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ABSTRACT

An effective weighting scheme for training samples is essential for learning tasks.
Numerous weighting schemes have been proposed. Some schemes take the easy-
first mode, whereas some others take the hard-first one. Naturally, an interesting
yet realistic question is raised. Which samples should be learned first given a new
learning task, easy or hard? To answer this question, three aspects of research are
carried out. First, a high-level unified weighted loss is proposed, providing a more
comprehensive view of existing schemes. Theoretical analysis is subsequently
conducted. Some preliminary conclusions are obtained. The optimal weighting
scheme is determined by the distribution of training samples’ learning difficul-
ties and the prior knowledge for the task. Second, a flexible weighting scheme is
proposed to overcome the defects of existing schemes. The three modes, namely,
easy/medium/hard-first, can be flexibly switched in the proposed scheme. Third, a
wide range of experiments is conducted to further compare the weighting schemes
in different modes. On the basis of these works, reasonable answers are obtained.
Factors including prior knowledge and data characteristics determine which sam-
ples should be learned first in a learning task.

1 INTRODUCTION

It is widely accepted that model training is sensitive to the weights of training samples. Treating each
sample unequally can improve the learning performance. The cues and inspirations for the design
of the weighting function in a weighting scheme are usually derived from the following aspects:

• Application contexts of the learning task. Tasks such as fraud detection and medical di-
agnosis are cost-sensitive. Different samples have unequal importance according to their
gains or costs. Therefore, samples with high gains/costs will be assigned high weights.

• Characteristics of the training data. Training samples are different from each other in char-
acteristics, such as data quality, sample neighbors, and category distribution. In some tasks,
some labels are of low confidence or with high noises, so these samples should be assigned
low weights. In some other tasks, samples in the minority categories are usually more
difficult to learn well, so these samples should be assigned high weights.

Context-inspired weighting functions are usually defined in a heuristic manner and only used in
special applications, whereas characteristics-inspired weighting functions have received increasing
attention in recent years due to their effectiveness and universality. Data characteristics are related
to an intrinsic property of samples, namely, learning difficulty. Most related studies split training
samples into easy/hard or easy/medium/hard according to samples’ learning difficulties. In some
schemes, hard samples are assigned high weights in what is called the hard-first mode. For example,
Lin et al. (2017) proposed Focal loss in object detection, which significantly improves the detection
performance. In some other schemes, easy samples have higher weights. Kumar et al. (2010)
proposed self-paced learning (SPL), which sets the weights of hard samples to zero with a threshold.
The threshold is gradually increased to ensure that more hard samples can participate in the training.
These two priority modes, namely, easy-first and hard-first, appear to contradict each other yet
both demonstrate effectiveness in certain learning tasks. Consequently, a natural question is raised.
Which samples should be learned first facing a new task, easy or hard ones? To answer this question
(called the “easy-or-hard” question), this study conducted both theoretical analysis and empirical
verification. Reasonable answers are presented. Our contributions are summarized as follows:
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Table 1: Several typical weighting schemes.
Paper Method Weighting scheme Domain Scenario Criterion Priority mode Granularity

Kumar et al. (2010) SPL
Binary minw∈[0,1]n L(w, λ, l) =

∑n
i=1 wil − λ

∑n
i=1 wi

NLP
CV

Noun Phrase Coreference
Image classification
Object Localization

(Standard)

Loss Easy-first Sample

Jiang et al. (2014a) SPL Log minw∈[0,1]n L(w, λ, l) =
∑n
i=1 wili +

∑n
i=1 (ξwi − ξwi/ log ξ) , ξ = 1− λ CV Multimedia Event Detection

(Standard) Loss Easy-first Sample

Zieba et al. (2016)
Cost-

sensitive
SPL

wi =

{
1, if li < yiC+ + (1− yi)C−
0, otherwise CV Image classification

(Imbalance) Loss Easy-first Mixture

Lin et al. (2017) Focal Loss L(γ) = −(1− p)γ log(p) CV Dense Object Detection
(Imbalance) Pred Hard-first Sample

Li et al. (2020) QFL L(σ, β) =
∑N
i=1

(
− |yi − σ|β ((1− yi) log(1− σ) + yi log(σ))

