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Abstract001

Understanding sign language remains a signifi-002
cant challenge, particularly for low-resource003
sign languages with limited annotated data.004
Motivated by the success of large-scale pretrain-005
ing in deep learning, we propose Multi-Stream006
Masked Autoencoder (MS-MAE) — a sim-007
ple yet effective framework for learning sign008
language representations from skeleton-based009
video data. Our approach begins with pretrain-010
ing MS-MAE on the large-scale YouTube-ASL011
dataset, using a masked reconstruction objec-012
tive to model sign sequences. The pretrained013
model is then adapted to multiple downstream014
tasks across different sign languages. Experi-015
mental results show that, after finetuning, MS-016
MAE achieves competitive or superior perfor-017
mance on a range of isolated sign language018
recognition benchmarks, including WLASL,019
ASL Citizen, Slovo, and the JSL Corpus. Fur-020
thermore, it demonstrates strong performance021
on sign language translation tasks, achieving022
results comparable to state-of-the-art methods023
on PHOENIX14T, CSL-Daily, and How2Sign.024
These findings highlight the potential of lever-025
aging large-scale, high-resource sign language026
data to boost performance in low-resource sign027
language scenarios.028

1 Introduction029

Sign languages, which rely on hand movements,030

facial expressions, and body gestures to convey031

meaning, serve as a primary mean of communica-032

tion within deaf communities. However, a signifi-033

cant communication gap persists between deaf and034

hearing populations. In response, research on sign035

language understanding, including Sign Language036

Recognition (SLR) (Li et al., 2020; Desai et al.,037

2023; Kapitanov et al., 2023) and Sign Language038

Translation (SLT) (Camgöz et al., 2018; Zhou et al.,039

2021a; Duarte et al., 2021), has garnered increas-040

ing attention, especially in the era of deep learning.041

Despite these advances, the development of sign042

language understanding systems is still hindered 043

by the scarcity of large-scale, publicly available SL 044

datasets. 045

To overcome this challenge, recent efforts have 046

turned to the vast amount of sign language video 047

content available online, particularly on YouTube. 048

For instance, Youtube-ASL (YT-ASL) (Uthus et al., 049

2023) consists of 984 hours of annotated Amer- 050

ican Sign Language (ASL) videos. Meanwhile, 051

YouTube-SL-25 (Tanzer and Zhang, 2024) expands 052

the scope, collecting 3,207-hour videos spanning 053

25 different sign languages. These datasets have 054

significantly accelerated progress in sign language 055

understanding by enabling large-scale supervised 056

pretraining strategies. The resulting pretrained 057

models have proven effective in enhancing down- 058

stream tasks such as SLR and SLT. 059

Despite the significant contributions of YouTube- 060

SL-25 toward the goal of "no language left behind" 061

in sign language research, annotated resources for 062

sign languages remain limited compared to those 063

available for spoken language machine translation. 064

Expanding annotated sign language datasets con- 065

tinues to be a major challenge. A more scalable 066

way is to leverage unannotated data, as argued by 067

(Rust et al., 2024). However, many sign languages 068

still lack sufficient video resources for pretraining. 069

This raises an important research question: Can 070

knowledge learned from videos of known sign lan- 071

guages be transferred to unseen, low-resource sign 072

languages? Addressing this question is crucial for 073

making progress in adapting models to underrepre- 074

sented sign languages. This study explores whether 075

large-scale sign language video datasets from high- 076

resource languages can be leveraged for effective 077

representation learning and video encoder pretrain- 078

ing, with the goal of enhancing performance on 079

downstream tasks in unseen sign languages. 080

Specifically, we introduce Multi-Stream Masked 081

AutoEncoder (MS-MAE) designed to learn a strong 082

sign language video encoder for sign language 083
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videos. MS-MAE begins by extracting three dis-084

