2022; Dorr, 2016; Woodward,
2021), which may give rise to orthogonal notions of counterfactual invariance.

Research on algorithmic fairness has explored a plethora of causal “invariance” notions with the goal of
achieving fair predictors (Loftus et al., 2018; Carey & Wu, 2022; Plecko & Bareinboim, 2022). Kilbertus
et al. (2017) conceptually introduce a notion based on group-level interventions, which has been refined to
take into account more fine-grained context by Salimi et al. (2019); Galhotra et al. (2022), who then obtain
fair predictors by viewing it as a database repair problem or a causal feature selection problem, respectively.
A counterfactual-level definition was proposed by Kusner et al. (2017) and followed up by path-specific

4Note that conditioning in an interventional distribution is different from a counterfactual and our notation is quite subtle
here PY∗

a (y | W = w) ̸= PY∗
a|W=w(y).

5With an abuse of notation, if W = ∅ then the requirement of conditional counterfactual invariance becomes PYa (y) = PYa′ (y)
almost surely, for all a, a′ in the domain of A. The “almost surely” part in our definition merely refers to the type of equality of
distributions and is not related to the “almost sure” in a.s.-CI defined by Fawkes & Evans (2023).
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counterfactual notions (Nabi & Shpitser, 2018; Chiappa, 2019), where the protected attribute may take
different values along different paths to the outcome. Recently, Dutta et al. (2021) developed an information
theoretic framework to decompose the overall causal influence allowing for exempted variables and properly
dealing with synergies across different paths.

Our focus is on counterfactuals because they are fundamentally more expressive than mere interventions
(Pearl, 2000; Bareinboim et al., 2022), but do not require a fine-grained path- or variable-level judgment
of “allowed” and “disallowed” paths or variables, which may be challenging to devise in practice. Since
CI already requires strong assumptions, we leave path-specific counterfactuals—even more challenging in
terms of identifiability (Avin et al., 2005)—for future work. While our Definition 2.2 requires equality in
distribution, Veitch et al. (2021) suggest a definition of a counterfactually invariant predictor fŶ which
requires almost sure equality of Ŷ∗

a and Ŷ∗
a′ , where we view Ŷ as an observed variable in the SCM as

described above. Fawkes & Evans (2023) recently carefully formulated various precise technical definitions of
what counterfactual invariance may mean in different contexts, such as “almost sure CI”, “distributional CI”,
and “CI of predictors”. They provide various connections between them such as the fact that fŶ being F -CI
is equivalent to Ŷ being D-CI conditioned on X, yielding an equivalence to the definition of counterfactual
fairness (Kusner et al., 2017). The notion of counterfactual invariance in Definition 2.2 is most closely related
to D-CI from Fawkes & Evans (2023), but we do not enforce conditioning on the intervening variable.

Inspired by problems in natural language processing (NLP), Veitch et al. (2021) aim at “stress-testing” models
for spurious correlations. It differs from our work in that they (i) focus only on two specific graphs, and
(ii) provide a necessary but not sufficient criterion for CI in terms of a conditional independence. Their
method enforces the conditional independence via maximum mean discrepancy (MMD) (in discrete settings
only). However, enforcing a consequence of CI, does not necessarily improve CI. Indeed, Fawkes & Evans
(2023, Prop. 4.4) show that while a.s.-CI implies certain conditional independencies, no set of conditional
independencies implies any bounds on the difference in counterfactuals. On the contrary, distributional
notions of CI such as D-CI or our Definition 2.2 are weaker than a.s.-CI (see (Fawkes & Evans, 2023, Lem. 2.4).
Therefore, these weaker notions can indeed be written equivalently as conditional independencies in the
observational distribution under additional assumptions about the data generating mechanism (Fawkes &
Evans, 2023, Lem. A.3). For example, Fawkes & Evans (2023, Lem. A.3) shows that D-CI can be implied
by conditional independence in special settings where the counterfactual distribution is identified from the
observational one. Similarly, our reduction of CI (as in Definition 2.2 ) to conditional independence in
Theorem 3.2 requires a strong injectivity assumption that essentially amounts to being able to remove
exogenous uncertainty.