)
CV Dense Object Detection

(Imbalance) Pred Hard-first Sample

Ben-Baruch et al. (2020) ASL li (γ+, γ−,m) =

{
(1− pi)γ log (pi) , yi = 1
(pi,m)

γ
log (1− pi,m) , yi = 0

, pi,m = max (pi −m, 0) CV Dense Object Detection
(Imbalance) Pred

Hard-first
Discard

mislabeled
negative samples

Sample

Li et al. (2019) GHM L(β, l) = (1/N)
∑N
i=1 βili CV Dense Object Detection

(Imbalance) Gradient Medium-first Sample

Freund & Schapire (1996) AdaBoost wm+1
i = wmi exp (αm) CV Handwritten Digit Recognition

(Standard) Error (Loss) Hard-first Sample

Zhang et al. (2021b) G-RW wc = (1/rc)
ρ
/
∑C
k=1 (1/rk)

ρ CV
Image classification

Object detection
(Imbalance)

Empirical
class

frequency
Hard-first Category

Bengio et al. (2009) CL wi < wj ,∀γ (xi) < γ (xj)
NLP
CV

Language Modeling
Shape Recognition

(Standard)

Prior
Knowledge Easy-first Sample

Zhang et al. (2021a) GAIRAT wi = (1 + tanh (λ+ 5× (1− 2× k (xi, yi) /K))) /2 CV Image classification
(Standard) Margin Hard-first Sample

Cui et al. (2019) Class-
balance wc = (1− β)/

(
1− βNc

)
, β ∈ [0, 1) CV Image classification

(Imbalance)
Category

Proportion Hard-first Category

Wang et al. (2021a) Truncated
Loss li =

{
0, lCEi > τ ∧ yi = 1
lCEi , otherwise

Data
mining

Recommendation
(Noise) Loss

Easy-first
Discard hard

positive samples
Mixture

Shin et al. (2020) FOCI wi(q) = Normalize
√
pt (yi | xi) Var (pt−q+1:t (yi | xi)) CV Image classification

(Noise) Loss and uncertainty Medium-first Sample

Santiagoa et al. (2021) LOW R(w ; λ) = −wT∇θt + λ‖w − 1‖2 CV Image classification
(Imbalance) Gradient Hard-first Sample

Liu et al. (2021) JTT L(l, E)=
(
λup

∑
(xi,yj)∈E li +

∑
(xj ,yj)/∈E lj

) NLP
CV

Image classification
Sentiment analysis

(Standard)
Loss Hard-first Patial data

Castells et al. (2020) SuperLoss L(li, σi) = (li − τ)wi + λ (logwi)
2 CV Object detection, Image retrieval

(Noise) Loss Easy-first Sample

(1) To theoretically explore the “easy-or-hard” question, a high-level unified weighted loss is con-
structed. It reveals the underlying principles of how a weighting function is generated and most of
the existing weighting functions can be mathematically explained with this weighted loss. Theoret-
ical analysis is then carried out and some preliminary answers are obtained.

(2) A flexible weighting scheme is proposed based on the analysis of the defects of existing strategies
with our proposed unified weighted loss. Compared with existing methods, the weighting function
in our scheme can be flexibly switched among the three priority modes, namely, easy-first, medium-
first, and hard-first. In contrast, existing weighting schemes can achieve only one of the three modes.

(3) Extensive experiments on image classification, graph classification, and object detection tasks are
conducted on benchmark data sets. The empirical observations further support our main theoretical
conclusions. In addition, our proposed weighting function achieves competitive results in all the
above typical learning scenarios.

2 EXISTING WEIGHTING SCHEMES

We define the symbols including the main symbols in Table 1 as follows. Let T = {(xi, yi)}Ni=1
be a set of N training samples, where xi is the input feature and yi is the associated label. Let C
be the number of categories and yi ∈ {1, . . . , C}. Let rc be the empirical class frequency of the
c-th category. Let L is the training loss. wi and li are the weight and the loss of the i-th sample,
respectively. Let p ∈ [0, 1] be the predicted probability for the correct category. wc is the weight of
the c-th category when the category-wise weighting strategy is used.