tinct pose streams, including body, left hand, and085

right hand, and encoding each as a separate token086

sequence. These sequences are then concatenated087

into a single unified stream and passed through a088

transformer (Vaswani et al., 2017) encoder. During089

self-supervised pretraining, MS-MAE randomly090

masks a subset of tokens in each stream and tasks091

the model with reconstructing the masked portions.092

In our experiments, we first pretrain the video en-093

coder only with videos from the YT-ASL dataset,094

and then test on two downstream tasks:095

• Isolated SLR (ISLR), evaluated on ASL,096

Japanese Sign Language (JSL) and Russian097

Sign Language (RSL).098

• SLT, evaluated on ASL, Chinese Sign Lan-099

guage (CSL) and German Sign Language100

(DGS).101

Our contributions are as follows: (1) We pro-102

pose a simple yet effective and efficient Multi-103

Stream Masked Autoencoder (MS-MAE) frame-104

work for training a sign language video encoder105

using large-scale, unlabeled sign language videos.106

(2) Through experiments, we demonstrate that fine-107

tuning our model pretrained exclusively on ASL108

videos achieves competitive performance com-109

pared to SOTA methods across multiple sign lan-110

guages. Notably, freezing the encoder can still111

deliver strong results. (3) We further analyze our112

approach and find that pretraining on facial streams113

doesn’t consistently improve the downstream per-114

formance. Besides, continual pretraining on the115

target training set is less effective with our frame-116

work.117

2 Related Work118

2.1 Transfer Learning of Supervised119

Pretraining120

Data scarcity is a primary challenge in sign lan-121

guage processing, making transfer learning es-122

sential for enhancing both SLR and SLT perfor-123

mance. Several previous works employ either 2D124

CNNs (Camgöz et al., 2020) pretrained on image125

classification tasks or 3D CNNs (Sarhan and Frin-126

trop, 2020; Chen et al., 2022a) pretrained on action127

recognition tasks, such as S3D (Xie et al., 2018)128

and I3D (Carreira and Zisserman, 2017), as back-129

bone feature extractors. While these approaches130

have demonstrated effectiveness, their performance131

is constrained by a domain shift between action 132

recognition and sign language understanding. This 133

gap arises from differences in task granularity, with 134

sign language understanding requiring finer tem- 135

poral and spatial understanding, thereby limiting 136

further performance gains. 137

Another line of research involves in-domain 138

transfer, or cross-lingual transfer learning, where 139

models trained on high-resource sign languages are 140

finetuned to adapt to low-resource sign languages, 141

yielding significant performance improvements, in- 142

cluding (Bird et al., 2020; Holmes et al., 2023). 143

However, annotated sign language data are difficult 144

to obtain and hard to scale up, highlighting the need 145

for approaches that can leverage unannotated data. 146

2.2 Self-supervised Learning in Sign 147

Language Understanding 148

Self-supervised learning, which leverages large- 149

scale unlabeled data, has achieved remarkable suc- 150

cess in various fields. In the domain of sign lan- 151

guage, several works have adopted masked predic- 152

tion strategies, such as BEST (Zhao et al., 2023) 153

and SHuBERT (Gueuwou et al., 2024). Others fol- 154

low a masked reconstruction paradigm. Among 155

these, SignBERT (Zhou et al., 2021b) and Sign- 156

BERT+ (Hu et al., 2023) employ BERT (Devlin 157

et al., 2019)-like encoder-only architectures. Mean- 158

while, approaches like MASA (Zhao et al., 2024), 159

SSVP-SLT (Rust et al., 2024), and SignRep (Wong 160

et al., 2025) adopt MAE (He et al., 2022)-like 161

asymmetric encoder-decoder architectures. Specifi- 162

cally, MASA performs masked reconstruction on 163

skeleton-based input. SSVP-SLT targets RGB in- 164

put, which is computationally intensive and de- 165

mands substantial resources—its longest pretrain- 166

ing run reportedly takes two weeks on 64 A100 167

GPUs. To address these challenges, the recent work 168

SignRep introduces an approach that takes RGB in- 169

puts but reconstructs pose sequences. This design 170

significantly reduces computational costs during 171

pretraining and removes the need for skeleton esti- 172

mation tools at inference time. 173

However, RGB videos remain computationally 174

intensive to process, especially in the context of 175

sign language, which is inherently information- 176

dense. Additionally, transformer-based architec- 177

tures further amplify this challenge. As a result, 178

finetuning the entire model for some downstream 179

tasks, particularly in SLT, becomes impractical, 180

limiting potential performance gains. Moreover, 181

RGB-based MAEs typically tokenize videos into 182
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fixed-size patches. This patch-based tokenization183

