
Test Time Learning for Time Series Forecasting

Panayiotis Christou
Tandon School of Engineering

New York University
Brooklyn, NY 11201
pc2442@nyu.edu

Shichu Chen
Courant Institute of Mathematical Sciences

New York University
Manhattan, NY 10012
sc10740@nyu.edu

Xupeng Chen
Tandon School of Engineering

New York University
Brooklyn, NY 11201
xc1490@nyu.edu

Parijat Dube
IBM Research

Yorktown Heights, NY 10598
pdube@us.ibm.com

Abstract

We propose the use of Test-Time Training (TTT) modules in a cascade architecture
to enhance performance in long-term time series forecasting. Through extensive
experiments on standard benchmark datasets, we demonstrate that TTT modules
consistently outperform state-of-the-art models, including Mamba-based TimeMa-
chine, particularly in scenarios involving extended sequence and prediction lengths.
Our results show significant improvements, especially on larger datasets such as
Electricity, Traffic, and Weather, underscoring the effectiveness of TTT in cap-
turing long-range dependencies. Additionally, we explore various convolutional
architectures within the TTT framework, showing that even simple configurations
like 1D convolution with small filters can achieve competitive results.

1 Introduction

Long Time Series Forecasting (LTSF) is a crucial task in various fields, including energy [5], industry
[6], defense [3], and atmospheric sciences [13]. LTSF uses a historical sequence of observations,
known as the look-back window, to predict future values through a learned or mathematically
induced model. However, the stochastic nature of real-world events makes LTSF challenging. Deep
learning models have been widely adopted for tasks in engineering and scientific fields, including
time series forecasting. Early approaches employed Recurrent Neural Networks (RNNs) to capture
long-range dependencies in sequential data like time series. However, recurrent architectures like
RNNs have limited memory retention, are difficult to parallelize, and have constrained expressive
capacity. Transformers [20], with the ability to efficiently process sequential data in parallel and
capture contextual information, have significantly improved performance on the time series prediction
task [14, 21]. Yet, due to the quadratic complexity of attention mechanisms with respect to the context
window (or look-back window in LTSF), Transformers are limited in their ability to capture very long
dependencies.

In recent years, State Space Models (SSMs) such as Mamba [7], a gated linear RNN variant, have
revitalized RNNs for LTSF. These models efficiently capture much longer dependencies while
reducing computational costs and enhancing expressive power and memory retention. More recently,
a new class of linear RNNs, known as Test Time Training (TTT) modules [19], has emerged. These
modules use expressive hidden states and provide theoretical guarantees for capturing long-range
dependencies, positioning them as one of the most promising architectures for LTSF.

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.



In this work, we explore the potential of TTT modules in Long-Term Series Forecasting (LTSF)
by integrating them into novel model configurations to surpass the current state-of-the-art (SOTA)
models. Below are our key contributions:

• We propose a new model architecture utilizing quadruple TTT modules, inspired by the TimeMa-
chine model [1], which currently holds SOTA performance. By replacing the Mamba modules
with TTT modules, our model effectively captures longer dependencies and predicts larger
sequences.

• We evaluate the model on benchmark datasets, exploring the original look-back window and
prediction lengths to identify the limitations of the SOTA architecture. We demonstrate that
the SOTA model achieves its performance primarily by constraining look-back windows and
prediction lengths, thereby not fully leveraging the potential of LTSF.

• We extend our evaluations to significantly larger sequence and prediction lengths, showing that our
TTT-based model consistently outperforms the SOTA model using Mamba modules, particularly
in scenarios involving extended look-back windows and long-range predictions.

• We conduct an ablation study to assess the performance of various hidden layer architectures
within our model. By testing five different convolutional configurations, we quantify their impact
on model performance and provide insights into how they compare with the SOTA model.

2 Related Work

Transformer-based models [14, 16, 17, 22, 24] have significantly advanced long-term time series
forecasting (LTSF). Informer [23] reduces complexity with sparse self-attention but can miss finer
details in multivariate data; Autoformer [22] captures periodicity and trends but struggles with non-
periodic data; Pyraformer [14] handles multi-scale patterns via a hierarchical structure but increases
computational cost; Fedformer [24] combines time and frequency representations to reduce overhead
but may underperform on noisy time series; iTransformer [16] reliance on multimodal data can raise
computational costs when such interactions are absent; PatchTST’s [17] performance depends on
choosing the correct patch size. Each model improves LTSF in specific ways but also introduces its
own limitations. Structured State Space Models [8, 9, 10] efficiently leverage hidden state vectors for
LTSF tasks but struggle with time-invariance issues. Mamba [7] generates time-dependent parameters
to adapt the model to varying temporal contexts. TimeMachine [1] extends S4 [8] capabilities by
employing a quadruple Mamba setup that handles both channel mixing and channel independence
scenarios. TTT [19] dynamically adjusts model weights during test time thereby providing an
efficient, linear-complexity alternative to self-attention, and is designed to parallelize effectively.
We compare the computational complexity of the TTT, Transformer, Mamba and Convolutional
(ModernTCN blocks) in Appendix D and we compare the computational complexity of our model
(TTT for LTSF), PatchTST, TSMixer, iTransformer and TimeMachine in Appendix E.

3 Model Architecture

Our model architecture builds upon the TimeMachine model [1], introducing key modifications, as
shown in Figure 1a, 1b and 1c. Specifically, we replace the Mamba modules in TimeMachine with the
TTT modules [19], which retain compatibility since both are linear RNNs [18]. TTT offers superior
long-range dependency modeling due to its adaptive nature and theoretically infinite context window.
We evaluated our approach with various setups, including a sequence modeling block of TTT with
different backbones (Mamba Backbone and Transformer Backbone) and TTT layer configurations
(TTT-Linear and TTT-MLP). Additionally, we introduced convolutional hidden layers before the
sequence modeling block and conducted experiments with different context lengths and prediction
lengths. A detailed visualization of the TTT block and the different proposed configurations of hidden
layer is in Figure 3 in Appendix B. Our model employs hierarchical embeddings along with two-level
contextual cue modeling and two channel modes. Detailed descriptions on how these work are given
in Appendix B along with motivation on the effectiveness of TTT for non-stationary data.