The core of a weighting scheme is its weighting function for the input samples. The weighting
functions can be sample-wise, category-wise, or their mixtures. According to the priority mode,
the weighting functions can be easy-first, medium-first, hard-first, or their mixtures. Table 1 lists
some of the typical weighting functions in previous literature. The application scenarios (i.e., stan-
dard, imbalanced, and noisy) of these functions are also presented. The hyper-parameters in most
functions are nearly fixed during training, whereas they are dynamic in SPL (Kumar et al., 2010).

The weighting schemes in Table 1 can only implement one mode. Their corresponding modes are
selected based on a (partial) particular view of the data characteristics. Focal loss (Lin et al., 2017) is
inspired by the observation that “easy samples occupy more than hard ones in object detection data
sets”. SuperLoss (Castells et al., 2020) is easy-first and effective when the training data is corrupted
by noise. GHM (Li et al., 2019) exerts high weights on medium samples as Focal loss is sensitive to
noise. LOW (Santiagoa et al., 2021) is hard-first and works well for imbalanced data. Some studies
are inspired by other cues such as the human learning mechanism. Curriculum learning (Bengio
et al., 2009) is motivated by human learning that easy samples should be learned first.
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Table 2: Statistics of measurement criteria
Criterion Method Number Scenario

Loss (pred)
SPL Binary (2010), SPL Log (2014), Cost-sensitive SPL (2016),
Focal Loss (2017), QFL (2020), ASL (2020), SuperLoss (2020),

FOCI (2020), Truncated Loss (2021), JTT (2021)
11 Standard, Noise, Imbalance

Gradient GHM (2019), LOW (2021) 2 Imbalance
Category proportion Class-balance (2019), G-RW (2021) 2 Imbalance

Prior knowledge CL (2009) 1 Standard, Noise, Imbalance
Uncertainty FOCI (2020) 1 Noise

Margin GAIRAT (2021) 1 Standard

Existing studies only (explicitly or implicitly) give partial answers to the “easy-or-hard” question
on a specific view or scenario. Few studies have attempted to thoroughly discuss the applica-
ble/inapplicable scenarios for a given weighting scheme. Meanwhile, several studies have proposed
similar concerns. Wang et al. (2021b) raised a similar question about “easy-first versus hard-first”
under the context of curriculum learning. This paper explores this question from a global perspec-
tive, obtaining reasonable findings.

3 A UNIFIED WEIGHTED LOSS AND THEORETICAL ANALYSIS

3.1 THE CRITERIA OF LEARNING DIFFICULTY MEASUREMENT

Learning difficulty is an intrinsic attribute of samples. To answer the “easy-or-hard” question, the
criteria for learning difficulty measurement should be clarified first. Current criteria for learning
difficulty measurement include loss, gradient, category proportion, margin, prior knowledge, and
uncertainty. Table 2 statistics the application methods and scenarios of each criterion in Table 1.

Samples’ learning difficulty depends on various factors which are related to the samples’ charac-
teristics, including data quality (Shin et al., 2020; Li et al., 2019), sample neighbors (Zhang et al.,
2021a), and data distribution (Santiagoa et al., 2021; Cui et al., 2019). None of the above measure-
ments can capture all these factors. From Table 2, loss-based measurements are most widely used.
Two recent methods including JTT and Truncated Loss still use this criterion. In addition, loss-based
measurements are more efficient than others, and it is effective in various learning tasks.

3.2 A UNIFIED WEIGHTED LOSS

Let di represent the i-th sample’s learning difficulty, our unified weighted loss is defined in Eq. (1):

LUW =
1

N

∑
i
w∗i li, s.t. w∗ = arg min

w

1

N

∑
i
[(widi +R(wi,Γ, λ))S(di − τ)], (1)

where R(wi,Γ, λ) is the regularization term; Γ represents prior knowledge or data characteristics, τ
determines the priority mode, λ is a hyper-parameter, S is a signum function whose value is either
1 or -1, and wi > 0. R(wi,Γ, λ) must be convex on wi. LUW should satisfy other requirements,
which are detailed in the Appendix.

The priority modes of the weighting function (w∗) obtained by Eq. (1) can be easy-first, hard-first,
or medium-first when different τ values are taken. Three typical cases are discussed as follows:

(1) Easy-first (τ < min{di}): In this case, the objective function for weights becomes

min
w

1

N

∑N

i=1
widi +R(wi,Γ, λ), (2)

which implies that the weights are in the easy-first mode and thus easy samples have higher weights.

