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ABSTRACT

Semi-supervised semantic segmentation aims to learn from a limited amount of
labeled data and a large volume of unlabeled data, which has witnessed impres-
sive progress with the recent advancement of deep neural networks. However,
existing methods tend to neglect the fact of class imbalance issues, leading to the
Matthew effect, that is, the poorly calibrated model’s predictions can be biased
towards the majority classes and away from minority classes with fewer samples.
In this work, we analyze the Matthew effect present in previous methods that hin-
der model learning from a discriminative perspective. In light of this background,
we integrate generative models into semi-supervised learning, taking advantage of
their better class-imbalance tolerance. To this end, we propose DiffMatch to for-
mulate the semi-supervised semantic segmentation task as a conditional discrete
data generation problem to alleviate the Matthew effect of discriminative solutions
from a generative perspective. Plus, to further reduce the risk of overfitting to the
head classes and to increase coverage of the tail class distribution, we mathemat-
ically derive a debiased adjustment to adjust the conditional reverse probability
towards unbiased predictions during each sampling step. Extensive experimental
results on various domains (natural image/remote sensing image/medical image
domains) across multiple benchmarks, especially in the most limited label sce-
narios with the most serious class imbalance issues, demonstrate that DiffMatch
performs favorably against state-of-the-art methods. Code and models will be
made available to facilitate future research.

1 INTRODUCTION

Machine learning, especially deep learning, has been consistently reported to achieve competitive or
even superior performance compared to human beings in certain supervised learning tasks (LeCun
et al., 2015; He et al., 2016a). In real-world scenarios, however, its data-driven nature makes it
heavily dependent on massive annotations, especially at the dense pixel level, which is laborious
and time-consuming to gather (taking semantic segmentation as a case study). To alleviate the
data-hunger issue, considerable works (Wang et al., 2023b; Na et al., 2023; Wang et al., 2023a;
Liang et al., 2023) have turned their attention to semi-supervised semantic segmentation in pursuit
of bypassing the labeling cost, demonstrating great potential in widespread applications (Siam et al.,
2018; Asgari Taghanaki et al., 2021). Since only limited labeled data is accessible, how to fully
exploit a large volume of unlabeled data to improve the model’s generalization performance for
robust segmentation is thus extremely challenging. To leverage unlabeled data effectively, pseudo-
labeling (Lee et al., 2013; Rizve et al., 2021) and consistency regularization (Sajjadi et al., 2016;
Laine & Aila, 2016) have emerged as mainstream paradigms for semi-supervised segmentation.
Recently, these two paradigms are often assembled in the form of a teacher-student scheme (Wang
et al., 2022a; Chen et al., 2023a). In this scheme, the teacher network, with a weakly augmented
view, generates pseudo labels to guide the counterparts from the student network in the presence of
a strongly augmented view, following the smoothness assumption (Chapelle et al., 2009).

From the perspective of probabilistic modeling, almost all de facto methods can be unified as dis-
criminative models, which directly model the conditional probability of discriminating different
values across classes for given pixels of an image (i.e., maximizing posterior probability). Despite
yielding promising results, these methods tend to neglect the fact of class imbalance issue (i.e.,
long-tailed distribution). For example, the pixel count of head class road can be hundreds of times
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Figure 1: We count the training samples of each class on Cityscapes (Cordts et al., 2016) under
1/16 partition protocols and compare the proposed DiffMatch with the highly competitive Uni-
Match (Yang et al., 2022) in terms of Pseudo Label Count and IoU, assuming that the ground truth
for unlabeled data is available solely for theoretical analysis purposes. (a) Prediction distribution
of head classes. (b) Prediction distribution of tail classes. (c) Performance of head classes. (d)
Performance of tail classes. Our DiffMatch strives to mitigate the Matthew effect raised by the class
imbalance issue and stands out for head/tail classes.

larger than that of tailed class motorcycle in the widely used Cityscapes dataset (Cordts et al., 2016)
as shown in Figure 1. This highly skewed distribution can lead to the Matthew effect; that is, the
poorly calibrated model’s predictions can be biased towards the majority classes and away from mi-
nority classes with fewer samples. This is a corollary raised by discriminative models, which only
learn decision boundaries between classes while disregarding the underlying distribution. In other
words, these methods, by minimizing empirical risk under the assumption of low-density separa-
tion, are highly fragile to the number of pixels per class (i.e., class imbalance), leading to decision
boundaries that can be drastically altered by the majority classes (i.e., confirmation bias (Guo et al.,
2017)). This affects the quality of pseudo labels, and then aggressively training with erroneous
pseudo labels, in turn, exacerbates the model’s bias in a self-reinforcing manner, compromising per-
formance. For example, UniMatch (Yang et al., 2022) tends to prioritize the head classes in Figure 1
(a) over tail classes in Figure 1 (b) in terms of pseudo label count compared to real distribution.
To make matters worse, the negative impact is inevitably amplified by inbuilt low-data regimes of
semi-supervised segmentation, hindering the learning process. Then, the question naturally arises:
How to effectively alleviate the negative impact raised by class imbalance issue and move towards
unbiased learning?

In this work, we analyze the Matthew effect present in previous methods that hinder the model’s
learning when dealing with class imbalance issues from a discriminative perspective. Compared
with the discriminative models, the generative models conceptually exhibit better class-imbalance
tolerance, attributed to their better asymptotic error approaching rate (Ng & Jordan, 2001) (detailed
in Appendix A). In light of this background, we turn to formulate the semi-supervised semantic
segmentation task as a conditional discrete data generation problem to model the underlying distri-
bution, alleviating the Matthew effect of discriminative solutions from a generative perspective. To
this end, we propose DiffMatch to learn a series of state transitions under the guidance of the input
image, transforming noise from a known noise distribution into a prediction that better matches the
real distribution, maximizing the mutual information between the learned distribution and the under-
lying real one. A heuristic explanation of the transition process is that it can be viewed as the human
process of discriminating objects, gradually scrutinizing them closer after an initial glance with the
naked eye. By formulating the pseudo-label generation of the teacher-student scheme as an opti-
mization problem progressively solved by the denoising diffusion process, DiffMatch favors a better
capacity to tackle the severe class imbalance issue in semi-supervised learning. Plus, to further re-
duce the risk of overfitting to the head classes and to increase coverage of the tail class distribution,
we mathematically derive a debiased adjustment based on the state transition function of the diffu-
sion process to adjust the conditional reverse probability towards unbiased predictions during each
sampling step. This adjustment, formalized as an additional regularization term, further unlocks the
potential of DiffMatch to mitigate the Matthew effect effectively and is in line with the step-by-step
sampling nature of the diffusion model. In practice, tackling class imbalance issue appropriately
enables well-calibrated models to generate high-quality pseudo labels (see Figure 1 (c) & (d)), and
in turn, improved quality of pseudo labels favorably manifests the mitigation of Matthew effect (see
Figure 1 (a) & (b)), moving the learning toward unbiased.
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Extensive experiments on various domains (natural image domain, remote sensing image domain,
and medical image domain) across diverse benchmarks spanning different backbones demonstrate
that our method performs favorably against state-of-the-art semi-supervised semantic segmentation
methods, especially in the most limited label scenarios with the most severe class imbalance issues
(e.g., +2.6%/+2.0% compared to DDFP (Wang et al., 2024) and RankMatch (Mai et al., 2024) re-
spectively on PASCAL classic under 1/16 protocol with the ResNet-101), evidencing the merits of
modeling underlying distribution in the challenging dense pixel-level classification task.

2 RELATED WORK

Class-Imbalanced Semi-Supervised Segmentation. Real-world datasets usually yield a class-
imbalanced distribution, especially in dense prediction tasks (e.g., semantic segmentation), mak-
ing the standard training of machine learning models harder to generalize. Existing methods to
re-balance the training objective can be roughly categorized into two paradigms: (1) re-sampling
based methods (Chawla et al., 2002; He & Garcia, 2009; Byrd & Lipton, 2019; Chang et al., 2021;
Shi et al., 2023; Wei et al., 2022) to adjust prediction labels by over-sampling the minority class
or under-sampling the majority class. (2) re-weighting based methods (Cao et al., 2019; Cui et al.,
2019; Huang et al., 2019; Ren et al., 2018; Hu et al., 2019; Chen et al., 2023d) to influence the
loss function conditioned on specific criteria (e.g., imposing the weights by strictly inverse the class
frequency). However, all these methods assume all labels are accessible to alleviate the class imbal-
ance issue and thus inapplicable to the unlabelled data in semi-supervised semantic segmentation.
Recently, several studies have attempted to transfer these techniques on top of pseudo labels such as
re-sampling (Wei et al., 2021), re-weighting (Wang et al., 2022a; Sun et al., 2023b; Xu et al., 2021;
He et al., 2021; Wang et al., 2022b; Peng et al., 2023) (e.g., Adsh (Guo & Li, 2022) utilizes adaptive
thresholding that can be considered as binary weighting for semi-supervised learning, U2PL (Wang
et al., 2022b) adjusts the threshold adaptively to determine the reliability of pixels and constructs
the extra supervised signal based on the negative classes of unreliable pixels, paying more attention
to the tail classes), or a combination of both for semi-supervised learning (e.g., AEL (Hu et al.,
2021) adaptively balances the training of different categories). Nevertheless, these pseudo labels are
often noisy as they are generated from poorly calibrated models. Furthermore, USRN (Guan et al.,
2022) explores unbiased subclass regularization for alleviating the class imbalance issue. However,
these discriminative methods are still confined to learning decision boundaries, which are brittle to
the class imbalance issue, and the inherent nature of contempt for the underlying distribution re-
mains unchanged. As a significant departure from the status quo, we formulate the semi-supervised
semantic segmentation task as a conditional discrete data generation problem to model underlying
distribution to overcome the shortcomings of discriminative solutions from a generative perspective.

Diffusion Models for Visual Perception. In addition to the significant progress in content genera-
tion, diffusion models have demonstrated incremental potential in the domain of perception (Chen
et al., 2023b; Gu et al., 2022; Chen et al., 2023c; Brempong et al., 2022). Earlier studies primarily
delve into investigating latent representations of diffusion models for zero-shot image segmenta-
tion (Baranchuk et al., 2021; Burgert et al., 2022) or applied diffusion models to medical image
segmentation (Wolleb et al., 2022; Wu et al., 2022). Despite substantial progress, the outcomes of
these efforts remain limited to specific local designs. The recent Pix2Seq-D (Chen et al., 2023c)
extends the bit-diffusion (Chen et al., 2022) to panoptic segmentation, marking the first work of
such expansion in a broader context. Additionally, DiffusionDet (Chen et al., 2023b) and Diffusion-
Inst (Gu et al., 2022) explore diffusion models for query-based object detection (Carion et al., 2020)
and instance segmentation (Zhang et al., 2021). Recently, several works have introduced diffusion
into various semi-supervised tasks, such as classification, federated learning, time-series classifica-
tion, and 3d object detection. Among them, both DPT (You et al., 2024) and FedDISC (Yang et al.,
2024) aim to introduce an external diffusion model to generate data and utilize these data in a multi-
stage training manner. DiffShape (Liu et al., 2024b) utilizes diffusion in a self-supervised manner
to improve representation capability, and Diffusion-ss3d (Ho et al., 2023) exploits the denoising
ability of the diffusion to improve the quality of the pseudo label. However, these methods differ
from ours both from motivation to implementation. We comprehensively and meticulously compare
our DiffMatch with these diffusion-based semi-supervised methods in Appendix F. In general, Diff-
Match completely utilizes the characteristics of the diffusion process for semi-supervised semantic
segmentation, aiming to provide a new perspective to alleviate the Matthew effect.
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Figure 2: Our DiffMatch framework, which
includes a feature extractor g(·) and a mask
denoiser f(·). The diffusion process is con-
ducted progressively in mask denoiser, aiming
for lightweightness.
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Figure 3: Conditional discrete data genera-
tion pipeline for semi-supervised semantic seg-
mentation. Specifically, a conditional diffusion
model is employed, where q is the forward dif-
fusion process and pθ is the inverse process.

3 METHOD

In this section, we first formulate the semi-supervised semantic segmentation problem as prelimi-
naries (Section 3.1), specify the core framework of DiffMatch (Section 3.2 and Section 3.3), and
elaborate the training (Section 3.4) and inference (Section 3.5) details.

3.1 PROBLEM DEFINITION

Given a labeled set Dl = {(xl
i,y

l
i)}N

l

i=1 and an unlabeled set Du = {xu
i }N

u

i=1, where N l and Nu

denote the number of labeled and unlabeled images, respectively, Nu ≫ N l, semi-supervised se-
mantic segmentation aims to train a segmentation model with limited labeled data and fully exploit
a large volume of unlabeled data. As shown in Figure 2, the popular teacher-student scheme consists
of a teacher network and a student network. The student network is guided by two sources of super-
vision, including the ground truth yl for the labeled data xl (yielding supervised loss Lsup) and the
pseudo labels generated by the teacher network for the unlabeled data (constituting the unsupervised
loss Lunsup). In specific, for the unlabeled data, the unsupervised loss Lunsup is constructed in the
form of consistency regularization, that is, the teacher network with a weakly augmented perturba-
tion view xu

w generates pseudo labels ỹu
w to instruct the counterparts ỹu

s from the student network
under the presence of a strongly augmented perturbation view xu

s .

