
Representation Costs of Linear Neural Networks:
Analysis and Design

Zhen Dai
Committee on Computational and Applied Mathematics

University of Chicago
Chicago, IL 60637

zhen9@uchicago.edu

Mina Karzand
Department of Statistics

University of California, Davis
Davis, CA 95616

mkarzand@ucdavis.edu

Nathan Srebro
Toyota Technological Institute at Chicago

Chicago, IL 60637
nati@ttic.edu

Abstract

For different parameterizations (mappings from parameters to predictors), we study
the regularization cost in predictor space induced by l2 regularization on the param-
eters (weights). We focus on linear neural networks as parameterizations of linear
predictors. We identify the representation cost of certain sparse linear ConvNets
and residual networks. In order to get a better understanding of how the architec-
ture and parameterization affect the representation cost, we also study the reverse
problem, identifying which regularizers on linear predictors (e.g., lp quasi-norms,
group quasi-norms, the k-support-norm, elastic net) can be the representation cost
induced by simple l2 regularization, and designing the parameterizations that do
so.

1 Introduction

In a class of parameterized models, penalizing the l2 norm of the parameters induces regularization
on function space which can be interpreted as a complexity measure on the class of learned functions.
In this paper, we study how different parameterizations induce different complexity measures.

We consider parameterized mappings f : X × Rp −→ Rm, from input x ∈ X and parameters
w ∈ Rp to predictions f(x;w). We denote the predictor implemented with parameters w by
F (w) : X −→ Rm defined as F (w)(x) := f(x;w). Then image(F) is the set of functions from X
to Rm which can be obtained from this class of parameterized models. We will use F to denote a set
of functions from X to Rm.

The l2 regularization on parameters, either explicitly or implicitly, is a common phenomenon. As an
example, in deep learning, explicit l2 regularization on parameters (a.k.a. weight decay) improves
generalization ([20, 37]). Implicit regularization of l2 norm of parameters appears when we use
gradient descent (GD) to train the model ([2, 35, 33, 19, 23, 32, 14, 25, 9, 18]). In particular, GD on
homogeneous neural networks with logistic loss implicitly regularizes l2 norm on weights [23, 32].

The representation cost ([15, 31, 27]) of a function g in image(F) under the parametrization F is

RF (g) = min{∥w∥22 : F (w) = g}. (1)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Consider learning a predictor F (w) with some loss function L(·) while controlling the l2 norm of
parameters w by minimizing

min
w∈Rp

L(F (w)) + λ∥w∥22 . (2)

This is clearly equivalent to learning a function g in image(F) by controlling RF (g) defined in
Eq. (1):

min
g∈image(F)

L(g) + λRF (g). (3)

In other words, the representation cost under the parameterization F , RF (·), captures the regular-
ization on function space image(F) induced by l2 regularization on parameter space. In this paper,
we are interested in understanding how different parameterizations, regularize the function space
differently. Since GD on homogeneous neural networks with logistic loss implicitly regularizes l2
norm on weights [23, 32], representation cost induced by l2 regularization in weight space captures
the implicit regularization in homogeneous models, but not necessarily in non-homogeneous models.
Thus, representation costs of predictors parameterized by homogeneous models are arguably more
related to implicit regularization, while representation costs of predictors parameterized by both
homogeneous and non-homogeneous models are related to explicit regularization. In this paper, we
first develop results for homogeneous neural networks. Then we reduce the non-homogeneous neural
network to the homogeneous ones by arguing that the asymptotic behavior of its representation cost
can be captured by the representation cost of some homogeneous subnetwork of the non-homogeneous
network.

One way to motivate the study of representation cost is by considering the popularity of the over-
parameterized models, in which the number of parameters is greater than the number of samples.
Surprisingly, it has been observed that in the overparameterized regime, interpolative predictor
generalizes well [7, 39, 16, 3]. One way to explain this is that although there are many predictors
which perfectly fit the training data, gradient based algorithms choose the one with the smallest
representation cost ([15, 23]). In these cases, representation cost operates as a regularization in
the function space which enables good generalization. Thus, understanding representation cost
helps us understand the generalization of the model. In particular, representation cost of predictors
induces an ordering on the space of predictors. Since representation cost is determined by the specific
parametrization, each parameterization induces an ordering on the function space. This can be
interpreted as an induced complexity measure of the predictor space, where penalizing the cost is the
same as minimizing the complexity.
Definition 1.1 (Induced complexity measure). Let F be a set of functions from X to Rm and F∗

be the set of all functions from F to R. We define the equivalence relation in F∗ such that h1 and
h2 ∈ F∗ (i.e., h1, h2 : F → R) are equivalent (h1 ∼= h2) if there exists a strictly increasing function
ψ : R −→ R h1 = ψ ◦ h2. Let F∗/ ∼= be the set of equivalence classes of F∗ under ∼=. 1

Given a parameterization F : Rp → F , let F be image(F). In this case, for each value of
parameter w ∈ Rp, F (w) ∈ F is a mapping from X to Rm. Let the representation cost RF under
parameterization F be as in Eq. (1). We say that an equivalence class h̄ ∈ F∗/ ∼= is the induced
complexity measure of the parameterization F if for any representative (i.e., element) h in class h̄,
RF is a strictly increasing function of h.