can fragment critical visual cues across multiple184

tokens, potentially leading to low-efficiency learn-185

ing.186

In contrast, our pretraining framework operates187

on skeletal data in order to focus on the interac-188

tion among visual cues for efficient representation189

learning. Unlike MASA, which aggregates all vi-190

sual cues within each frame as a single input unit,191

our pretraining framework leverages skeletal data192

by explicitly decoupling visual cues and passing193

them through a transformer concurrently, which is194

close to the strategy of SignBERT.195

3 Method: Multi-Stream Masked196

AutoEncoder197

An overview of MS-MAE is illustrated in Figure 1.198

We begin by extracting skeleton sequences from199

sign language videos and dividing them into sepa-200

rate streams corresponding to the left hand, right201

hand, and upper body. Each stream is then encoded202

into a sequence of tokens. Our framework adopts203

an MAE-like asymmetric encoder-decoder archi-204

tecture for pretraining. Specifically, we randomly205

drop several time steps within each stream, and the206

unmasked tokens are fed into a transformer encoder.207

The encoder outputs are then padded with learn-208

able mask tokens and passed to the decoder. The209

pretraining objective is to reconstruct the original210

skeleton sequences.211

3.1 Multi-Stream Transformer212

Our encoder architecture consists of an embed-213

ding layer followed by a standard transformer en-214

coder. We utilize MediaPipe Holistic (Lugaresi215

et al., 2019) to extract skeletal data from sign lan-216

guage videos. Each pose sequence consists of three217

distinct streams—left hand, right hand, and upper218

body—denoted as P = {(PLH
t , PRH

t , PB
t )}nt=1,219

where n is the total number of frames and each220

P p
t ∈ R|Kp|×D contains the D-dimensional key-221

points of part p ∈ {LH,RH,B}. In this work, we222

only use x- and y-coordinates of the keypoints, so223

D = 2. The term |Kp| is the number of keypoints224

for each body part.225

We flatten and project each stream frame-wise:226

xB
k = LinearB(flatten(PB

t ))

xLH
k = LinearH(flatten(PLH

t ))

xRH
k = LinearH(flatten(PRH

t ))

, (1)227

where t = 1, · · · , n.228

Inspired by video transformers (Arnab et al., 229

2021; Tong et al., 2022) that leverage cubelet 230

embeddings to encode spatio-temporal cubes, 231

which can reduce computational cost through mit- 232

igating the redundancy of neighboring frames, 233

we adopt the same strategy to reduce sequence 234

length. Specifically, we use 1D convolutions with 235

kernel size = stride = S to encode streams sepa- 236

rately to ensure non-overlapping encoding: 237

x̂B = Conv1DB(x
B) ∈ R(n/S)×C

x̂LH = Conv1DH(x
LH) ∈ R(n/S)×C

x̂RH = Conv1DH(x
RH) ∈ R(n/S)×C

(2) 238

. Each stream is added to the same positional en- 239

coding, denoted as PE, so that the part token at 240

the same time step can be correctly identified, and 241

concatenated along the time channel into a single 242

sequence as inputs to the transformer: 243

Embp = x̂p + PE[: n/S] ∈ R(n/S)×C

Emb = [EmbB;EmbLH;EmbRH] ∈ R(3n/S)×C

(3) 244

, and feed Emb into a standard transformer encoder 245

Z = Transformer(Emb). 246

By keeping streams separate up through the 247

patch embedding, self-attention can explicitly 248

model both intra-stream dynamics (e.g. left-hand 249

over time) and cross-stream dependencies (e.g. 250

right-hand vs. body), and during pretraining, we 251

may apply masking to individual streams rather 252

than entire frames for more granular learning. 253

3.2 Pretrain 254

In the pretraining stage, we employ an asym- 255

metric encoder–decoder MAE architecture tai- 256

lored to our multi-stream setting. Let P = 257

{P p
t }np∈{B,LH,RH}, t=1 denote the set of input pose 258

sequences. We apply a PatchEmbed(·) function 259

to each stream, producing cubelet tokens, which 260

are augmented with positional encodings Embp ∈ 261

R(n/S)×C . A random fraction r of tokens in each 262

stream is masked; we denote the sets of visible and 263

masked indices as Vp and Mp, respectively. 264

1. Encoding. All unmasked token embeddings 265

{Embpi : i ∈ Vp, p ∈ {B,LH,RH}} are 266

passed through a transformer encoder to yield 267

contextual representations ZV ∈ R
∑

p |Vp|×C . 268

2. Decoding. For each masked index, we 269

prepend a learnable mask token, concatenate 270
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Figure 1: An overview of MS-MAE. Sign language videos are first converted into skeletal data using MediaPipe
Holistic, and separated into left-hand, body, and right-hand streams. Each stream is divided into a sequence of
spatiotemporal cubes. During pretraining, a portion of the tokens is masked, while the unmasked tokens are flattened
and passed through an encoder to produce latent representations. These encoder outputs are concatenated with
learnable mask tokens and fed into a decoder, which is trained to reconstruct the original input sequences.