(2) Hard-first (τ > max{di}): In this case, the objective function for weights becomes

max
w

1

N

∑N

i=1
widi +R(wi,Γ, λ), (3)

which implies that the weights are in the hard-first mode where hard samples have higher weights.

(3) Medium-first (min{di} < τ < max{di}): The objective function for weights becomes

max
w

1

N

∑
i:di<τ

[widi +R(wi,Γ, λ)] + min
w

1

N

∑
j:dj≥τ

[wjdj +R(wj ,Γ, λ)], (4)

which implies that the weights are in the medium-first mode.

The value of τ determines the priority mode and the specific weight of each sample is affected
by R(wi,Γ, λ). In the next subsection, two typical sample weighting methods are explained and
analyzed based on LUW .
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Figure 1: The weight and regularizer curves of Focal loss ((a) and (b)) and SPL ((c) and (d)).

3.3 THEORETICAL ANALYSIS OF TWO TYPICAL METHODS WITH LUW

Focal loss applies li to approximate di. According to LUW , Focal loss is obtained by defining

τ > max
i
{li} and R(wi, γ) = wi

wi
1
γ
2F1(1, 1 + γ, 2 + γ,wi

1
γ )

1 + γ
+ log(1− wi

1
γ ), (5)

where 2F1 refers to the Hypergeometric function (Seaborn, 1991), γ is the hyper-parameter, and Γ
is omitted because no other prior knowledge is used. This situation belongs to the hard-first mode
as shown in Fig. 1(a). The curves for R(wi, γ) under different values of γ are shown in Fig. 1(b).
The inference of R(wi, γ) of Focal loss is detailed in the Appendix.

SPL-series also apply li to approximat di. Taking the SPL Binary (Kumar et al., 2010) and
SPL Linear (Jiang et al., 2014a) as two examples, their weighting functions are obtained by defining

τ < min
i
{li} and R(wi, λ) = −λ

∑N

i=1
wi or R(wi, λ) = 0.5λ

∑N

i=1
(w2

i − 2wi). (6)

The primary priority mode of SPL is easy-first. The weight curves of different SPL schemes are
shown in Fig. 1(c). The regularizer curves in different schemes are shown in Fig. 1(d). As previously
analyzed, R(wi,Γ, λ) can be defined to prioritize some particular categories or samples (Yang et al.,
2020a). Most existing weighting functions can be explained in a similar manner.

Eqs. (5) and (6) indicate that weighting schemes differ in the settings of τ and R(wi,Γ, λ). There-
fore, our investigated “easy-or-hard” question can be transformed into a theoretical problem that
given an arbitrary learning task, whether there is a universal optimal setting for τ and R(wi,Γ, λ).

Obviously, the answer is “No” because no fixed optimal mode can achieve the best performances
on arbitrary data sets. Alternately, discussing easy-first or hard-first is futile in the absence of any
prior knowledge or useful information. Indeed, the optimal solution of Eq. (1) is determined by
the distribution of the training samples’ learning difficulties and the prior knowledge. The learning
difficulty depends on the data characteristics including data quality, sample neighbors, and data
distribution. For example, the lower the quality of a sample is, the larger the learning difficulty of
the sample will be; the more heterogeneous samples in the neighborhood of a sample are, the larger
the learning difficulty of the sample will be.

Based on partial observations/conclusions of existing studies and the above analysis from our LUW ,
it is believable that an ideal weighting strategy should satisfy the following requirements:

• The weights for noisy samples should be reduced making the model less disturbed by noise.
In other words, the easy-first mode will be more effective on training sets with heavy noise.

• If easy samples are excessive, the hard-first mode is preferred like the application of Focal
loss in object detection. Likewise, it is natural to deduce that if hard samples are excessive,
the easy-first mode should be applied.

• Reliable prior knowledge for the learning task and the useful information on training data
characteristics should be integrated into the regularizer. For example, some categories (e.g.,
tail categories) should be given more attention.

The conclusion that no universal optimal setting exists and the above three requirements constitute
the preliminary answer to the “easy-or-hard” question. Unfortunately, none of the existing weighting
schemes can satisfy all three requirements. Section 4 introduces a new weighting scheme.