The teacher network can either be the same as the student network or an exponentially moving
average (EMA) version of the student network. Note that in this paper, the teacher and student
networks are identical, following UniMatch (Yang et al., 2022), to ensure simplicity and efficiency.
The overall objective is the combination of supervised and unsupervised losses L = Lsup+Lunsup.

In this work, we integrate generative models into semi-supervised learning, taking advantage of its
better class-imbalance tolerance. In the next section, we elaborate on the modeling of our DiffMatch
in detail, that is, how to realize closer collaboration between the diffusion process and the teacher-
student paradigm.

3.2 THE DIFFMATCH FRAMEWORK

Figure 2 sheds light on the architecture of generation modeling for proposed DiffMatch. In specific,
during training, the Gaussian noise ϵ controlled by a noise schedule (Ho et al., 2020) is added to the
ground truth yl (from labeled data) or pseudo labels ỹu

w (from unlabeled data) to construct the noisy
masks. Then, the noisy mask is fused with the pixel embeddings z (acts as the condition) from the
feature extractor g(·), and the resulting fused features are fed into a lightweight mask denoiser f(·)
to generate the prediction without noise. At the inference phase, DiffMatch generates predictions
by reversing the learned diffusion process, which transforms a known Gaussian distribution into a
prediction that better matches the real distribution under the guidance of the images, maximizing the
mutual information between the learned distribution and the underlying real one.

Due to the iterative nature of the diffusion sampling process, it requires multiple runs of the model
during the inference phase. To minimize computational cost, we separate the entire network into
two parts: the feature extractor and the mask denoiser following Chen et al. (2023c); Ji et al. (2023).
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The former forward only once to extract the pixel embedding, and then the mask denoiser employs
it as the condition rather than the raw image to iteratively reads out the prediction mask.

3.2.1 THE FEATURE EXTRACTOR

The feature extractor g(·) aims to extract the semantic features of the image x and upsample to a
high-resolution pixel embedding z ∈ RH×W×D with an FPN-style structure (Lin et al., 2017) for
sufficient representations. In our experiments, we adopt DeepLabv3+ (Chen et al., 2018) without
the last layer classifier for a fair comparison (Na et al., 2023; Sun et al., 2023a), where D = 256.

3.2.2 THE MASK DENOISER

Denoiser Network. The input of the mask decoder f(·) is the concatenation of the noisy mask yt,
which is obtained by adding Gaussian noise ϵ to the ground truth from labeled data (yl) or pseudo
labels from unlabeled data (ỹu

w), and the pixel embedding z from the feature extractor. To further
minimize computational cost, we simply stack L layers of deformable attention (Zhu et al., 2020; Ji
et al., 2023) as the mask denoiser (The number of layers L is set as 4 by default. Its effect can be
referred to in Table 7). This lightweight design enables efficient reuse of shared parameters during
multi-step denosing diffusion processes (i.e., after running the feature extractor only once, reuse
the efficient denoiser in several iterative steps), while maintaining highly competitive performance.
More sophisticated mask denoiser are possible, to leverage recent advances in architecture designs
(e.g., TransUNet (Chen et al., 2021a)), but this is not our main focus so we opt for simplicity.

Forward and Reverse Process. Inspired by non-equilibrium thermodynamics, the optimization
goal of the diffusion model is to maximize the likelihood to favor the alignment of the learned distri-
bution and underlying real one. To this end, the diffusion model learns a series of state transitions (as
shown in Figure 3) to transform noise ϵ (yT = ϵ) from a known noise distribution into a data sam-
ple y0 from the data distribution p(y0). To learn this mapping, we first define a forward transition
q (yt | yt−1) from state yt−1 to a more noisy state yt, which is defined as:

yt =
√
αsyt−1 +

√
1− αsϵ =⇒ q (yt | yt−1) = N (yt;

√
αsyt−1, (1− αs) I) , (1)

where t is from uniform density on [0, 1] and ϵ is drawn from standard normal density. αs denotes
the noise schedule (Ho et al., 2020; Song et al., 2020), meaning that the larger the time step t, the
more the noise dominates and finally converges to pure Gaussian noise. Denoting the conditional
reverse process as pθ(yt | yt+1, z), the straightforward objective is:

Ldiff =
∑
t

DKL [q (yt | yt−1) ∥pθ (yt | yt+1, z)] . (2)

Benefiting from the reparameterization technique, the forward process can be simplified that directly
obtaining yt from y0, as:

yt =
√
ᾱty0 +

√
1− ᾱtϵ =⇒ q (yt | y0) = N

(
yt;

√
ᾱty0, (1− ᾱt) I

)
, (3)

where ᾱt =
∏t

s=0 αs. Similarly, we can learn a mask denoiser f(·) to predict y0 directly from yt

under the guidance of z, i.e., f(yt, z) = pθ(y0 | yt, z). The objective can be simplified to:

Ldiff = ∥f (yt, z)− y0∥2. (4)

Note that in our semi-supervised setting, the data samples are either the ground truth mask from
labeled data (y0 = yl) or pseudo labels from unlabeled data (y0 = ỹu

w). In specific, deriving from
Equation 4, the supervised loss Lsup for labeled data can be formulated as:

Lsup =
∥∥f (yl

t, g(x
l)
)
− yl

0

∥∥2 . (5)

In the same way, for the unlabeled data, the unsupervised loss Lunsup can be formulated as:

Lunsup =
∥∥f (ỹu

t,w, g(x
u
s )
)
− ỹu

0,w

∥∥2 , (6)

where ỹu
0,w = f(ϵ, g(xu

w)) denotes the pseudo labels and s/w means the strong/weak augmenta-
tion. Intuitively, the unsupervised loss fits with the consistency regularization of a standard teacher-
student paradigm in semi-supervised semantic segmentation. In Algorithm 1, we present the pseudo
algorithm of DiffMatch to clearly summarize our method. At this point, we have explored the in-
tegration of the diffusion process and the teacher-student paradigm to alleviate the class imbalance
issue from a generative perspective.
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3.3 DEBIASED ADJUSTMENT

Given the long-tailed nature of the class distribution p(y0) in practice, the learned conditional inverse
probability pθ(y0 | yt, z) is inevitably biased. To further improve the tolerance of the diffusion
model to class imbalance, we propose the debiased adjustment. First, we represent the conditional
inverse probability under ideal condition ∗ (i.e., when the class distribution is uniform, p∗(y0) =

1
C ,

where C is the number of classes) as p∗θ(y0 | yt, z). With the Bayesian formula, we deduce the
relation between pθ(y0 | yt, z) and p∗θ(y0 | yt, z) (refer to Appendix C for detailed derivation):

p∗θ (yt | yt+1, z) = pθ (yt | yt+1, z)
pθ (yt)

p∗θ (yt)

q̂∗ (yt+1)

q̂ (yt+1)
. (7)

Intuitively, we can obtain the ideal conditional inverse probability p∗θ (yt | yt+1, z) by modulate
pθ (yt | yt+1, z) by a factor pθ(yt)

p∗
θ(yt)

q̂∗(yt+1)
q̂(yt+1)

. However, directly estimating this modulation factor at
each time step t is highly challenging. Instead, we incorporate it into the training loss function to
achieve an equivalent objective. Replacing the pθ(y0 | yt, z) in Equation 2 with p∗θ(y0 | yt, z):

L∗
diff =

∑
t

DKL [q (yt | yt−1) ∥p∗θ (yt | yt+1, z)]

=
∑
t

{
DKL [q (yt | yt−1) ∥pθ (yt | yt+1, z)] + tDKL

[
pθ (yt−1 | yt)

Cpθ (y0)
∥p∗θ (yt−1 | yt)

]}
=Ldiff +

∑
t

{
tDKL

[
pθ (yt−1 | yt)

Cpθ (y0)
∥p∗θ (yt−1 | yt)

]}
.

(8)
In practice, we approximate the pθ(yt−1 | yt) with Monte-Carlo sampling from pθ(yt−1 | yt, z)
and the loss reduces to:

L∗
diff = ∥f (yt, z)− y0∥2 + τt

∥∥∥∥f (yt, z)−
f (yt, z)

Cp (y0)

∥∥∥∥2 , (9)

where τ is the trade-off weight for the regularization term, set to 0.1 by default, and C is the number
of classes. Please refer to Appendix C for detailed derivation. Intuitively, the second term imposes a
constraint directly between the prediction of mask denoiser and its roughly debiased version, reduc-
ing the risk of overfitting to the head classes and increasing coverage of the tail class distribution.
Based on Equation 9, the supervised loss and unsupervised loss are updated as:

Lsup =
∥∥f (yl

t, g(x
l)
)
− yl

0

∥∥2 + τt

∥∥∥∥∥f (yl
t, g(x

l)
)
−

f
(
yl
t, g(x

l)
)

Cp
(
yl
0

) ∥∥∥∥∥
2

, (10)

Lunsup =
∥∥f (ỹu

t,w, g(x
u
s )
)
− ỹu

0,w

∥∥2 + τt

∥∥∥∥∥f (ỹu
t,w, g(x

u
s )
)
−

f
(
ỹu
t,w, g(x

u
s )
)

Cp
(
ỹu
0,w

) ∥∥∥∥∥
2

. (11)

Note that, in our implementation, p(yl
0) is statistically derived from the ground truth of labeled

data while the p(ỹu
0,w) is initialized as p(yl

0) and updated based on its own pseudo label in an
exponential moving average (EMA) manner to progressively align the class prior on unlabeled data.
By formulating the pseudo label generation of consistency regularization as an optimization problem
progressively solved by the denoising diffusion process, DiffMatch bridges the gap by drifting biased
prediction towards unbiased learning.

3.4 TRAINING

Our main training objective is to learn a series of state transitions under the guidance of input image
to transform noise from a known noise distribution into prediction that better matches real class
distribution. We adopt analog bits encoding strategy (Chen et al., 2022) to first convert discrete
integers from ground truth or pseudo labels into bit strings, and then cast them as real number.
When constructing the analog bits, we can shift and scale them into {−b, b} (The scaling factor b
is by default set to 0.1. Its impact can be referred to in Table 8). To draw samples, we follow the
same procedure as sampling in a continuous diffusion model, except that we apply a quantization
operation at the end by simply thresholding the generated analog bits. The training procedure for
the diffusion process is provided in Algorithm 2.
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Table 1: Quantitative results of different SSL methods on PASCAL classic set. We report mIoU (%)
under various partition protocols and show the improvements over Sup.-only baseline. The best is
highlighted in bold.

Method ResNet-50 ResNet-101
1/16
(92)

1/8
(183)

1/4
(366)

1/2
(732)

Full
(1464)

1/16
(92)

1/8
(183)

1/4
(366)

1/2
(732)

Full
(1464)

Sup.-only 44.0 52.3 61.7 66.7 72.9 45.1 55.3 64.8 69.7 73.5

FixMatch[NeurIPS’20] 60.1 67.3 71.4 73.7 76.9 63.9 73.0 75.5 77.8 79.2
PCR[NeurIPS’22] − − − − − 70.0 74.7 77.1 78.5 80.7

GTA-Seg[NeurIPS’22] − − − − − 70.0 73.2 75.6 78.4 80.5
ReCo[ICLR’22] 64.8 72.0 73.1 74.7 − − − − − −

AugSeg[CVPR’23] 64.2 72.1 76.1 77.4 78.8 71.0 75.4 78.8 80.3 81.3
UniMatch[CVPR’23] 67.4 71.9 75.3 78.0 79.3 73.5 75.4 78.7 80.2 81.9

NP-SemiSeg[ICML’23] 65.7 72.3 75.7 77.4 − − − − − −
DAW[NeurIPS’23] 68.5 73.1 76.3 78.6 79.7 74.8 77.4 79.5 80.6 81.5
DDFP[CVPR’24] − − − − − 74.9 78.0 79.5 81.2 81.9

RankMatch[CVPR’24] 71.6 74.6 76.7 78.8 80.0 75.5 77.6 79.8 80.7 82.2
PRCL[IJCV’24] − − − − − 71.2 72.2 75.2 76.2 78.3

DiffMatch (Ours) 73.3 75.7 77.9 79.6 81.6 77.5 78.3 80.6 81.5 83.3
∆ ↑ +29.3 +23.4 +16.2 +12.9 +8.7 +32.4 +23.0 +15.8 +11.8 +9.8

Table 2: Quantitative results of different SSL methods on PASCAL blender set. We report mIoU
(%) under various partition protocols and show the improvements over Sup.-only baseline.

