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Abstract

Recent work in NeuroAI suggests that representations in modern AI vision and
language models are highly aligned with each other and human visual cortex. In
addition, training AI vision models on language-aligned tasks (e.g., CLIP-style
models) improves their match to visual cortex, particularly in regions involved
in social perception, suggesting these brain regions may be similarly "language
aligned". This prior work has primarily investigated only static stimuli without
language, but in our daily lives, we experience the dynamic visual world and com-
municate about it using language simultaneously. To understand the processing of
vision and language during natural viewing, we fit an encoding model to predict
voxel-wise responses to an audiovisual movie using visual representations from
both purely visual and language-aligned vision transformer models and paired
language transformers. We first find that in naturalistic settings, there is remarkably
low correlation between representations in vision and language models and both
predict social perceptual and language regions well. Next, we find that language-
alignment does not improve a vision model embedding’s match to neural responses
in social perceptual regions, despite these regions being well predicted by both
vision and language embeddings. Preliminary analyses, however, suggest that
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vision-alignment does improve a language model’s ability to match neural re-
sponses in language regions during audiovisual processing. Our work demonstrates
the importance of testing multimodal AI models in naturalistic settings and reveals
differences between language alignment in modern AI models and the human
brain.

1 Introduction

As more and more powerful AI models are developed, a trend has emerged where models converge
on the same latent dimensions. Recent work in NeuroAI shows that these same latent dimensions in
vision models are the most brain-aligned, suggesting that they are universally extracted dimensions
across artificial and biological intelligence [1]. This extends across modalities as well. Recent
work found that multimodal "language aligned" training improves the neural match of visual model
embeddings, and suggested that this multimodal advantage was specifically important for modeling
social visual brain regions [2]. Some have found that even pure language model embeddings of image
captions can predict visually-evoked activity in high-level visual areas [3, 4].

Other recent AI work has found that vision model representations of images and language model
representations of their captions (without considering match to brain data) are also highly similar.
This has led to an exciting recent proposal of a "platonic representation hypothesis" [5], where all
models, regardless of modality, eventually converge on similar representations of an underlying world
model.

Here, we ask what the implications of such a shared space would be for naturalistic multimodal
processing. The evidence for shared vision-language representations mostly come from static scenes
and language embeddings of their captions, but in real-world settings, simultaneous visual and verbal
semantic signals do not always share a commonly referenced semantic space (e.g., the subject of
speech is not always visible). Additionally, the processing of these two inputs are usually studied
separately, either focusing on visual social signals (e.g., faces, biological motion, social interactions
[6]), or social and semantic aspects of language [7].

In this work, we investigate naturalistic social processing and communication, which involves
integrating converging but often disparate visual and linguistic input. We use a multimodal, CLIP-
style transformer model as a tool to study this integration in the human brain. We first ask whether
language, vision, and vision-language model representations are aligned with each other over the
course of the movie. Then, we fit encoding models with the embeddings of pure vision, vision-
language, and pure language models to predict human fMRI responses to an audiovisual movie
(the first episode of the BBC television series Sherlock)(Figure 1). We combine this analysis with
controlled experiments in the same subjects to specifically examine the responses of voxels that are
sensitive to visual social interaction perception and auditory language understanding. We compare
vision-language alignment in CLIP-style models to the human brain to ask whether joint vision-
language model embeddings provide a better neural match than unimodal vision and language model
embeddings.

2 Related Work

As mentioned above, one recent study has suggested that "language-aligned" visual embeddings
produce a better match to human visual cortex in regions specialized for social perception [2]. This
work, like the majority of NeuroAI vision studies, focused on neural responses to static scenes with
relatively little social content. As others have suggested, naturalistic stimuli offer a promising path
forward for studying social perception[8], which we explore here.

Separate vision and language input To date, most encoding model studies of naturalistic fMRI
data separately analyze either language responses from listening to stories or podcasts [9, 10, 11], or
visual responses from watching silent movies [12, 13]. Recent work has identified shared semantic
signals between vision and language (measured separately) along the border of visual cortex[14], as
well as cross-modal prediction between vision and language via multimodal model embeddings [15],
suggesting a shared conceptual space between vision and language.
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Figure 1: Encoding model approach. We recorded fMRI activity while participants (n=17) watched an
episode of Sherlock. For each participant, we fit an encoding model with extracted vision model and
language model embeddings from the movie frames and dialogue, respectively, to predict voxel-wise
activity within an ISC mask.