We study the dependence of induced complexity measures on parameterizations from two perspectives:
First, given a parameterization F , we analyze its representation cost. Second, given a regularizer
on function space, we study when and how it can be the induced complexity measure of some
parametrizations. In this paper, we start answering these questions by focusing on linear predictors
parameterized by linear neural networks. Note that for linear networks with single outputs, the
function space being parameterized does not depend on the architecture. Thus, the change in
architecture only changes the induced complexity measure. This makes it appealing for highlighting
and understanding what the effect of changing the architecture is in changing the induced complexity
measure.

In the first part of the paper (Section 3), we identify the representation costs of various architectures.
Specifically, we look into fully connected networks and convolutional networks with multiple outputs.
In addition, we show how the representation cost of convolutional networks with restricted filter

1In other words, F∗/ ∼= is a partition of F∗ into classes with the following property: given a class
h̄ ∈ F∗/ ∼=, any two elements h1, h2 ∈ h̄ are equivalent (i.e. h1 = ψ ◦ h2).

2

Architectures (of depth d) Induced Complexity Measures

Fully Connected Network with multiple outputs Schatten 2/d quasi-norm
Diagonal Network with multiple outputs Matrix l2/d,2 quasi-norm
Convolutional Network with multiple outputs Matrix l2/d,2 quasi-norm on Fourier domain
Residual Network An interpolation between two quasi-norms

Table 1: From Architecture to Induced Complexity Measure

Induced
Complexity Conditions Architectures
Measure

lp quasi-norms if and only if 2/p ∈ N Diagonal networks
k-support norms if and only if k ∈ [n] k-balanced networks (Fig. 1a)
lp,q group quasi-norms if 2/p, 2/q ∈ N and 2/p ≥ 2/q − 1 Group networks (Fig. 1)
Elastic nets None None
lp,q with None None
overlapping groups

Table 2: From Induced Complexity Measure to Architecture

width changes as their filter width changes. Then, we show that the representation cost of residual
networks interpolates between the representation costs of two of their component networks. Finally,
we give two characterizations of the representation costs of depth-two neural networks. The results
of this part are summarized in Table 1.

In the second part (Section 4), given a few regularizers, we study when and how they can be the
induced complexity measure of some architectures. Specifically, we show that lp quasi-norm can
be the induced complexity measure induced by l2 regularization on some linear neural networks if
and only if 2/p is an integer. Moreover, when 2/p is an integer, we characterize all the architectures
whose induced complexity measures are lp quasi-norms. In addition, we design architectures whose
induced complexity measures are k-support-norm and lp,q group quasi-norms. Then, we show that
elastic nets and lp,q quasi-norm with overlapping groups cannot be the induced complexity measure
of any linear neural network. On the contrary, we show that there exist homogeneous parametrizations
whose induced induced complexity measures are elastic nets and lp,q quasi-norm with overlapping
groups. The results of this part are summarized in Table 2. Finally, in the conclusion, we discuss
some interesting future directions.

Further related works: Some previous work focuses on the expressive power image(F) of the
model [22, 29, 38, 21]. However, as discussed in [26, 24], some other capacity control, different from
network size, plays a role in deep learning. This motivates the study of representation cost and its
relation to parametrizations.

Representation cost has been studied before under various models. [15] showed that the representation
cost of a linear convolutional neural network of depth d is strictly increasing in the Schatten-2/d
quasi-norm on the Fourier domain, whereas the representation cost of a linear fully connected network
of depth d is strictly increasing in the l2 norm. [31] and [27] studied depth-two fully connected

(a) (b) (c) (d)

Figure 1: k-balanced and Group networks: architectures for lp,q quasi-norms. Figure 1b induces
l2,1 norm. Figure 1c induces l2/d2,2/d1

quasi-norm. Figure 1d induces l2/d1,2/(d1+1) quasi-norm. In
all plots, nodes in same color are in same group.

3

network with infinite width and ReLU activation. They show that the representation cost of any
continuous function depends on the Laplacian of that function.

Parallel to our work, [18] studies the representation cost of linear convolutional neural network
with restricted filter width (a.k.a. kernel size) and multiple channels using anlaytical tools from
semidefinite programming. In spite of different approaches between our work and [18] the results on
CNN with restricted filter width are similar in two papers.