the resulting embeddings with ZV to form271

Z ∈ Rn×C , and pass Z through a lightweight272

decoder. The decoder reconstructs outputs t̂pi273

for all i ∈ Mp.274

3. Reconstruction target & loss. For275

each masked token index k, the tar-276

get is the original sequence of key-277

points within the corresponding cubelet278

tpk =
[
P p
kS , P p

kS+1, . . . , P
p
kS+S−1

]
∈279

RS×(D |Kp|).280

We minimize the mean squared error L =281

1∑
p |Mp|

∑
p

∑
k∈Mp

∥∥∥t̂pk − flatten(tpk)
∥∥∥2
2
.282

This architecture encourages the encoder to learn283

the dependencies among different visual cues at dif-284

ferent time steps. When computing the loss, we285

ignore any missing keypoints in tpk due to Medi-286

aPipe failures, to avoid the model being misled by287

noisy and absent detections.288

4 Experiment289

4.1 Pretraining290

We pretrain our model using the YT-ASL dataset,291

which contains ASL videos collected from292

YouTube. Subtitle information is not utilized, and293

sentence boundary information is assumed to be294

unavailable. We randomly sample 300 frames from295

a sequence of 600 consecutive frames (sampled at296

a rate of 2 frames per unit) during each pretrain-297

ing step. We explore two masking strategies: full298

masking and random masking. In full masking,299

the same time steps are masked across all input 300

streams, denoted as SameMask. In contrast, ran- 301

dom masking applies different masked time steps 302

to each stream while maintaining an equal num- 303

ber of masked tokens across streams, denoted as 304

DiffMask. 305

Hyperparameters The encoder follows a Trans- 306

former architecture with L = 8, H = 8, and 307

a hidden dimension of 512. The decoder uses a 308

smaller Transformer encoder with L = 4, H = 8, 309

and a hidden dimension of 512. We employ the 310

AdamW optimizer (Loshchilov and Hutter, 2019) 311

with a maximum learning rate of 8 × 10−4 and 312

betas (0.9, 0.95). A learning rate scheduler with 313

warmup and cosine decay is used, with 2K warmup 314

steps. The maximum number of optimization steps 315

is set to 120K. We mask 50% of tokens for each 316

stream in our experiments. 317

4.2 Isolated Sign Language Recognition 318

Dataset We evaluate effectiveness through ISLR, 319

a classification task that predicts a single gloss 320

from a video clip. Our experiment includes four 321

ISLR datasets: WLASL (Li et al., 2020), ASL Cit- 322

izen (Desai et al., 2023), Slovo (Kapitanov et al., 323

2023), and the JSL Corpus (Bono et al., 2014). 324

WLASL, a widely used and challenging ISLR 325

dataset for ASL, serves as the in-domain bench- 326

mark. ASL Citizen provides an additional large- 327

scale ASL dataset for evaluation. To assess cross- 328

lingual generalization, we include Slovo and the 329

JSL Corpus, which represent RSL and JSL, respec- 330

tively. Since the JSL Corpus is not originally de- 331
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Table 1: Statistics of the used ISLR datasets.

Dataset WLASL ASL Citizen Slovo JSL Corpus
Gloss 2,000 2,731 1,001 696
Train 14,289 40,154 15,300 32,282
Valid 3,916 10,304 5,100 4,306
Test 2,878 32,941 4,676

signed for ISLR, we extract word-level annotations332

and exclude non-lexicalized signs, such as classi-333

fier constructions, non-manual markers, and mis-334

labeled instances that do not correspond to valid335

lexical signs. Dataset statistics are summarized in336

Table 1.337

Finetuning During finetuning, we prepend a338

learnable [CLS] token to the input pose sequences.339

The video features are obtained from the contex-340

tual embedding of the [CLS] token. We attach a341

classifier head to the [CLS] token’s contextual em-342

bedding and optimize it using cross-entropy loss.343

Hyperparameters We set the batch size to 128344

and sample 32 frames per video as input. We use345

AdamW optimizer with a weight decay of 10−3.346

A cosine learning rate scheduler is used with a347

10-epoch linear warm-up and a peak learning rate348

of 5× 10−5. Training is conducted for 100 epochs.349

During training, we apply temporal augmentation350

by randomly sampling frames from each video.351

We also augment the pose data by randomly rotat-352

ing, shearing, and scaling, as suggested by Sign-353

CLIP (Jiang et al., 2024), on all datasets except the354

JSL Corpus.355

Comparison We compare our method with ST-356

GCN (Yan et al., 2018). We reproduce the result357

via the implementation from ST-GCN++ (Duan358

et al., 2022). We report top-k recall, where a predic-359

tion is considered correct if the target label appears360

among the top-k results. We evaluate performance361

with k = 1, 5. For WLASL, ASL Citizen and JSL362

Corpus, we choose the checkpoint with the best363

validation performance to evaluate on the test sets.364

For Slovo, which has no test set, we report the365

performance of the checkpoint with the best top-5366

validation recall on the validation set.367

4.2.1 Experiment Result368

The experimental results are summarized in Table 2.369

Our model, pretrained on the large-scale YT-ASL370

dataset, consistently outperforms the pose-based371

ST-GCN baseline across all four benchmarks. No-372

tably, on WLASL, our approach surpasses other373

masked reconstruction methods, including Sign-374

BERT and MASA. We attribute these improve-375

ments to two primary factors. First, pretraining on376
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Figure 2: The correlations between top-5 recall and the
masking ratio are similar across all ISLR datasets. The
best performance is achieved by the masking ratio of
50%. The second best masking ratio is 30% or 70%,
depending on the dataset.

