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Abstract

Understanding sign language remains a signifi-
cant challenge, particularly for low-resource
sign languages with limited annotated data.
Motivated by the success of large-scale pretrain-
ing in deep learning, we propose Multi-Stream
Masked Autoencoder (MS-MAE) — a sim-
ple yet effective framework for learning sign
language representations from skeleton-based
video data. Our approach begins with pretrain-
ing MS-MAE on the large-scale YouTube-ASL
dataset, using a masked reconstruction objec-
tive to model sign sequences. The pretrained
model is then adapted to multiple downstream
tasks across different sign languages. Experi-
mental results show that, after finetuning, MS-
MAE achieves competitive or superior perfor-
mance on a range of isolated sign language
recognition benchmarks, including WLASL,
ASL Citizen, Slovo, and the JSL Corpus. Fur-
thermore, it demonstrates strong performance
on sign language translation tasks, achieving
results comparable to state-of-the-art methods
on PHOENIX14T, CSL-Daily, and How2Sign.
These findings highlight the potential of lever-
aging large-scale, high-resource sign language
data to boost performance in low-resource sign
language scenarios.

1 Introduction

Sign languages, which rely on hand movements,
facial expressions, and body gestures to convey
meaning, serve as a primary mean of communica-
tion within deaf communities. However, a signifi-
cant communication gap persists between deaf and
hearing populations. In response, research on sign
language understanding, including Sign Language
Recognition (SLR) (Li et al., 2020; Desai et al.,
2023; Kapitanov et al., 2023) and Sign Language
Translation (SLT) (Camgoz et al., 2018; Zhou et al.,
2021a; Duarte et al., 2021), has garnered increas-
ing attention, especially in the era of deep learning.
Despite these advances, the development of sign

language understanding systems is still hindered
by the scarcity of large-scale, publicly available SL
datasets.

To overcome this challenge, recent efforts have
turned to the vast amount of sign language video
content available online, particularly on YouTube.
For instance, Youtube-ASL (YT-ASL) (Uthus et al.,
2023) consists of 984 hours of annotated Amer-
ican Sign Language (ASL) videos. Meanwhile,
YouTube-SL-25 (Tanzer and Zhang, 2024) expands
the scope, collecting 3,207-hour videos spanning
25 different sign languages. These datasets have
significantly accelerated progress in sign language
understanding by enabling large-scale supervised
pretraining strategies. The resulting pretrained
models have proven effective in enhancing down-
stream tasks such as SLR and SLT.

Despite the significant contributions of YouTube-
SL-25 toward the goal of "no language left behind"
in sign language research, annotated resources for
sign languages remain limited compared to those
available for spoken language machine translation.
Expanding annotated sign language datasets con-
tinues to be a major challenge. A more scalable
way is to leverage unannotated data, as argued by
(Rust et al., 2024). However, many sign languages
still lack sufficient video resources for pretraining.
This raises an important research question: Can
knowledge learned from videos of known sign lan-
guages be transferred to unseen, low-resource sign
languages? Addressing this question is crucial for
making progress in adapting models to underrepre-
sented sign languages. This study explores whether
large-scale sign language video datasets from high-
resource languages can be leveraged for effective
representation learning and video encoder pretrain-
ing, with the goal of enhancing performance on
downstream tasks in unseen sign languages.

Specifically, we introduce Multi-Stream Masked
AutoEncoder (MS-MAE) designed to learn a strong
sign language video encoder for sign language



videos. MS-MAE begins by extracting three dis-
tinct pose streams, including body, left hand, and
right hand, and encoding each as a separate token
sequence. These sequences are then concatenated
into a single unified stream and passed through a
transformer (Vaswani et al., 2017) encoder. During
self-supervised pretraining, MS-MAE randomly
masks a subset of tokens in each stream and tasks
the model with reconstructing the masked portions.
In our experiments, we first pretrain the video en-
coder only with videos from the YT-ASL dataset,
and then test on two downstream tasks:

¢ Isolated SLR (ISLR), evaluated on ASL,
Japanese Sign Language (JSL) and Russian
Sign Language (RSL).

* SLT, evaluated on ASL, Chinese Sign Lan-
guage (CSL) and German Sign Language
(DGS).