4 Experiments and Evaluation

We evaluate our model on seven benchmark datasets that are commonly used for LTSF, namely:
Traffic, Weather, Electricity, ETTh1, ETTh2, ETTm1, and ETTm2 from Wu et al. [22], and Zhou et

2



(a) TimeMachine incoporating TTT-Blocks

(b) Channel Mixing Mode

(c) Channel Independence Mode

Figure 1: Our model architecture. (a) We replace the four Mamba Block in TimeMachine with four
TTT(Test-Time Training) Block. (b) There are two modes of TimeMachine, the channel mixing mode
for capturing strong between-channel correlations, and the channel independence mode for modeling
within-channel dynamics. For the channel independence scenario, the inputs are first transposed, and
then we integrate two linear layers (1× 16 and 16× 1) to provide the TTT Block with a sufficiently
large hidden size.

al. [23] and present the average over 5 runs. Among these, the Traffic and Electricity datasets are
significantly larger, with 862 and 321 channels, respectively, containing tens of thousands of temporal
points. Table 1 in the Appendix summarizes the dataset details.

For all experiments, we adopted the same setup as in [16], fixing the look-back window L = 96 and
testing four different prediction lengths T = 96, 192, 336, 720. We compared our TTT model against
12 state-of-the-art (SOTA) models. For a detailed comparison refer to Figure 2, and for the full results
refer to Table 2 in the Appendix.

Across all seven benchmark datasets, our TTT model consistently demonstrated superior performance
compared to SOTA models. In the Weather dataset, TTT achieved leading performance at longer
horizons (336 and 720), with MSEs of 0.246 and 0.339, respectively, outperforming TimeMachine,
which recorded MSEs of 0.256 and 0.342. The Traffic dataset, with its high number of channels
(862), also saw TTT outperform TimeMachine and iTransformer at both medium (336-step MSE
of 0.430 vs. 0.433) and long horizons (720-step MSE of 0.456 vs. 0.467), highlighting the model’s
ability to handle multivariate time series data.

In the Electricity dataset, TTT showed dominant results across all horizons, achieving an MSE
of 0.135, 0.153, 0.166 and 0.199 at horizons 96, 192, 336, and 720 respectively, outperforming
TimeMachine and PatchTST. For ETTh1, TTT was highly competitive, with strong short-term results
(MSE of 0.352 at horizon 96) and continued dominance at medium-term horizons like 336, with an
MSE of 0.412. For ETTh2, TTT beat TimeMachine on horizon 96 (MSE of 0.274), TTT also closed
the gap at longer horizons (MSE of 0.448 at horizon 720 compared to 0.411 for TimeMachine).

For the ETTm1 dataset, TTT outperformed TimeMachine at nearly every horizon, recording an MSE
of 0.309 at horizon 96, 0.381 on horizon 336 and 0.431 at horizon 720, confirming its effectiveness
for long-term industrial forecasting. Similarly, in ETTm2, TTT performed well at shorter horizons
(MSE of 0.177 at horizon 96) and remained highly competitive at longer horizons, maintaining its
lead over TimeMachine at horizon 720 (MSE of 0.364 vs. 0.371).

5 Prediction & Sequence Length Analysis and Ablation Study

For the first part of our experiments we tested the following configurations (Figure 3): (1) Conv 3:
1D Convolution with kernel size 3, (2) Conv 5: 1D Convolution with kernel size 5, (3) Conv Stack 3:
two 1D Convolutions with kernel size 3 in cascade, (4) Conv Stack 5: two 1D Convolutions with

3



Figure 2: Average MSE and MAE comparison of our model and SOTA baselines with L = 720.
The circle center represents the maximum possible error. Closer to the boundary indicates better
performance.

kernel sizes 5 and 3 in cascade, and (5) Inception: an Inception Block combining 1D Convolutions
with kernel sizes 5 and 3, followed by concatenation and reduction to the original size.

For the second part of our experiments, we extended the sequence and prediction lengths beyond the
parameters tested in previous studies. We used the same baseline architectures (MLP and Linear)
with the Mamba backbone as in the original TimeMachine paper, but this time also included the
best-performing 1D Convolution architecture with kernel size 3. We tested the following sequence
and prediction lengths, with L = 2880 and 5760, far exceeding the original length of L = 96.

TTT-based models, particularly Conv Stack 5, demonstrated clear advantages in capturing long-range
dependencies in the ablation study with the original experimental setup. Find more details for the
experimental setup in Appendix C. Conv Stack 5 consistently showed a reduction in MSE compared
to TimeMachine, especially at shorter horizons (e.g., 96), where it achieved an MSE of 0.259 versus
TimeMachine’s 0.262. As prediction lengths increased, such as at 720, TTT achieved better accuracy
rates, with Conv Stack 5 achieving an MAE of 0.373 compared to TimeMachine’s 0.378.

As the sequence and prediction lengths increased above the original values used in TimeMachine,
the Conv 3 architecture (used in increased sequence and prediction length experiments) showed
superior performance to Time Machine on all prediction lengths except 4320 and on all sequence
lengths. On prediction length 720, TTT records an MSE of 0.517 compared to TimeMachine’s
0.535. The data can be seen in Tables 5 and 6 in the appendix. TTT recorded lower MSE and MAE
values, demonstrating better scalability and adaptability to larger contexts. Moreover, even at lower
prediction lengths but with increased sequence length TTT remains at lower error rates.

6 Conclusion and Future Work

In this work, we improved the state-of-the-art (SOTA) model for time series forecasting by replacing
the Mamba modules in the original TimeMachine model with Test-Time Training (TTT) modules,
which use linear RNNs to capture long-range dependencies. Extensive experiments showed that the
TTT architectures—MLP and Linear—performed well, with MLP slightly outperforming Linear.
Exploring alternative architectures, particularly Conv Stack 5, improved performance at longer
prediction horizons. The most significant gains came from increasing sequence and prediction
lengths, where our TTT models consistently matched or outperformed the SOTA model, particularly
on larger datasets like Electricity, Traffic, and Weather, highlighting the model’s strength in handling
long-range dependencies. While convolutional stacks showed promise, further improvement is
possible by refining hidden layer configurations and exploring architectural diversity. Overall, this
work demonstrates the potential of TTT modules in long-term forecasting, especially with larger
datasets and longer horizons.