Method ResNet-50 ResNet-101
1/16 (662) 1/8 (1323) 1/4 (2646) 1/16 (662) 1/8 (1323) 1/4 (2646)

Sup.-only 62.4 68.2 72.3 67.5 71.1 74.2

FixMatch[NeurIPS’20] 70.6 73.9 75.1 74.3 76.3 76.9
AEL[NeurIPS’21] − − − 77.2 77.6 78.1
PCR[NeurIPS’22] − − − 78.6 80.7 80.8

GTA-Seg[NeurIPS’22] − − − 77.8 80.5 80.6
AugSeg[CVPR’23] 74.7 76.0 77.2 77.0 77.3 78.8

UniMatch[CVPR’23] 75.8 76.9 76.8 78.1 78.4 79.2
CFCG[ICCV’23] 75.0 77.1 77.7 76.8 79.1 79.9

NP-SemiSeg[ICML’23] 73.4 76.5 76.7 − − −
DAW[NeurIPS’23] 76.2 77.6 77.4 78.5 78.9 79.6
DDFP[CVPR’24] − − − 78.3 78.8 79.8

RankMatch[CVPR’24] 76.6 77.8 78.3 78.9 79.2 80.0
PRCL[IJCV’24] − − − 77.9 79.1 79.9

DiffMatch (Ours) 77.9 78.7 79.0 80.3 81.4 81.6
∆ ↑ +15.5 +10.5 +6.7 +12.8 +10.3 +7.4

3.5 INFERENCE

At the inference phase, the target data sample y0 is reconstructed from noise yT with the mask
denoiser f(·) and an updating rule (Song et al., 2020; Ho et al., 2020) in an iterative Markovian way.
We choose the DDIM update rule (Song et al., 2020) for the sampling process. We also represent the
trade-off between performance and computation by different sampling steps for multi-step inference
in Table 5. Please refer to Algorithm 3 for details about the sampling procedure for diffusion process.
Note that to reduce inference overhead, we do not employ any post-processing techniques, such as
self-condition (Chen et al., 2022), and sampling drift (Ji et al., 2023), etc.

4 EXPERIMENTS

In this section, we give comprehensive evaluations of various class-imbalanced datasets. We first
describe the experimental setups in Section 4.1. Then, we present the empirical results of our Diff-
Match and other compared competitors under extensive setups in Section 4.2. Finally, we present
detailed analyses to help understand our method in Section 4.3.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three datasets with severe class-imbalanced issues. (1) PAS-
CAL VOC 2012 (Everingham et al., 2010) contains 21 classes with 1,464 and 1,449 finely annotated
images for training and validation, respectively. We augment the original training set (i.e., classic)
with additional 9,118 coarsely annotated images in SBD (Hariharan et al., 2011) to get a blender
training set following other researches (Chen et al., 2021b; Hu et al., 2021). According to statistics,
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Table 3: Quantitative results of different SSL methods on Cityscapes. We report mIoU (%) under
various partition protocols and show the improvements over Sup.-only baseline.

Method ResNet-50 ResNet-101
1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488) 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

Sup.-only 63.3 70.2 73.1 76.6 66.3 72.8 75.0 78.0

FixMatch[NeurIPS’20] 72.6 75.7 76.8 78.2 74.2 76.2 77.2 78.4
AEL[NeurIPS’21] 74.0 75.8 76.2 − 75.8 77.9 79.0 80.3
PCR[NeurIPS’22] − − − − 73.4 76.3 78.4 79.1

GTA-Seg[NeurIPS’22] − − − − 69.4 72.0 76.1 −
AugSeg[CVPR’23] 73.7 76.5 78.8 79.3 75.2 77.8 79.5 80.4

UniMatch[CVPR’23] 75.0 76.8 77.5 78.6 76.6 77.9 79.2 79.5
Co-Train[ICCV’23] − 76.3 77.1 − 75.0 77.3 78.7 −

NP-SemiSeg[ICML’23] 73.0 77.1 78.8 78.7 − − − −
DAW[NeurIPS’23] 75.2 77.5 79.1 79.5 76.6 78.4 79.8 80.6
DDFP[CVPR’24] − − − − 77.1 78.1 79.8 80.8

RankMatch[CVPR’24] 75.4 77.7 79.2 79.5 77.1 78.6 80.0 80.7
PRCL[IJCV’24] − − − − 73.4 77.0 77.9 80.0

DiffMatch (Ours) 76.5 78.3 79.8 80.0 77.8 79.1 80.5 81.3
∆ ↑ +13.2 +8.1 +6.7 +3.4 +11.5 +6.3 +5.5 +3.3

the pixel number of the head class background is more than 200× that of the tail class bicycle. (2)
Cityscapes (Cordts et al., 2016) consists of 2,975 images for training and 500 images for validation
with 19 classes. The ratio of head class road to tail class motorcycle reaches 400. (3) COCO (Lin
et al., 2014), composed of 118k/5k training/validation images, is a more severe class-imbalanced
dataset, containing 81 classes to predict, with over 10, 000 head-to-tail ratio. To further demonstrate
the versatility of DiffMatch, we extend our experiments in two crucial real-world applications: re-
mote sensing interpretation and medical image analysis, as shown in Appendix J
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UniMatch (left) and DiffMatch (right).

Implementation Details. For a fair and exhaustive comparison, we use ResNet-50/101 (He et al.,
2016b) pretrained on ImageNet (Krizhevsky et al., 2012) and Xception-65 (Chollet, 2017) as the
backbones and DeepLabv3+ (Chen et al., 2018) as the decoder. We set the sampling step as 3
at inference, the number of layers in mask denoiser L as 4 and the scaling factor b as 0.1 for all
experiments. During training, we randomly crop 513 × 513 for PASCAL and COCO datasets, and
train 80 and 30 epochs, respectively. For Cityscapes, the cropsize is set as 801×801 and the training
epoch is 240. The batch size of the three datasets is set to 8. Polynomial Decay learning rate policy
is applied throughout the whole training. The strong augmentation contains feature dropout, random
color jitter, grayscale and Gaussian blur. The weak augmentation consists of random crop, resize
and horizontal flip. All experiments are conducted on 8× RTX 3090 GPUs (memory is 24G/GPU).

4.2 EMPIRICAL RESULTS

We evaluate our method on PASCAL (classic and blender), Cityscapes datasets with ResNet-50/101,
and COCO dataset with Xception-65 under different semi-supervised learning settings (i.e., parti-
tion protocols). The partition protocol (e.g., 1/16) indicates the ratio of labeled data used in training
to the entire training set. It is worth noting that the smaller the partition protocol, the less labeled
data is used for training, and the more biased the training may be. The consistently dominant perfor-
mance under all partition protocols with different backbones on all datasets against other competi-
tors (FixMatch (Sohn et al., 2020), PseudoSeg (Zou et al., 2020), AEL (Hu et al., 2021), ReCo (Liu
et al., 2021), PC2Seg (Zhong et al., 2021), PCR (Xu et al., 2022), GTA-Seg (Jin et al., 2022),
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Table 4: Quantitative results of different SSL
methods on COCO.

Method 1/512 1/256 1/128 1/64 1/32

Sup.-only 22.9 28.0 33.6 37.8 42.2

PseudoSeg 29.8 37.1 39.1 41.8 43.6

PC2Seg 29.9 37.5 40.1 43.7 46.1

MKD 30.2 38.0 42.3 45.5 47.3

UniMatch 31.9 38.9 44.4 48.2 49.8

DiffMatch (Ours) 34.6 41.9 47.2 49.8 52.4

∆ ↑ +11.7 +13.9 +13.6 +12.0 +10.2

Table 5: Accuracy vs. Efficiency.

Method mIoU
(92)

mIoU
(1464)

FPS
(↑)

#Param

UniMatch 67.4 79.3 24.9 40.5M
Dis. Baseline 67.9 79.5 23.8 44.9M

DiffMatch w/o adj. 72.2 81.3 19.8 44.9M

step1 68.7 79.9 23.3
step2 71.2 80.7 21.2

DiffMatch step3 73.3 81.6 19.6 44.9M
step4 73.3 81.4 18.2
step5 73.4 81.7 16.9

Table 6: Performance of head & tail classes.

ResNet-50 PASCAL classic 1/16 (92)
mIoU mIoUh mIoUt

Sup.-only 44.0 66.5 28.1

♦ Re-Sampling 45.6 67.8 29.3
♦ Re-weighting 46.2 68.3 30.1

♠ FixMatch 60.1 78.4 48.4
♠ ReCo 64.8 81.2 49.6
♠ NP-SemiSeg 65.8 82.7 50.2

♣ DARP 61.5 79.9 49.0
♣ CReST 62.2 80.6 49.4
♣ FreeMatch 62.3 80.2 49.1
♣ DARS 62.7 82.5 50.3
♣ AEL 66.3 84.2 51.1
♣ U2PL 67.4 85.3 53.7
♣ USRN 66.8 83.9 51.8

DiffMatch (Ours) 73.3 89.3 66.8
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cowdining table
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Figure 6: Normalized performance on PASCAL
classic 92 for per class.

UniMatch (Yang et al., 2022), AugSeg (Zhao et al., 2023c), NP-SemiSeg (Wang et al., 2023c),
DAW (Sun et al., 2023b), CFCG (Li et al., 2023a), Co-Train (Li et al., 2023b), MKD (Yuan et al.,
2023), DDFP (Wang et al., 2024), RankMatch (Mai et al., 2024), PRCL (Xie et al., 2024)) proves the
effectiveness of our DiffMatch against the class imbalance issue, evidencing the merits of modeling
underlying distribution in the challenging dense pixel-level classification task.

Results on PASCAL. Table 1 and Table 2 show the comparison of our method with the SOTA meth-
ods on PASCAL classic and blender set. Compared with the supervised-only (Sup.-only) model, our
method achieves considerable performance improvements, demonstrating that the information in un-
labeled data is effectively utilized in our method. Moreover, in the label-scarce scenario, e.g., 1/16
(92) in PASCAL classic, our approach achieves 73.3% and 77.5% mIoU with the backbone ResNet-
50 and ResNet-101, boosting the SOTA DAW (Sun et al., 2023a) by 4.8% and 2.7%, respectively.
These superior results prove that our training is more unbiased.

Results on Cityscapes. Table 3 summarizes the performance of our DiffMatch and compared meth-
ods on the Cityscapes dataset. For the more class-imbalanced dataset (the ratio of head class road to
tail class motorcycle reaches 400), our method still achieves SOTA performance. Specifically, com-
pared with the leading methods DAW (Sun et al., 2023a), DiffMatch improves up to 1.3%/1.2% at
absolute mIoU gain under 1/16 partition protocols with ResNet-50/ResNet-101, respectively, show-
ing the superiority of our method over discriminative methods.

Results on COCO. COCO is a large-scale dataset where the class imbalance issue is most severe
(the number of head-to-tail ratio is more than 10,000). In Table 4, DiffMatch achieves surprising
performance lift compared with the discriminative model. For example, under the 1/512 partition
protocol, the performance of DiffMatch is superior to that of UniMatch (Yang et al., 2022) (34.6%
vs. 31.9%), this is in line with the goal of DiffMatch against class imbalance issue.

4.3 DETAILED ANALYSES

Performance in Head&Tail Classes. Considering that the Matthew effect refers to the bias in
model predictions, it can also be viewed as a measure of model calibration. This directly impacts

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the quality of pseudo-labels for unlabeled data, thereby affecting the model’s performance across
different classes. Therefore, we compare DiffMatch to other competitive methods to analyze the
effectiveness of addressing class imbalance by examining the performance of head/tail classes. To
show the source of our absolute performance gain, we present the mIoU of the top-5 classes (mIoUh)
and the bottom-5 classes (mIoUt) under PASCAL classic 1/16 (92) with ResNet-50. To make a
comprehensive comparison, we reproduce several methods based on their open-source code under
the same experiment setting, including class-imbalanced learning methods ♦, SSL methods ♠, and
recently proposed class-imbalanced SSL methods ♣. (1) Specifically, for class-imbalanced learning,
we consider the two most popular paradigms: a) Re-Sampling (Byrd & Lipton, 2019) and b) Re-
weighting (Cui et al., 2019); (2) for SSL methods, we take Fixmatch (Sohn et al., 2020), ReCo (Liu
et al., 2021) and NP-SemiSeg (Wang et al., 2023c) into consideration. (3) To further show the
efficacy of our proposal, we also compare it with the recently proposed algorithms that consider
SSL and class imbalance issues simultaneously, including DARP (Kim et al., 2020), CReST (Wei
et al., 2021), FreeMatch (Wang et al., 2022a), DARS (He et al., 2021), AEL (Hu et al., 2021),
U2PL (Wang et al., 2022b) and USRN (Guan et al., 2022). Please refer to Section 2 for more details.

As depicted in Table 6, we have the following findings: (1) It is not desirable to directly apply the
class-imbalanced learning method to SSL tasks because it does not utilize unlabeled data. (2) SSL
methods achieve certain performance gains, but still underperform in the tail classes. (3) Thanks
to the modeling of distributions and the derived debiased adjustment , DiffMatch yields favorable
performance especially in the tail classes, effectively alleviating the Matthew effect. To better un-
derstand the prediction bias of each class, as Figure 6 illustrates, DiffMatch achieves more unbiased
predictions on all 21 classes. Moreover, we provide training curves for the number of pseudo labels
in the head (road) and tail (motorcycle) classes in the Appendix D, demonstrating the effectiveness
of our DiffMatch in mitigating the Matthew effect.