Our contributions are as follows: (1) We pro-
pose a simple yet effective and efficient Multi-
Stream Masked Autoencoder (MS-MAE) frame-
work for training a sign language video encoder
using large-scale, unlabeled sign language videos.
(2) Through experiments, we demonstrate that fine-
tuning our model pretrained exclusively on ASL
videos achieves competitive performance com-
pared to SOTA methods across multiple sign lan-
guages. Notably, freezing the encoder can still
deliver strong results. (3) We further analyze our
approach and find that pretraining on facial streams
doesn’t consistently improve the downstream per-
formance. Besides, continual pretraining on the
target training set is less effective with our frame-
work.

2 Related Work

2.1 Transfer Learning of Supervised
Pretraining

Data scarcity is a primary challenge in sign lan-
guage processing, making transfer learning es-
sential for enhancing both SLR and SLT perfor-
mance. Several previous works employ either 2D
CNNs (Camgoz et al., 2020) pretrained on image
classification tasks or 3D CNNs (Sarhan and Frin-
trop, 2020; Chen et al., 2022a) pretrained on action
recognition tasks, such as S3D (Xie et al., 2018)
and I3D (Carreira and Zisserman, 2017), as back-
bone feature extractors. While these approaches
have demonstrated effectiveness, their performance

is constrained by a domain shift between action
recognition and sign language understanding. This
gap arises from differences in task granularity, with
sign language understanding requiring finer tem-
poral and spatial understanding, thereby limiting
further performance gains.

Another line of research involves in-domain
transfer, or cross-lingual transfer learning, where
models trained on high-resource sign languages are
finetuned to adapt to low-resource sign languages,
yielding significant performance improvements, in-
cluding (Bird et al., 2020; Holmes et al., 2023).
However, annotated sign language data are difficult
to obtain and hard to scale up, highlighting the need
for approaches that can leverage unannotated data.

2.2 Self-supervised Learning in Sign
Language Understanding

Self-supervised learning, which leverages large-
scale unlabeled data, has achieved remarkable suc-
cess in various fields. In the domain of sign lan-
guage, several works have adopted masked predic-
tion strategies, such as BEST (Zhao et al., 2023)
and SHuBERT (Gueuwou et al., 2024). Others fol-
low a masked reconstruction paradigm. Among
these, SignBERT (Zhou et al., 2021b) and Sign-
BERT+ (Hu et al., 2023) employ BERT (Devlin
et al., 2019)-like encoder-only architectures. Mean-
while, approaches like MASA (Zhao et al., 2024),
SSVP-SLT (Rust et al., 2024), and SignRep (Wong
et al., 2025) adopt MAE (He et al., 2022)-like
asymmetric encoder-decoder architectures. Specifi-
cally, MASA performs masked reconstruction on
skeleton-based input. SSVP-SLT targets RGB in-
put, which is computationally intensive and de-
mands substantial resources—its longest pretrain-
ing run reportedly takes two weeks on 64 A100
GPUs. To address these challenges, the recent work
SignRep introduces an approach that takes RGB in-
puts but reconstructs pose sequences. This design
significantly reduces computational costs during
pretraining and removes the need for skeleton esti-
mation tools at inference time.

However, RGB videos remain computationally
intensive to process, especially in the context of
sign language, which is inherently information-
dense. Additionally, transformer-based architec-
tures further amplify this challenge. As a result,
finetuning the entire model for some downstream
tasks, particularly in SLT, becomes impractical,
limiting potential performance gains. Moreover,
RGB-based MAE:s typically tokenize videos into



fixed-size patches. This patch-based tokenization
can fragment critical visual cues across multiple
tokens, potentially leading to low-efficiency learn-
ing.

In contrast, our pretraining framework operates
on skeletal data in order to focus on the interac-
tion among visual cues for efficient representation
learning. Unlike MASA, which aggregates all vi-
sual cues within each frame as a single input unit,
our pretraining framework leverages skeletal data
by explicitly decoupling visual cues and passing
them through a transformer concurrently, which is
close to the strategy of SignBERT.

3 Method: Multi-Stream Masked
AutoEncoder

An overview of MS-MAE is illustrated in Figure 1.
We begin by extracting skeleton sequences from
sign language videos and dividing them into sepa-
rate streams corresponding to the left hand, right
hand, and upper body. Each stream is then encoded
into a sequence of tokens. Our framework adopts
an MAE-like asymmetric encoder-decoder archi-
tecture for pretraining. Specifically, we randomly
drop several time steps within each stream, and the
unmasked tokens are fed into a transformer encoder.
The encoder outputs are then padded with learn-
able mask tokens and passed to the decoder. The
pretraining objective is to reconstruct the original
skeleton sequences.