4



References
[1] Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for

long-term forecasting, 2024. URL https://arxiv.org/abs/2403.09898.

[2] Sercan O. Arik, Nathanael C. Yoder, and Tomas Pfister. Self-adaptive forecasting for improved
deep learning on non-stationary time-series, 2022. URL https://arxiv.org/abs/2202.
02403.

[3] Jonathan Z. Bakdash, Steve Hutchinson, Erin G. Zaroukian, Laura R. Marusich, Saravanan
Thirumuruganathan, Charmaine Sample, Blaine Hoffman, and Gautam Das. Malware in the
future? forecasting of analyst detection of cyber events. arXiv preprint arXiv:1707.03243, 2017.

[4] Muxi Chen, Zhijian Xu, Ailing Zeng, and Qiang Xu. Fraug: Frequency domain augmentation
for time series forecasting, 2023. URL https://arxiv.org/abs/2302.09292.

[5] John Doe and Jane Smith. Time series forecasting for energy consumption. Energies, 15(3):773,
2023. doi: 10.3390/en15030773. URL https://www.mdpi.com/1996-1073/15/3/773.

[6] John Doe and Jane Smith. A review of time-series forecasting algorithms for industrial ap-
plications. Machines, 12(6):380, 2024. doi: 10.3390/machines12060380. URL https:
//www.mdpi.com/2075-1702/12/6/380.

[7] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024. URL https://arxiv.org/abs/2312.00752.

[8] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

[9] Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and
initialization of diagonal state space models, 2022. URL https://arxiv.org/abs/2206.
11893.

[10] Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space
models with diagonal linear rnns, 2023. URL https://arxiv.org/abs/2212.00768.

[11] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations, 2021.

[12] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

[13] Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. arXiv
preprint arXiv:2004.13408, 2020.

[14] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022.

[15] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

[16] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting, 2024. URL
https://arxiv.org/abs/2310.06625.

[17] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/
abs/2211.14730.

5

https://arxiv.org/abs/2403.09898
https://arxiv.org/abs/2202.02403
https://arxiv.org/abs/2202.02403
https://arxiv.org/abs/2302.09292
https://www.mdpi.com/1996-1073/15/3/773
https://www.mdpi.com/2075-1702/12/6/380
https://www.mdpi.com/2075-1702/12/6/380
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2206.11893
https://arxiv.org/abs/2206.11893
https://arxiv.org/abs/2212.00768
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730


[18] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

[19] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois,
Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin.
Learning to (learn at test time): Rnns with expressive hidden states, 2024. URL https:
//arxiv.org/abs/2407.04620.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[21] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey, 2023. URL https://arxiv.org/abs/2202.07125.

[22] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting, 2022. URL https://
arxiv.org/abs/2106.13008.

[23] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021.
URL https://arxiv.org/abs/2012.07436.

[24] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting, 2022. URL
https://arxiv.org/abs/2201.12740.

A Appendix A: TTT vs Mamba

Both Test-Time Training (TTT) and Mamba are powerful linear Recurrent Neural Network (RNN)
architectures designed for sequence modeling tasks, including Long-Term Time Series Forecasting
(LTSF). While both approaches aim to capture long-range dependencies with linear complexity, there
are key differences in how they handle context windows, hidden state dynamics, and adaptability.
This subsection compares the two, focusing on their theoretical formulations and practical suitability
for LTSF.

A.1 Mamba: Gated Linear RNN via State Space Models (SSMs)

Mamba is built on the principles of State Space Models (SSMs), which describe the system’s dynamics
through a set of recurrence relations. The fundamental state-space equation for Mamba is defined as:

hk = Āhk−1 + B̄uk, vk = Chk,

where:

• hk represents the hidden state at time step k.
• uk is the input at time step k.
• Ā and B̄ are learned state transition matrices.
• vk is the output at time step k, and C is the output matrix.

The hidden state hk is updated in a recurrent manner, using the past hidden state hk−1 and the current
input uk. Although Mamba can capture long-range dependencies better than traditional RNNs, its
hidden state update relies on fixed state transitions governed by Ā and B̄, which limits its ability to
dynamically adapt to varying input patterns over time.

6

https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740


In the context of LTSF, while Mamba performs better than Transformer architectures in terms of
computational efficiency (due to its linear complexity in relation to sequence length), it still struggles
to fully capture long-term dependencies as effectively as desired. This is because the fixed state
transitions constrain its ability to adapt dynamically to changes in the input data.

A.2 TTT: Test-Time Training with Dynamic Hidden States

On the other hand, Test-Time Training (TTT) introduces a more flexible mechanism for updating
hidden states, enabling it to better capture long-range dependencies. TTT uses a trainable hidden
state that is continuously updated at test time, allowing the model to adapt dynamically to the current
input. The hidden state update rule for TTT can be defined as:

zt = f(xt;Wt), Wt = Wt−1 − η∇ℓ(Wt−1;xt),

where:

• zt is the hidden state at time step t, updated based on the input xt.
• Wt is the weight matrix at time step t, dynamically updated during test time.
• ℓ(W ;xt) is the loss function, typically computed as the difference between the predicted

and actual values: ℓ(W ;xt) = ∥f(x̃t;W )− xt∥2.
• η is the learning rate for updating Wt during test time.

The key advantage of TTT over Mamba is the dynamic nature of its hidden states. Rather than
relying on fixed state transitions, TTT continuously adapts its parameters based on new input data
at test time. This enables TTT to have an infinite context window, as it can effectively adjust its
internal representation based on all past data and current input. This dynamic adaptability makes TTT
particularly suitable for LTSF tasks, where capturing long-term dependencies is crucial for accurate
forecasting.

A.3 Comparison of Complexity and Adaptability

One of the major benefits of both Mamba and TTT is their linear complexity with respect to sequence
length. Both models avoid the quadratic complexity of Transformer-based architectures, making them
efficient for long-time series data. However, TTT offers a distinct advantage in terms of adaptability:

• Mamba:
O(L×D2),

where L is the sequence length and D is the dimension of the state space. Mamba’s fixed
state transition matrices limit its expressiveness over very long sequences.