Another line of work studies the relationship between neural networks with l2 regularization on
weights and convex optimization problems [28, 12, 11, 30]. In [28, 12, 11, 30], the authors showed
that training a neural network with explicit l2 regularization on weights is equivalent to a convex
regularized optimization problem in some higher dimensional space. In contrast, motivated by the
literature on implicit regularization of gradient descent [2, 35, 33, 19, 23, 32, 14, 25, 9, 18], we
looked into the induced regularization of weight decay on function space. Some of the results in
[28, 12, 11, 30] are similar to the results in our work. For instance, the results on linear convolutional
neural network in [28, 12, 11, 30] suggest that explicit l2 regularization on weight space is related to
l1 regularization on the Fourier transform of the predictor. This result was also discovered in [15] and
is generalized to multiple output and restricted filter width (a.k.a. kernel size) case in our work and in
[18]. On the other hand, we considered other architectures beyond fully connected and convolutional
neural networks. For instance, we studied architectures that induce k-support norms and architectures
that induce lp,q group quasi-norms, which are not included in [28, 12, 11, 30].

As another related work, [36] studied the equivalence between l2 regularization on weights and some
sparsity-inducing regularization on the function space for various architectures. They considered the
architecture which induces l2/d,2 group quasi-norms on the function space, for any d ∈ N. We also
studied a similar question in section 4.1.2. However, we found architectures that induce lp,q group
quasi-norms for both the case p > q and the case p < q. In addition, we showed that in the case
p < q, lp,q quasi-norm can be induced by some linear neural network as induced complexity measure
if and only if 2/p, 2/q ∈ N and designed architectures that do so.

2 Setup

A parameterized mapping f : X ×Rp → Rm is homogeneous of degree L if f(x;λw) = λLf(x;w),
for all λ > 0. A feedforward neural network fN with weights (parameters) w = (W1, . . . ,Wd)
and activation function σ is defined as fN (x;w) = σ(Wdσ(. . .W2σ(W1x))). Note that when the
activation function σ is homogeneous (i.e. σ(λx) = λLσ(x) for some L > 0), the feedforward
neural network fN is also homogeneous. In particular, with ReLU activation (i.e. σ(x) = max(0, x))
or identity activation (i.e. σ(x) = x), fN is homogeneous.

A linear neural network is a neural network with identity activation function. When X = Rn and g is
a linear function, we identify g with the matrix β ∈ Rm×n such that g(x) = βx. In particular, in the
case of one-dimensional output space, we identify g with the vector β ∈ Rn such that g(x) = βTx.
In this paper, we mainly focus on linear neural networks. A more general definition of linear neural
networks in terms of a directed acyclic graphs will be useful in our work.

Definition 2.1. Let G = (V,E) be a weighted directed acyclic graph, with n sources v1, v2, . . . vn
(i.e. vertices with in-degree zero) and m sinks u1, u2, . . . , um (i.e. vertices with out-degree zero).
The weight of edge e ∈ E, is denoted by g(e). Given parameters w ∈ Rp, a function ψ : E −→ [p]
assigns parameters to edges such that g(e) = w[ψ(e)] for all e ∈ E.

The pair (G,ψ) gives a construction of a linear feedforward neural network N corresponding to
a linear predictor fN (·;w) : Rn → Rm as follows: Let ϕ(v) ∈ R be the output flow of the node
v ∈ V . Given x ∈ Rn, let ϕ(vi) = x[i] for all input nodes i ∈ [n]. Then, ϕ(v) for other nodes is
defined recursively such that the output flow of each node is a weighted sum of its input flow using
the weights of the graph: ϕ(v) :=

∑
u:(u,v)∈E g(u)ϕ(u). Then ϕ(u) for sink nodes u give the linear

predictor fN (x;w) = (ϕ(u1), ϕ(u2), . . . , ϕ(um)).

Let FN be the parametrization associated with fN defined as FN (w)(x) := fN (x;w).

The depth d of a linear feedforward neural network (G,ψ) is defined as the length of the longest
path from the source to the sink. We say that a linear feedforward neural network is homogeneous if
every path from the source to the sink have the same length. We say that a linear feedforward neural

4

network is without shared weights if the map ψ is a bijection. We call v1, . . . , vn the input nodes,
u1, . . . , um the output nodes, and v ∈ V the nodes of the network N .

Without loss of generality, we assume that for all v ∈ V , there exist a directed path from v to some
output node uj and a directed path from some input node vi to v. Otherwise, removing v would not
change fN . For each v ∈ V , let

Sv = {i ∈ [n] : there exists a directed path from vi to v}. (4)

By assumption, for all v ∈ V , |Sv| ≥ 1.

Note that if a linear feedforward neural network N is homogeneous, then we can define its lth layer
Nl as the set of vertices whose distance to any input node vi is l. Note that this is well-defined since
the length length of any path from any input node to any output node is constant in homogeneous
linear feedforward neural networks.

Let N be a depth d homogeneous feedforward linear neural network without shared weights. Then,
the weights of the edges between the lth and l + 1th layer of N can be identified as a matrix Wl.
In this case, the parameters w is a sequence of matrices W1,W2, . . . ,Wd with some fixed sparsity
pattern, i.e. supp(Wl) = Sl for each l ∈ [d], where Sl is determined by N . The parameterized map
fN and the parametrization FN are given by

fN (x;w) := FN (w)(x) := (

d∏
l=1

Wd−l+1)x, (5)

for x ∈ Rn, where w = (W1,W2, . . . ,Wd). Note that Eq. (5) is an equivalent definition of fN and
FN when N is homogeneous and without shared weights.