Multimodal NeuroAI with audiovisual input Two recent studies have used multimodal models to
predict neural responses to natural, audiovisual movies in fMRI [16] and sEEG[17], with somewhat
conflicting results. In the first study, fMRI responses to the TV show Friends were predicted
using embeddings from a multimodal (vision, language, and sound) model trained on 20 million
YouTube videos [18]. They found that multimodal embeddings from the model did not predict
brain responses better than the unimodal embeddings, but fine-tuning the model on a task that
requires vision and language information resulted in more predictive multimodal embeddings in
middle, but not later, model layers [16]. In the second study, neural responses, recorded using
stereoencephalography (sEEG), to natural, audiovisual movies were predicted using embeddings
from unimodal and multimodal models. This analysis revealed that multimodal models predicted
better than unimodal models in about 12% of the sEEG sites[17].

In this work, we take a whole brain fMRI approach but focus in particular on the superior temporal
sulcus (STS), a multimodal region critically involved in social perception that integrates multiple
types of information [19]. By combining known experimental tasks targeting visual social interactions
[20] and language [21] with a naturalistic audiovisual stimulus, we can compare multimodal AI
models to relevant visual social and linguistic social brain regions.

3 Methods

3.1 fMRI experiments

Participants (n=17, neurotypical, ages 19-34, 10 female) watched the first 45 minutes of the first
episode of the BBC series Sherlock. Participants were told to pay attention as if they were watching
a television show they were interested in. We verified that they did pay attention with a recall task
afterwards. They listened to the audio through MR-safe earbuds and watched the visuals on a screen
reflected in a mirror inside the scanner. All participants also watched silent videos of point light
walkers that were engaged in social actions and point light walkers performing independent actions to
identify regions of the STS that are sensitive to social interactions, as in prior work [20]. A subset of
participants (n=9) completed a language localizer, where they listened to audio of intact and degraded
speech [21] to identify nearby language-selective voxels in the STS. All experiments were approved
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by our local IRB. We used these tasks to identify motion, social interaction, and language selective
regions in each participant.

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.2 [22],
which is based on Nipype 1.6.1 [23]. Full preprocessing details are available in Appendix A.1.1.

Analysis of Localizers All localizers were analyzed with a General Linear Model (GLM). Data
was mean-scaled prior to fitting the GLM and computing the first level contrasts. Each task model
included regressors for all conditions along with confounds from fMRIPrep output, including the
6 rigid-body transformations, framewise displacement, and the aCompCor components from the
combined white matter and CSF masks and the associated discrete cosine bases for high-pass filtering
(cutoff of 128s).

From the point light walker task we identified social interaction selective voxels within posterior
and anterior superior temporal sulcus (STS) using the contrast of interacting-independent dyads. We
used a mask of STS and the temporal parietal junction (TPJ) [19], which we split into posterior and
anterior portions, as in prior work [24]. We identified motion selective voxels within the FreeSurfer
anatomical MT mask using the contrast of interacting & independent dyads. From the language task,
we identified language selective voxels within previously identified temporal language regions [25]
using the contrast of intact speech-degraded speech. For each contrast, we selected the top 5% most
selective voxels across the corresponding parcels in left and right hemispheres.

3.2 Extracting unimodal and multimodal embeddings from AI models

Models We used two self-supervised Vision Transformer (ViT) models, both trained on the
YFCC15M (Yahoo Flickr Creative Commons) dataset, which is a subset of the YFCC100M dataset
with English titles and descriptions [26]. One model was trained using a view-based self-supervised
SimCLR-style contrastive vision objective [27] (referred to as SimCLR), while the other was jointly
trained using the SimCLR-style objective and the CLIP objective, which aligns the image embeddings
with language embeddings of their captions [28] (referred to as SLIP). We selected these models
instead of the OpenAI CLIP model because their matched training data allows for more careful
comparisons between purely visual and language-aligned models [29, 17]. We used the trained ViT-B
versions of these models [30]. Both contain a 12-layer image encoder, with hidden dimension size
of 768 and 12 attention heads per layer. The SLIP model additionally uses the smallest CLIP text
encoder (maximum context length of 77) [30]. We do not have a language model that was trained
with and without vision, so we compare the SLIP text encoder to two other "pure" language models,
word level embeddings from word2vec [31] and sentence level embeddings from GPT-2 [32].