Accuracy vs. Efficiency. We show the dynamic trade-off of DiffMatch between accuracy and ef-
ficiency in Table 5. To begin with, we construct a discriminative baseline (Dis. Baseline) with the
same extra deformable attention layers. (1) Comparing the 1st and 2nd rows, we can see that simply
increasing the number of parameters in the model does not lead to an effective performance im-
provement. Then, 2nd vs. 3rd indicates that the performance improvement of DiffMatch primarily
stems from modeling the underlying distribution, as opposed to discriminative models (Dis. Base-
line). (2) Comparing the 3nd row (DiffMatch w/o adj.) and the final DiffMatch, we can observe a
clear performance lift credited to debiased adjustment. This suggests the effectiveness of debiased
adjustment to adjust the conditional reverse probability, reducing the risk of overfitting to the head
classes and increasing coverage of the tail class distribution. (3) With the sampling step increase, the
performance gets better (same result can also be observed in Figure 10). When adopting 3 sampling
steps, the performance is further boosted while maintaining comparable FPS. These results show
that DiffMatch can iteratively infer multiple times with reasonable time cost.

Quality of Pseudo Label. To take a close look at DiffMatch, we showcase the confusion matrix
(Figure 5) and expected calibration error (Figure 4) on unlabeled data to directly measure the per-
formance of different models in the Matthew effect and model calibration respectively, on the 1/16
partition protocol of the Cityscapes dataset. The results show that the raw pseudo-labels generated
by UniMatch are biased toward the majority classes. For example, there are more than 20% exam-
ples that belong to class wall are predicted wrongly as class building. On the contrary, our DiffMatch
can achieve a more unbiased confusion matrix, striving to mitigate the Matthew effect. These re-
sults indicate that the quality of pseudo-labels is actually improved, which can help to improve the
generalization performance. Similarly, a better-calibrated model is obtained thanks to the modeling
of the underlying distribution by our DiffMatch (Figure 4). Based on this, well-calibrated models
will generate high-quality pseudo labels, and in turn, improved quality of pseudo labels could result
in a better estimation of distribution.

5 CONCLUSION

In this paper, we analyze the Matthew effect in previous methods that hinder model learning when
dealing with class imbalance issues from a discriminative view. we propose DiffMatch to formulate
the semi-supervised semantic segmentation task as a conditional discrete data generation problem
to model underlying distribution against the Matthew effect. DiffMatch offers a fresh generative
perspective to alleviating class imbalance, and we believe it has the potential to complement other
semi-supervised learning strategies to facilitate future advancements.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saeid Asgari Taghanaki, Kumar Abhishek, Joseph Paul Cohen, Julien Cohen-Adad, and Ghassan
Hamarneh. Deep semantic segmentation of natural and medical images: a review. Artificial
Intelligence Review, 54:137–178, 2021.

Yunhao Bai, Duowen Chen, Qingli Li, Wei Shen, and Yan Wang. Bidirectional copy-paste for
semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11514–11524, 2023.

Wele Gedara Chaminda Bandara and Vishal M Patel. Revisiting consistency regularization for semi-
supervised change detection in remote sensing images. arXiv preprint arXiv:2204.08454, 2022.

Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. Label-
efficient semantic segmentation with diffusion models. arXiv preprint arXiv:2112.03126, 2021.

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng,
Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep learning
techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem
solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.

Emmanuel Asiedu Brempong, Simon Kornblith, Ting Chen, Niki Parmar, Matthias Minderer, and
Mohammad Norouzi. Denoising pretraining for semantic segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4175–4186, 2022.

Ryan Burgert, Kanchana Ranasinghe, Xiang Li, and Michael S Ryoo. Peekaboo: Text to image
diffusion models are zero-shot segmentors. arXiv preprint arXiv:2211.13224, 2022.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning?
In International conference on machine learning, pp. 872–881. PMLR, 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Animashree Anandkumar, Sanja Fidler, and Jose M
Alvarez. Image-level or object-level? a tale of two resampling strategies for long-tailed detection.
In International conference on machine learning, pp. 1463–1472. PMLR, 2021.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o.
et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj,
and Marios Savvides. Softmatch: Addressing the quantity-quality trade-off in semi-supervised
learning. arXiv preprint arXiv:2301.10921, 2023a.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
arXiv preprint arXiv:2102.04306, 2021a.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of
the European conference on computer vision (ECCV), pp. 801–818, 2018.

Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
19830–19843, 2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Ting Chen, Lala Li, Saurabh Saxena, Geoffrey Hinton, and David J Fleet. A generalist framework
for panoptic segmentation of images and videos. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 909–919, 2023c.

Xiaohua Chen, Yucan Zhou, Dayan Wu, Chule Yang, Bo Li, Qinghua Hu, and Weiping Wang.
Area: adaptive reweighting via effective area for long-tailed classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 19277–19287, 2023d.

Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic segmen-
tation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2613–2622, 2021b.

Zenggui Chen and Zhouhui Lian. Semi-supervised semantic segmentation via prototypical con-
trastive learning. In Proceedings of the 30th ACM International Conference on Multimedia, pp.
6696–6705, 2022.

Hanyang Chi, Jian Pang, Bingfeng Zhang, and Weifeng Liu. Adaptive bidirectional displacement
for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4070–4080, 2024.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268–9277, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88:
303–338, 2010.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018.

Zhangxuan Gu, Haoxing Chen, Zhuoer Xu, Jun Lan, Changhua Meng, and Weiqiang Wang. Diffu-
sioninst: Diffusion model for instance segmentation. arXiv preprint arXiv:2212.02773, 2022.

Dayan Guan, Jiaxing Huang, Aoran Xiao, and Shijian Lu. Unbiased subclass regularization for semi-
supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9968–9978, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive threshold-
ing. In International Conference on Machine Learning, pp. 8082–8094. PMLR, 2022.
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A MOTIVATION FOR GENERATIVE MODELS TO ALLEVIATE CLASS
IMBALANCE ISSUE

Previous research (Ng & Jordan, 2001) theoretically derived the differences in generalization error
ε(·) between discriminative (Dis) and generative models (Gen) under ideal conditions (i.e., with an
infinite number of samples ∞), where m denotes the number of samples, n is the number of model
parameters, and G(·) represents a small meaningful bound.

ε (hDis ) ≤ ε (hDis,∞) +O

(√
n

m
log

m

n

)
(12)

ε (hGen) ≤ ε (hGen,∞) +G

(
O

(√
1

m
log n

))
(13)

The above theory demonstrates that the asymptotic error approaching rate of generative models
is O(log n), which is better than the discriminative model’s (O(n)). In other words, under the
same number of model parameters, generative models can approach the optimal form under the
ideal condition (i.e., infinite training sample) with fewer training samples (logarithmic number, i.e.,
O(log n)), compared to the discriminative model, which requires a linear number of samples (O(n)).
This provides a special bonus for the inherent class imbalance problem in semi-supervised semantic
segmentation, particularly for tail classes. Specifically, generative models have better potential to
enable tail classes with extremely limited sample quantity to converge to the form assumed under
sufficient sample conditions, conceptually bridging the gap with the ample samples of head classes,
i.e., better class-imbalance tolerance.

True Hyperplane Biasd Hyperplane Different Classes Unlabeled Data

(a) Discriminative Model (b) Diffusion Model

Figure 7: Illustration on discriminative model vs. diffusion model.

On the other hand, from the perspective of optimization objectives, diffusion-based generative mod-
els and discriminative models have fundamentally different optimization objectives. Specifically,
discriminative models are typically trained by minimizing empirical risk, aiming to minimize the
prediction error or loss function of the model solely on the training data. In this case, these meth-
ods, only learning decision boundaries between classes, are highly fragile to the number of pixels
per class (i.e., class imbalance), leading to decision boundaries that can be drastically altered by
the majority classes (as shown in the left part of Figure 7). In contrast, diffusion-based generative
models use log-likelihood as their optimization objective, maximizing the log-likelihood between
the explicitly modeled class distribution and the underlying real one (as shown in the right part of
Figure 7). Benefiting from modeling probabilistic density, diffusion-based generative models pay
more attention to the class distribution rather than the boundaries across classes. Therefore, they
conceptually exhibit better tolerance to class imbalance.
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B PSEUDO ALGORITHM

In this section, we summarize the pseudo algorithm of DiffMatch in Algorithm 1. The inputs consist
of a labeled set Dl = {(xl

i,y
l
i)}N

l

i=1 and an unlabeled set Du = {xu
i }N

u

i=1 , where Nu ≫ N l. The
feature extractor g(·), mask denoiser f(·), weak augmentation ω, strong augmentation s, and time
step t are defined. The algorithm iterates over each batch of labeled data (xl,yl) and unlabeled data
xu. For labeled data, the pixel embedding zl is extracted using g(·), noise is injected into yl to
obtain yl

t via the forward process (Equation 3), and the noisy mask yl
t is denoised conditioned on zl

and t using f(·) in the reverse process. The supervised loss Lsup is calculated by Equation 10. For
unlabeled data, weak and strong augmentations are applied on xu to obtain xu

w and xu
s respectively.

Their pixel embeddings zu
w and zu

s are extracted using g(·). The pseudo label ỹu
0,w is obtained by

denoising ϵ conditioned on zu
w in the reverse process. Noise is injected into ỹu

0,w to obtain ỹu
t,w via

the forward process, and the noisy mask ỹu
t,w is denoised conditioned on zu

s using f(·) in the reverse
process. The unsupervised loss Lunsup is calculated by Equation 11. Finally, the model is updated
by performing gradient backward on Lsup + Lunsup.

Algorithm 1 Pseudo algorithms of DiffMatch.

1: Inputs: Labeled Set Dl = {(xl
i,y

l
i)}N

l

i=1, Unlabeled Set Du = {xu
i }N

u

i=1 (Nu ≫ N l)

2: Define: Feature Extractor g(·), Mask Denoiser f(·), Weak Augmentation w, Strong Augmen-

tation s, time step t

3: Output: Feature Extractor g(·), Mask Denoiser f(·)
4: for each batch of (xl,yl), xu in Dl, Du do

5: # Labeled Data:

6: Extract pixel embedding zl for xl using g(·)
7: Inject noise into yl and obtain yl

t by Equation 3 ▷ Forward Process

8: Denoise the noisy mask yl
t conditioned on zl and t using f(·) ▷ Reverse Process

9: Calculate Lsup by Equation 10 ▷ Supervised Loss

10: # Unlabeled Data:

11: Obtain xu
w and xu

s by applying weak and strong augmentation on xu, respectively

12: Extract pixel embedding zu
w and zu

s using g(·)
13: Obtain the pseudo label ỹu

0,w by denoising ϵ conditioned on zu
w using f(·)

14: ▷ Reverse Process

15: Inject noise into ỹu
0,w and obtain ỹu

t,w by Equation 3 ▷ Forward Process

16: Denoise the noisy mask ỹu
t,w conditioned on zu

s using f(·) ▷ Reverse Process

17: Calculate Lunsup by Equation 11 ▷ Unsupervised Loss

18: Gradient backward Lsup + Lunsup ▷ Update Model

19: end for
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Algorithm 2 Diffusion Training Process

def alpha_cumprod(t, ns=0.0002, ds=0.00025):

"""cosine noise schedule"""

n = torch.cos((t + ns) / (1 + ds) * math.pi / 2) ** -2

return -torch.log(n - 1, eps=1e-5)

def train(images, masks):

"""images: [b, 3, h, w], masks: [b, 1, h, w]"""

img_enc = feature_extractor(images) # encode image

mask_enc = encoding(masks) # encode gt or pseudo labels

mask_enc = (sigmoid(mask_enc) * 2 - 1) * scale # corrupt gt or pseudo

labels

eps = uniform(0, 1), normal(mean=0, std=1)

mask_crpt = sqrt(alpha_cumprod(t)) * mask_enc + sqrt(1 - alpha_cumprod(t

)) * eps

# predict and backward

mask_pred = mask_denoiser(mask_crpt, mask_enc, t)

loss = l2_loss(mask_pred, masks) # calculate the loss after debiased

adjustment

return loss
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Algorithm 3 Diffusion Sampling Process

def ddim(mask_t, mask_pred, t_now, t_next):

""" estimate x at t_next with DDIM update rule"""

αnow = alpha_cumprod(t_now)

αnext = alpha_cumprod(t_next)

mask_enc = encoding(mask_pred)

mask_enc = (sigmoid(mask_enc) * 2 - 1) * scale

eps = 1√
1−αnow

* (mask_t -
√
αnow * mask_enc)

mask_next =
√
αnext * x_pred +

√
1− αnow * eps

return mask_next

def sample(images, steps, td=1):

"""steps: sample steps, td: time difference"""

img_enc = feature_extractor(images)

mask_t = normal(0, 1) # [b, 256, h/4, w/4]

for step in range(steps):

# time intervals

t_now = 1 - step / steps

t_next = max(1 - (step + 1 + td) / steps, 0)

# predict mask_0 from mask_t

mask_pred = mask_denoiser(mask_t, img_enc, t_now)

# estimate mask_t at t_next

mask_t = ddim(mask_t, mask_pred, t_now, t_next)

return mask_pred
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C DERIVATION OF L∗
diff

Here, we present the detailed derivation of L∗
diff from the learning of the diffusion model. Denot-

ing the underlying conditional distribution as q̂, we can rewrite the conditional reverse probability
q̂ (yt | yt+1, z) according to Bayes’ formula following Dhariwal & Nichol (2021):

q̂ (yt | yt+1, z) =
q (yt | yt+1) q̂ (z | yt)

q̂ (z | yt+1)

=
q (yt | yt+1) q̂ (yt | z) q̂ (z) q̂ (yt+1)

q̂ (yt+1 | z) q̂ (z) q̂ (yt)

=
q (yt | yt+1) q̂ (yt | z) q̂ (yt+1)

q̂ (yt+1 | z) q̂ (yt)
.