In the rest of the paper, unless stated otherwise, we will use N to denote a single output depth d ho-
mogeneous feedforward linear neural network without shared weights. Note that fN is homogeneous
of degree d. Let N0 = [n] denote the input layer (we identify v1, . . . , vn with [n]) and Nd = {O}
denote the output layer. With slight abuse of notation, let FN (w) ∈ Rn be the vector corresponding
to the linear predictor generated by w on N . Let RN := RFN denote the representation cost (Eq. 1)
under FN . We say that h is the induced complexity measure of N if it is the induced complexity
measure of FN as defined in Def 1.1.

Notation: We will use β ∈ Rn to denote a column vector, and βi or β[i] to denote the i-th component
of β. We will use β̂ to denote the discrete Fourier transform of β. For groups G1, G2 . . . , Gk ⊆ [n],

we use the definition of the lp,q group quasi-norm, ∥β∥p,q =
(∑k

j=1

(∑
i∈Gj

|βi|q
)p/q)1/p

. Unless

stated otherwise,G1, G2 . . . , andGk form a partition of [n] := {1, 2, . . . , n}. We will use β ∈ Rm×n

to denote a matrix and β[j, k] to denote the element in the j-th row and k-th column of β.

3 Representation cost analysis

To understand the dependence of induced complexity measure on architectures, we analyze the
representation costs of some commonly used architectures. The authors in [15] studied single output
fully connected network, diagonal network, and convolutional neural network (CNN) with full filter
width. In this section, we first generalize their results to multiple output case. Then, we look into
the non-homogeneous residual neural network and observe that its representation cost interpolates
between the representation costs of two of its component networks. Finally, we characterize the
representation costs of depth-two neural network in two ways.

3.1 Multiple output networks

3.1.1 Linear fully connected network

In a linear fully connected neural network,

FFC(n1,n2,...,nd+1)(w) =

d∏
i=1

Wd+1−i,

5

where w = (W1,W2, · · · ,Wd) is the weights of the network. For i ∈ [d], the matrix Wi is
in Rni+1×ni where ni ≥ min(m,n), n1 = n and nd+1 = m. Let RFC(n1,n2,...,nd+1) :=
RFFC(n1,n2,...,nd+1)

be the representation cost under FFC(n1,n2,...,nd+1) defined in Eq. (1).

Theorem 1. Suppose that ni ≥ min(m,n) for all i ∈ [d+ 1], where n1 = n and nd+1 = m. Then,
for any β ∈ Rm×n,

RFC(n1,n2,...,nd+1)(β) = d

r∑
i=1

σ
2/d
i

∼= ∥β∥SC
2/d,

where σ1, σ2, · · · , σr are the positive singular values of β and ∥β∥SC
2/d := (

∑r
i=1 σ

2/d
i)d/2 is the

Schatten 2/d-quasi-norm of β. In particular, with a single output,

RFC(n1,n2,...,nd+1)(β) = d∥β∥2/d2
∼= ∥β∥2.

The above result is similar to a result in [18]. They studied two layer multiple output convolutional
neural network with filter width (a.k.a kernel size) one, and showed that its induced complexity
measure is the nuclear norm.

3.1.2 Linear diagonal network

In a linear diagonal network,

FDNN (w) =Wd

d∏
i=2

diag (wd+1−i),

where w = (w1, w2, · · ·wd−1,Wd) is the parameters of a diagonal neural network. For i ∈ [d− 1],
wi ∈ Rn, and Wd ∈ Rm×n. So a diagonal network consists of some diagonal layers followed by
a fully connected layer. Let RDNN := RFDNN

be the representation cost under FDNN defined in
Eq. (1).

Theorem 2. For any β = (β(1), β(2), · · · , β(n)) ∈ Rm×n,

RDNN (β) = d

n∑
i=1

∥∥∥β(i)
∥∥∥2/d
2

∼= ∥β∥2/d,2,

where ∥β∥2/d,2 := (
∑n

i=1

∥∥β(i)
∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single
output

RDNN (β) = d∥β∥2/d2/d
∼= ∥β∥2/d.