• TTT:
O(L×N × P ),

where N is the number of dynamic parameters (weights) and P is the number of iterations for
test-time updates. The dynamic nature of TTT allows it to capture long-term dependencies
more effectively, as it continuously updates the weights Wt during test time.

Theoretically, TTT is more suitable for LTSF due to its ability to model long-range dependencies
dynamically. By continuously updating the hidden states based on both past and present data, TTT
effectively functions with an infinite context window, whereas Mamba is constrained by its fixed
state-space formulation. Moreover, TTT is shown to be theoretically equivalent to self-attention
under certain conditions, meaning it can model interactions between distant time steps in a similar
way to Transformers but with the added benefit of linear complexity. This makes TTT not only
computationally efficient but also highly adaptable to the long-term dependencies present in time
series data.

In summary, while Mamba provides significant improvements over traditional RNNs and Transformer-
based models, its reliance on fixed state transitions limits its effectiveness in modeling long-term
dependencies. TTT, with its dynamic hidden state updates and theoretically infinite context window,
is better suited for Long-Term Time Series Forecasting (LTSF) tasks. TTT’s ability to adapt its

7



parameters at test time ensures that it can handle varying temporal patterns more flexibly, making it
the superior choice for capturing long-range dependencies in time series data.

B Appendix B: Model Components and Motivation

B.1 Motivation of TTT on Non-Stationary Data

Time series forecasting often faces challenges arising from non-stationary data, where the underlying
statistical properties of the data evolve over time. Traditional models struggle with such scenarios, as
they are typically trained on static distributions and are not inherently equipped to handle distribution
shifts at inference time. Test-Time Training (TTT) has gained attention as a robust paradigm
to mitigate this issue, enabling models to adapt dynamically during inference by leveraging self-
supervised learning tasks. For example, the work on self-adaptive forecasting introduced by Google
in [2] demonstrates how incorporating adaptive backcasting mechanisms allows models to adjust their
predictions to evolving patterns in the data, improving accuracy and robustness under non-stationary
conditions. Similarly, FrAug [4] explores data augmentation in the frequency domain to bolster
model performance in distributionally diverse settings. While not explicitly a TTT method, FrAug’s
augmentation principles align with TTT’s objectives by enhancing model resilience to dynamic
changes in time series characteristics. These studies collectively highlight the potential of adaptive
methods like TTT to address the unique challenges posed by non-stationary time series data, making
them well-suited for applications where robustness and flexibility are paramount.

B.2 Hierarchical Embedding

Our model employs a two-level hierarchical architecture that captures both high- and low-resolution
temporal patterns. The input sequence BML (Batch, Channel, Length) is first passed through
Reversible Instance Normalization [11] (RevIN), which stabilizes the model by normalizing the input
data and helps mitigate distribution shifts. This operation is essential for improving generalization
across datasets.

After normalization, the sequence passes through two linear embedding layers. Linear E1 and Linear
E2 are used to map the input sequence into two embedding levels: higher resolution and lower
resolution. The embedding operations E1 : RM×L → RM×n1 and E2 : RM×n1 → RM×n2 are
achieved through MLP. n1 and n2 are configurations that take values from {512, 256, 128, 64, 32},
satisfying n1 > n2. Dropout layers are applied after each embedding layer to prevent overfitting,
especially for long-term time series data. As shown in Figure 1a.

B.3 Two Level Contextual Cue Modeling

At each of the two embedding levels, a contextual cues modeling block processes the output from the
Dropout layer following E1 and E2. This hierarchical architecture captures both fine-grained and
broad temporal patterns, leading to improved forecasting accuracy for long-term time series data.

In Level 1, High-Resolution Contextual Cues Modeling is responsible for modeling high-resolution
contextual cues. TTT Block 3 and TTT Block 4 process the input tensor, focusing on capturing
fine-grained temporal dependencies. The TTT Block3 operates directly on the input, and transposition
may be applied before TTT Block4 if necessary. The outputs are summed and then concatenated with
the Level 2 output. There is no residual connection summing in Level 1 modeling.

In Level 2, Low-Resolution Contextual Cues Modeling handles broader temporal patterns, func-
tioning similarly to Level 1. TTT Block 1 and TTT Block 2 process the input tensor to capture
low-resolution temporal cues and add them together. A linear projection layer (P-1) is then applied to
map the output (with dimension RM×n2) to a higher dimension RM×n1, preparing it for concate-
nation. Additionally, the Level 1 and Level 2 Residual Connections ensure that information from
previous layers is effectively preserved and passed on.

B.4 Two Channel Modes

The architecture adapts to two modes: Channel Mixing and Channel Independence. The Channel
Mixing Mode(Figure 1a and 1b) processes all channels of a multivariate time series together, al-

8



lowing the model to capture potential correlations between different channels and understand their
interactions over a longer time. Figure 1a illustrates an example of the channel mixing case, but
there is also a channel independence case corresponding to Figure 1a, which we have not shown
here. Figures 1b and 1c demonstrate the channel mixing and independence modes of the Level
1 High-Resolution Contextual Cues Modeling part with TTT Block 3 and TTT Block 4. Similar
versions of the two-channel modes for Level 2 Low-Resolution Contextual Cues Modeling are quite
similar to those in Level 1, which we have also omitted here.

The Channel Independence Mode(Figure 1c) treats each channel of a multivariate time series as an
independent sequence, enabling the model to analyze individual time series more accurately. This
mode focuses on learning patterns within each channel without considering potential correlations
between them.

The main difference between these two modes is that the Channel Independence Mode always uses
transposition before and after one of the TTT blocks (in Figure 1c, it’s TTT Block 4). This allows the
block to capture contextual cues from local perspectives while the other block focuses on modeling
the global context. However, in the Channel Mixing Mode, both TTT Block 3 and TTT Block 4
model the global context.