YT-ASL allows us to leverage a significantly larger 377

and more diverse collection of sign language videos 378

than those available in the public ISLR datasets 379

used by SignBERT and MASA. Second, the sepa- 380

ration of each modality stream enables more flex- 381

ible and effective masking strategies. As shown 382

in Table 2, the DiffMask outperforms SameMask, 383

suggesting that applying different temporal masks 384

to each stream during pretraining contributes to a 385

more robust sign language video encoder. 386

Effect of Masking Ratio The correlation be- 387

tween the performance and the masking ratio is 388

shown in Figure 2. We can observe that the trends 389

are similar across all datasets. The masking ratio 390

of 0.5 yields the best overall performance, while 391

ratios of 0.3 or 0.7 achieve the second-best results, 392

depending on the dataset. An extremely high ratio, 393

0.9, leads to performance degradation. 394

4.2.2 Frozen Video Encoder 395

To further evaluate the pretrained encoder, we 396

conducted experiments by freezing the pretrained 397

video encoder. Specifically, we freeze the pre- 398

trained model, apply average pooling to its contex- 399

tual embeddings, and project the resulting features 400

using a simple trainable linear layer. We utilized 401

the checkpoint with a masking ratio of 0.5 for this 402

experiment. Table 3 summarizes the results. 403

On the WLASL dataset, our learned represen- 404

tations outperform the baseline model. However, 405

on other datasets, the performance declines. In 406

SLOVO, the performance is slightly below the base- 407

line, while in the ASL Citizen and JSL Corpus 408

datasets, there is a drop of 10 points or more com- 409
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Table 2: ISLR results across four benchmarks. * denotes the ST-GCN implementation reproduced from previous
work, while the other ST-GCN result is from our own implementation. MR denotes Masking Ratio. Our method
outperforms previous pose-based self-supervised learning approaches.

Method WLASL ASL Citizen Slovo JSL Corpus
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ST-GCN∗ (Yan et al., 2018) 34.40 66.57 63.10 86.09
ST-GCN (Yan et al., 2018) 41.70 74.36 70.67 90.72 64.94 87.71 46.17 70.87

SignBERT (Zhou et al., 2021b) 47.46 83.32
MASA (Zhao et al., 2024) 49.06 82.90

Ours (DiffMask, MR=0.5) 56.95 90.72 75.72 93.31 74.98 94.29 52.40 74.64
Ours (SameMask, MR=0.5) 52.05 87.21 71.87 91.23 72.24 94.14 51.26 72.43

pared to the baseline in top-1 recall. These findings410

indicate that the learned video encoder is effective411

without further finetuning.412

Table 3: Result of freezing the pretrained model with
a masking ratio of 50%. The results show that the pre-
trained model is effective even without further finetun-
ing, although in most cases, the performance lags behind
the baseline model.