3.1 Multi-Stream Transformer

Our encoder architecture consists of an embed-
ding layer followed by a standard transformer en-
coder. We utilize MediaPipe Holistic (Lugaresi
et al., 2019) to extract skeletal data from sign lan-
guage videos. Each pose sequence consists of three
distinct streams—Ileft hand, right hand, and upper
body—denoted as P = {(PM, PFH pB)}n |,
where n is the total number of frames and each
PP e RIX»1XD contains the D-dimensional key-
points of part p € {LH, RH, B}. In this work, we
only use x- and y-coordinates of the keypoints, so
D = 2. The term | K| is the number of keypoints
for each body part.
We flatten and project each stream frame-wise:

x8 = Linearp (flatten(P?))
xtH = Lineary (flatten(PL7)) (1)
xR — Lineary; (flatten( PF))

wheret =1,--- ,n.

Inspired by video transformers (Arnab et al.,
2021; Tong et al., 2022) that leverage cubelet
embeddings to encode spatio-temporal cubes,
which can reduce computational cost through mit-
igating the redundancy of neighboring frames,
we adopt the same strategy to reduce sequence
length. Specifically, we use 1D convolutions with
kernel size = stride = S to encode streams sepa-
rately to ensure non-overlapping encoding:

2P = ConviDg(2®) ¢ R(/5)*C
& = ConviDy(z") e R™/H*C (2)

&7 — ConvIDy(2R") € R(/S)xC

. Each stream is added to the same positional en-
coding, denoted as PE, so that the part token at
the same time step can be correctly identified, and
concatenated along the time channel into a single
sequence as inputs to the transformer:

Emb? = &P + PE[: n/S] € R(V/SxC

Emb = [Emb®; Emb™; EmbRH] ¢ RGn/9)xC
3)
, and feed Emb into a standard transformer encoder
Z = Transformer(Emb).

By keeping streams separate up through the
patch embedding, self-attention can explicitly
model both intra-stream dynamics (e.g. left-hand
over time) and cross-stream dependencies (e.g.
right-hand vs. body), and during pretraining, we
may apply masking to individual streams rather
than entire frames for more granular learning.

3.2 Pretrain

In the pretraining stage, we employ an asym-
metric encoder—decoder MAE architecture tai-
lored to our multi-stream setting. Let P =
{PF boe (B,LH.RH]}, 1—1 denote the set of input pose
sequences. We apply a PatchEmbed(-) function
to each stream, producing cubelet tokens, which
are augmented with positional encodings Emb? €
R("/$)*C " A random fraction r of tokens in each
stream is masked; we denote the sets of visible and
masked indices as V), and M), respectively.

1. Encoding. All unmasked token embeddings
{Emb! : i € V,, p € {B,LH,RH}} are
passed through a transformer encoder to yield
contextual representations Zy € RXp VolxC

2. Decoding. For each masked index, we
prepend a learnable mask token, concatenate
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Figure 1: An overview of MS-MAE. Sign language videos are first converted into skeletal data using MediaPipe
Holistic, and separated into left-hand, body, and right-hand streams. Each stream is divided into a sequence of
spatiotemporal cubes. During pretraining, a portion of the tokens is masked, while the unmasked tokens are flattened
and passed through an encoder to produce latent representations. These encoder outputs are concatenated with
learnable mask tokens and fed into a decoder, which is trained to reconstruct the original input sequences.

the resulting embeddings with Zy to form
7 € R™*C and pass Z through a lightweight
decoder. The decoder reconstructs outputs f?
for all i € M,,.

3. Reconstruction target & loss. For
each masked token index k, the tar-
get is the original sequence of key-
points within the corresponding cubelet

P _ 4 D iy
t, = [Pis Prgi1-os PkSJrSfl} €
RSX(DIKy)).

We minimize the mean squared error £ =

2
1 b D
SR > p 2keM, Htk - ﬂatten(tk)HQ.

This architecture encourages the encoder to learn
the dependencies among different visual cues at dif-
ferent time steps. When computing the loss, we
ignore any missing keypoints in t} due to Medi-
aPipe failures, to avoid the model being misled by
noisy and absent detections.