Feature Extraction The fMRI acquisition time between fMRI images (repetition time or TR) was
1.5 seconds. To get features at this sampling rate, we passed the first frame of every TR (1.5s) through
the visual encoders of SimCLR and SLIP and and extracted the activations from the attention output
and patch embedding output of every layer, resulting in 24 feature spaces per model. We extracted
the activations of each sentence of the spoken language content of the episode from each of the 12
transformer layers of the SLIP text encoder. As in prior work[14, 15, 9, 33, 34, 35], we resampled the
embeddings to the fMRI sampling rate using a 3-lobe Lanzcos filter. This down-sampling procedure
assumes that the neural response is the sum of responses [35]. As a point of comparison, we also
extracted the embedding for every word from the word2vec model [31], which represents word-level
co-occurence statistics. These vectors are similar to the text representations that language models
receive as input. We resampled these embeddings using the same procedure as SLIPtext. Finally,
we extracted the embedding of every sentence from every layer of the language transformer model
GPT-2[32], with the exact same method used to extract embeddings from the SLIP text encoder.
We specifically extracted the activations from the embeddings of the 12 transformer layers. We
resampled each layer’s embedding using the same resampling procedure as the rest of the language
model embeddings.

Dimensionality reduction with sparse random projection Each vision encoder feature space
was 1921 time points x 197D x 768D, which we reduced to 1921 time points x 6480D (based on
the Johnson Lindenstrauss lemma [36]) using sparse random projection (see details in Appendix
A.1.2). For each layer of the SLIP text encoder (512D) and GPT2 (768D), and word2vec (300D), the
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dimensionality was already less than 6480, so we did use sparse random projection on these feature
spaces.

Feature Space Similarity We measured the similarity between each feature space with Canonical
Correlation Analysis [37, 38]. Given two feature spaces of any number of dimensions, this analysis
finds latent dimensions of each feature space with maximal correlation with each other. For each
pair of feature spaces, we projected each feature space to one latent dimension that was maximally
correlated across both feature spaces. Specifically, we used L2 regularized CCA as implemented in
the CCA-Zoo python library [39] (testing 5 log-spaced regularization parameters from 10−5 to 0)
with nested cross validation (5 fold outer loop and 5 fold inner loop). The final similarity score was
the correlation between the two feature space’s test data projected onto their corresponding latent
dimension.

3.3 Encoding Models

Intersubject correlation mask All encoding model analyses were restricted to voxels with reliable
stimulus-driven activity, measured using intersubject correlation (ISC) [40]. Intersubject correlation
measures the shared neural responses across participants, which is taken to be the stimulus-driven
signal. For each participant, we calculated the Pearson coefficient between their time series and the
averaged time series of every other participant. This resulted in an ISC value for every voxel and
every participant. We took the mean of Fisher z-transformed ISC values and then took the inverse
Fisher z-transform of the averaged value. This is standard practice, as averaging the raw ISC values
skews the mean downward[41]. All encoding modeling analyses were performed only in voxels with
mean ISC > 0.15. The parcels used to find motion, social interaction, and language selective voxels
are fully contained in this mask.

Model Fitting We built a linear mapping between the feature spaces and the fMRI BOLD series for
each voxel within the ISC mask with banded ridge regression models, implemented in the himalaya
package [42]. Banded ridge regression allows each feature space to learn separate L2-regularization
hyperparameters, which better accounts for differently sized feature spaces, prevents overfitting, and
is especially useful for analyzing responses to naturalistic stimuli, where feature spaces are correlated
[42]. We fit a hyperparameter for each layer of each model. We used 5-fold nested cross validation to
fit the feature weights and select the regularization hyperparameters per feature space per voxel.