3.1.3 Linear convolutional neural network (CNN)

In a linear Convolutional neural network (CNN) with filter width q, the parameters w =
(w1, w2, · · ·wd−1,Wd), where wi ∈ Rq × {0}n−q and Wd ∈ Rm×n. Let hi ∈ Rn be the out-
puts of the nodes in the ith layer. For i ∈ [d− 1], the transformation from the ith layer to the i+ 1th
layer is given by hi+1[j] =

1√
n

∑n
k=1 wi+1[k]hi[(j + k − 1) mod n] =: (wi+1 ⊛ hi)[j]. The last

layer is fully connected and hd = Wdhd−1. Then, the linear map is given by fCNN(q)(w, x) =
FCNN (w)(x) =Wd(wd−1 ⊛ (wd−1 ⊛ (. . . w2 ⊛ (w1 ⊛ x) . . .))). Equivalently,

FCNN(q)(w) =

d∏
i=1

Wd+1−i,

where for each i ∈ [d − 1], wi[0] := wi[n] and Wi[j, k] = wi[(k − j + 1) mod n]/
√
n is the

circulant matrix with respect to wi. Let RCNN(q)(β) := RFCNN(q)
(β) be the representation cost

under FCNN(q) defined in Eq. (1) filter width q.

Let F ∈ Cn×n be the discrete Fourier transform matrix defined by F[j, k] = 1√
n
ω
(j−1)(k−1)
n , where

ωn = e2πi/n. For β ∈ Rm×n, let β̂ := βF.

6

Theorem 3. For any β ∈ Rm×n, let β̂ := βF and β̂(i) be the i-th column of β̂. Then,

RCNN(n)(β) = d

n∑
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

∼=
∥∥∥β̂∥∥∥

2/d,2
,

where
∥∥∥β̂∥∥∥

2/d,2
:= (

∑n
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single

output

RCNN(n)(β) = d
∥∥∥β̂∥∥∥2/d

2/d

∼=
∥∥∥β̂∥∥∥

2/d
.

The same result for d = 2 was also discovered in [18].

Results on linear CNN with restricted filter width q < n and some variations of CNN such as CNN
with sum pooling and CNN with multiple channels can be found in the supplementary materials.

3.2 Linear non-homogeneous residual neural networks

Let N be a linear homogeneous feedforward neural network without shared weights. Suppose that
each hidden layer of N contains n nodes. Let d be the depth of N . Let I1, I2, . . . , Ik ⊆ [d] such that
|Ij | = dj for each j ∈ [k]. For each j ∈ [k], let Ij = {j1, j2, . . . , jdj}, where j1 < j2 < · · · < jdj .
For each w = (W1,W2, . . . ,Wd) and j ∈ [k], let

FNj
(w) :=

dj∏
i=1

Wj(dj−i+1)
and FNResNet

(w) :=

k∑
j=1

FNj
(w). (6)

be the parameterization for a residual neural network (ResNet). Let RResNet := RFNResNet
be the

representation cost under FNResNet
, and Rj := RFNj

be the representation cost under FNj
for each

j ∈ [k].

Theorem 4. Suppose that d1 < d2 < · · · < dk. Then, RResNet(λβ)/R1(λβ) −→ 1 as λ→ 0, and
RResNet(λβ)/Rk(λβ) −→ 1 as λ→ ∞.

Note that the model considered here includes sum of homogeneous models without shared weights,
which is studied in [32]. A concrete example can be found in the supplementary materials.

3.3 Depth two neural networks

In this section, we characterize the representation costs of depth two homogeneous feedforward
neural networks in two ways. We will use these two characterizations to find architectures that induce
k-support norms [6] and l2,1 norms as induced complexity measures.

Let d = 2. Note that the definition given in Eq. (4) becomes Sh = {i ∈ N0 : (i, h) ∈ E}, for each
h ∈ N1 =: NH .

Lemma 5. For a depth-two linear homogeneous feedforward neural network N without shared
weights, RN (β) = 2min{

∑
h∈NH

∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH
vh = β}.

In the above lemma, each vector vh corresponds to the linear predictor generated by the part of the
network which includes the hidden node h and its neighbors. Lemma 5 implies that RN (·) is a norm.
Let R∗

N (·) be its dual norm. Now, we give a characterization of R∗
N (·).

Lemma 6. For a depth-two linear homogeneous feedforward neural network N without shared
weights, R∗

N (β) = 1
2 max{(

∑
i∈Sh

β2
i)

1/2 : h ∈ NH}.

By Lemma 6, if there exists h1, h2 ∈ NH such that h1 ̸= h2 and Sh1 ⊆ Sh2 , then removing h1 from
N would not change the representation cost since

∑
i∈Sh1

β2
i ≤

∑
i∈Sh2

β2
i .

7

4 Parameterization design

In order to further understand the dependence of induced complexity measure on architectures,
we study when and how regularizers can be induced as the induced complexity measure by some
architectures.

In this section, we study a few regularizers such as lp quasi-norms, lp,q group quasi-norms with and
without overlapping between groups, k−support norms, and elastic nets.

4.1 Architecture design

First, we design architectures that induce lp quasi-norms, lp,q quasi-norms without overlapping
groups, and k−support norms as induced complexity measures respectively.

4.1.1 lp quasi-norms

In this section, we study architectures that induce lp quasi-norm, which is defined as ∥β∥p =

(
∑n

i=1 |βi|p)1/p, where β ∈ Rn.
Theorem 7. There exists a linear homogeneous feedforward neural network N without shared
weights that induces lp quasi-norm if and only if 2/p ∈ N. In particular, diagonal network of depth
2/p induces lp quasi-norm.