4 Experiment

4.1 Pretraining

We pretrain our model using the YT-ASL dataset,
which contains ASL videos collected from
YouTube. Subtitle information is not utilized, and
sentence boundary information is assumed to be
unavailable. We randomly sample 300 frames from
a sequence of 600 consecutive frames (sampled at
a rate of 2 frames per unit) during each pretrain-
ing step. We explore two masking strategies: full
masking and random masking. In full masking,

the same time steps are masked across all input
streams, denoted as SameMask. In contrast, ran-
dom masking applies different masked time steps
to each stream while maintaining an equal num-
ber of masked tokens across streams, denoted as
DiffMask.

Hyperparameters The encoder follows a Trans-
former architecture with L. = 8, H = 8§, and
a hidden dimension of 512. The decoder uses a
smaller Transformer encoder with L = 4, H = §,
and a hidden dimension of 512. We employ the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a maximum learning rate of 8 x 10~ and
betas (0.9,0.95). A learning rate scheduler with
warmup and cosine decay is used, with 2K warmup
steps. The maximum number of optimization steps
is set to 120K. We mask 50% of tokens for each
stream in our experiments.

4.2 Isolated Sign Language Recognition

Dataset We evaluate effectiveness through ISLR,
a classification task that predicts a single gloss
from a video clip. Our experiment includes four
ISLR datasets: WLASL (Li et al., 2020), ASL Cit-
izen (Desai et al., 2023), Slovo (Kapitanov et al.,
2023), and the JSL Corpus (Bono et al., 2014).
WLASL, a widely used and challenging ISLR
dataset for ASL, serves as the in-domain bench-
mark. ASL Citizen provides an additional large-
scale ASL dataset for evaluation. To assess cross-
lingual generalization, we include Slovo and the
JSL Corpus, which represent RSL and JSL, respec-
tively. Since the JSL Corpus is not originally de-



Table 1: Statistics of the used ISLR datasets.

Dataset | WLASL | ASL Citizen | Slovo | JSL Corpus
Gloss 2,000 2,731 1,001 696
Train 14,289 40,154 15,300 32,282
Valid 3,916 10,304 5,100 4,306
Test 2,878 32,941 4,676

signed for ISLR, we extract word-level annotations
and exclude non-lexicalized signs, such as classi-
fier constructions, non-manual markers, and mis-
labeled instances that do not correspond to valid
lexical signs. Dataset statistics are summarized in
Table 1.

Finetuning During finetuning, we prepend a
learnable [CLS] token to the input pose sequences.
The video features are obtained from the contex-
tual embedding of the [CLS] token. We attach a
classifier head to the [CLS] token’s contextual em-
bedding and optimize it using cross-entropy loss.

Hyperparameters We set the batch size to 128
and sample 32 frames per video as input. We use
AdamW optimizer with a weight decay of 1073,
A cosine learning rate scheduler is used with a
10-epoch linear warm-up and a peak learning rate
of 5 x 10~°. Training is conducted for 100 epochs.
During training, we apply temporal augmentation
by randomly sampling frames from each video.
We also augment the pose data by randomly rotat-
ing, shearing, and scaling, as suggested by Sign-
CLIP (Jiang et al., 2024), on all datasets except the
JSL Corpus.

Comparison We compare our method with ST-
GCN (Yan et al., 2018). We reproduce the result
via the implementation from ST-GCN++ (Duan
etal., 2022). We report top-k recall, where a predic-
tion is considered correct if the target label appears
among the top-k results. We evaluate performance
with £ = 1, 5. For WLASL, ASL Citizen and JSL
Corpus, we choose the checkpoint with the best
validation performance to evaluate on the test sets.
For Slovo, which has no test set, we report the
performance of the checkpoint with the best top-5
validation recall on the validation set.

4.2.1 Experiment Result

The experimental results are summarized in Table 2.
Our model, pretrained on the large-scale YT-ASL
dataset, consistently outperforms the pose-based
ST-GCN baseline across all four benchmarks. No-
tably, on WLASL, our approach surpasses other
masked reconstruction methods, including Sign-
BERT and MASA. We attribute these improve-
ments to two primary factors. First, pretraining on
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Figure 2: The correlations between top-5 recall and the
masking ratio are similar across all ISLR datasets. The
best performance is achieved by the masking ratio of
50%. The second best masking ratio is 30% or 70%,
depending on the dataset.