Contributions. We provide such a sufficient graphical criterion for D-CI under an injectivity condition of
a structural equation. Depending on the assumed causal graph, this can also come at the cost of requiring
certain variables to be observed. As our main contribution, we propose a model-agnostic learning framework,
called Counterfactually Invariant Prediction (CIP), using a kernel-based conditional dependence measure
that also works for mixed categorical and continuous, multivariate variables. We evaluate CIP extensively in
(semi-)synthetic settings and demonstrate its efficacy in enforcing counterfactual invariance even when the
strict assumptions may be violated.

3 Counterfactually invariant prediction (CIP)
3.1 Sufficient criterion for counterfactual invariance
We will now establish a sufficient graphical criterion to express CI as conditional independence in the
observational distribution, rendering it estimable from data. First, we need some terminology.

Graph terminology. Consider a path π (a sequence of distinct adjacent nodes) in a DAG G. A set of
nodes S is said to block π, if π contains a triple of consecutive nodes A, B, C such that one of the following
hold: (i) A→ B → C or A← B ← C or A← B → C and B ∈ S; (ii) A→ B ← C and neither B nor any
descendent of B is in S. Further, we call π a causal path between sets of nodes A, B, when it is a directed
path from a node in A to a node in B. A causal path π is a proper causal path if it only intersects A at
the first node in π. Finally, we denote with GA the graph obtained by removing from G all incoming arrows
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Figure 1: (a) Exemplary graph in which a predictor Ŷ with Ŷ ⊥⊥ A ∪ L | S is CI in A w.r.t. {L, S}. (b)-(c)
Causal and anti-causal structure from Veitch et al. (2021) where X⊥

A is not causally influenced by A, X⊥
Y

does not causally influence Y, and X∧ is both influenced by A and influences Y. (d) Assumed causal
structure for the synthetic experiments, see Section 4.1 for details. (e) Assumed causal graph for the UCI
Adult dataset (Section 4.3), where A = {Gender, Age}. (f) Causal structure for our semi-synthetic image
experiments (Section 4.2), where A = {Pos.X}, U = {Scale}, C = {Shape, Pos.Y}, L = {Color, Orientation},
and Y = {Outcome}.

into nodes in A. We now define the notion of valid adjustment sets (Shpitser et al., 2010, Def. 5), which our
graphical criterion for CI relies on.
Definition 3.1 (valid adjustment set). Let G be a causal graph and let X, Y be disjoint (sets of) nodes in G.
A set of nodes S is a valid adjustment set for (X, Y), if (i) no element in S is a descendant in GX of any
node W /∈ X which lies on a proper causal path from X to Y, and (ii) S blocks all non-causal paths from X
to Y in G.

We now state the sufficient graphical criterion that renders CI equivalent to a conditional independence.
The proof builds on known results from the literature such as the full characterization of valid adjustment
sets in fully observed structural causal models and the backdoor criteria, but the final statement requires a
substantial original theoretical contribution.
Theorem 3.2. Let G be a causal graph, A, W be two (not necessarily disjoint) sets of nodes in G, such
that (A ∪W) ∩Y = ∅, let S be a valid adjustment set for (A ∪W, Y). Further, for any random variable
X ∈W \A denote with gX(pa(X), UX) its structural equation, and suppose that pa(X) ⊆ A ∪W. Suppose
that gX is injective in the variable u.6 Then, in all SCMs compatible with G, if a predictor Ŷ satisfies
Ŷ ⊥⊥ A ∪W | S, then Ŷ is counterfactually invariant in A with respect to W.

Assumptions. First, we do not assume the SCM (or any structural equations) to be known. We do assume
the causal graph to be known. This is a standard assumption widely made in the causality literature, even
though it is a strong one (Cartwright, 2007). The additional assumption of Theorem 3.2, namely injectivity
of gX is satisfied—but more general than—a wide variety of commonly considered models in causality such as
the widely used Additive Noise Models (Peters et al., 2017). More broadly, Fawkes & Evans (2023, Lem. A.3)
show that to achieve CI from the observational distribution and the causal graph, additional assumptions are
always required.

3.2 Example use-cases of counterfactually invariant prediction
Fig. 1(a) shows an exemplary graph in which the outcome Y is affected by (disjoint) sets A (in which we
want to be CI), L and S (inputs to fŶ). We consider W = L∪A∪S. Here we aim to achieve Ŷ ⊥⊥ A∪L | S
to obtain CI in A w.r.t. W. In our synthetic experiments, we also allow S to affect A, see Fig. 1(d). Let us
further illustrate concrete potential applications of CI, which we later also study in our experiments.