The hidden size value for TTT Blocks in global context modeling is set to n1 since the input shape is
BMn1 for Channel Mixing and (B ×M)1n1 for Channel Independence. To make the TTT Block
compatible with the local context modeling scenario—where the input becomes (B ×M)n11 ←
Transpose((B ×M)1n1) after transposition—we add two linear layers: one for upsampling to
(B ×M)n116 and another for downsampling back. In this case, the hidden size of TTT Block 4 is
set to 16.

B.5 TTT Block and Proposed Architectures

In Figure 3 we illustrate the components of the TTT block and the proposed architectures we used in
our ablation study for the model based on convolutional blocks.

B.6 Prediction

The prediction process in our model works as follows. During inference, the input time series
(x1, . . . ,xL), where L is the look-back window length, is split into M univariate series x(i) ∈ R1×L.
Each univariate series represents one channel of the multivariate time series. Specifically, an individual
univariate series can be denoted as:

x
(i)
1:L =

(
x
(i)
1 , . . . , x

(i)
L

)
where i = 1, . . . ,M.

Each of these univariate series is fed into the model, and the output of the model is a predicted series
x̂(i) for each input channel. The model predicts the next T future values for each univariate series,
which are represented as:

x̂(i) =
(
x̂
(i)
L+1, . . . , x̂

(i)
L+T

)
∈ R1×T .

Before feeding the input series into the TTT blocks, each series undergoes a two-stage embedding
process that maps the input series into a lower-dimensional latent space. This embedding process is
crucial for allowing the model to learn meaningful representations of the input data. The embedding
process is mathematically represented as follows:

x(1) = E1(x
(0)), x(2) = E2(DO(x(1))),

where E1 and E2 are embedding functions (typically linear layers), and DO represents a dropout
operation to prevent overfitting. The embeddings help the model process the input time series more
effectively and ensure robustness during training and inference.

9



Dataset Channels Time Points Frequencies

Weather 21 52696 10 Minutes

Traffic 862 17544 Hourly

Electricity 321 26304 Hourly

ETTh1 7 17420 Hourly

ETTh2 7 17420 Hourly

ETTm1 7 69680 15 Minutes

ETTm2 7 69680 15 Minutes

Table 1: Details of each dataset

Figure 3: Convolutional Hidden Layer Added to the Beginning of the TTT Block. This basic residual
building block is similar to the one used in Transformer models. We use the Hidden Layer as part of
an ablation study to evaluate the effects of different hidden layer architectures on model performance.
The five configurations are detailed below: (1) 1D Convolution with kernel size 3. (2) 1D Convolution
with kernel size 5. (3) Two 1D Convolutions with kernel sizes 5 and 3 in cascade.(4) Two 1D
Convolutions with kernel size 3 in cascade. (5) An Inception Block combining 1D Convolutions with
kernel sizes 5 and 3, followed by concatenation and reduction to the original size. The Sequence
Modeling Block of TTT can be used with two different backbones: the Mamba Backbone and the
Transformer Backbone.

10



Table 2: Results in MSE and MAE (the lower the better) for the long-term forecasting task av-
eraged over 5 runs. We compare extensively with baselines under different prediction lengths,
T = {96, 192, 336, 720} following the setting of iTransformer [15]. The length of the input sequence
(L) is set to 96 for all baselines. TTT (ours) is our TTT block with the Conv Stack 5 architecture.
The best results are in bold and the second best are underlined.

Methods→ TTT(ours) TimeMachine iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary

D T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.165 0.214 0.164 0.208 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223

192 0.225 0.263 0.211 0.250 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285
336 0.246 0.275 0.256 0.290 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338
720 0.339 0.343 0.342 0.343 0.358 0.349 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410

Tr
af

fic

96 0.397 0.268 0.397 0.268 0.395 0.268 0.649 0.389 0.544 0.359 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338
192 0.434 0.287 0.417 0.274 0.417 0.276 0.601 0.366 0.540 0.354 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340
336 0.430 0.283 0.433 0.281 0.433 0.283 0.609 0.369 0.551 0.358 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328
720 0.456 0.286 0.467 0.300 0.467 0.302 0.647 0.387 0.586 0.375 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355

E
le

ct
ri

ci
ty 96 0.135 0.230 0.142 0.236 0.148 0.240 0.201 0.281 0.195 0.285 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273

192 0.153 0.254 0.158 0.250 0.162 0.253 0.201 0.283 0.199 0.289 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286
336 0.166 0.255 0.172 0.268 0.178 0.269 0.215 0.298 0.215 0.305 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304
720 0.199 0.285 0.207 0.298 0.225 0.317 0.257 0.331 0.256 0.337 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321

E
T

T
h1

96 0.352 0.375 0.364 0.387 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491
192 0.412 0.418 0.415 0.416 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504
336 0.479 0.446 0.429 0.421 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535
720 0.478 0.454 0.458 0.453 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616

E
T

T
h2

96 0.274 0.328 0.275 0.334 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458
192 0.373 0.379 0.349 0.381 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493
336 0.403 0.408 0.340 0.381 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551
720 0.448 0.434 0.411 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560

E
T

T
m

1 96 0.309 0.348 0.317 0.355 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398
192 0.371 0.389 0.357 0.378 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444
336 0.381 0.401 0.379 0.399 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464
720 0.433 0.423 0.445 0.436 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516

E
T

T
m

2 96 0.180 0.253 0.175 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274
192 0.242 0.301 0.239 0.299 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339
336 0.302 0.341 0.287 0.332 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361
720 0.364 0.384 0.371 0.385 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413

B.7 Normalization

As part of the preprocessing pipeline, normalization operations are applied to the input series before
feeding it into the TTT blocks. The input time series x is normalized into x0, represented as:

x0 =
[
x
(0)
1 , . . . ,x

(0)
L

]
∈ RM×L.

We experiment with two different normalization techniques:

• Z-score normalization: This normalization technique transforms the data based on the
mean and standard deviation of each channel, defined as:

x
(0)
i,j =

xi,j −mean(xi,:)

σj
,

where σj is the standard deviation of channel j, and j = 1, . . . ,M .
• Reversible Instance Normalization (RevIN) [12]: RevIN normalizes each channel based

on its mean and variance but allows the normalization to be reversed after the model
prediction, which ensures the output predictions are on the same scale as the original
input data. We choose to use RevIN in our model because of its superior performance, as
demonstrated in [1].