To account for temporal autocorrelation in the movie and fMRI data, we grouped the signal into
windows of 20 TRs (30 seconds) before splitting into train/test sets in both the outer and inner
cross-validation loops. To account for variable hemodynamic delays across cortex, all feature spaces
were duplicated with time shifts of 1.5, 3, 4.5, 6, and 7.5 seconds. On every fold of the outer loop, the
train set went through 5-fold inner loop regularization hyperparameter selection. The hyperparameters
were sampled from a Dirichlet distribution and scaled by 25 log-spaced values between 10−5 and
1010. The best performing parameters, together with the estimated feature weights, were used to
predict the fMRI response in the held-out test set of the outer loop. We measured prediction accuracy
using the coefficient of determination R2, averaging over the 5 folds to get the final value for each
voxel in each participant.

Variance decomposition We quantified the predictive contribution of each feature space compared
to the rest of the feature spaces using the product measure[43, 44], which accounts for the correlation
of the feature spaces. We use the product measure instead of the commonly used variance partitioning
because it is more efficient for a large number of feature spaces [42]. The model prediction accuracy
and product measure for each feature space was averaged across the 5 cross-validation folds. As in
prior work [42], we calculated the proportion of total variance explained by each feature space by
clipping negative values to 0 and then dividing the product measure by the joint model prediction to
normalize the values to between 0 and 1.
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Figure 2: Feature space similarity of embeddings extracted from the movie. Each box represents
the similarity between two feature spaces measured with CCA. The similarity of spaces from vision
models, SLIPtext, and GPT-2 was measured layerwise. The average across 12 layers is shown. The
full layerwise similarity matrix is available in Appendix Figure 8.

4 Results

4.1 Are vision model and language model representations aligned in a natural movie?

We first measured the similarity between vision model and language model embeddings of the frames
and spoken language content in the movie . The vision embeddings of the first frame of each TR
were extracted from the attention and embedding outputs of each layer of SimCLR and SLIP’s
vision encoder and the language embeddings of the spoken content from the movie transcript were
extracted from SLIP’s language encoder (SLIPtext), as well as word2vec and GPT-2. While there is
strong similarity between different vision models (average r range 0.93− 0.97) and language models
(average r range 0.87− 0.98), there is little similarity between the vision model and language model
embeddings over the course of the movie (Figure 2). Interestingly, although SLIP’s text encoder is
trained to align the language embeddings with vision embeddings, it is less correlated with the vision
model embeddings than word2vec or GPT-2 in this naturalistic context. The full layer-wise matrix,
including the similarity between visual representations of different layers and models, is available
in the Appendix (Figure 8). These results suggest that in this natural, social context, the vision and
language DNN embeddings contain largely non-overlapping information.

4.2 Do CLIP-style multimodal AI models predict human STS responses during an
audiovisual movie?

Next, we looked at the ability of different embeddings from the vision and language models to predict
neural responses in visual and social brain regions. We focus our analysis in nearby regions of interest
in the superior temporal sulcus (STS) that are involved in processing visual and linguistic social
signals (posterior and anterior social interaction regions [20] and language regions[25]). We also
compare our results to a visual control region, motion sensitive MT. We built encoding models with
increasing language content, starting with the pure vision embeddings from SimCLR, next adding
the language-aligned vision embeddings from SLIP, next the vision-aligned language embeddings
from SLIPtext, and then language embeddings from word and sentence-level pure language models,
word2vec and GPT-2, respectively.
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Figure 3: Encoding model performance of models with different groups of features, compared to
intersubject correlation (ISC). Bars and error lines show the mean encoding model performance
(coefficient of determination R2)± standard error of the mean (SEM) across participants.

Figure 4: Predictive contribution of features in an encoding model with vision embeddings from
SimCLR and SLIP and language embeddings from SLIP’s language encoder, word2vec, and GPT-2.
Each rectangle represents the variance explained by that feature space (all layers are added together
when relevant), averaged across participant-defined regions of interest.

We find that all models perform significantly above chance and as well or better than the intersubject
correlation in the same voxels (Figure 3). For both the social interaction and language regions,
encoding model performance increases when we include features of the spoken language content
from SLIP’s vision-aligned language encoder. However, encoding model performance does not
further increase when we include language features from word2vec and GPT-2 (Figure 3).