6The injectivity of gX is defined as follows. Consider two pairs {p, u} and {p, u′} with p in the support of pa(X) and u, u′

in the support of UX . Suppose that Ppa(X),UX
(p, u) ̸= 0 and Ppa(X),UX

(p, u′) ̸= 0. Then, it holds g(p, u) = g(p, u′) if and only
if u = u′.
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Counterfactual fairness. Counterfactual fairness (Kusner et al., 2017) informally challenges a consequential
decision: “Would I have gotten the same outcome had my gender, race, or age been different with all else
being equal?”. Here Y ⊂ V denotes the outcome and A ⊂ V \Y the protected attributes such as gender, race,
or age—protected under anti-discrimination laws (Barocas & Selbst, 2016)—by A ⊆ V \Y. Collecting all
remaining observed covariates into W := V \Y counterfactual fairness reduces to counterfactual invariance.
In experiments, we build a semi-synthetic DGP assuming the graph in Fig. 1(e) for the UCI adult dataset
(Kohavi & Becker, 1996).

Robustness. CI serves as a strong notion of robustness in settings such as image classification: “Would
the truck have been classified correctly had it been winter in this situation instead of summer?” For concrete
demonstration, we use the dSprites dataset (Matthey et al., 2017) consisting of simple black and white images
of different shapes (squares, ellipses, . . . ), sizes, orientations, and locations. We devise a DGP for this dataset
with the graph depicted in Fig. 1(f).

Text classification. Veitch et al. (2021) motivate the importance of counterfactual invariance in text
classification tasks. Specifically, they consider the causal and anti-causal structures depicted in Veitch et al.
(2021, Fig. 1), which we replicate in Fig. 1(b,c). Both diagrams consist of protected attributes A, observed
covariates X, and outcomes Y. To apply our sufficient criterion to their settings, we must assume that A
and Y are unconfounded. We show that CIP still performs on par with Veitch et al. (2021) even when this
assumption is violated. Theorem 3.2 provides a sufficient condition for CI (Definition 2.2) in terms of the
conditional independence Ŷ ⊥⊥ A ∪W | S. We next develop an operator HSCIC(Ŷ, A ∪W | S) that is (a)
efficiently estimable from data, (b) differentiable, (c) a monotonic measure of conditional dependence, and (d)
is zero if and only if Ŷ ⊥⊥ A ∪W | S. Hence, it is a practical objective to enforce CI.

3.3 HSCIC for conditional independence
Consider two sets of random variables Y and A ∪W, and denote with (ΩY,FY) and (ΩA∪W,FA∪W) the
respective measurable spaces. Suppose that we are given two RKHSs HY, HA∪W over the support of Y and
A ∪W respectively. The tensor product space HY ⊗HA∪W is defined as the space of functions of the form
(f ⊗ g)(y, [a, w]) := f(y)g([a, w]), for all f ∈ HY and g ∈ HA∪W. The tensor product space yields a natural
RKHS structure, with kernel k defined by k(y⊗ [a, w], y′ ⊗ [a′, w′]) := kY(y, y′)kA∪W([a, w], [a′, w′]). We
refer the reader to Szabó & Sriperumbudur (2017) for more details on tensor product spaces.
Definition 3.3 (HSCIC). For (sets of) random variables Y, A∪W, S, the HSCIC between Y and A∪W
given S is defined as the real-valued random variable HSCIC(Y, A∪W | S) = HY,A∪W|S◦S where HY,A∪W|S
is a real-valued deterministic function, defined as HY,A∪W|S(s) := ∥µY,A∪W|S=s−µY|S=s⊗µA∪W|S=s∥ with
∥·∥ the norm induced by the inner product of the tensor product space HX ⊗HA∪W.

Our Definition 3.3 is motivated by, but differs slightly from Park & Muandet (2020, Def. 5.3), which relies on
the Bochner conditional expected value. While it is functionally equivalent (with the same implementation,
see Eq. (2)), ours has the benefit of bypassing some technical assumptions required by Park & Muandet
(2020). The HSCIC has the following important property.
Theorem 3.4 (Theorem 5.4 by Park & Muandet (2020)). If the kernel k of HX ⊗HA∪W is characteristic7,
HSCIC(Y, A ∪W | S) = 0 almost surely if and only if Y ⊥⊥ A ∪W | S.