(14)

Since the conditional diffusion model is trained to fit a prior distribution with known conditions by
definition, we can approximate q̂(yt) with pθ(yt) and have:

pθ (yt | yt+1, z) =
q (yt | yt+1) q̂ (yt | z) q̂ (yt+1)

q̂ (yt+1 | z) pθ (yt)
. (15)

Given the long tailed nature of the class distribution p(y0) in practice, the learned conditional inverse
probability pθ (yt | yt+1, z) is inevitably biased. To further reduce the risk of overfitting to the head
classes and to increase coverage of the tail class distribution, we propose the debiased adjustment.
First, we represent the conditional inverse probability under ideal condition (i.e., when the class
distribution is uniform, p∗(y0) = 1

C , where C is the number of classes) as p∗θ(y0 | yt, z). In the
same way:

p∗θ (yt | yt+1, z) =
q (yt | yt+1) q̂

∗ (yt | z) q̂∗ (yt+1)

q̂∗ (yt+1 | z) p∗θ (yt)
. (16)

Since y0 is uniquely determined by z, we have:

q̂∗ (yt | z) = q̂∗ (yt | y0)
①
= q̂ (yt | y0) = q̂ (yt | z) , (17)

where the equality ① holds because q̂∗ (yt | y0)/q̂ (yt | y0) is conditioned on y0, i.e., unrelated to
p(y0). In the same way:

q̂∗ (yt+1 | z) = q̂ (yt+1 | z) . (18)

In other words, q̂∗(yt | z) and q̂∗(yt+1 | z) are not affected by the class distribution. Combining
the above equations, we have:

p∗θ (yt | yt+1, z) = pθ (yt | yt+1, z)
pθ (yt)

p∗θ (yt)

q̂∗ (yt+1)

q̂ (yt+1)
. (19)

It can be seen that there is only a factor of difference (i.e., pθ(yt)
p∗
θ(yt)

q̂∗(yt+1)
q̂(yt+1)

) between the ideal condi-
tional inverse process p∗θ (yt | yt+1, z) and the actual conditional inverse process pθ (yt | yt+1, z).
However, the factor is difficult to obtain directly. Therefore, We convert it into the training loss
and gradually remove this difference during training. Since q̂∗(yt+1)

q̂(yt+1)
is independent of the model

parameters, it follows from Menon et al. (2020) that the sign should be reversed when converting
the post-hoc adjustment factors into the training loss, giving us:

p∗θ (yt | yt+1, z) = pθ (yt | yt+1, z)
p∗θ (yt)

pθ (yt)
. (20)

Then we get the unbiased loss for the conditional diffusion model by replacing the pθ(y0 | yt, z) in
Equation 2 with p∗θ(y0 | yt, z):
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L∗
diff =

∑
t

DKL [q (yt | yt−1) ∥p∗θ (yt | yt+1, z)]

=
∑
t

Eq

[
− log

p∗θ (yt | yt+1, z)

q (yt | yt−1)

]
=
∑
t

{
Eq

[
− log

pθ (yt | yt+1, z)

q (yt | yt−1)

]
+ Eq

[
− log

p∗θ (yt)

pθ (yt)

]}
=
∑
t

{
DKL [q (yt | yt−1) ∥pθ (yt | yt+1, z)] + Eq

[
− log

p∗θ (yt)

pθ (yt)

]}
.

(21)

Focus on the second item of the above equation:∑
t

Eq

[
− log

p∗θ (yt)

pθ (yt)

]

=
∑
t

Eq

{
− logEpθ

[
p∗θ (y0)

∏t
t′=1 p

∗
θ (yt′ | yt′−1)

pθ (y0)
∏t

t′=1 pθ (yt′ | yt′−1)

]}

=
∑
t

Eq

− logEpθ

p∗θ (y0)
∏t

t′=1 p
∗
θ (yt′−1 | yt′)

p∗
θ(yt′ )

p∗
θ(yt′−1)

pθ (y0)
∏t

t′=1 pθ (yt′−1 | yt′)
pθ(yt′ )

pθ(yt′−1)


②
⩽
∑
t

Eq

Epθ

− log
p∗θ (y0)

∏t
t′=1 p

∗
θ (yt′−1 | yt′)

p∗
θ(yt′ )

p∗
θ(yt′−1)

pθ (y0)
∏t

t′=1 pθ (yt′−1 | yt′)
pθ(yt′ )

pθ(yt′−1)


=
∑
t

Eq

{
Epθ

[
t∑

t′=1

− log
pθ (y0) p

∗
θ (yt′−1 | yt′)

p∗θ (y0) pθ (yt′−1 | yt′)

]}

=Eq

{
Epθ

[∑
t

t∑
t′=1

− log
pθ (y0) p

∗
θ (yt′−1 | yt′)

p∗θ (y0) pθ (yt′−1 | yt′)

]}
③
=Eq

[
t
∑
t

− log
pθ (y0) p

∗
θ (yt′−1 | yt′)

p∗θ (y0) pθ (yt′−1 | yt′)

]

④
=
∑
t

tEq

− log
p∗θ (yt′−1 | yt′)
pθ(yt′−1|yt′)

Cpθ(y0)


=
∑
t

tDKL

[
pθ (yt−1 | yt)

Cpθ (y0)
∥p∗θ (yt−1 | yt)

]
,

(22)

where the inequality ② holds due to Jensen’s Inequality, the equality ③ is valid because of the
exchange in the order of summation, and the equality ④ is holds because p∗(y0) =

1
C . In practice,

we approximate the pθ(yt−1 | yt) with Monte-Carlo samples from pθ(yt−1 | yt, z) and the loss
reduce to:

L∗
diff =∥f (yt, z)− y0)∥2 + τt

∥∥∥∥f (yt, z)−
f (yt, z)

Cp (y0)

∥∥∥∥2
=Ldiff + τt

∥∥∥∥f (yt, z)−
f (yt, z)

Cp (y0)

∥∥∥∥2 .
(23)
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D TRAINING CURVE FOR HEAD&TAIL CLASSES

Figure 8 provides a comparative analysis of the training samples of the head class road and the tail
class motorcycle on the Cityscapes Cordts et al. (2016) under the 1/16 partition protocol as the train-
ing progresses. The proposed DiffMatch is compared with the highly competitive UniMatch Yang
et al. (2022) in terms of pseudo label count, assuming that the ground truth for unlabeled data is
available solely for theoretical analysis purposes.
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Figure 8: We count the training samples of head class road and tail class motorcycle on
Cityscapes (Cordts et al., 2016) under 1/16 partition protocols as the training processes, and com-
pare the proposed DiffMatch with the highly competitive UniMatch (Yang et al., 2022) in terms of
Pseudo Label Count, assuming that the ground truth for unlabeled data is available solely for theo-
retical analysis purposes. Our DiffMatch strives to mitigate the Matthew effect raised by the class
imbalance issue and stands out for head/tail classes.

The top plot in Figure 8 illustrates the prediction distribution of the head class road. UniMatch
generates a significantly higher pseudo label count compared to the real distribution, indicating its
tendency to over-predict the dominant class. In contrast, DiffMatch exhibits a pseudo label count that
is more aligned with the real distribution, demonstrating its ability to mitigate the bias towards the
head class. The bottom plot in Figure 8 depicts the prediction distribution of the tail class motorcycle.
UniMatch generates substantially fewer pseudo labels compared to the real distribution, highlighting

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

its under-prediction of the minority class. Conversely, DiffMatch demonstrates a pseudo label count
that is much closer to the real distribution, showcasing its effectiveness in addressing the under-
representation of the tail class.

The comparative analysis in Figure 8 substantiates the effectiveness of DiffMatch in leveraging
the advantages of generative models to alleviate the Matthew effect. By incorporating a diffusion
model and theoretically deriving a debiased adjustment (3.3), DiffMatch effectively mitigates the
bias towards head classes and the under-prediction of tail classes, promoting unbiased learning in
semi-supervised semantic segmentation. This finding aligns with the quantitative results analyzed
in the “Performance in Head&Tail Classes” of Section 4.3; please refer to it for more details.

E DETAILED ANALYSES OF HYPER-PARAMETERS

Decoder Depth. Table 7 investigates the effect of the decoder depth, i.e., the number of layers
in the mask denoiser f(·). The results demonstrate that increasing the depth initially improves
the model accuracy, with the optimal performance achieved at 4 layers (73.3% mIoU on PASCAL
classic 1/16(92)). However, further increasing the depth beyond 4 layers leads to the saturation
of performance. This observation aligns with the goal behind the lightweight design of the mask
denoiser, which enables efficient reuse of shared parameters during multi-step denoising diffusion
processes while maintaining highly competitive performance. The chosen architecture with 4 layers
strikes a balance between accuracy and efficiency, with a parameter count of 44.9M.

Table 7: Evaluation of number of layers

#Layer L mIoU(92) mIoU(1464) #Param

1 70.1 79.5 42.4M
2 71.2 80.6 43.3M
4 73.3 81.6 44.9M
6 72.6 80.8 45.8M

12 71.9 81.1 49.9M

Scaling Factor. Table 8 explores the impact of the scaling factor b used in the analog bits encod-
ing strategy (Section 3.4). The scaling factor determines the range {−b, b} into which the analog
bits are shifted and scaled. The results show that a suitable scaling factor is necessary for opti-
mal performance. As the scaling factor increases, the model accuracy improves until reaching a
peak at b = 0.1 (73.3% mIoU on PASCAL classic 1/16(92) and 81.6% mIoU on PASCAL classic
Full(1464)). Further increasing the scaling factor leads to a decline in performance. We hypothesize
that a larger scaling factor retains more easy cases with the same time step, potentially affecting the
balance between easy and hard cases during training.

Table 8: Evaluation of scaling factor.

Scale b mIoU(92) mIoU(1464)

0.01 71.7 80.9
0.05 72.2 81.2
0.1 73.3 81.6
0.2 70.7 80.8
0.5 70.6 80.5

Regularization Term τ . Table 9 examines the influence of the trade-off weight τ for the regular-
ization term in the debiased adjustment. The regularization term imposes a constraint between the
prediction of mask denoiser and its roughly debiased version, reducing the risk of overfitting to head
classes and increasing coverage of tail class distribution. The results indicate that setting τ = 0.1
yields the optimal performance, that is, 73.3% mIoU on PASCAL classic 1/16(92) and 81.6% mIoU
on PASCAL classic Full(1464).
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Table 9: Evaluation of trade-off weight for the regularization term τ .

τ mIoU(92) mIoU(1464)

0.01 71.8 80.0
0.02 72.2 80.4
0.05 72.7 80.9
0.1 73.3 81.6
0.2 71.9 80.2

F COMPARISON WITH OTHER DIFFUSION-BASED SEMI-SUPERVISED
METHODS

As diffusion gains popularity in visual perception, researchers have introduced it into various semi-
supervised tasks (You et al., 2024; Yang et al., 2024; Liu et al., 2024b; Ho et al., 2023), such as
classification, federated learning, time-series classification and 3d object detection. In the following,
we will comprehensively and meticulously compare our DiffMatch with these diffusion-based semi-
supervised methods and summarize in Table 10 to highlight the originality of our work.

Different from our DiffMatch, both DPT (You et al., 2024) and FedDISC (Yang et al., 2024) uti-
lize an external diffusion model to generate additional data and demonstrate their effectiveness in
facilitating the original model training. Specifically, DPT introduces a from-scratch diffusion-based
conditional generative model to address the scarcity of labeled data in semi-supervised classifica-
tion task in three stages: train the original classifier on limited labeled data to predict pseudo-labels;
train the conditional generative model using these pseudo-labels to generate labeled data; retrain the
classifier with a combination of limited real and vast generated labeled data. FedDISC addresses the
challenge of semi-supervised federated learning by introducing a well-trained diffusion model. To
alleviate the communication burden between the server and clients, the diffusion model generates
rich client-style data for the server, conditioned on the cluster centroid of client data representations,
thereby facilitating model training on the server.

Regarding DiffShape (Liu et al., 2024b), although it explores integrating the diffusion process into
semi-supervised time-series classification, it does so through a self-supervised mechanism rather
than incorporating it into the teacher-student network paradigm. Specifically, DiffShape employs
large amounts of unlabeled instance subsequences as conditions in the diffusion process to gener-
ate the subsequences themselves, enhancing similarity in the generated sequences compared to the
original ones, thereby improving representation capability in a self-supervised manner.