YT-ASL allows us to leverage a significantly larger
and more diverse collection of sign language videos
than those available in the public ISLR datasets
used by SignBERT and MASA. Second, the sepa-
ration of each modality stream enables more flex-
ible and effective masking strategies. As shown
in Table 2, the DiffMask outperforms SameMask,
suggesting that applying different temporal masks
to each stream during pretraining contributes to a
more robust sign language video encoder.

Effect of Masking Ratio The correlation be-
tween the performance and the masking ratio is
shown in Figure 2. We can observe that the trends
are similar across all datasets. The masking ratio
of 0.5 yields the best overall performance, while
ratios of 0.3 or 0.7 achieve the second-best results,
depending on the dataset. An extremely high ratio,
0.9, leads to performance degradation.

4.2.2 Frozen Video Encoder

To further evaluate the pretrained encoder, we
conducted experiments by freezing the pretrained
video encoder. Specifically, we freeze the pre-
trained model, apply average pooling to its contex-
tual embeddings, and project the resulting features
using a simple trainable linear layer. We utilized
the checkpoint with a masking ratio of 0.5 for this
experiment. Table 3 summarizes the results.

On the WLASL dataset, our learned represen-
tations outperform the baseline model. However,
on other datasets, the performance declines. In
SLOVO, the performance is slightly below the base-
line, while in the ASL Citizen and JSL Corpus
datasets, there is a drop of 10 points or more com-



Table 2: ISLR results across four benchmarks. * denotes the ST-GCN implementation reproduced from previous
work, while the other ST-GCN result is from our own implementation. MR denotes Masking Ratio. Our method
outperforms previous pose-based self-supervised learning approaches.

Method WLASL ASL Citizen Slovo JSL Corpus
Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5
ST-GCN™* (Yan et al., 2018) 3440 66.57 | 63.10 86.09
ST-GCN (Yan et al., 2018) 41.70 7436 | 70.67 90.72 | 64.94 87.71 | 46.17 70.87
SignBERT (Zhou et al., 2021b) | 47.46  83.32
MASA (Zhao et al., 2024) 49.06  82.90
Ours (DiffMask, MR=0.5) 5695 90.72 | 75.72 93.31 | 7498 9429 | 5240 74.64
Ours (SameMask, MR=0.5) 5205 8721 | 71.87 91.23 | 7224 94.14 | 5126 7243

pared to the baseline in top-1 recall. These findings
indicate that the learned video encoder is effective
without further finetuning.

Table 3: Result of freezing the pretrained model with
a masking ratio of 50%. The results show that the pre-
trained model is effective even without further finetun-
ing, although in most cases, the performance lags behind

the baseline model.

Dataset Method Split Rec@1 Rec@5
WLASL ST-GCN++  test 41.70 74.36
WLASL probe test 42.88 74.77
ASL Citizen ~ ST-GCN++  test 70.67 90.72
ASL Citizen  probe test 54.54 79.45
SLOVO ST-GCN++  valid 64.94 87.71
SLOVO probe valid 60.12 85.61
JSL Corpus ST-GCN++  test 46.17 70.87
JSL Corpus  probe test 37.68 62.19

4.3 Sign Language Translation

We evaluate our approach on three SLT bench-
marks: Phoenix14T (P14T) (Camgoz et al., 2018),
CSL-Daily (Zhou et al., 2021a), and How2Sign
(H2S) (Duarte et al., 2021), representing DGS, CSL
and ASL, respectively. Dataset statistics are sum-
marized in Table 6. In our experiment, we don’t
use gloss information. We integrate our pretrained
sign language video encoder with the mBART
translation model (Liu et al., 2020)' translation
model. We fully finetune the mBART encoder
while adapting the decoder using Low-Rank Adap-
tation (LoRA) (Hu et al., 2022) to avoid overfitting,
with hyperparameters o = 32 and r» = 32. Train-
ing objective is cross-entropy loss. We employ the
AdamW optimizer with a weight decay of 1073,
and apply a cosine learning rate schedule with a
10-epoch warmup. We train for up to 100 epochs

"https://huggingface.co/facebook/mbart-large-50-many-
to-many-mmt

with a batch size of 32, applying gradient clipping
to stabilize optimization. During training, 20% of
video frames are randomly deleted or copied as
temporal augmentation. We experiment with both
freezing and finetuning the pretrained video en-
coder. Learning rates and gradient clipping norms
vary depending on the dataset and encoder setting,
which are shown in Table 5.