Because “most interesting” kernels such as the Gaussian and Laplacian kernels are characteristic, and the
tensor product of translation-invariant characteristic kernels is characteristic again (Szabó & Sriperumbudur,
2017), this natural assumption is non-restrictive in practice. Combining Theorems 3.2 and 3.4, we can now
use HSCIC to reliably achieve counterfactual invariance.
Corollary 3.5. Under the assumptions of Theorem 3.2, if HSCIC(Ŷ, A∪W | S) = 0 almost surely, then Ŷ
is counterfactually invariant in A with respect to W.

In addition, since HSCIC is defined in terms of the MMD (Definition 3.3 and Park & Muandet (2020,
Def. 5.3)), it inherits the weak convergence property, i.e., if HSCIC(Ŷ, A∪W | S) converges to zero, then the
counterfactual distributions (for different intervention values a) weakly converge to the same distribution. We
refer to Simon-Gabriel & Schölkopf (2018); Simon-Gabriel et al. (2020) for a precise characterization. Hence,

7The tensor product kernel k is characteristic if PY,A∪W 7→ Ey,[a,w] [k( · , y ⊗ [a, w])] is injective.
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as HSCIC decreases, the predictor approaches counterfactual invariance and we need not drive HSCIC all
the way to zero to obtain meaningful results.

3.4 Learning counterfactually invariant predictors (CIP)
Corollary 3.5 justifies our proposed objective, namely to minimize the following loss

LCIP(Ŷ) = L(Ŷ) + γ ·HSCIC(Ŷ, A ∪W | S) , [CIP loss] (1)

where L(Ŷ) is a task-dependent loss function (e.g., cross-entropy for classification, or mean squared error
for regression) and γ ≥ 0 is a parameter that regulates the trade-off between predictive performance and
counterfactual invariance.

The meaning of γ and how to choose it. The second term in Eq. (1) amounts to the additional objective
of CI, which is typically at odds with predictive performance within the observational distribution L. In
practice, driving HSCIC to zero, i.e., viewing our task as a constrained optimization problem, typically
deteriorates predictive performance too much to be useful for prediction—especially in small data settings.8
As the choice of γ amounts to choosing an operating point between predictive performance and CI, it cannot
be selected in a data-driven fashion. As different settings call for different tradeoffs, we advocate for employing
the following procedure: (i) Train an unconstrained predictor for a base predictive performance (e.g., 92%
accuracy or 0.21 MSE). (ii) Fix a tolerance level α, indicating the maximally tolerable loss in predictive
performance (e.g., at most 5% drop in accuracy or at most 10% increase in MSE). (iii) Perform a log-spaced
binary search on γ (e.g., on [10−4, 104]) to find the largest γ such that the predictive performance of the
resulting predictor achieves predictive performance within the tolerance α. A similar search for the optimal
value of γ can be conducted, when there is a fixed requirement for a maximum tolerance of counterfactual
invariance as measured by HSCIC.

Estimating the HSCIC from samples. The key benefit of HSCIC as a conditional independence
measure is that it does not require parametric assumptions on the underlying probability distributions,
and it is applicable for any mixed, multi-dimensional data modalities, as long as we can define positive
definite kernels on them. Given n samples {(ŷi, ai, wi, si)}n

i=1, denote with K̂Ŷ the kernel matrix with
entries [K̂Ŷ]i,j := kŶ(ŷi, ŷj), and let K̂A∪W be the kernel matrix for A ∪W. We estimate the HŶ,A∪W|S ≡
HŶ,A∪W|S(·) as

Ĥ2
Ŷ,A∪W|S = ŵT

Ŷ,A∪W|S

(
K̂Ŷ ⊙ K̂A∪W

)
ŵŶ,A∪W|S (2)

− 2
(

ŵT
Ŷ|SK̂YŵŶ,A∪W|S

) (
ŵT

A∪W|SK̂A∪WŵŶ,A∪W|S

)
+

(
ŵT

Ŷ|SK̂ŶŵŶ|S

) (
ŵT

A∪W|SK̂A∪WŵA∪W|S

)
,

where ⊙ is element-wise multiplication. The functions ŵŶ|S ≡ ŵŶ|S(·), ŵA∪W|S ≡ ŵA∪W|S(·), and
ŵŶ,A∪W|S ≡ ŵŶ,A∪W|S(·) are found via kernel ridge regression. Caponnetto & Vito (2007) provide the
convergence rates of the estimand Ĥ2

Ŷ,A∪W|S under mild conditions. In practice, computing the HSCIC
approximation by the formula in Eq. (2) can be computationally expensive. To speed it up, we can use
random Fourier features to approximate K̂Ŷ and K̂A∪W (Rahimi & Recht, 2007; Avron et al., 2017). We
emphasize that Eq. (2) allows us to consistently estimate the HSCIC from observational i.i.d. samples,
without prior knowledge of the counterfactual distributions.