For Diffusion-ss3d (Ho et al., 2023), although it integrates the diffusion process into the teacher-
student network paradigm in semi-supervised 3D object detection, we categorize it as a noise-to-
filter paradigm, leveraging the denoising capability of diffusion models to generate more accurate
3D bounding boxes as pseudo labels. Specifically, Diffusion-ss3d first predicts coarse bounding
boxes (fixed bounding box candidate points) with a detection model, which can be considered as
intermediate states in the diffusion process, and then employs the diffusion model as a denoising
process to obtain other parameters of the bounding box (e.g., bounding box size). Overall, this
paradigm partially exploits the characteristics of the diffusion process, that is, the denoising ability,
to improve the quality of the bounding boxes prediction.

Distinguished from these methods, Our DiffMatch integrates the diffusion process into the teacher-
student network for semi-supervised semantic segmentation, which can be viewed as a noise-to-
prediction paradigm. Motivated by the potential of generative models with better tolerance to class
imbalance, our DiffMatch learns the complete process of transforming noise from a known distribu-
tion to class predictions (all states from time 0 to time T). Additionally, we mathematically derive a
debiased adjustment based on the state transition function encapsulated in the diffusion process to
further mitigate the Matthew effect. This mathematical formulation translates into strong empirical
performance on real-world datasets, particularly in scenarios with the most limited labeled data and
the most severe class imbalance. In general, DiffMatch completely utilizes the characteristics of
the diffusion process in a different problem for semi-supervised semantic segmentation, aiming to
provide a new perspective to alleviate the Matthew effect.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ta
bl

e
10

:C
om

pa
ri

so
n

w
ith

ot
he

rd
iff

us
io

n-
ba

se
d

se
m

i-
su

pe
rv

is
ed

m
et

ho
ds

.

D
PT

Fe
dD

IS
C

D
iff

Sh
ap

e
D

iff
us

io
n-

ss
3d

D
iff

M
at

ch
(O

ur
s)

Ta
sk

cl
as

si
fic

at
io

n
fe

de
ra

te
d

le
ar

ni
ng

tim
e-

se
ri

es
cl

as
si

fic
at

io
n

3d
ob

je
ct

de
te

ct
io

n
se

m
an

tic
se

gm
en

ta
tio

n

M
ot

iv
at

io
n

ha
rn

es
si

ng
th

e
da

ta
ge

ne
ra

tio
n

ca
pa

bi
lit

y
of

D
iff

us
io

n
to

al
le

vi
at

e
da

ta
sc

ar
ci

ty

ha
rn

es
si

ng
th

e
da

ta
ge

ne
ra

tio
n

ca
pa

bi
lit

y
of

D
iff

us
io

n
to

al
le

vi
at

e
da

ta
sc

ar
ci

ty

us
in

g
di

ff
us

io
n

in
a

se
lf-

su
pe

rv
is

ed
m

an
ne

r
to

im
pr

ov
e

re
pr

es
en

ta
tio

n
ca

pa
bi

lit
y

ex
pl

oi
tin

g
th

e
de

no
is

in
g

ab
ili

ty
of

D
iff

us
io

n
to

im
pr

ov
e

th
e

qu
al

ity
of

ps
eu

do
la

be
l

le
ve

ra
gi

ng
th

e
w

el
l

cl
as

s-
im

ba
la

nc
e

to
le

ra
nc

e
of

D
iff

us
io

n
to

al
le

vi
at

e
th

e
M

at
th

ew
ef

fe
ct

Im
pl

em
en

ta
tio

n
in

tr
od

uc
in

g
a

fr
om

-s
cr

at
ch

ex
te

rn
al

di
ff

us
io

n
m

od
el

in
tr

od
uc

in
g

a
w

el
l-

tr
ai

ne
d

ex
te

rn
al

di
ff

us
io

n
m

od
el

in
te

gr
at

in
g

th
e

di
ff

us
io

n
pr

oc
es

s
th

ro
ug

h
a

se
lf-

su
pe

rv
is

ed
m

ec
ha

ni
sm

in
te

gr
at

in
g

th
e

di
ff

us
io

n
pr

oc
es

s
in

to
th

e
te

ac
he

r-
st

ud
en

t
fr

am
ew

or
k

in
a

no
is

e-
to

-fi
lte

r
pa

ra
di

gm

in
te

gr
at

in
g

th
e

di
ff

us
io

n
pr

oc
es

s
in

to
th

e
te

ac
he

r-
st

ud
en

t
fr

am
ew

or
k

in
a

no
is

e-
to

-p
re

di
ct

io
n

pa
ra

di
gm

N
ot

e
le

ar
ni

ng
an

in
co

m
pl

et
e

di
ff

us
io

n
pr

oc
es

s

(1
)l

ea
rn

in
g

a
co

m
pl

et
e

di
ff

us
io

n
pr

oc
es

s
(2

)
m

at
he

m
at

ic
al

ly
de

ri
vi

ng
a

de
bi

as
ed

ad
ju

st
m

en
tb

as
ed

on
th

e
st

at
e

tr
an

si
tio

n
fu

nc
tio

n

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G LIMITATION AND SOCIETY IMPACT

DiffMatch may face a potential limitation in terms of increased computational cost during multi-step
inference. And how to adapt the number of inference steps to the degree of change in the generation
state is a feasible direction. Within this paper, we present an approach for semi-supervised semantic
segmentation, a pivotal research area in the realm of computer vision, with no apparent negative
societal implications known thus far.

H EXTENDED DISCUSSION ON RELATED WORK

Semi-Supervised Segmentation. Semi-supervised semantic segmentation is a fundamental task
with extensive applications in scene understanding (Mittal et al., 2019; Wu et al., 2023), medical
image analysis (Yu et al., 2019; Bai et al., 2023; Zhao et al., 2025; Chi et al., 2024), and remote
sensing interpretation (Wang et al., 2021; Bandara & Patel, 2022; Yuan et al., 2024). Owing to
the recent advances in deep neural networks, semi-supervised semantic segmentation (Zhao et al.,
2022b;a) has achieved conspicuous achievements. These algorithms leverage the mature combina-
tion of pseudo-labeling and consistency regularization (Lai et al., 2021; Zhong et al., 2021; Ouali
et al., 2020; Chen & Lian, 2022) to improve performance. More recently, UniMatch (Yang et al.,
2022) acknowledges the characteristics of semantic segmentation and incorporates appropriate data
augmentations into FixMatch (Sohn et al., 2020), resulting in a concise yet powerful semi-supervised
semantic segmentation baseline. Subsequently, a series of works aim to improve segmentation per-
formance mainly in the following aspects. (1) Employ reasonable augmentation strategies to expand
the augmentation space. For example, AugSeg (Zhao et al., 2023c) increases the randomness in
RandAugment (Cubuk et al., 2020) for richer data augmentation space. iMAS (Zhao et al., 2023b)
employs adaptive augmentations and supervisions conditioned on the model state. (2) Design effec-
tive teacher networks for better guidance. For example, Switch (Na et al., 2023) targets the coupling
problem in the exponentially moving average (EMA) update process of teacher-student network and
proposes a dual-teacher structure in an ensemble manner. (3) Utilize external knowledge to en-
hance the quality of pseudo labels. For example, LOGIC (Liang et al., 2023) integrates symbolic
reasoning derived from symbolic knowledge to mitigate erroneous pseudo labels. SemiVL (Hoyer
et al., 2025) incorporates a CLIP encoder (Radford et al., 2021), pre-trained on large-scale data, into
semi-supervised semantic segmentation and employs a language-aware decoder to introduce text
modality priors. (4) Enhance consistency regularization (Sun et al., 2024; Howlader et al., 2025b) to
effectively exploit the information contained in unlabeled data. For example, RankMatch (Mai et al.,
2024) utilizes inter-pixel correlations to construct more safe and effective supervision signals, which
are in line with the nature of semantic segmentation. MPMC (Howlader et al., 2025a) identifies the
classes present in an image region to incorporate pixel-level contextual information, thereby explor-
ing more supervision signals. Despite yielding promising results, these methods tend to neglect the
fact of class imbalance issue. In this paper, we strive to alleviate the negative impact (Matthew
effect) raised by class imbalance issue and move towards unbiased semi-supervised learning.

Class-Imbalanced Semi-Supervised Segmentation. Real-world datasets usually yield a class-
imbalanced distribution, especially in dense prediction tasks (e.g., semantic segmentation), mak-
ing the standard training of machine learning models harder to generalize. Existing methods to re-
balance the training objective can be roughly categorized into two paradigms: (1) Re-sampling based
methods (Chawla et al., 2002; He & Garcia, 2009; Byrd & Lipton, 2019; Chang et al., 2021; Shi
et al., 2023; Wei et al., 2022) attempt to artificially balance the training data distribution. These ap-
proaches either employ over-sampling techniques to increase the representation of minority classes
or utilize under-sampling strategies to reduce the dominance of majority classes. While effective in
certain scenarios, these methods often struggle with the trade-off between maintaining data diver-
sity and achieving balanced class distributions. (2) Re-weighting based methods (Cao et al., 2019;
Cui et al., 2019; Huang et al., 2019; Ren et al., 2018; Hu et al., 2019; Chen et al., 2023d) focus on
modifying the loss function to prioritize learning from under-represented classes. These approaches
typically assign importance weights to different classes based on various criteria, such as inverse
class frequency or dynamic class-wise difficulty measures. Although these methods have shown
promising results, they often require careful tuning of weighting schemes to prevent instability dur-
ing training. However, all these methods assume all labels are accessible to alleviate the class imbal-
ance issue and thus inapplicable to the unlabelled data in semi-supervised semantic segmentation.
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Recently, several studies have attempted to transfer these techniques on top of pseudo labels such as
re-sampling (Wei et al., 2021), re-weighting (Wang et al., 2022a; Sun et al., 2023b; Xu et al., 2021;
He et al., 2021; Wang et al., 2022b; Peng et al., 2023) (e.g., Adsh (Guo & Li, 2022) utilizes adaptive
thresholding that can be considered as binary weighting for semi-supervised learning, U2PL (Wang
et al., 2022b) adjusts the threshold adaptively to determine the reliability of pixels and constructs
the extra supervised signal based on the negative classes of unreliable pixels, paying more attention
to the tail classes), or a combination of both for semi-supervised learning (e.g., AEL (Hu et al.,
2021) adaptively balances the training of different categories). Nevertheless, these pseudo labels are
often noisy as they are generated from poorly calibrated models. Furthermore, USRN (Guan et al.,
2022) explores unbiased subclass regularization for alleviating the class imbalance issue. However,
these discriminative methods are still confined to learning decision boundaries, which are brittle to
the class imbalance issue, and the inherent nature of contempt for the underlying distribution re-
mains unchanged. As a significant departure from the status quo, we formulate the semi-supervised
semantic segmentation task as a conditional discrete data generation problem to model underlying
distribution to overcome the shortcomings of discriminative solutions from a generative perspective.

Diffusion Models for Visual Perception. In addition to the significant progress in content genera-
tion, diffusion models have demonstrated incremental potential in the domain of perception (Chen
et al., 2023b; Gu et al., 2022; Chen et al., 2023c; Brempong et al., 2022). Earlier studies primarily
delve into investigating latent representations of diffusion models for zero-shot image segmenta-
tion (Baranchuk et al., 2021; Burgert et al., 2022) or applied diffusion models to medical image
segmentation (Wolleb et al., 2022; Wu et al., 2022). Despite substantial progress, the outcomes of
these efforts remain limited to specific local designs. The recent Pix2Seq-D (Chen et al., 2023c)
extends the bit-diffusion (Chen et al., 2022) to panoptic segmentation, marking the first work of
such expansion in a broader context. Additionally, DiffusionDet (Chen et al., 2023b) and Diffusion-
Inst (Gu et al., 2022) explore diffusion models for query-based object detection (Carion et al., 2020)
and instance segmentation (Zhang et al., 2021). Most recently, groundbreaking work has extended
the application of diffusion models to a comprehensive range of dense visual perception tasks (Ji
et al., 2023; Zhao et al., 2023a; Zheng et al., 2024). These latest developments have achieved
promising results across multiple challenging scenarios, further solidifying the position of diffusion
models as a versatile and powerful tool in the visual perception domain. Recently, several works
have introduced diffusion into various semi-supervised tasks, such as classification, federated learn-
ing, time-series classification, and 3d object detection. Among them, both DPT (You et al., 2024)
and FedDISC (Yang et al., 2024) aim to introduce an external diffusion model to generate data and
utilize these data in a multi-stage training manner. DiffShape (Liu et al., 2024b) utilizes diffusion in
a self-supervised manner to improve representation capability, and Diffusion-ss3d (Ho et al., 2023)
exploits the denoising ability of the diffusion to improve the quality of the pseudo label. How-
ever, these methods differ from ours both from motivation to implementation. We comprehensively
and meticulously compare our DiffMatch with these diffusion-based semi-supervised methods in
Appendix F. In general, DiffMatch completely utilizes the characteristics of the diffusion process
for semi-supervised semantic segmentation, aiming to provide a new perspective to alleviate the
Matthew effect.