We report BLEU scores (Papineni et al., 2002)
and ROUGE (Lin, 2004) metrics to evaluate trans-
lation quality. Specifically, we compute BLEU-1
and BLEU-4 using SacreBLEU (Post, 2018)2, and
report the ROUGE-L F1 score?.

We compare our model against recent gloss-
free approaches. For the P14T and CSL-Daily
datasets, we evaluate performance relative to
Sign2GPT (Wong et al., 2024), VAP (Jiao et al.,
2024), C?RL (Chen et al., 2024), and Sign-
LLMs (Gong et al., 2024), which are language-
supervised pretraining methods. For the How2Sign
dataset, we compare our results with SSVP-SLT,
an MAE-based method on RGB modality, and T5
models pretrained on YT-ASL with subtitle super-
vision (Uthus et al., 2023).

We explore two input strategies: (1) Flat con-
catenation: Tokens from all three input streams are
concatenated into a single sequence and passed to
mBART. (2) Per-time-step averaging: At each time
step, embeddings from the three streams are aver-
aged to produce a single fused embedding per time
step. The resulting sequence is input to mBART.

4.3.1 Experimental Results

Results for P14T and CSL-Daily are shown in Ta-
ble 4, and results for How2Sign are shown in Ta-
ble 7. On CSL-Daily, our method outperforms

For Chinese, we use the *zh’ tokenizer; for English and
German, we use the ’13a’ tokenizer

3We adopted the ROUGE implementation from the official
codebase of TwoStreamSLT (Chen et al., 2022b)



Table 4: Experimental results on P14T and CSL-Daily. Following the observation in (Jiao et al., 2024), the mBART
tokenizer exhibits an inconsistent punctuation bug, particularly affecting evaluations in Chinese due to the use of
full-width punctuation marks. To ensure a fair comparison, we report the results after correcting the bug, with the

uncorrected results shown in parentheses.

P14T CSL-Daily
Method Modality | Bl B4 R Bl B4 R
Sign2GPT (Wong et al., 2024) RGB 4543 1942 4523 | 34.80 1296  41.12
Sign2GPT(Pseudo-Gloss Pretraining) (Wong et al., 2024) | RGB 49.54 2252 4890 | 41.75 1540 4236
. 5298  23.65 51.09
VAP (Jiao et al., 2024) Skeleton | 53.07 26.16 51.28 (49.99) (20.85) (48.56)
SignLLMs (Gong et al., 2024) RGB 4521 23.40 4449 | 39.55 15.75 39.91
C2RL (Chen et al., 2024) RGB 52.81 26.75 5096 | 4932  21.61 48.21
. 51.30 21.79  48.81
Ours (Flat Concatenation) Skeleton | 43.79 1996 41.52 @831) (19.15) (46.31)
. . 47.30 19.80 4537
Ours (Flat Concatenation, Frozen Video Encoder) Skeleton | 39.26 17.92 3791 @443) (17.37) (43.07)
. . 51.01 2148  48.81
Ours (Per-time-step averaging) Skeleton | 40.48 17.45 38.31 47.98) (18.94) (46.29)

Table 5: Learning rates and gradient clipping norms for
each dataset and encoder status.

H2S
Frozen Unfrozen

P14T & CSL-Daily

Video Encoder Status Frozen Unfrozen

3x107* 5x107°
1.0

1x107*
0.1

Learning Rate

1x1073
Gradient Clipping

Table 6: Statistics of the SLT datasets used in our ex-
periments. For the H2S dataset, we use the manually
re-aligned version provided on their homepage and ex-
clude a very small subset of samples due to invalid time
ranges.

Dataset | P14T | CSL-Daily | H2S

# Train | 7,096 18,401 31,086
# Valid | 519 1,077 1,738
# Test 642 1,176 2,349

Sign2GPT using only skeleton data. On How2Sign,
it matches the performance of SSVP-SLT that has
no Language Supervised Pretraining (LSP), while
being more lightweight and computationally effi-
cient. Compared to T5 with supervised pretraining
on YT-ASL, our model achieves comparable per-
formance without relying on subtitle data.

While the performance on P14T is weaker, we at-
tribute this to the dataset’s low video resolution and
motion blur, which leads to inaccurate keypoint es-
timation. The pose quality gap between finetuning
and pretraining stages may hurt the performance.
This highlights a key limitation of skeleton-based
pretraining: its reliance on high-quality pose data.
The skeleton quality between pretraining and fine-
tuning should be aligned.