4.3 Does vision alignment allow language models to better predict human brain responses in
the STS?

We also examined the predictive contribution of each feature space in each combined model. We find
that the variance explained by SimCLR and SLIP’s visual encoders remains the same with or without
the presence of language features (Appendix Figure 9), suggesting that the vision model and language
model embeddings contain non-overlapping information that correlates with neural signals in these
regions. In the full encoding model, SLIP’s language encoder explains relatively more variance than
word2vec and GPT-2 in the left posterior social interaction region (p < 0.05) and left language regions
(p < 0.05) (Figure 4 ), suggesting that these vision-aligned language features are better models of
some social perceptual and language regions than unimodal word and sentence-level embeddings.
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Figure 5: Group map of the difference in proportion of variance explained between SLIP’s language
encoder and GPT-2 in the full model, thresholded at difference of 0.01. Red indicates where GPT-2
explains more variance than SLIPtext and purple indicates where SLIPtext explains more variance
than GPT-2. Group maps of SimCLR, SLIP, word2vec, and GPT-2 are available in Appendix Figure
10.

In a group whole brain analysis, we see that embeddings of the spoken language content from
SLIP’s language encoder predict brain activity throughout mid-to-anterior STS (Appendix Figure
10), and there is more variance explained by SLIPtext than GPT-2 in most of this region (Figure
5). Unsurprisingly, this effect is even stronger with a simpler language model word2vec (Appendix
Figure 11). Together these results show that vision-aligned language embeddings predict social brain
regions’ multimodal responses to naturalistic stimuli.

4.4 Does language alignment allow vision models to better predict human brain responses?

We next asked whether language alignment improves brain predictivity in the STS, as it does for
static stimuli in the ventral stream [2]. If language alignment creates visual representations that better
predict the brain in social regions, we should see that a model trained with both self-supervised,
view-based contrastive learning and language alignment (SLIP) explains a larger proportion of the
variance in neural responses to the movie than a model trained on just self-supervised learning
(SimCLR) in a social region.

We first compare the variance explained by SimCLR and SLIP in the full model when we simultane-
ously model the spoken language content of the movie (SimCLR+SLIP+SLIPtext+word2vec+GPT-2),
and find no difference between these two models (Figure 4). This is also true when we do not control
for the spoken language content (Appendix Figure 12) or fit each model individually (Appendix Fig-
ure 13 ), suggesting that language alignment does not improve neural predictivity in social perception
or language regions.

In group whole brain analysis, we see that both SLIP and SimCLR predict brain activity throughout
visual and higher level cortex (Appendix Figure 10). However, there is little difference between the
proportion of variance that SLIP explains compared to SimCLR, with the exception of a SimCLR
advantage throughout much of early visual cortex (Figure 6). Together, these results show that pure
vision embeddings and language-aligned vision embeddings predict STS responses to naturalistic
stimuli equally well.

Interestingly, we did see a much larger proportion of explained variance in both SimCLR and
SLIP attention head outputs compared to the embedding layers (Figure 7), despite their similarly
high correlation and matched ability to explain variance on their own (Appendix Figure 14). This
advantage can be seen across cortex (Appendix Figure 15). Similar effects have been seen with
language transformers [45]. The attention heads of transformers are known to be sensitive to positional
information, which may explain why vision transformers do so well in predicting human cortex,
which has been proposed to be scaffolded by visuospatial coding[46].
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Figure 6: Group map of the difference in proportion of variance explained between SLIP and
SimCLR’s vision embeddings in the full model, thresholded at difference of 0.01. Dark blue indicates
where SLIP explains more variance than SimCLR and light blue indicates where SimCLR explains
more variance than SLIP. Group difference maps comparing the multimodal and unimodal language
and vision embeddings. Group maps of SimCLR, SLIP, word2vec, and GPT-2 are available in
Appendix Figure 10.

Figure 7: Predictive contributions of the attention head output and embeddings from SimCLR and
SLIP (fit together in one model). The asterisks indicate a significant difference between the two
feature spaces (Wilcoxon signed-rank paired difference test).

5 Discussion

In this work, we fit an encoding model with vision, multimodal, and language embeddings to predict
voxelwise responses to a naturalistic audiovisual stimulus. We first showed that the vision and
language representations learned by AI models, including multimodal, CLIP-style models, are not
aligned over the course of a natural movie. We next showed that the SLIP model’s vision-aligned
language embeddings extracted from the spoken language content explain more variance than the
language embeddings from unimodal sentence transformers like GPT-2 and word2vec, suggesting
that vision-alignment may improve a language model’s ability to match brain responses. Finally,
we find that language-alignment does not improve the vision model’s match to neural data. Overall
these results suggest that one current state-of-the-art multimodal training approach, aligning images
and their captions in a shared representational space, is not helpful for modeling neural responses
to visual input, but may be helpful for modeling neural responses to linguistic input in naturalistic,
audiovisual contexts.