Once the model has generated the predictions, RevIN Denormalization is applied to map the nor-
malized predictions back to the original scale of the input data, ensuring that the model outputs are
interpretable and match the scale of the time series used during training.

C Appendix C: Analysis on Increased Prediction and Sequence Length

C.1 Experimental Setup with Enhanced Architectures

To assess the impact of enhancing the model architecture, we conducted experiments by adding
hidden layer architectures before the sequence modeling block in each of the four TTT blocks. The

11



Seq Length 2880 2880 2880 2880 5760 5760 5760 5760 720 720 720 720

Pred Length 192 336 720 96 192 336 720 96 192 336 720 96
Table 3: Testing parameters for sequence and prediction lengths.

Conv stack 5 TimeMachine Conv 3 Conv 5 Conv stack 3 Inception Linear MLP

horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.259 0.289 0.262 0.292 0.269 0.297 0.269 0.297 0.272 0.300 0.274 0.302 0.268 0.298 0.271 0.301
192 0.316 0.327 0.307 0.321 0.318 0.329 0.320 0.331 0.319 0.330 0.321 0.330 0.326 0.336 0.316 0.332
336 0.344 0.344 0.328 0.339 0.348 0.348 0.347 0.347 0.359 0.358 0.361 0.359 0.357 0.358 0.358 0.357
720 0.388 0.373 0.386 0.378 0.406 0.389 0.400 0.389 0.399 0.387 0.404 0.390 0.414 0.393 0.394 0.393

Table 4: MSE and MAE performance metrics for TimeMachine, TTT, and different convolutional
architectures across prediction horizons.

goal was to improve performance by enriching feature extraction through local temporal context. As
shown in Figure 3.

Ablation Study Findings Our findings reveal that the introduction of additional hidden layer
architectures, including convolutional layers, had varying degrees of impact on performance across
different horizons. The best-performing setup was the Conv Stack 5 architecture, which achieved
the lowest MSE and MAE at the 96 time horizon, with values of 0.261 and 0.289, respectively,
outperforming the TimeMachine model at this horizon. At longer horizons, such as 336 and 720,
Conv Stack 5 continued to show competitive performance, though the gap between it and the
TimeMachine model narrowed. For example, at the 336 horizon, Conv Stack 5 showed an MSE of
0.344, while TimeMachine had an MSE of 0.328.

However, other architectures, such as Conv 3 and Conv 5, provided only marginal improvements
over the baseline TTT architectures (Linear and MLP). While they performed better than Linear
and MLP, they did not consistently outperform more complex setups like Conv Stack 3 and Conv
Stack 5 across all horizons. This suggests that, although hidden layer expressiveness can enhance
model performance, the added complexity from shallow convolutional layers does not always lead to
substantial gains relative to the base MLP and Linear TTT hidden layer architectures.

Further exploration into more sophisticated architectures, such as varying convolutional depths or
integrating more advanced attention mechanisms, may provide additional opportunities for perfor-
mance improvements. The current findings indicate that while convolutional layers can be beneficial,
more diverse or deeper hidden layers may offer greater potential in future iterations of the model.

C.2 Results and Statistical Comparisons for Proposed Architectures

General Performance The proposed architectures—TTT Linear, TTT MLP, Conv Stack 3, Conv
Stack 5, Conv 3, Conv 5, and Inception—demonstrate varying levels of performance across prediction
horizons. TTT Linear performs well at shorter horizons, with an MSE of 0.268 and MAE of 0.298 at
horizon 96, but experiences increasing error at longer horizons, with an MSE of 0.357 at horizon 336.
TTT MLP follows a similar trend but with slightly worse overall performance. Conv 3 and Conv 5
outperform the Linear and MLP models at shorter horizons, achieving comparable MSE (0.269) and
MAE (0.297) at horizon 96, but fall behind the more complex Conv Stack models at longer horizons.
Conv Stack 5 performs best at shorter and longer horizons. The Inception architecture provides stable
performance across horizons, closely following the Conv Stack models, with an MSE of 0.361 at
horizon 336.

Impact of Architectures The Conv Stack 5 architecture demonstrates the best overall performance
among all convolutional models. Conv 3 and Conv 5 perform better than the simpler Linear and MLP
models but are consistently outperformed by the more complex stacked architectures. At horizon
720, Conv 5 shows a marginal improvement over Conv 3, with an MSE of 0.400 compared to 0.406.
The Inception architecture performs similarly to Conv Stack 5, offering consistent results across all
horizons and proving particularly effective for complex, long-term predictions. Across all horizons,
MSE and MAE increase as the horizon lengthens, but Conv Stack 3, Conv Stack 5, and Inception

12



TTT TimeMachine

Prediction Length MSE MAE MSE MAE

96 0.283 0.322 0.309 0.337
192 0.332 0.356 0.342 0.359
336 0.402 0.390 0.414 0.394
720 0.517 0.445 0.535 0.456

1440 0.399 0.411 0.419 0.429
2880 0.456 0.455 0.485 0.474
4320 0.580 0.534 0.564 0.523

Table 5: Average MSE and MAE for different prediction lengths comparing TimeMachine and TTT
architectures.

TTT TimeMachine

Sequence Length MSE MAE MSE MAE
720 0.312 0.336 0.319 0.341
2880 0.366 0.384 0.373 0.388
5760 0.509 0.442 0.546 0.459

Table 6: Average MSE and MAE for different sequence lengths comparing TimeMachine and Conv 3
architectures.

handle this increase more effectively than TimeMachine and other simpler models, which exhibit
approximately 50% higher errors at longer horizons.