I MORE VISUALIZATION

Here, we provide additional visualizations to qualitatively assess the performance of DiffMatch in
comparison to other methods. Figure 9 showcases the segmentation results on the PASCAL VOC
dataset, highlighting the effectiveness of DiffMatch in obtaining more accurate semantic segmenta-
tion, particularly for pixels that are incorrectly segmented as the most dominant class by other meth-
ods. For example, in the 2nd row, FreeMatch, UniMatch, and RankMatch encounter difficulties in
accurately segmenting the person pixels. They misclassify a considerable portion of the person pix-
els as the horse class. These misclassifications can be attributed to the class imbalance issue, where
the models are inclined to favor the majority classes, resulting in subpar segmentation performance
for the less represented classes like person. In contrast, DiffMatch demonstrates a notable ability
to overcome these challenges and generate more precise segmentations. By incorporating a genera-
tive perspective and employing a debiased adjustment, DiffMatch effectively mitigates the Matthew
effect stemming from class imbalance. As a result, it accurately segments the person pixels.
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Furthermore, Figure 10 offers additional insights into the inference trajectory of DiffMatch across
different diffusion sampling steps. The ground truth segmentation is provided as a reference, and the
segmentation results at steps 1, 2, and 3 are visualized. As the number of sampling steps increases,
the segmentation quality progressively improves, with finer details and more accurate boundary
delineation.

FreeMatchImage Ground Truth UniMatch RankMatch DiffMatch (Ours)

Figure 9: Qualitative results on PASCAL VOC dataset. DiffMatch can obtain more accurate seg-
mentation for pixels that are inaccurately segmented as the most dominant class.

Ground Truth Step 1 Step 2 Step 3

Figure 10: Inference trajectory with diffusion sampling steps. The model gradually refines the
prediction, starting from a coarse estimation in Step 1 and progressively improving the results in Step
2. The final output in Step 3 closely resembles the ground truth, demonstrating the effectiveness of
DiffMatch in capturing fine-grained details and accurately delineating the boundaries of the changed
buildings.
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J SCALABILITY FOR OTHER SCENARIOS

To further demonstrate the versatility and practicality of DiffMatch, we extend our experiments be-
yond natural image benchmarks and explore its performance in two crucial real-world applications:
remote sensing interpretation and medical image analysis. These domains are characterized by an
abundance of unlabeled data but a scarcity of manual annotations due to the high cost of expert
labeling.

J.1 REMOTE SENSING INTERPRETATION SCENARIO

Remote Sensing Interpretation. We further conduct extra experiments on the widely used change
detection dataset WHU-CD (Bandara & Patel, 2022; Liu et al., 2020) to evaluate the scalability of
our method. The WHU-CD dataset, primarily designed for detecting changes in buildings, is partic-
ularly challenging due to its large change area and highly skewed class distribution. As illustrated
in Table 11, the pixel count of the head class unchanged is over 21 times that of the tail class
changed, posing a significant challenge for the change detection task due to the extreme class im-
balance issue. To thoroughly evaluate the effectiveness of DiffMatch, we split the WHU-CD dataset
into three subsets following previous methods (Yang et al., 2022): a training set containing 5,947
images, a verification set with 743 images, and a test set comprising 744 images.

Table 11: Class distribution statistics on WHU-CD dataset.

Class Name Unchanged Changed

Ratio 95.55% 4.45%

Table 12 presents the quantitative results of various SSL methods (S4GAN (Bandara & Patel, 2022),
SemiCDNet (Mittal et al., 2019), SemiCD (Peng et al., 2020), UniMatch (Yang et al., 2022)) on the
WHU-CD dataset under different partition protocols. DiffMatch consistently outperforms all other
methods across all labeled data ratios, with the performance gap being most significant when the
labeled data is scarce. Specifically, with only 5% labeled data, DiffMatch achieves an changed-class
IoU of 80.7%, surpassing the supervised baseline by a remarkable 32.4% and outperforming the
second-best method, UniMatch, by 3.2%. These results demonstrate the robustness and effectiveness
of DiffMatch in tackling the challenging change detection task, especially in low-data regimes where
the class imbalance issue is most severe. The superior performance of DiffMatch can be attributed
to its ability to effectively mitigate the Matthew effect through its generative modeling approach and
debiased adjustment strategy.

Table 12: Quantitative results of different SSL methods on WHU-CD dataset. We report changed-
class IOU (%) under various partition protocols and show the improvements over Sup.-only baseline.
The best is highlighted in bold.

Method PSPNet
5% 10% 20% 40%

Sup.-only 48.3 60.7 69.7 69.5

S4GAN 18.3 62.2 70.8 76.4
SemiCDNet 51.7 62.0 66.7 75.9

SemiCD 65.8 68.1 74.8 77.2
UniMatch 77.5 78.9 82.9 84.4

DiffMatch (Ours) 80.7 81.6 84.8 86.3
∆ ↑ +32.4 +20.9 +15.1 +16.8

Table 13 summarizes that DiffMatch achieves the best results across all classes, showcasing its
ability to handle the class imbalance issue effectively. This significant improvement demonstrates
DiffMatch’s effectiveness in enhancing the performance of the underrepresented class, which is
often challenging for discriminative models due to the scarcity of labeled data.
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The qualitative results in Figure 11 show that DiffMatch generates predictions that closely resemble
the ground truth, accurately detecting the changed building areas with precise boundaries. In con-
trast, discriminative learning-based methods like UniMatch and SemiCD are more affected by the
class imbalance issue, incorrectly classifying background pixels as changed, resulting in noticeable
noise in their predictions. This further validates the effectiveness of DiffMatch in alleviating the
class imbalance problem from a generative perspective.

Table 13: Per-class performance comparison of different methods on WHU-CD dataset under the
5% labeled data setting. The best is highlighted in bold.

Method Unchanged (head) Changed (tail)

Sup.-only 93.2 48.3

SemiCD 96.3 65.8
UniMatch 97.9 77.5

DiffMatch (Ours) 98.5 80.7

Pre-change Post-change Ground Truth Sup.-only SemiCD UniMatch DiffMatch (Ours)

Figure 11: Qualitative results on WHU-CD dataset.

J.2 MEDICAL IMAGE ANALYSIS SCENARIO

Medical Image Analysis–ACDC. To assess the applicability of our method in the medical domain,
we conduct experiments on the ACDC (Bernard et al., 2018) dataset for semi-supervised cardiac
MRI segmentation. The ACDC dataset consists of 100 patient scans, each with manual annotations
of the background, right ventricle (RV), myocardium (MYO), and left ventricle (LV). The dataset
poses challenges due to the limited number of annotated samples and the inherent class imbalance
among the target structures. Table 14 illustrates the highly skewed pixel-level class distribution, with
the head class background dominating at 96.20% and the tail class right ventricle (RV) constituting
a mere 1.18%, with over 81 head-to-tail ratio. Following the standard protocol (Yang et al., 2022),
we split the ACDC dataset into three subsets: 70 scans for training, 10 scans for validation, and 20
scans for testing. We evaluate the effectiveness of our proposed DiffMatch under different labeled
data ratios (i.e., 1, 3, and 7 labeled cases) to simulate real-world scenarios where expert annotations
are scarce and expensive to obtain.

Table 15 showcases the quantitative results of various SSL methods (UniMatchCNN (Yang et al.,
2022), &Trans (Luo et al., 2022), CPS (Chen et al., 2021b), UA-MT (Yu et al., 2019)) on the ACDC
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Table 14: Class distribution statistics on ACDC dataset.

Class Name Background Myocardium Left Ventricle Right Ventricle

Ratio 96.20% 1.33% 1.29% 1.18%

dataset, reporting the mean Dice Similarity Coefficient (DSC) for the class of interest (RV, MYO,
LV) under different labeled data amounts. DiffMatch consistently achieves the best performance
across all settings, with significant improvements over the supervised baseline (Sup.-only). Notably,
with only a single labeled case, DiffMatch obtains a DSC of 87.3%, outperforming the supervised
baseline by a substantial margin of 58.8%. As the number of labeled cases increases to 3 and 7,
DiffMatch maintains its lead over UniMatch, with performance gaps of 1.6% and 1.1%, respec-
tively. These results demonstrate the robustness and scalability of DiffMatch in handling various
levels of data scarcity, consistently outperforming UniMatch and other SSL methods. Overall, the
results on the ACDC dataset validate the applicability and effectiveness of DiffMatch in the med-
ical domain, showcasing its potential to alleviate the reliance on extensive expert annotations and
improve segmentation performance in semi-supervised settings.

Table 15: Quantitative results of different SSL methods on ACDC dataset. We report mean Dice
Similarity Coefficient (DSC) (%) with various labeled cases and show the improvements over Sup.-
only baseline. The best is highlighted in bold.

Method UNet
1 case 3 cases 7 cases

Sup.-only 28.5 41.5 62.5

UA-MT - 61.0 81.5
CPS - 60.3 83.3

CNN&Trans - 65.6 86.4
UniMatch 85.4 88.9 89.9

DiffMatch (Ours) 87.3 90.5 91.0
∆ ↑ +58.8 +49.0 +28.5

Table 16 presents a comprehensive comparison of DiffMatch against state-of-the-art semi-
supervised methods on the ACDC dataset for the class of interest, evaluating the Dice coefficient
for each class. DiffMatch consistently achieves the best performance across all classes, demon-
strating substantial improvements over the supervised baseline, especially in the extreme low-data
regime with only a single labeled case. Notably, DiffMatch exhibits robust performance even for the
most underrepresented RV class, underscoring the merits of generative modeling in tackling class
imbalance.

Table 16: Per-class performance comparison of different methods for the class of interest (MYO,
LV, RV) on ACDC dataset under the 3 labeled case setting. The best is highlighted in bold.

Method Myocardium Left Ventricle Right Ventricle

Sup.-only 43.7 52.1 28.7

CPS 65.2 72.0 43.8
UniMatch 89.3 98.2 78.6

DiffMatch (Ours) 91.5 99.3 80.7

The qualitative results in Figure 12 showcase the superiority of DiffMatch in generating accurate
and coherent segmentations for the classes of interest. Compared to the supervised baseline (Sup.-
only) and other SSL methods, DiffMatch produces segmentations that closely resemble the ground
truth, capturing fine details and maintaining precise boundaries around the heart. Notably, for the
challenging myocardium (MYO) class, DiffMatch demonstrates a remarkable ability to segment this
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Ground Truth DiffMatch (Ours)UniMatchCPSUA-MTSup.-only

Figure 12: Qualitative results on ACDC dataset.

thin structure accurately, while other methods either over-segment or miss portions of the MYO.
This visual comparison further validates DiffMatch’s effectiveness in handling class imbalance and
its applicability in the medical domain, where accurate segmentation of underrepresented structures
is crucial for diagnosis and treatment planning.

Medical Image Analysis–Synapse. Furthermore, we extend our experiments to the more chal-
lenging Synapse (Tang et al., 2022; Igelsias et al., 2015) dataset to validate the scalability of our
method. Synapse is a multi-organ segmentation dataset that contains 30 axial abdominal CT scan
cases (3,779) with 8 manually annotated abdominal organ classes (aorta, gallbladder, left kidney,
right kidney, liver, pancreas, spleen, and stomach). Compared to the ACDC dataset, Synapse ex-
hibits more severe class imbalance and anatomical variability. Table 17 summarizes the class dis-
tribution statistics on the Synapse dataset, revealing a severe class imbalance among the abdominal
organs. According to statistics, the ratio of head class liver to tail class left kidney reaches
593. This extreme imbalance poses significant challenges for accurate multi-organ segmentation.
To fairly evaluate the effectiveness of DiffMatch (Chen et al., 2021a; Liu et al., 2024a), we split
Synapse into 18 cases for training (2,212 slices) and 12 cases for testing. We evaluate performance
on the Synapse dataset under different labeled data ratios (i.e., 4, 2, and 1 labeled cases) to simulate
real-world scenarios where expert annotations are extremely scarce and expensive to obtain.

Table 17: Class distribution statistics on Synapse dataset.

Class Name Liver Stom Pancr Spleen Aorta Gallb Kid R Kid L

Ratio 71.23% 15.20% 6.20% 3.91% 2.61% 0.56% 0.18% 0.12%

Table 18: Quantitative results of different SSL methods on Synapse dataset. We report mean Dice
Similarity Coefficient (DSC) (%) with various labeled cases and show the improvements over Sup.-
only baseline. The best is highlighted in bold.

Method UNet
1 case 2 cases 4 cases

Sup.-only 10.7 42.5 51.9

CPS 15.0 48.8 57.9
CTS 26.3 55.2 64.0

MCSC 34.0 61.1 68.5
UniMatch 41.1 64.0 69.3

DiffMatch (Ours) 44.3 66.1 70.6
∆ ↑ +33.6 +23.6 +18.7

Table 18 showcases the quantitative results of various SSL methods (CTS (Luo et al., 2022),
CPS (Chen et al., 2021b), MCSC (Liu et al., 2023), UniMatch (Yang et al., 2022)) on the Synapse
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dataset, reporting the mean Dice Similarity Coefficient (DSC) for eight classes (aorta, gallbladder,
left kidney, right kidney, liver, pancreas, spleen, and stomach) under different labeled data amounts.
DiffMatch consistently achieves the best performance across all settings, with significant improve-
ments over the supervised baseline (Sup.-only). Notably, with only a single labeled case, DiffMatch
obtains a DSC of 44.3%, outperforming the supervised baseline by a substantial margin of 33.6%.
This demonstrates DiffMatch’s effectiveness in leveraging unlabeled data to improve segmentation
performance, even in extremely low-data regimes. As the number of labeled cases increases to 2 and
4, DiffMatch maintains its superior performance compared to other SSL methods. The superior per-
formance of DiffMatch on the Synapse dataset highlights its effectiveness in handling severe class
imbalance and limited annotations in multi-organ segmentation tasks.