3.5 Measuring counterfactual invariance.
Besides predictive performance, e.g., mean squared error (MSE) for regression or accuracy for classification,
our key metric of interest is the level of counterfactual invariance achieved by the predictor Ŷ. First,
we emphasize again that counterfactual distributions are generally not identified from the observational
distribution (i.e., from available data) meaning that CI is generally untestable in practice from observational

8In particular, HSCIC does not regularize an ill-posed problem, i.e., it does not merely break ties between predictors with
equal L(Ŷ). Hence it also need not decay to zero as the sample size increases.
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Figure 2: Results on synthetic data. Left: trade-off between MSE and counterfactual invariance (VCF).
Middle: strong correspondence between HSCIC and VCF. Right: performance of CIP against baselines
CF1 and CF2 and the naive baseline. As γ increases, CIP traces out a frontier characterizing the trade-off
between MSE and CI. CF2 and the naive baseline are Pareto-dominated by CIP, i.e., we can pick γ to
outperform CF2 in both MSE and VCF simultaneously. CF1 has zero VCF by design, but worse predictive
performance than CIP at near zero VCF. Error bars are standard errors over 10 seeds.

data. We can thus only evaluate CI in (semi-)synthetic settings where we have access to the full SCM and
thus all counterfactual distributions.

A measure for CI must capture how the distribution of Ŷ∗
a′ changes for different values of a′ across

all conditioning values w (which may include an observed value A = a). We propose the Variance of
CounterFactuals (VCF) as a metric of CI

VCF(Ŷ) := Ew∼PW

[
vara′∼PA

[
EŶ∗

a′ |W=w[ŷ]
]]

. (3)

That is, we quantify how the average outcome varies with the interventional value a′ at conditioning
value w and average this variance over w. For deterministic predictors (point estimators), which we
use in all our experiments, the prediction is a fixed value for each input EŶ∗

a′ |W=w[ŷ] = ŷ) and we can
drop the inner expectation of Eq. (3). In this case, the variance term in Eq. (3) is zero if and only if
PŶ∗

a|W=w(y) = PŶ∗
a′ |W=w(y) almost surely. Since the variance is non-negative, the outer expectation is zero

if and only if the variance term is zero almost surely, yielding the following result.
Corollary 3.6. For point-estimators, Ŷ is counterfactually invariant in A w.r.t. W if and only if VCF(Ŷ) =
0 almost surely.

Estimating VCF in practice requires access to the DGP to generate counterfactuals. Given d i.i.d. examples
(wi)d

i=1 from a fixed observational dataset we sample k intervention values from the marginal PA and
compute corresponding predictions. The inner expectation is simply the deterministic predictor output,
and we compute the empirical expectation over the d observed w values and empirical variances over the
k sampled interventional values (for each w). Since the required counterfactuals are by their very nature
unavailable in practice, our analysis of VCF is limited to (semi-)synthetic settings. Notably, the proposed
procedure for choosing γ does not require VCF. Our experiments corroborate the weak convergence property
of HSCIC—small HSCIC implies small VCF. Hence, HSCIC may serve as a strong proxy for VCF and
thus CI in practice.

In practical terms, HSCIC is considered the relevant metric, which is also estimable from data. Theoretically,
however, counterfactual invariance is only implied by an exact HSCIC value of zero (Corollary 3.5). Even if
HSCIC exhibits continuity, meaning it approaches zero as distributions converge weakly, VCF may still be
preferable for directly assessing counterfactual invariance because it provides a more interpretable metric.
Our experimental investigations into VCF aim to establish the practical utility of HSCIC as a measure of
counterfactual invariance.