It turns out that we can capture all the architectures that induce lp quasi-norms using a simple
combinatorial measure called mixing depths. Roughly speaking, for any S ⊆ [n], the mixing depth
MN (S) is the index of the first layer that contains a node v such that S ⊆ Sv , where Sv is defined in
Eq. (4).

A linear homogeneous feedforward neural network N without shared weights induces lp quasi-norm
if and only if MN (S) = 2/p, for all S ⊆ [n], |S| ≥ 2. The details can be found in supplementary
materials on mixing depths and proofs are in supplementary materials for lp quasi-norms.

4.1.2 lp,q group quasi-norms

Similar to the previous sections, we want to know if and when lp,q group quasi-norm is the in-
duced complexity measure of N . Remember the definition of of lp,q quasi-norm, ∥β∥p,q =(∑k

j=1

(∑
i∈Gj

|βi|q
)p/q)1/p

, where G1, G2 . . . Gk form a partition of [n].

Unlike the results for lp quasi-norms, we do not find all the values of p and q such that lp,q group
quasi-norms without overlapping groups can be induced by some homogeneous feedforward linear
neural networks without shared weights.
Theorem 8. If there exists a linear homogeneous feedforward neural network N without shared
weights that induces lp,q group quasi-norms, then 2/p, 2/q ∈ N. On the other hand, if 2/p, 2/q ∈ N
and 2/p ≥ 2/q − 1, then there exists a linear homogeneous feedforward neural network N without
shared weights that induces lp,q group quasi-norms.

Next, we will design group networks that induce lp,q group quasi-norms. The design of group
networks uses insights from subnetworks. Roughly speaking, a subnetwork is a restriction of the
original network to some input nodes. The induced complexity measure of a subnetwork is tightly
related to that of the original network. This relationship, together with the results in Section 4.1.1
inform how certain subnetworks of a group network look like, which indicates certain properties of
the group network. The details can be found in supplementary materials.

Group networks consists of some diagonal layers followed by a grouping layer and then followed by
a diagonal network (Section 3.1.2). Two examples of such networks are in Figures 1c and 1d. The
grouping layer is the first layer that mixes information from different input nodes. Depending on
whether p < q or p > q, 2 we define two types of grouping layers:
Definition 4.1 (Type I and II Grouping Layers). For each i ∈ [d], Ni is a type I grouping layer if
Nj is diagonal for all j < i, |Ni| = k, where k is the number of groups, and for each j ∈ [k], there
exists u ∈ Ni such that Su = Gj .

2When p = q, lp,q quasi-norm becomes lp quasi-norm which we already studied.

8

For each i ∈ [d], Ni is a type II grouping layer if Nj is diagonal for all j < i, |Ni| =
∏k

j=1 |Gj |,
where k is the number of groups, and for each h ∈

∏k
j=1Gj , there exists u ∈ Ni such that Su = h.

Next, we compute the representation costs of networks with these two types of grouping layers.

For d1, d2 ∈ N with d2 > d1, let N 1;d1,d2 be the architecture with d1 − 1 diagonal layers, followed
by a type I grouping layer (Def 4.1), and then followed by a diagonal network of depth d2 − d1
(Section 3.1.2). See Figure 1c for an example of this kind of group network.

Theorem 9. Let G1, G2 . . . Gk be a partition of [n]. Let βGj be the projection of β on Gj . Then for

d2 > d1, RN 1;d1,d2 (β) = d2
∑k

j=1

∥∥βGj

∥∥2/d2

2/d1
= d2∥β∥2/d2

2/d2,2/d1

∼= ∥β∥2/d2,2/d1
.

The same architecture when d1 = 1 is also discovered in [36]. They also showed that in the group
network N 1;1,d2 , l2 regularization on weights translate to l2/d2,2 regularization in the function space.
Our result is stronger than the results in [36] in two ways. First, we found the architecture N 1;d1,d2 ,
which induces l2/d2,2/d1

quasi-norms for all d1, d2 ∈ [n], while they only did it for d1 = 1. Second,
we proved that these are all the values of p, q such that lp,q group quasi-norms can be induced as
induced complexity measures for some linear neural network, when p < q.

For d1, d2 ∈ N with d2 > d1, let N 2;d1,d2 denote the architecture consisting of d1 − 1 diagonal
layers, followed by a type II grouping layer (Def 4.1), and then followed by a diagonal network of
depth d2 − d1 (Section 3.1.2). Figure 1d is an example of N 2;d1,d2 .

In particular, when d1 = 1 and d2 = 2 (as in Figure 1b), N 2;1,2 induces l2,1 norm. This can be
proved by the dual characterization of representation cost of depth-two networks in Lemma 6 and the
fact that ∥β∥2,1 = ∥β∥∗2,∞.