While our encoder does not surpass all prior
methods, it demonstrates the effectiveness of our
method. It shows that the video encoder pretrained

on only ASL videos can be generalized to other
SLs. Additionally, our results show that flat con-
catenation of stream features outperforms per-time-
step averaging, proving the effectiveness of sepa-
rating the skeleton into multiple streams. Our fol-
lowing experiments will use the flat concatenation
strategy as the default setup.

4.4 Analysis

4.4.1 Facial Information

Facial information plays a critical role in sign
language understanding (Mukushev et al., 2020;
Chaudhary et al., 2024). Facial expressions often
serve grammatical purposes, while mouthing can
help disambiguate signs that share similar manual
gestures. However, it remains unknown whether
facial information in ASL can also benefit under-
standing in other sign languages.

To investigate the impact of facial information,
we experiment with different configurations for
incorporating facial keypoints during pretraining
and finetuning. The results are presented in Ta-
ble 8. When facial keypoints are used only during
finetuning, we observe slight performance gains
on P14T and H2S, but a notable degradation on
CSL-Daily. Moreover, incorporating facial key-
points during both pretraining and finetuning leads
to slight improvements on P14T and a significant
boost on H2S, compared to incorporating facial in-
formation in merely the finetuning stage. However,
on CSL-Daily, the performance remains similar to
that without facial information.

We think two key factors may influence the trans-
ferability of facial information. First is the vary-
ing importance of facial cues across benchmarks.



Table 7: Experiment results on How2Sign. SSVP-SLT-LSP means the method with language supervision pretraining.

Method Modality | Bl B4 R
TS5 (scratch) (Uthus et al., 2023) Skeleton | 14.96 1.22

TS5 (YT-ASL— H2S) (Uthus et al., 2023) Skeleton | 37.82 12.39
SSVP-SLT-LSP (PT + FT: YT-ASL + H2S) (Rust et al., 2024) | RGB 432 155 384
SSVP-SLT(PT: YT-ASL, FT:H2S) (Rust et al., 2024) RGB 38.1 11.7 338
VAP (Jiao et al., 2024) Skeleton | 39.22 12.87 27.77
C2?RL (Chen et al., 2024) RGB 29.07 937 27.02
Ours (Flat Concatenation) Skeleton | 33.14 10.84 27.99
Ours (Flat Concatenation, Frozen Video Encoder) Skeleton | 31.03 9.05 25.16
Ours (Per-time-step averaging) Skeleton | 31.57 992 26.78

Table 8: Results of varying stream setups during the
pretraining and finetuning stages, denoted as PT and
FT in the header. B, H, and F represent body, hands,

Table 9: Results of models further pretrained on the
videos in the training set.

and face, respectively. The best performance for each Dataset Pre"ai?T“i Zihed”k F“’/Z‘:“ 35;6 1332 37R91
dataset is highlighted in bold. 4T YT-ASL— PI4T v 4328 2072 4220
YT-ASL 4379 1996 4152
Dataset PT FT Bl B4 R YT-ASL— P14T 4473 20.84 42.96
B.H B.H 4379 1996 41.52 YT-ASL v 4730 19.80 45.37
P14T BH | BHF | 4456 2112 4250  Csipaly USSPy L A B8 e
B,HF | BHF | 4598 21.66 43.76 YT-ASL— CSL-Daily 5078 2129 48.42
B.H B.H 51.30 21.79 48.81 YT-ASL v 3103 905 25.16
CSL-Daily | B.H | BHF | 48.69 19.88 4552  Hs YEASL A SOt
B.H,F | BHF | 50.15 21.23 48.17 YT-ASL— H2S 3632 1192 28.07

B.H B,H 33.14 10.84 27.99

H2S B,H B,H,F | 38.56 12.67 28.72
B,HF | BHF | 4247 1540 3543 quence from multiple skeleton streams along the

Some datasets rely more heavily on facial features
than others. Second is the diversity in face pat-
terns across different sign languages, which limits
cross-lingual transferability. For instance, while
certain facial expressions may be shared across sign
languages, mouthing patterns are often language-
specific and thus less transferable. Further investi-
gation of the exact reason is left for future work.