4 Experiments
Baselines. As many existing methods focus on cruder purely observational or interventional invariances
(see Section 2.2), our choice of baselines for true counterfactual invariance is highly limited. First, we compare
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Figure 3: MSE and VCF for synthetic data with 10- and 50-dimensional A for different γ and 15 random
seeds per box. CIP reliably achieves CI as γ increases.

CIP to Veitch et al. (2021) in their two limited settings, showing that our method performs on par with
theirs. Next, we compare to two methods proposed by Kusner et al. (2017) in settings where they apply.
CF1 (their ‘Level 1’) consists of only using non-descendants of A as inputs to fŶ. CF2 (their ‘Level 2’)
assumes an additive noise model and uses the residuals of descendants of A after regression on A together
with non-descendants of A as inputs to fŶ. We refer to these two baselines as CF1 and CF2 respectively.
We also compare CIP to the ‘naive baseline’ which consists in training a predictor ignoring A. In settings
where A is binary, we also compare to Chiappa (2019), devised for path-wise counterfactual fairness. Finally,
we develop heuristics based on data augmentation as further possible baselines.

4.1 Synthetic experiments
First, we generate various synthetic datasets following the causal graph in Fig. 1(d). They contain (i) the
prediction targets Y, (ii) variable(s) we want to be CI in A, (iii) covariates L mediating effects from A on Y,
and (iv) confounding variables S. The goal is to learn a predictor Ŷ that is CI in A w.r.t. W := A ∪ L ∪ S.
The datasets cover different dimensions for the observed variables and their correlations.

Model choices and parameters. For all synthetic experiments, we train fully connected neural networks
(MLPs) with MSE loss Lmse(Ŷ) as the predictive loss L in Eq. (1) for continuous outcomes Y. We generate
10k samples from the observational distribution in each setting and use an 80 to 20 train-test split. All
metrics reported are on the test set. We perform hyper-parameter tuning for MLP hyperparameters based on
a random strategy. The HSCIC(Ŷ, A ∪W | S) term is computed as in Eq. (2) using a Gaussian kernel with
amplitude 1.0 and length scale 0.1. The regularization parameter λ for the ridge regression coefficients is set
to λ = 0.01. We set d = 1000 and k = 500 in the estimation of VCF.
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Figure 4: On the dSprites image dataset, CIP trades off
MSE for VCF and achieves almost full CI as γ increases.
Boxes are for 8 random seeds.

Model performance. We first study the ef-
fect of the HSCIC on accuracy and counterfac-
tual invariance on the simulated dataset. Fig. 2
(left) depicts the expected trade-off between MSE
and VCF for varying γ, whereas Fig. 2 (middle)
highlights that HSCIC (estimable from observa-
tional data) is a strong proxy of counterfactual
invariance measured by VCF (see discussion after
Eq. (3)).

Figure 2 (right) compares CIP to baselines for a
simulated non-additive noise model. For a suit-
able choice of γ, CIP outperforms the baseline
CF2 and the naive baseline in both MSE and
VCF simultaneously. While CF1 achieves perfect
CI by construction (VCF = 0), its MSE is higher than CIP at almost perfect CI (VCF near zero). To
conclude, our method flexibly and reliably trades predictive performance for counterfactual invariance via a
single parameter γ and Pareto-dominates existing methods.
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Effect of dimensionality of A. A key advantage of CIP is that it can deal with multi-dimensional A.
We consider simulated datasets, where we gradually increase the dimension of A. The results in Fig. 3 for
different trade-off parameters γ and different dimensions of A demonstrate that CIP effectively enforces CI
also for multi-dimensional A.9

4.2 Image experiments
We consider an image classification task on the dSprites dataset (Matthey et al., 2017), with a causal
model as depicted in Fig. 1(f). This experiment is particularly challenging due to the mixed categorical and
continuous variables in C (shape, y-pos) and L (color, orientation), with continuous A (x-pos). We seek
a predictor Ŷ that is CI in the x-position w.r.t. all other observed variables. Following Theorem 3.2, we achieve
Ŷ ⊥⊥ {x-pos, scale, color, orientation} | {shape, y-pos} via the HSCIC operator. To accommodate the
mixed input types, we first extract features from the images via a CNN and from other inputs via an MLP.
We then use an MLP on all concatenated features for Ŷ. Fig. 4 shows that CIP gradually enforces CI as γ
increases and illustrates the inevitable increase of MSE.