Dataset Method Split Rec@1 Rec@5

WLASL ST-GCN++ test 41.70 74.36
WLASL probe test 42.88 74.77

ASL Citizen ST-GCN++ test 70.67 90.72
ASL Citizen probe test 54.54 79.45

SLOVO ST-GCN++ valid 64.94 87.71
SLOVO probe valid 60.12 85.61

JSL Corpus ST-GCN++ test 46.17 70.87
JSL Corpus probe test 37.68 62.19

4.3 Sign Language Translation413

We evaluate our approach on three SLT bench-414

marks: Phoenix14T (P14T) (Camgöz et al., 2018),415

CSL-Daily (Zhou et al., 2021a), and How2Sign416

(H2S) (Duarte et al., 2021), representing DGS, CSL417

and ASL, respectively. Dataset statistics are sum-418

marized in Table 6. In our experiment, we don’t419

use gloss information. We integrate our pretrained420

sign language video encoder with the mBART421

translation model (Liu et al., 2020)1 translation422

model. We fully finetune the mBART encoder423

while adapting the decoder using Low-Rank Adap-424

tation (LoRA) (Hu et al., 2022) to avoid overfitting,425

with hyperparameters α = 32 and r = 32. Train-426

ing objective is cross-entropy loss. We employ the427

AdamW optimizer with a weight decay of 10−3,428

and apply a cosine learning rate schedule with a429

10-epoch warmup. We train for up to 100 epochs430

1https://huggingface.co/facebook/mbart-large-50-many-
to-many-mmt

with a batch size of 32, applying gradient clipping 431

to stabilize optimization. During training, 20% of 432

video frames are randomly deleted or copied as 433

temporal augmentation. We experiment with both 434

freezing and finetuning the pretrained video en- 435

coder. Learning rates and gradient clipping norms 436

vary depending on the dataset and encoder setting, 437

which are shown in Table 5. 438

We report BLEU scores (Papineni et al., 2002) 439

and ROUGE (Lin, 2004) metrics to evaluate trans- 440

lation quality. Specifically, we compute BLEU-1 441

and BLEU-4 using SacreBLEU (Post, 2018)2, and 442

report the ROUGE-L F1 score3. 443

We compare our model against recent gloss- 444

free approaches. For the P14T and CSL-Daily 445

datasets, we evaluate performance relative to 446

Sign2GPT (Wong et al., 2024), VAP (Jiao et al., 447

2024), C2RL (Chen et al., 2024), and Sign- 448

LLMs (Gong et al., 2024), which are language- 449

supervised pretraining methods. For the How2Sign 450

dataset, we compare our results with SSVP-SLT, 451

an MAE-based method on RGB modality, and T5 452

models pretrained on YT-ASL with subtitle super- 453

vision (Uthus et al., 2023). 454

We explore two input strategies: (1) Flat con- 455

catenation: Tokens from all three input streams are 456

concatenated into a single sequence and passed to 457

mBART. (2) Per-time-step averaging: At each time 458

step, embeddings from the three streams are aver- 459

aged to produce a single fused embedding per time 460

step. The resulting sequence is input to mBART. 461

4.3.1 Experimental Results 462

Results for P14T and CSL-Daily are shown in Ta- 463

ble 4, and results for How2Sign are shown in Ta- 464

ble 7. On CSL-Daily, our method outperforms 465

2For Chinese, we use the ’zh’ tokenizer; for English and
German, we use the ’13a’ tokenizer

3We adopted the ROUGE implementation from the official
codebase of TwoStreamSLT (Chen et al., 2022b)
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Table 4: Experimental results on P14T and CSL-Daily. Following the observation in (Jiao et al., 2024), the mBART
tokenizer exhibits an inconsistent punctuation bug, particularly affecting evaluations in Chinese due to the use of
full-width punctuation marks. To ensure a fair comparison, we report the results after correcting the bug, with the
uncorrected results shown in parentheses.

P14T CSL-Daily
Method Modality B1 B4 R B1 B4 R
Sign2GPT (Wong et al., 2024) RGB 45.43 19.42 45.23 34.80 12.96 41.12
Sign2GPT(Pseudo-Gloss Pretraining) (Wong et al., 2024) RGB 49.54 22.52 48.90 41.75 15.40 42.36

VAP (Jiao et al., 2024) Skeleton 53.07 26.16 51.28
52.98

(49.99)
23.65

(20.85)
51.09

(48.56)
SignLLMs (Gong et al., 2024) RGB 45.21 23.40 44.49 39.55 15.75 39.91
C2RL (Chen et al., 2024) RGB 52.81 26.75 50.96 49.32 21.61 48.21

Ours (Flat Concatenation) Skeleton 43.79 19.96 41.52
51.30

(48.31)
21.79

(19.15)
48.81

(46.31)

Ours (Flat Concatenation, Frozen Video Encoder) Skeleton 39.26 17.92 37.91
47.30

(44.43)
19.80

(17.37)
45.37

(43.07)

Ours (Per-time-step averaging) Skeleton 40.48 17.45 38.31
51.01

(47.98)
21.48

(18.94)
48.81

(46.29)

Table 5: Learning rates and gradient clipping norms for
each dataset and encoder status.

P14T & CSL-Daily H2S
Video Encoder Status Frozen Unfrozen Frozen Unfrozen

Learning Rate 1× 10−3 1× 10−4 3× 10−4 5× 10−5

Gradient Clipping 0.1 1.0

Table 6: Statistics of the SLT datasets used in our ex-
periments. For the H2S dataset, we use the manually
re-aligned version provided on their homepage and ex-
clude a very small subset of samples due to invalid time
ranges.