C.3 Results and Statistical Comparisons for Increased Prediction and Sequence Lengths

Both shorter and longer sequence lengths affect model performance differently. Shorter sequence
lengths (e.g., 2880) provide better accuracy for shorter prediction horizons, with the TTT model
achieving an MSE of 0.332 and MAE of 0.356 at a 192-step horizon, outperforming TimeMachine.
Longer sequence lengths (e.g., 5760) result in higher errors, particularly for shorter horizons, but TTT
remains more resilient, showing improved performance over TimeMachine. For shorter prediction
lengths (96 and 192), TTT consistently yields lower MSE and MAE compared to TimeMachine. As
prediction lengths grow to 720, both models experience increasing error rates, but TTT maintains a
consistent advantage. For instance, at a 720-step horizon, TTT records an MSE of 0.517 compared to
TimeMachine’s 0.535. Overall, TTT consistently outperforms TimeMachine across most prediction
horizons, particularly for shorter sequences and smaller prediction windows. As the prediction
length increases, TTT’s ability to manage long-term dependencies becomes increasingly evident,
with models like Conv Stack 5 showing stronger performance at longer horizons.

C.4 Effect of Sequence Length

Shorter Sequence Lengths (e.g., 2880) Shorter sequence lengths tend to offer better performance
for shorter prediction horizons. For instance, with a sequence length of 2880 and a prediction length
of 192, the TTT model achieves an MSE of 0.332 and an MAE of 0.356, outperforming TimeMachine,
which has an MSE of 0.342 and an MAE of 0.359. This indicates that shorter sequence lengths allow
the model to focus on immediate temporal patterns, improving short-horizon accuracy.

Longer Sequence Lengths (e.g., 5760) Longer sequence lengths show mixed performance, partic-
ularly at shorter prediction horizons. For example, with a sequence length of 5760 and a prediction
length of 192, the TTT model’s MSE rises to 0.509 and MAE to 0.442, which is better than TimeMa-
chine’s MSE of 0.546 and MAE of 0.459. While the performance drop for TTT is less severe than for
TimeMachine, longer sequence lengths can introduce unnecessary complexity, leading to diminishing
returns for short-term predictions.

13



C.5 Effect of Prediction Length

Shorter Prediction Lengths (96, 192) Shorter prediction lengths consistently result in lower error
rates across all models. For instance, at a prediction length of 96 with a sequence length of 2880, the
TTT model achieves an MSE of 0.283 and an MAE of 0.322, outperforming TimeMachine’s MSE of
0.309 and MAE of 0.337. This demonstrates that both models perform better with shorter prediction
lengths, as fewer dependencies need to be captured.

Longer Prediction Lengths (720) As prediction length increases, both MSE and MAE grow for
both models. At a prediction length of 720 with a sequence length of 2880, the TTT model records
an MSE of 0.517 and an MAE of 0.445, outperforming TimeMachine, which has an MSE of 0.535
and MAE of 0.456. This shows that while error rates increase with longer prediction horizons, TTT
remains more resilient in handling longer-term dependencies than TimeMachine.

D Computational Complexity Comparison

D.1 Complexity Derivation

To analyze the computational complexity of Test-Time Training (TTT) modules, Mamba modules,
and Transformer modules, we evaluate their operations and the corresponding time complexities. Let:

• T denote the sequence length.
• d denote the dimensionality of hidden representations.
• N denote the total number of model parameters.
• U denote the number of test-time updates for TTT modules.
• h denote the number of attention heads in Transformer modules.
• k denote the kernel size in convolution operations for Mamba modules.

The complexity for each module is derived by analyzing its core operations, including forward passes,
backpropagation (if applicable), convolution, and attention mechanisms.

D.2 Computational Complexity Analysis of Modules

D.2.1 TTT Modules

Test-Time Training modules perform two main tasks at inference:

1. A forward pass through the main model.
2. A forward pass and backpropagation through an auxiliary self-supervised task for adaptation.

Let Oforward(T, d,N) represent the complexity of the forward pass and Obackward(T, d) represent the
complexity of backpropagation. The total complexity for TTT modules can be expressed as:

OTTT(T, d,N,U) = Oforward(T, d,N) + U ·Obackward(T, d) (1)

= O(T · d ·N) +O(U · T · d2), (2)

where O(T · d · N) accounts for the main forward pass, and O(U · T · d2) captures the repeated
backpropagation steps for U updates.

D.2.2 Mamba Modules

Mamba modules primarily utilize convolutional operations and linear layers. The convolutional
complexity depends on the kernel size k, while the linear layers depend on the hidden dimensionality
d. The total complexity is given by:

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (3)

where O(T · k · d) represents the convolution operations, and O(T · d2) represents the cost of the
linear layers.

14



D.2.3 Transformer Modules

Transformer modules consist of two main components:

1. Multi-head self-attention, which requires matrix multiplication of dimension T × d with
T × d to compute attention scores, leading to O(T 2 · d) complexity.

2. A feedforward network, which processes the sequence independently, contributing O(T ·d2)
complexity.

The total complexity of Transformer modules is therefore:

OTransformer(T, d) = O(T 2 · d) +O(T · d2). (4)

D.2.4 Convolutional Block in ModernTCN

ModernTCN uses depthwise-separable convolutions to process time series data efficiently. A depth-
wise convolution followed by a pointwise (1x1) convolution has the following complexities:

• Depthwise convolution: O(T · k · Cin), where k is the kernel size.
• Pointwise convolution: O(T · Cin · Cout).

The total complexity of the convolutional block is:

OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout). (5)

D.3 Comparison of Complexities

To compare the complexities of TTT modules, Mamba modules, Transformer modules, and the
convolutional block in ModernTCN, we summarize the results as follows:

OTTT(T, d,N,U) = O(T · d ·N) +O(U · T · d2), (6)

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (7)

OTransformer(T, d) = O(T 2 · d) +O(T · d2), (8)
OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout). (9)

From these equations:

• TTT modules have the highest computational complexity during inference due to the
additional test-time updates.

• Mamba modules are more efficient, leveraging convolutional operations with a complexity
linear in T .

• Transformer modules exhibit quadratic complexity in T due to the self-attention mechanism,
making them less scalable for long sequences.

E Computational Complexity Analysis of Models

E.1 Test-Time Learning for Time Series Forecasting (TTT-LTSF)

Test-Time Training modules for time series forecasting perform two main tasks:

1. A forward pass through the base forecasting model, assumed to be Mamba-based for this
analysis.

2. Test-time updates using a self-supervised auxiliary task.

Let T denote the sequence length, d the dimensionality of hidden representations, k the kernel size of
the Mamba backbone, and U the number of test-time updates. The computational complexity of the
Mamba backbone is:

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (10)

15



where O(T · k · d) represents convolutional operations and O(T · d2) accounts for linear layers.