3.4 MORE ANALYSIS BASED ON THE BIAS-VARIANCE TRADE-OFF

The bias-variance trade-off theory is used to further support the second requirement introduced in
the previous subsection. Let T be a random training set and f(x|T ) be the trained model on T . The
bias-variance trade-off is based on the following learning error (Yang et al., 2020b):

Err = Ex,yET

[
‖y − f (x |T )‖22

]
= Bias2 + V ariance+ δe ≈ BiasT + V arT. (7)
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The bias-variance trade-off theory indicates that the bias and variance terms will respectively de-
crease and increase if the model complexity c increases (Domingos, 2000). Minimum learning error
is achieved when the sum of the partial derivatives of two terms with respect to the model complex-
ity c is equal to zero (Fortmann-Roe, 2012). In this study, training samples are divided into easy,
medium, and hard according to their learning difficulties. Therefore, we divide the sample space into
three corresponding regions, namely, Reasy , Rmedium, and Rhard. Similar to Eq. (7), we define:

Erreasy = E(x,y)∈ReasyET

[
‖y − f (x |T )‖22

]
≈ BiasTeasy + V arTeasy. (8)

Likewise, we can define the bias/variance terms for the Rmedium and Rhard regions. Based on the
bias-variance trade-off theory on the entire sample space, we propose the following assumption:

Assumption 1: For all the three bias (e.g., BiasTeasy) and variance terms (e.g., V arTeasy) of
Reasy , Rmedium, and Rhard, the bias and variance terms are decreasing and increasing functions
of the model complexity c, respectively. Both the partial derivatives of the bias and variance terms
with respect to c are increasing functions, respectively.

According to Assumption 1, minimum learning error for each region is achieved when the sum of
the partial derivatives of its bias and variance term with respect to c equals to zero.

Let c∗ be the optimal model complexity for the entire sample space when the minimum of Err in
Eq. (7) is attained. Likewise, let c∗easy and c∗hard be the optimal model complexities for Reasy and
Rhard, respectively. The following assumption is proposed:

Assumption 2: c∗easy < c∗ < c∗hard.

With Assumption 2, we have the following proposition.

Proposition 1: If weights higher than one are exerted on the samples in Rhard, and the weights in
the other regions remain one, then the new optimal model complexity c∗new over the entire space will
be larger than c∗. Alternatively, the complexity of the optimal model is increased.

A theoretical analysis for Proposition 1 is shown in the Appendix. Proposition 1 supports the second
requirement. When easy samples are excessive in a training set, the model will become quite simple
and under-fitting. Thus, hard samples should be assigned high weights to increase the complexity
of the final model. The analysis for the second requirement when hard samples are excessive is
presented in the Appendix.

4 A NEW WEIGHTING SCHEME

Inspired by LUW , we propose a flexible weighting scheme which can achieve all three priority
modes. Its weighting function is shown in Eq. (9).

wi = (di + α)γe−γ(di+α), (9)
where γ (the shape parameter) and α (the translation parameter) are two hyper-parameters. Inspired
by Focal loss, di is approximated by 1− pi. Thus, the weighting function becomes:

wi = (1− pi + α)γe−γ(1−pi+α). (10)
In the easy-first (τ < min(li)) and hard-first (τ > max(li)) modes, Eq. (10) can be obtained by
solving Eq. (1) with the following regularizer:

R(wi, γ, α) =

∫
− log

1

1 + α+W (−(wi)
1
γ )
dwi, (11)

whereW represents the LambertW function (Corless et al., 1996). The complete derivation process
and curve examples of R(wi, γ, α) can be seen in the Appendix.

When different values of γ and α are chosen, different priority modes can be produced by FlexW.
Fig. 2 shows the exemplar weighting curves in different modes including “easy-first” (Fig. 2(a)),
“medium-first” (Fig. 2(b)) and “hard-first” (Fig. 2(c)). Therefore, we only need to change the values
of γ and α of FlexW instead of the entire weighting scheme when facing different learning tasks.
Our experiments show that FlexW is effective in different scenarios including noise, long-tail, and
their mixtures. The appendix contains more examples of weight curves.

The dynamic weighting manner of SPL can also be incorporated into FlexW. Adding a scale pa-
rameter cyi can further improve the performance in some cases. The new weighting function is:
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Figure 2: (a-c) show the weight curves of FlexW under three priority modes. (d) shows the weight
curves of SPL, Focal loss, and FlexW.

wi =

{
cyi(1− pi + α)γe−γ(1−pi+α), li ≤ λ
0, li > λ

. (12)

When γ is set to 0, the binary scheme of SPL can be realized as shown in Fig. 2(d). To better
understand FlexW, its loss gradient is analyzed and details are presented in the Appendix.