Dataset P14T CSL-Daily H2S
# Train 7,096 18,401 31,086
# Valid 519 1,077 1,738
# Test 642 1,176 2,349

Sign2GPT using only skeleton data. On How2Sign,466

it matches the performance of SSVP-SLT that has467

no Language Supervised Pretraining (LSP), while468

being more lightweight and computationally effi-469

cient. Compared to T5 with supervised pretraining470

on YT-ASL, our model achieves comparable per-471

formance without relying on subtitle data.472

While the performance on P14T is weaker, we at-473

tribute this to the dataset’s low video resolution and474

motion blur, which leads to inaccurate keypoint es-475

timation. The pose quality gap between finetuning476

and pretraining stages may hurt the performance.477

This highlights a key limitation of skeleton-based478

pretraining: its reliance on high-quality pose data.479

The skeleton quality between pretraining and fine-480

tuning should be aligned.481

While our encoder does not surpass all prior482

methods, it demonstrates the effectiveness of our483

method. It shows that the video encoder pretrained484

on only ASL videos can be generalized to other 485

SLs. Additionally, our results show that flat con- 486

catenation of stream features outperforms per-time- 487

step averaging, proving the effectiveness of sepa- 488

rating the skeleton into multiple streams. Our fol- 489

lowing experiments will use the flat concatenation 490

strategy as the default setup. 491

4.4 Analysis 492

4.4.1 Facial Information 493

Facial information plays a critical role in sign 494

language understanding (Mukushev et al., 2020; 495

Chaudhary et al., 2024). Facial expressions often 496

serve grammatical purposes, while mouthing can 497

help disambiguate signs that share similar manual 498

gestures. However, it remains unknown whether 499

facial information in ASL can also benefit under- 500

standing in other sign languages. 501

To investigate the impact of facial information, 502

we experiment with different configurations for 503

incorporating facial keypoints during pretraining 504

and finetuning. The results are presented in Ta- 505

ble 8. When facial keypoints are used only during 506

finetuning, we observe slight performance gains 507

on P14T and H2S, but a notable degradation on 508

CSL-Daily. Moreover, incorporating facial key- 509

points during both pretraining and finetuning leads 510

to slight improvements on P14T and a significant 511

boost on H2S, compared to incorporating facial in- 512

formation in merely the finetuning stage. However, 513

on CSL-Daily, the performance remains similar to 514

that without facial information. 515

We think two key factors may influence the trans- 516

ferability of facial information. First is the vary- 517

ing importance of facial cues across benchmarks. 518
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Table 7: Experiment results on How2Sign. SSVP-SLT-LSP means the method with language supervision pretraining.

Method Modality B1 B4 R
T5 (scratch) (Uthus et al., 2023) Skeleton 14.96 1.22
T5 (YT-ASL→ H2S) (Uthus et al., 2023) Skeleton 37.82 12.39
SSVP-SLT-LSP (PT + FT: YT-ASL + H2S) (Rust et al., 2024) RGB 43.2 15.5 38.4
SSVP-SLT(PT: YT-ASL, FT:H2S) (Rust et al., 2024) RGB 38.1 11.7 33.8
VAP (Jiao et al., 2024) Skeleton 39.22 12.87 27.77
C2RL (Chen et al., 2024) RGB 29.07 9.37 27.02
Ours (Flat Concatenation) Skeleton 33.14 10.84 27.99
Ours (Flat Concatenation, Frozen Video Encoder) Skeleton 31.03 9.05 25.16
Ours (Per-time-step averaging) Skeleton 31.57 9.92 26.78

Table 8: Results of varying stream setups during the
pretraining and finetuning stages, denoted as PT and
FT in the header. B, H, and F represent body, hands,
and face, respectively. The best performance for each
dataset is highlighted in bold.

Dataset PT FT B1 B4 R

P14T
B,H B,H 43.79 19.96 41.52
B,H B,H,F 44.56 21.12 42.59
B,H,F B,H,F 45.98 21.66 43.76

CSL-Daily
B,H B,H 51.30 21.79 48.81
B,H B,H,F 48.69 19.88 45.52
B,H,F B,H,F 50.15 21.23 48.17

H2S
B,H B,H 33.14 10.84 27.99
B,H B,H,F 38.56 12.67 28.72
B,H,F B,H,F 42.47 15.40 35.43

Some datasets rely more heavily on facial features519

than others. Second is the diversity in face pat-520

terns across different sign languages, which limits521

cross-lingual transferability. For instance, while522

certain facial expressions may be shared across sign523

languages, mouthing patterns are often language-524

specific and thus less transferable. Further investi-525

gation of the exact reason is left for future work.526

4.4.2 Continual Pretraining with videos in527

training set528

We further perform continual pretraining using529

the training set of each target dataset, with results530

shown in Table 9. We observe that continual pre-531

training leads to performance improvements when532

the video encoder is frozen during finetuning. How-533

ever, when the entire model is fully finetuned, the534

performance gains become less pronounced.535

5 Conclusion536

In this paper, we investigate using ASL videos to537

enhance the performance in other SLs. We pro-538

pose a simple yet effective and efficient pretraining539

framework, MS-MAE, which concatenates the se-540

Table 9: Results of models further pretrained on the
videos in the training set.