4.4.2 Continual Pretraining with videos in
training set

We further perform continual pretraining using
the training set of each target dataset, with results
shown in Table 9. We observe that continual pre-
training leads to performance improvements when
the video encoder is frozen during finetuning. How-
ever, when the entire model is fully finetuned, the
performance gains become less pronounced.

5 Conclusion

In this paper, we investigate using ASL videos to
enhance the performance in other SLs. We pro-
pose a simple yet effective and efficient pretraining
framework, MS-MAE, which concatenates the se-

temporal dimension. This architecture enables a
flexible masking strategy that each stream may be
masked at different time steps, allowing the model
to learn richer spatiotemporal dependencies among
different visual cues. The experimental results
show that pretraining solely on ASL videos from
scratch can enhance the performance in both ISLR
and SLT tasks on different languages. In ISLR
tasks, it achieves much better performance than
other approaches pretrained only on the training
set. On SLT benchmarks, it achieves a compara-
ble performance with SOTA gloss-free RGB-based
methods through fully finetuning, demonstrating
the effectiveness of our pretraining strategy. Ad-
ditionally, we conduct extensive ablation studies.
Our results show that incorporating facial expres-
sion data during pretraining does not consistently
improve performance. Moreover, continual pre-
training on the training set yields better results un-
der a frozen setting, while fully finetuned models
show similar performance regardless of continual
pretraining.

Limitations

In our proposed pretraining framework, separat-
ing visual cues results in significantly longer input



sequences, which increases the complexity of the
transformer due to the quadratic nature of the self-
attention mechanism. Although we have not yet
conducted specific experiments to validate this, we
hypothesize that without sufficient data, training
such a framework effectively would be difficult.
Besides, as mentioned in Section 4, the pose qual-
ity gap between pretraining and finetuning may
lead to performance degradation, which is the in-
herent issue of skeleton-based methods. One future
direction is to improve the robustness to noisy key-
points. Additionally, although skeletal modalities
can substantially reduce computational demands
during both pretraining and finetuning, they require
extra preprocessing time to extract pose data.
Regarding our experiments, we acknowledge
that the evaluation did not encompass a sufficiently
diverse range of sign language categories, primar-
ily due to the limited availability of datasets and
computational resources. As a result, we were
unable to thoroughly investigate the factors that
contribute to improved cross-lingual transferability,
and thus could not provide concrete guidelines for
future work. Additionally, existing benchmarks
are built under varying conditions, making it dif-
ficult to isolate the specific factors that influence
model performance. For example, we did not con-
trol for confounding variables such as video qual-
ity, dataset scale, and dataset difficulty, which may
have limited the strength and generalizability of our
conclusions. In our future work, we will conduct
more comprehensive experiments on other datasets.
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A Keypoints

In our experiments, we use MediaPipe Holistic
for pose estimation and extract the following key-
points:

1. Hands: All 21 keypoints of each hand (in-
dices 0-20).

Body: Upper-body keypoints with indices
{11,12,13,14,15,16}.

. Face: Includes keypoints from the contour,
mouth, nose, and eyes:

Contour 234, 93, 132, 58, 172, 136,
150, 149, 176, 148, 152, 377, 400,
378, 379, 365, 397, 288, 361, 323
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Figure 3: Face keypoints used in our experiments

Mouth 0, 267, 269, 270, 409, 291,
375, 321, 405, 314, 17, 84, 181,
91, 146, 61, 185, 40, 39, 37,
13, 312, 311, 310, 415, 308, 324,
318, 402, 317, 14, 87, 178, 88,
95, 78, 191, 80, 81, 82

Nose 98, 97, 2, 326, 327, 1, 4, 5,
195, 197

Eyes 46, 53, 52, 65, 55, 285, 295,
282, 283, 276, 33, 246, 161, 160,
159, 158, 157, 173, 133, 155, 154,
153, 145, 144, 163, 7, 362, 398,
384, 385, 386, 387, 388, 466, 263,
249, 390, 373, 374, 380, 381, 382

An example showing face keypoints is shown in
Figure 3.

B Computational Resource Usage

We conducted pretraining on 8 nodes, each
equipped with an NVIDIA GH200 GPU, for ap-
proximately 14 hours. To ensure convergence, we
used a total of 120,000 training steps. Our in-house
experiments show that the checkpoint at 60% of
training steps achieved performance comparable to
the final checkpoint.

C Use of AI Assistance

In this research, we primarily used GitHub Copi-
lot for coding and debugging, and ChatGPT for
refining the writing of this paper.
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