Theorem 10. When d2 = d1 + 1, RN 2;d1,d2 (β) = d2∥β∥2/d2

2/d1,2/d2

∼= ∥β∥2/d1,2/d2
.

This theorem implies that N 2;d1,d2 induces l2/d1,2/d2
quasi-norm when d2 = d1 + 1. Surprisingly,

N 2;d1,d2 does not induce l2/d1,2/d2
quasi-norm when d2 > d1 + 1. The details are in supplementary

materials.

4.1.3 The k-support norms

In [6], the k-support norm is defined as ∥β∥spk = min{
∑

I∈Gk
∥vI∥2 : supp(vI) ⊆ I,

∑
I∈Gk

vI =

β}, for k ∈ [n], where Gk is the set of subsets of [n] of size at most k.

To design an architecture which induces k-support-norm, we introduce the k-balanced networks. A
two layer neural network is a k-balanced network, if it contains

(
n
k

)
nodes in the hidden layer such

that for each subset I ⊆ [n] of size k, there is a node in the hidden layer which connects to input
nodes in I . See Figure 1a for an example with n = 3 and k = 2.

Theorem 11. For any k ∈ [n], there exists a homogeneous feedforward depth two linear neural
network without shared weights that induces k-support norm as induced complexity measure. In
particular, k-balanced network induces k-support norm.

The proof of the above theorem is an application of Lemma 5 which characterizes the representation
cost of depth-two networks.

4.2 Limitations of homogeneous neural networks

Theorem 8 and Theorem 11 give architectures that induce lp,q quasi-norms and k-support norms.
Then, it is natural to consider two regularizers related to k-support norms and lp,q quasi-norms.
Elastic nets 3 is defined as ∥β∥EN = ∥β∥1 + α∥β∥2, and lp,q quasi-norms with overlapping groups
is defined as in Section 4.1.2 except that G1, G2 . . . Gk might overlap. Contrary to the results of
k-support norm and lp,q quasi-norms, elastic nets and lp,q quasi-norms with overlapping groups are
not induced complexity measure of any architecture N without shared weights. The detail can be
found in supplementary materials.

3Elastic nets and k-support norms are both interpolations between l1 and l2 norms.

9

Given these negative results, it is natural to look at non-homogeneous residual networks. We use
the same definition of residual networks as in Section 3.2. Theorem 4 characterizes the asymptotic
behavior of the representation costs of residual networks. The proof of the following theorem uses
Theorem 4.

Theorem 12. Suppose that d1 < d2 < · · · < dk. Let h : Rn −→ R be a homogeneous function. If
FNResNet

induces h as induced complexity measure, then FN1
also induces h as induced complexity

measure.

This theorem implies that the negative results on elastic nets, lp,q quasi-norm with overlapping groups,
and lp quasi-norms when 2/p ̸∈ N still hold even in the case of non-homogeneous residual networks.
As a next step looking beyond homogeneous networks, we look into general form of homogeneous
parameterizations which might not be associated with any networks. Surprisingly, homogeneous
parameterizations can indeed induce elastic nets and lp,q quasi-norms with overlapping groups for all
p, q > 0, as induced complexity measure. The details are in supplementary materials.

5 Conclusion

In this paper, we take the first steps in studying the dependency of induced complexity measure on
the choice of parametrization. We do so by analyzing the induced complexity measures of some
well-known architectures and designing architectures that induce some common regularizers on linear
predictors. These directions are important for two reasons. First, it helps us understand why certain
architectures generalize. Second, if we have a desired regularizer in mind, this helps us design an
architecture which induces this regularizer as induced complexity measure.

For the first reason, many of the representation costs we study, when used as regularizers in learning
problems, have good generalization properties. This includes lp,q group quasi-norms, especially in
the context of multi-task or multi-class learning [13, 17], k-support norm [6], elastic net [10, 40],
nuclear norm [4, 34, 1, 5], and lp quasi-norms for p ≤ 1 in order to promote sparsity [8]. Thus, this
existing understanding and analysis, together with the results in our work, explain for the benefit of
using the corresponding architectures.

For the second reason, we do not mean designing an architecture from scratch based on a fully
specified regularizer (as we do in section 4). Instead, we believe that building out our understanding
in this regard can help us with making architectural choices about complex architectures. In these
setups, we do not understand the exact representation cost, and cannot write it down and use it
explicitly; but we might want to change representation cost or nudge it in particular directions through
some modification of the architecture.

Answering these two questions of design and analysis in a broad sense is an important step in
understanding generalization and improving our current models. The limitation of our work includes
the fact that we are considering only a rather specific set of architectures, and in particular only
linear models. So our study is mostly meant to build tools and understanding and set the stage for
understanding more complex non-linear models. But non-linear models might behave very differently,
and so we should be cautious about how many of our insights carry over.

To move beyond, there are still many unanswered questions for the linear models. For instance, for
p, q ∈ N such that 2/p < 2/q − 1, does there exist an architecture that induce lp,q quasi-norm?