Dataset Pretraining Schedule Frozen B1 B4 R

P14T

YT-ASL ✓ 39.26 17.92 37.91
YT-ASL→ P14T ✓ 43.28 20.72 42.20

YT-ASL 43.79 19.96 41.52
YT-ASL→ P14T 44.73 20.84 42.96

CSL-Daily

YT-ASL ✓ 47.30 19.80 45.37
YT-ASL→ CSL-Daily ✓ 48.44 19.88 46.72

YT-ASL 51.30 21.79 48.81
YT-ASL→ CSL-Daily 50.78 21.29 48.42

H2S

YT-ASL ✓ 31.03 9.05 25.16
YT-ASL→ H2S ✓ 34.89 9.91 23.96

YT-ASL 33.14 10.84 27.99
YT-ASL→ H2S 36.32 11.92 28.07

quence from multiple skeleton streams along the 541

temporal dimension. This architecture enables a 542

flexible masking strategy that each stream may be 543

masked at different time steps, allowing the model 544

to learn richer spatiotemporal dependencies among 545

different visual cues. The experimental results 546

show that pretraining solely on ASL videos from 547

scratch can enhance the performance in both ISLR 548

and SLT tasks on different languages. In ISLR 549

tasks, it achieves much better performance than 550

other approaches pretrained only on the training 551

set. On SLT benchmarks, it achieves a compara- 552

ble performance with SOTA gloss-free RGB-based 553

methods through fully finetuning, demonstrating 554

the effectiveness of our pretraining strategy. Ad- 555

ditionally, we conduct extensive ablation studies. 556

Our results show that incorporating facial expres- 557

sion data during pretraining does not consistently 558

improve performance. Moreover, continual pre- 559

training on the training set yields better results un- 560

der a frozen setting, while fully finetuned models 561

show similar performance regardless of continual 562

pretraining. 563

Limitations 564

In our proposed pretraining framework, separat- 565

ing visual cues results in significantly longer input 566
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sequences, which increases the complexity of the567

transformer due to the quadratic nature of the self-568

attention mechanism. Although we have not yet569

conducted specific experiments to validate this, we570

hypothesize that without sufficient data, training571

such a framework effectively would be difficult.572

Besides, as mentioned in Section 4, the pose qual-573

ity gap between pretraining and finetuning may574

lead to performance degradation, which is the in-575

herent issue of skeleton-based methods. One future576

direction is to improve the robustness to noisy key-577

points. Additionally, although skeletal modalities578

can substantially reduce computational demands579

during both pretraining and finetuning, they require580

extra preprocessing time to extract pose data.581

Regarding our experiments, we acknowledge582

that the evaluation did not encompass a sufficiently583

diverse range of sign language categories, primar-584

ily due to the limited availability of datasets and585

computational resources. As a result, we were586

unable to thoroughly investigate the factors that587

contribute to improved cross-lingual transferability,588

and thus could not provide concrete guidelines for589

future work. Additionally, existing benchmarks590

are built under varying conditions, making it dif-591

ficult to isolate the specific factors that influence592

model performance. For example, we did not con-593

trol for confounding variables such as video qual-594

ity, dataset scale, and dataset difficulty, which may595

have limited the strength and generalizability of our596

conclusions. In our future work, we will conduct597

more comprehensive experiments on other datasets.598
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Figure 3: Face keypoints used in our experiments

Mouth 0, 267, 269, 270, 409, 291,899

375, 321, 405, 314, 17, 84, 181,900

91, 146, 61, 185, 40, 39, 37,901

13, 312, 311, 310, 415, 308, 324,902

318, 402, 317, 14, 87, 178, 88,903

95, 78, 191, 80, 81, 82904

Nose 98, 97, 2, 326, 327, 1, 4, 5,905

195, 197906

Eyes 46, 53, 52, 65, 55, 285, 295,907

282, 283, 276, 33, 246, 161, 160,908

159, 158, 157, 173, 133, 155, 154,909

153, 145, 144, 163, 7, 362, 398,910

384, 385, 386, 387, 388, 466, 263,911

249, 390, 373, 374, 380, 381, 382912

An example showing face keypoints is shown in913

Figure 3.914

B Computational Resource Usage915

We conducted pretraining on 8 nodes, each916

equipped with an NVIDIA GH200 GPU, for ap-917

proximately 14 hours. To ensure convergence, we918

used a total of 120,000 training steps. Our in-house919

experiments show that the checkpoint at 60% of920

training steps achieved performance comparable to921

the final checkpoint.922

C Use of AI Assistance923

In this research, we primarily used GitHub Copi-924

lot for coding and debugging, and ChatGPT for925

refining the writing of this paper.926
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