4.3 Fairness with continuous protected attributes
Finally, we apply CIP to the widely-used UCI Adult dataset (Kohavi & Becker, 1996) and com-
pare it against a ‘naive baseline’ which simply ignores A, CF1, CF2, and path-specific counter-
factual fairness (PSCF) (Chiappa, 2019). Like CF1, PSCF always achieves VCF = 0 by design.
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Figure 5: Accuracy and VCF on the Adult dataset. CIP
achieves better VCF than CF2 and the naive baseline (NB),
improved in accuracy compared to PSCF and is on par with
CF1 in accuracy at VCF ≈ 0.

We explicitly acknowledge the shortcomings of
the UCI Adult dataset to reason about social jus-
tice (Ding et al., 2021). Instead, we chose it due
to previous investigations into plausible causal
structures based on domain knowledge (Zhang
et al., 2017). The task is to predict whether an
individual’s income is above a threshold based on
demographic information, including protected
attributes. We follow Nabi & Shpitser (2018);
Chiappa (2019), where a causal structure is as-
sumed for a subset of the variables as in Fig. 1(e).
We choose gender and age as the protected at-
tributes A, collect marital status, level of educa-
tion, occupation, working hours per week, and
work class into L, and combine the remaining
observed attributes in C. Our aim is to learn
a predictor Ŷ that is CI in A w.r.t. W = C ∪ L. Achieving (causal) fairness for (mixed categorical and)
continuous protected attributes is under active investigation (Mary et al., 2019; Chiappa & Pacchiano, 2021),
but directly supported by CIP.

We use an MLP with binary cross-entropy loss for Ŷ. Since this experiment is based on real data, the true
counterfactual distribution cannot be known. Following Chiappa & Pacchiano (2021) we estimate a possible
SCM by inferring the posterior distribution over the unobserved variables using variational autoencoders
(Kingma & Welling, 2014). Even though CF1, PSCF always achieves VCF = 0 by design, Figure 5 shows that
CIP gradually achieves CI and even manages to keep a constant accuracy after an initial drop. It outperforms
PSCF in accuracy and reaches comparable accuracy to CF1 when reaching VCF ≈ 0. It Pareto-dominates
CF2 and can achieve better VCF than the naive baseline, even though NB is more accurate for γ ≥ 5 than
CIP.

5 Discussion and future work
We developed CIP, a method to learn counterfactually invariant predictors Ŷ. First, we presented a sufficient
graphical criterion to characterize counterfactual invariance and reduced it to conditional independence in
the observational distribution under an injectivity assumption of a causal mechanism. We then built on

9In all boxplots, boxes represent the interquartile range, the horizontal line is the median, and whiskers show minimum and
maximum values, excluding outliers (dots).
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kernel mean embeddings and the Hilbert-Schmidt Conditional Independence Criterion to devise an efficiently
estimable, differentiable, model-agnostic objective to train CI predictors for mixed continuous/categorical,
multi-dimensional variables. We demonstrated the efficacy of CIP in extensive empirical evaluations on
various regression and classification tasks.

A limitation of this work is the computational cost of estimating HSCIC, which may limit the scalability of
CIP to very high-dimensional settings even when using efficient random Fourier features. While the increased
robustness of counterfactually invariant predictors are certainly desirable in many contexts, this presupposes
the validity of our assumptions. Thus, an important direction for future work is to assess the sensitivity of
CIP to misspecifications of the causal graph or insufficient knowledge of the required adjustment set. Lastly,
we envision our graphical criterion and KME-based objective to be useful also for causal representation
learning to isolate causally relevant, autonomous factors underlying the data.

Another key limitation of our work, shared by all studies in this domain, is the assumption that the causal
graph is known. Assessing the validity of a causal DAG in real-world settings is challenging, since one
can often conjecture plausible confounding mechanisms for any missing edge. For this reason, in this work
we found it challenging to provide convincing examples that corroborate the “potential validity” of our
assumptions. However, our empirical results demonstrate that CIP is effective even when these assumptions
are violated. Similarly, our real-world experiments show a comparable invariance and accuracy trade-off
trend as the simulated experiments. We believe this to be a better indicator of validity and robustness than
isolated toy examples where assumptions may be satisfied. Practitioners using our proposed framework are
recommended to take these considerations into account before they apply the method to their own data, and
combine causal discovery methods with domain knowledge to assess the validity of the underlying DGP.
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