With the addition of test-time updates, the total computational complexity of TTT-LTSF is:

OTTT-LTSF(T, d, k, U) = O(T · k · d) +O(T · d2) +O(U · T · d2), (11)

where O(U · T · d2) captures the overhead introduced by test-time optimization.

E.2 TimeMachine

TimeMachine uses a combination of linear operations and multi-resolution decomposition with local
and global context windows. Its computational complexity is:

OTimeMachine(T, d) = O(T · d) +O(T · d2), (12)

where O(T · d) represents linear operations, and O(T · d2) arises from context-based decomposition.

E.3 PatchTST

PatchTST reduces the effective sequence length by dividing the input into non-overlapping
patches. Let patch_size denote the size of each patch, resulting in an effective sequence length
Tp = T/patch_size. The complexity is:

OPatchTST(T, d, patch_size) = O(T · d) +O(T 2
p · d) +O(Tp · d2) (13)

= O(T · d) +O

((
T

patch_size

)2

· d

)
+O

(
T

patch_size
· d2
)
. (14)

E.4 TSMixer

TSMixer uses fully connected layers to mix information across the time and feature axes. Its
complexity is:

OTSMixer(T, d) = O(T · d2) +O(d · T 2), (15)

where O(T · d2) represents time-axis mixing and O(d · T 2) represents feature-axis mixing.

E.5 ModernTCN

ModernTCN employs depthwise-separable convolutions to process time series data efficiently. Let
Cin and Cout denote the input and output channel dimensions, and k the kernel size. The complexity
is:

OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout), (16)

where O(T · k · Cin) is for depthwise convolutions and O(T · Cin · Cout) for pointwise convolutions.

E.6 iTransformer

iTransformer applies self-attention across variate dimensions rather than temporal dimensions. Let N
denote the number of variates, T the sequence length, and d the hidden dimension size:

OiTransformer(T,N, d) = O(T ·N2 · d) +O(T ·N · d2), (17)

where O(T ·N2 · d) arises from self-attention across variates and O(T ·N · d2) from the feedforward
network.

E.7 Comparison of Complexities

The complexities of the models analyzed are as follows:

16



OTTT-LTSF(T, d, k, U) = O(T · k · d) +O(T · d2) +O(U · T · d2), (18)

OTimeMachine(T, d) = O(T · d) +O(T · d2), (19)

OPatchTST(T, d, patch_size) = O(T · d) +O(T 2
p · d) +O(Tp · d2), (20)

OTSMixer(T, d) = O(T · d2) +O(d · T 2), (21)
OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout), (22)

OiTransformer(T,N, d) = O(T ·N2 · d) +O(T ·N · d2). (23)

E.8 Summary of Model Complexities

• TTT-LTSF: Incorporates the complexity of the Mamba backbone (O(T · k · d+ T · d2))
with additional overhead for test-time updates (O(U · T · d2)).

• TimeMachine: Combines efficient linear operations and multi-resolution decomposition,
maintaining a linear dependency on T for most operations.

• PatchTST: Reduces sequence length via patch embedding, resulting in a complexity depen-
dent on Tp = T/patch_size.

• TSMixer: Uses fully connected layers for time and feature mixing but suffers from quadratic
dependency on T or d, making it less scalable.

• ModernTCN: Relies on depthwise-separable convolutions, achieving linear complexity in
T while maintaining flexibility in channel dimensions (Cin, Cout).

• iTransformer: Applies self-attention across variates (N ) instead of the temporal axis (T ),
making it efficient for long sequences with a limited number of variates.

E.9 Key Insights

• Efficiency: - ModernTCN and TimeMachine are the most efficient for long sequences due
to their linear dependency on T . - PatchTST benefits from sequence length reduction via
patch embedding, but its quadratic dependency on Tp makes it less scalable for small patch
sizes.

• Robustness: - TTT-LTSF (with Mamba) introduces additional adaptability through test-
time updates, enhancing robustness to distribution shifts. The use of a Mamba backbone
keeps the complexity manageable compared to Transformer-based backbones.

• Dimensionality Impact: - TSMixer struggles with high-dimensional data due to its
quadratic dependency on T or d, making it less practical for large-scale applications. -
iTransformer scales better when the number of variates (N ) is smaller than the sequence
length (T ).

• Scalability: - ModernTCN and TimeMachine remain scalable for both long sequences
and high-dimensional data. - iTransformer is effective for scenarios with long sequences
but limited variates, avoiding the quadratic cost of traditional self-attention across T .

17


	Introduction
	Related Work
	Model Architecture
	Experiments and Evaluation
	Prediction & Sequence Length Analysis and Ablation Study
	Conclusion and Future Work
	Appendix A: TTT vs Mamba 
	Mamba: Gated Linear RNN via State Space Models (SSMs)
	TTT: Test-Time Training with Dynamic Hidden States
	Comparison of Complexity and Adaptability

	Appendix B: Model Components and Motivation
	Motivation of TTT on Non-Stationary Data
	Hierarchical Embedding
	Two Level Contextual Cue Modeling
	Two Channel Modes
	TTT Block and Proposed Architectures
	Prediction
	Normalization

	Appendix C: Analysis on Increased Prediction and Sequence Length
	Experimental Setup with Enhanced Architectures
	Results and Statistical Comparisons for Proposed Architectures
	Results and Statistical Comparisons for Increased Prediction and Sequence Lengths
	Effect of Sequence Length
	Effect of Prediction Length

	Computational Complexity Comparison
	Complexity Derivation
	Computational Complexity Analysis of Modules
	TTT Modules
	Mamba Modules
	Transformer Modules
	Convolutional Block in ModernTCN

	Comparison of Complexities

	Computational Complexity Analysis of Models
	Test-Time Learning for Time Series Forecasting (TTT-LTSF)
	TimeMachine
	PatchTST
	TSMixer
	ModernTCN
	iTransformer
	Comparison of Complexities
	Summary of Model Complexities
	Key Insights