The advantage of multimodal language models, however, should be interpreted with caution. Unlike
the vision models, the multimodal and unimodal language models are not matched in terms of
architecture, training data, or training objective, and there could be many reasons why SLIP’s
language encoder predicts better than GPT-2. A stronger claim could be made with a controlled
comparison of larger and more powerful language models with the same architecture, dataset, and
training objective, with and without vision. This is left to future work.
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These results address a current gap in most NeuroAI research that has focused largely on single
modality neuroimaging data and caption-based vision-language integration. Modeling naturalistic,
social data, like movies, also raises questions about the extent to which shared "world models" are
being learned by AI systems. One major limitation of this work is that it evaluates these image-caption
trained models on more complex tasks of dynamic social perception. It might seem unsurprising that
such models would fail to integrate vision and language in a human-like manner, however some past
work has shown multimodal representational matches between these models and neural responses to
naturalistic movies [17]. We also note that there are few good alternative models, as there is generally
a dearth of models that produce human-like visual social perception [47]. Further, even with the
current models, this work does call into question the idea that human-like social visual representations
are an emergent property of static image-caption training.

The poor performance of these multimodal AI models in predicting visual brain responses to natural-
istic stimuli calls for new approaches in modeling simultaneous vision and language. One approach
may be to develop AI systems separately for relevant vision and language tasks and integrate them
through specific interacting mechanisms, like cross-attention. Varying the points of vision-language
integration could help determine what is sufficient to model multimodal brain responses. Recent
work also suggests that dynamic information may be crucial for modeling social perception [47].
Thus, another promising direction is training on dynamic stimuli that have simultaneous vision and
language signals in natural contexts. This may be enabled by recent high-quality, socially rich video
datasets[48, 49] that could be used to train future multimodal models.
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A Appendix / supplemental material

A.1 Supplemental Methods

A.1.1 fMRI preprocessing

The text of the following sections (Preprocessing of B0 inhomogeneity mappings, Anatomical data
preprocessing, Functional data preprocessing) was automatically generated by fMRIPrep with the
express intention that users should copy and paste this text into their manuscripts unchanged. It is
released under the CC0 license.

Preprocessing of B0 inhomogeneity mappings A total of 1 fieldmaps were found available within
the input BIDS structure for this particular subject. A B0-nonuniformity map (or fieldmap) was
estimated based on two (or more) echo-planar imaging (EPI) references with topup (Andersson,
Skare, and Ashburner (2003); FSL 6.0.5.1:57b01774).

Anatomical data preprocessing A total of 1 T1-weighted (T1w) images were found within the
input BIDS dataset.The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection [50], distributed with ANTs 2.3.3 [51], and used as T1w-reference
throughout the workflow. The T1w-reference was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast [52]. Brain surfaces were reconstructed using
recon-all (FreeSurfer 6.0.1 [53]), and the brain mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle [54]. Volume-based spatial normalization to two standard spaces
(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with
antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w
template. The following templates were selected for spatial normalization: ICBM 152 Nonlinear
Asymmetrical template version 2009c [55] [TemplateFlow ID: MNI152NLin2009cAsym], FSL’s
MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration
Model [56][TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing For each of the 7 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a reference volume and its skull-stripped
version were generated by aligning and averaging 1 single-band references (SBRefs). Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt
(FSL 6.0.5.1:57b01774 [57]). The estimated fieldmap was then aligned with rigid-registration to
the target EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the
reference EPI using the transform. BOLD runs were slice-time corrected to 0.7s (0.5 of slice
acquisition range 0s-1.4s) using 3dTshift from AFNI [58]. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based
registration [59]. Co-registration was configured with six degrees of freedom. First, a reference
volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.
Several confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative motions [60]) and Jenkinson (relative root
mean square displacement between affines [57]). FD and DVARS are calculated for each functional
run, both using their implementations in Nipype (following the definitions by [60]). The three global
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signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of
physiological regressors were extracted to allow for component-based noise correction (CompCor
[61]). Principal components are estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal
(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top
2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM
and combined CSF+WM) are generated in anatomical space. The implementation differs from
that of Behzadi et al. [61] in that instead of eroding the masks by 2 pixels on BOLD space, the
aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This
mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and
it ensures components are not extracted from voxels containing a minimal fraction of GM. Finally,
these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original
implementation). Components are also calculated separately within the WM and CSF masks. For
each CompCor decomposition, the k components with the largest singular values are retained, such
that the retained components’ time series are sufficient to explain 50 percent of variance across the
nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the correction step were also placed within
the corresponding confounds file. The confound time series derived from head motion estimates
and global signals were expanded with the inclusion of temporal derivatives and quadratic terms
for each [62]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were
annotated as motion outliers. The BOLD time-series were resampled into standard space, generating
a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. The BOLD time-series
were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsaverage.
Grayordinates files [63] containing 170k samples were also generated using the highest-resolution
fsaverage as intermediate standardized surface space. All resamplings can be performed with a
single interpolation step by composing all the pertinent transformations (i.e. head-motion transform
matrices, susceptibility distortion correction when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels
[64]. Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.8.1[65], mostly within the functional processing
workflow. For more details of the pipeline, see the section corresponding to workflows in fMRIPrep’s
documentation.