Next step would be looking beyond linear predictors. For example, the question of analyzing
representation cost for neural networks with non-linear activation functions such as ReLU is an open
problem for most architectures. The other possible direction is studying the same questions (analysis
and design) for functions with multiple outputs.

6 Acknowledgement

Zhen Dai was funded by DARPA (grant number: HR00112190040) and NSF (grant DMS 1854831).

10

7 Funding Transparency Statement

Funding in direct support of this work: DARPA grant (grant number: HR00112190040); NSF grant
(grant DMS 1854831).

References

[1] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. A new approach
to collaborative filtering: Operator estimation with spectral regularization. Journal of Machine
Learning Research, 10(3), 2009.

[2] Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for
least squares regression. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1370–1378. PMLR, 2019.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918,
2018.

[4] Yonatan Amit, Michael Fink, Nathan Srebro, and Shimon Ullman. Uncovering shared structures
in multiclass classification. In Proceedings of the 24th international conference on Machine
learning, pages 17–24, 2007.

[5] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine learning, 73(3):243–272, 2008.

[6] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm.
arXiv preprint arXiv:1204.5043, 2012.

[7] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[8] Rick Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. IEEE
Signal Processing Letters, 14(10):707–710, 2007.

[9] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.
PMLR, 2020.

[10] Christine De Mol, Ernesto De Vito, and Lorenzo Rosasco. Elastic-net regularization in learning
theory. Journal of Complexity, 25(2):201–230, 2009.

[11] Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Convex opti-
mization of two-and three-layer networks in polynomial time. arXiv preprint arXiv:2006.14798,
2020.

[12] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. pages 3004–3014, 2021.

[13] An Evgeniou and Massimiliano Pontil. Multi-task feature learning. Advances in neural
information processing systems, 19:41, 2007.

[14] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. pages 1832–1841, 2018.

[15] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient
descent on linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018.

[16] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741,
2017.

11

[17] Yaohua Hu, Chong Li, Kaiwen Meng, Jing Qin, and Xiaoqi Yang. Group sparse optimization
via lp, q regularization. The Journal of Machine Learning Research, 18(1):960–1011, 2017.

[18] Meena Jagadeesan, Ilya Razenshteyn, and Suriya Gunasekar. Inductive bias of multi-channel
linear convolutional networks with bounded weight norm. arXiv preprint arXiv:2102.12238,
2021.

[19] Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv
preprint arXiv:1803.07300, 2018.

[20] Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In
Advances in neural information processing systems, pages 950–957, 1992.

[21] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal
approximator. arXiv preprint arXiv:1806.10909, 2018.

[22] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power
of neural networks: A view from the width. arXiv preprint arXiv:1709.02540, 2017.

[23] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. arXiv preprint arXiv:1906.05890, 2019.

[24] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring
generalization in deep learning. arXiv preprint arXiv:1706.08947, 2017.

[25] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071,
2017.

[26] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[27] Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of
bounded norm infinite width relu nets: The multivariate case. arXiv preprint arXiv:1910.01635,
2019.

[28] Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. pages 7695–7705, 2020.

[29] David Rolnick and Max Tegmark. The power of deeper networks for expressing natural
functions. arXiv preprint arXiv:1705.05502, 2017.

[30] Arda Sahiner, Tolga Ergen, John Pauly, and Mert Pilanci. Vector-output relu neural network
problems are copositive programs: Convex analysis of two layer networks and polynomial-time
algorithms. arXiv preprint arXiv:2012.13329, 2020.

[31] Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded
norm networks look in function space? pages 2667–2690, 2019.

[32] Mor Shpigel Nacson, Suriya Gunasekar, Jason D Lee, Nathan Srebro, and Daniel Soudry.
Lexicographic and depth-sensitive margins in homogeneous and non-homogeneous deep models.
arXiv e-prints, pages arXiv–1905, 2019.

[33] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[34] Nathan Srebro, Jason DM Rennie, and Tommi S Jaakkola. Maximum-margin matrix factoriza-
tion. In NIPS, volume 17, pages 1329–1336. Citeseer, 2004.

[35] Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. Connecting optimization and
regularization paths. Advances in Neural Information Processing Systems, 31:10608–10619,
2018.

[36] Ryan J Tibshirani. Equivalences between sparse models and neural networks. 2021.

12

[37] Colin Wei, Jason Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. 2019.

[38] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks.
In Conference on Learning Theory, pages 639–649. PMLR, 2018.

[39] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[40] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

13

	Introduction
	Setup
	Representation cost analysis
	Multiple output networks
	Linear fully connected network
	Linear diagonal network
	Linear convolutional neural network (CNN)

	Linear non-homogeneous residual neural networks
	Depth two neural networks

	Parameterization design
	Architecture design
	lp quasi-norms
	lp,q group quasi-norms
	The k-support norms

	Limitations of homogeneous neural networks

	Conclusion
	Acknowledgement
	Funding Transparency Statement