Table 19: Per-class performance comparison of different methods (aorta, gallbladder, left kidney,
right kidney, liver, pancreas, spleen, and stomach) on Synapse dataset under the 1 labeled case
setting. The best is highlighted in bold.

Method Liver Stom Pancr Spleen Aorta Gallb Kid R Kid L

Sup.-only 33.8 6.9 1.5 8.7 14.7 9.1 5.6 5.3

CPS 59.4 7.2 2.3 9.4 19.6 9.6 6.9 5.6
UniMatch 76.0 21.2 8.6 64.1 62.5 11.7 69.9 14.8

DiffMatch (Ours) 78.4 27.7 12.7 66.8 63.8 14.2 72.1 18.7

Table 19 provides a comprehensive comparison of the per-class performance of different methods
on the Synapse dataset under the challenging 1 labeled case setting. DiffMatch consistently outper-
forms other methods across all classes, demonstrating its effectiveness in handling class imbalance.
Notably, DiffMatch achieves substantial improvements over the supervised baseline (Sup.-only) for
the minority classes, such as gallbladder (+5.1%), right kidney (+66.5%), and left kidney (+13.4%).
These results highlight DiffMatch’s ability to reduce the risk of overfitting to the head classes and
increase coverage of the tail class distribution from a generative perspective. Moreover, DiffMatch
maintains its superior performance for the majority classes, such as liver (+44.6%), indicating its
robustness against class imbalance and limited annotations simultaneously.

Image Ground Truth DiffMatch (Ours)UniMatchCPS

aorta gallbladder left kidney right kidney liver pancreas spleen stomach

Figure 13: Qualitative results on Synapse dataset.

Figure 13 illustrates the qualitative results of different methods on the Synapse dataset, visually
comparing the segmentation quality for various abdominal organs. We can observe that DiffMatch
generates segmentations that closely resemble the ground truth, accurately delineating the bound-
aries of the organs and capturing fine-grained details. Notably, DiffMatch effectively captures the
challenging minority classes, such as gallbladder and kidneys, which are often missed or poorly
segmented by other methods. These qualitative results further validate DiffMatch’s ability to han-
dle severe class imbalance and limited annotations, as it consistently produces more accurate and
coherent segmentations across all classes.
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K A CLOSER LOOK AT DIFFMATCH FROM AN INFORMATION-THEORETIC
PERSPECTIVE

Semi-supervised semantic segmentation is essentially a learning strategy-centric task, and its core
lies in effectively exploring numerous unlabeled data under extremely limited labeled data. In this
work, we aim to calibrate the model’s biased predictions caused by the inherent class imbalance
from a generative perspective and propose DiffMatch to integrate the complete diffusion process
strategy into the teacher-student network for semi-supervised semantic segmentation.

From the perspective of constructing supervision signals to take a closer look, DiffMatch also har-
vests additional merits beyond regular consistency regularization learning, i.e., the supervision sig-
nals constructed during the noise addition (forward diffusion transition) and denoising (reverse dif-
fusion process) stages. This type of supervision signal inherits the spirit from the self-supervised
learning community, known as predictive learning, an effective paradigm for mining information
from unlabeled data (Gidaris et al., 2018; Lee et al., 2021; Doersch et al., 2015). It can be abstracted
and summarized as learning to predict self-generated surrogate transformations, i.e., by applying
a transformation (e.g., adding Gaussian noise) to the input and learning in a way that predicts the
pattern of the transformation (e.g., denoising). In this context, following the information-theoretic
framework developed by (Tsai et al., 2021), we show that DiffMatch provably enjoys better pseudo-
label quality.

We denote the random variable of the input image as X and get the pseudo-label prediction Y
through the segmentation model Fθ : Y = Fθ(X). From an information-theoretic learning per-
spective, a desirable strategy should maximize the Mutual Information (MI) between Y and T, i.e.,
I(Y;T), where T is the assumed ground truth for unlabeled data1. Ideally, assuming we have ac-
cess to the ground truth for all pseudo-labels, in this case, we can fully explore the information in
the unlabeled data by directly maximizing I(Y;T), and semi-supervised learning would be equiv-
alent to fully supervised learning, thus yielding the performance upper bound for semi-supervised
learning (i.e., oracle performance).

However, in practice, without access to the ground truth T, semi-supervised semantic segmenta-
tion instead resorts to maximizing I(Y;S) by constructing effective surrogate supervision signals
on unlabeled data, where S denotes the surrogate signals. In specific, consistency regularization
learning aims to match Y with the student network’s prediction based on the augmented view of
the image, denoted as Scr; while Spr, derived from the predictive learning paradigm, seeks to use
Y to predict the applied transformation (noise) guided by the image. In DiffMatch, since we enjoy
the combination of these two surrogate supervision signals, we actually maximize the MI with re-
spect to their joint distribution I(Y;Scr,Spr). We denote the pseudo label predictions in the case
of fully supervised learning, consistency regularization, and DiffMatch as Yoracle, Ycr, and Ydiff ,
respectively.

We have the following inequalities (Theorem K.3) when the segmentation model Fθ is in the suffi-
cient and minimal learning status, that is, I (Yoracle;T) ≥ I (Ydiff ;T) ≥ I (Ycr;T), indicating
that DiffMatch theoretically improves the quality of pseudo labels (manifested in the greater
mutual information between the pseudo prediction Ydiff and the ground truth T).

Below, we provide a complete proof for Theorem K.3. More rigorously, for a model with enough
capacity, we give the definition of the sufficient and minimal learning status based on the surrogate
supervision signals constructed from the unlabeled data (Tsai et al., 2021).
Definition K.1. A model with enough capacity is in the sufficient and minimal learning status for
the surrogate supervision signal S if its pseudo label prediction Y∗ satisfies the following condi-
tions meantime: (1) the model’s learning status is sufficient, when Y∗ = argmax

Y
I (Y;S); (2) the

model’s learning status is minimal, when Y∗ = argmin
Y

H (Y | S).

Definition K.1 indicates that a model with enough capacity: (1) when in a sufficient learning status,
the prediction Y∗ can reflect as much information as possible contained in the surrogate supervision
signal S; (2) When in a minimal learning status, the prediction Y∗ can reflect the information from
the surrogate supervision signal S while minimizing redundancy. This is in contrast to underfitting

1Assuming that the ground truth for unlabeled data is available solely for theoretical analysis purposes.
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(with insufficient capability to fully capture the surrogate supervision signal) and overfitting (sensi-
tive to redundant information from augmented views or transformation patterns of the input) caused
by insufficient or excessive model capacity, respectively.

Then we can derive the Lemma K.2 showing that the maximal mutual information of I(Y∗;S) is
I(X;S).

Lemma K.2. For the pseudo label prediction Y obtained by the segmentation model Fθ with
enough capacity in the sufficient and minimal learning status from the input image X, we have
I(Y∗;S) = I(X;S).

Proof. In fact, the pseudo label prediction Y is conditionally independent with surrogate supervision
signal S, given the input image X, i.e., Y ⊥ S | X. Then, we can calculate as follows:

I(Y;S)− I(X;S) = [I(S; [Y,X])− I(X;S)]− [I(S; [Y,X])− I(Y;S)]. (24)

Considering I(S; [Y,X]) = I(X;S) + I(Y;S | X), and I(S; [Y,X]) = I(Y;S) + I(X;S | Y),
then Equation 24 can be formalized as,

I(Y;S)− I(X;S) = [I(X;S) + I(Y;S | X)− I(X;S)]− [I(Y;S) + I(X;S | Y)− I(Y;S)]

= I(Y;S | X)− I(X;S | Y).
(25)

Since Y ⊥ S | X, we have I(Y;S | X) = 0. Therefore, I(Y;S) − I(X;S) = −I(X;S |
Y) ≤ 0, that is, I(Y;S) ≤ I(X;S). Then for the segmentation model Fθ with enough capacity
in the sufficient and minimal learning status, the pseudo label prediction Y∗ will have I (Y∗;S) =
argmax

Y
I (Y;S) = I(X;S).

Next, we derive Theorem K.3 based on the above definitions and lemma and provide a complete
proof.

Theorem K.3. We have the following inequalities when the segmentation model Fθ is in the suffi-
cient and minimal learning status, Yoracle, Ycr, Ydiff :

I (Yoracle;T) ≥ I (Ydiff ;T) ≥ I (Ycr;T) . (26)

Proof. According to the Lemma K.2, we have the following properties for pseudo label prediction:

I (Ycr;Scr) = I (X;Scr) , I (Ydiff ;Scr,Spr) = I (X;Scr,Spr) . (27)

Therefore, for the pseudo label prediction Y ∈ {Ycr,Ydiff} obtained by the segmentation model
with enough capacity in the sufficient and minimal learning status, and the corresponding surrogate
supervision signal S ∈ {Scr, (Scr,Spr)}, we have,

I (Y;S;T) = I (X;S;T) , I (Y;S | T) = I (X;S | T) . (28)

Besides, because the segmentation model is in the sufficient and minimal learning status, we also
have,

I (Y;T | S) ≤ I (Y | S) = 0. (29)

Together with the two equalities above, we further have the following equality on I (Y;T):

I (Y;T) = I (Y;T;S) + I (Y;T | S)
= I (X;T;S) + I (Y;T | S)︸ ︷︷ ︸

0

= I (X;T)︸ ︷︷ ︸
unchanged

−I (X;T | S) .
(30)
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For the fully supervised learning (oracle), considering that it is an ideal condition where all the
ground truth T corresponding to the unlabeled data is accessible for training based on the supervi-
sion signal Soracle, that is, all the pseudo labels are correct, in this situation, I (X;T | Soracle) =
I (X;T | T) = 0, achieving the upper bound of semi-supervised learning performance.

However, in practice, without access to the ground truth T, the gap between the fully supervised
learning Yoracle and semi-supervised learning Y ∈ {Ycr,Ydiff} is I (X;T | S), for which we
have the following inequalities:

max (I (X;T | Scr) , I (X;T | Spr)) ≥ min (I (X;T | Scr) , I (X;T | Spr)) ≥ I (X;T | Scr,Spr) .
(31)

Furthermore, based on the Equation 30, we arrive at the inequalities on the target mutual informa-
tion:

I (Yoracle;T) ≥ I (Ydiff ;T) ≥ I (Ycr;T) , (32)
which completes the proof.
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L DETAILED ILLUSTRATION OF DIFFMATCH FRAMEWORK

In this section, we provide detailed illustrations for a clearer understanding of the DiffMatch frame-
work and the conditional discrete data generation pipeline using the diffusion process strategy. Fig-
ure 14 presents a comprehensive overview of the key components in DiffMatch, including the feature
extractor, mask denoiser, and the supervised and unsupervised loss calculations. Figure 15 further
illustrates the forward and reverse diffusion processes employed in the conditional discrete data
generation pipeline for semi-supervised semantic segmentation.
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Figure 14: Illustration of the DiffMatch framework. (a) The encoding process. The feature extractor
g(·) takes an input image x and outputs the pixel embedding z. (b) Supervised loss calculation. The
ground truth mask yl is corrupted with noise ϵ sampled from the Gaussian distribution to obtain
the noisy mask yl

t. The mask denoiser f(·) takes yl
t and zl as inputs to predict the denoised mask

ỹl. The supervised loss Lsup is computed between ỹl and yl. (c) Unsupervised loss calculation.
Weak and strong augmentations are applied to the unlabeled image xu to obtain xu

w and xu
s . The

teacher network generates pseudo labels ỹu
0,w by denoising ϵ conditioned on zu

w. Noise is injected
into ỹu

0,w to obtain ỹu
t,w. The student network denoises ỹu

t,w conditioned on zu
s to predict ỹu

s . The
unsupervised loss Lunsup is calculated between ỹu

s and ỹu
0,w.

𝑥 𝑦0 𝑦t−1 𝑦t 𝑦T

𝒒(𝒚𝒕|𝒚𝐭−𝟏)
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Forward Diffusion

Reverse Diffusion

Figure 15: Illustration of the conditional discrete data generation pipeline for semi-supervised se-
mantic segmentation using the diffusion process strategy. The forward diffusion process q(yt|yt−1)
progressively corrupts the input mask y0 by adding Gaussian noise at each time step t, resulting in
the noisy mask yt. The reverse diffusion process pθ(yt−1|yt, z) learns to denoise the noisy mask yt

conditioned on the pixel embedding z to recover the mask yt−1 at previous time step. The denoising
is performed iteratively, with the mask denoiser f(·) predicting the denoised mask at each step.
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