Data was smoothed with a 3mm FWHM kernel for subsequent localizer and encoding model analyses.
Data was smoothed with a 6mm FWHM kernel for computing the intersubject correlation mask,
which is in the recommended smoothing range [41].

A.1.2 Sparse random projection

Sparse random projection projects a high dimensional feature space into a lower dimensionality
feature space while preserving the pairwise Euclidean distance between points. The dimensionality
of the lower dimensional space is determined using the Johnson-Lindenstrauss lemma and an epsilon
specifying the amount of tolerated distortion [36]. Using the standard epsilon value of 0.1 and our
sample size of 1921 time points, the Johnson-Lindenstrauss lemma outputs a target dimensionality of
6480 projections. These projections are randomly generated as a sparse matrix of nearly orthogonal
dimensions. The feature spaces are projected onto this matrix using the dot product. The result is a
1921 x 6480 dimensional feature space, which is then used to predict neural activity in the encoding
model. This pipeline has been used in several recent papers to speed up model fitting and to avoid
overfitting [29, 47].

A.2 Supplemental figures
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Figure 8: Similarity between vision and language model representations during a naturalistic movie.
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Figure 9: Top: Predictive contribution of features in an encoding model with vision embeddings
from SimCLR and SLIP. Middle: Predictive contribution of features in an encoding model with
vision embeddings from SimCLR and SLIP and language embeddings from SLIP’s language encoder.
Bottom: Predictive contribution of features in an encoding model with vision embeddings from
SimCLR and SLIP and language embeddings from SLIP’s language encoder, word2vec, and GPT-2
(reproduction of figure 4 from main text for visualization here). Each rectangle represents the variance
explained by that feature space (all layers are added together when relevant), and averaged across
participant-defined regions of interest.

18



Figure 10: Group maps of the proportion of total variance explained by all layers of SimCLR, all
layers of SLIP, all layers of SLIPtext, and all layers of GPT-2 + word2vec. All maps thresholded at
0.01.

Figure 11: Group map of the difference in proportion of variance explained between SLIP’s language
encoder and word2vec in the full model, thresholded at difference of 0.01. Red indicates where
word2vec explains more variance than SLIPtext and purple indicates where SLIPtext explains more
variance than word2vec. Thresholded at 0.01.

MT MT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
op

or
tio

n 
of

 to
ta

l R
2

left right

*

motion

pSTS aSTS pSTS aSTS
left right

social interaction

pTemp aTemp pTemp aTemp
left right

**

language

Feature Space
SimCLR
SLIP

Figure 12: Proportion of variance explained by SimCLR and SLIP’s vision embeddings when fit in
one encoding model.
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Figure 13: Encoding model performances of vision embeddings of just SimCLR and vision embed-
dings of just SLIP.
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Figure 14: Performance of all attention head output and embeddings from SimCLR and SLIP.
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Figure 15: Group maps of the difference between all attention and all embedding layers in SimCLR
(top) and SLIP (bottom). Pink indicates where attention predicts better than embeddings and green
indicates where embedding predicts better than embeddings.
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