5 EXPERIMENTAL RESULTS

To answer the question from the perspective of empirical verification, we conduct extensive experi-
ments for various tasks under different scenarios.

5.1 IMAGE CLASSIFICATION WITH NOISY LABELS

Two benchmark data sets, namely, CIFAR10 and CIFAR100 (Krizhevsky, 2009), are used. Flip and
uniform label noises are simulated following the manners in (Shu et al., 2019). Wide ResNet-28-10
(WRN-28-10) (Zagoruyko & Komodakis, 2016) and ResNet-32 (He et al., 2016) are adopted for
the flip and uniform noises, respectively. Each experimental run is repeated five times with different
seeds for parameter initialization and label noise generation. The introduction for compared methods
and other details are presented in the Appendix. Due to lack of space, only the results under flip
noise are presented and analyzed here. The results of uniform noise are presented in the Appendix.
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Figure 3: Accuracies of the three methods on noisy
(left) and clean (right) samples under 40% flip noise.

To analyze the performances of the hard-
first and easy-first modes on the noise data,
the specific accuracies of SPL Binary (easy-
first), Focal loss (hard-first), and FlexW
(easy-first) on noisy and clean samples are
analyzed which is shown in Fig. 3. The
schemes with the easy-first mode (including
SPL Binary have lower accuracies on noisy
samples (errors) before 140 epochs as shown
in the left figure. Thus, the easy-first meth-
ods are less affected by noises. From the right figure, SPL Binary and FlexW consistently outper-
form Focal loss on clean samples. In addition, medium-first also achieves good results as presented
in the Appendix. Therefore, the easy/medium-first modes are more suitable than hard-first ones on
noisy data. Under different noise rates, we compare various advanced methods, as shown in Table 3.
The best two methods are SPL log and FlexW(easy-first) which are both under the easy-first mode.
In some cases, the performances of Focal loss and FlexW (hard-first) can approach or even exceed
SPL binary. The reason is that using only loss to distinguish noise samples from hard ones is not
completely accurate. However, under the same method, the performances of the easy-first mode
always exceed that of the hard-first.

Table 3: Accuracies (%) under flip noises. The best and the second best results are bold and under-
lined, respectively.

Data set Noise Baseline Reed Hard SPL Binary SPL Log Focal loss S-model Co-teaching D2L Fine-tuning MentorNet FlexW (hard-first) FlexW (easy-first)

CIFAR10 20% 76.83±2.30 88.28±0.36 87.03±0.34 89.50±0.48 86.45±0.19 79.25±0.30 82.83±0.85 87.66±0.40 82.47±3.64 86.36±0.31 88.50±0.85 90.96±0.12
40% 70.77±2.31 81.06±0.76 81.63±0.52 84.01±0.51 80.45±0.97 75.73±0.32 75.41±0.21 83.89±0.46 74.07±1.56 81.76±0.28 83.28±0.45 85.64±0.11

CIFAR100 20% 50.86±0.27 60.27±0.76 63.63±0.30 63.82±0.27 61.87±0.30 45.45±0.25 54.13±0.55 63.48±0.53 56.98±0.50 61.97±0.47 62.65±0.75 65.48±0.82
40% 43.01±1.16 50.40±1.01 53.51±0.53 53.20±0.11 54.13±0.40 43.81±0.15 44.85±0.81 51.83±0.33 46.37±0.25 52.66±0.56 52.78±0.44 55.50±0.25

5.2 IMAGE CLASSIFICATION WITH IMBALANCED DATA SETS

In this experiment, long-tailed versions of CIFAR benchmarks with different imbalance factors as
defined by Cui et al. (2019) are used. ResNet-32 (He et al., 2016) is used as the basic model. The
introduction for compared methods and other details are presented in the Appendix.
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Figure 4: (a) shows the accuracies of ten categories in their respective optimal epochs; (b) and (c)
show the accuracies of Categories 1 and 10, respectively. More results are presented in the Appendix.

Table 4: Test accuracies (%) on imbalanced CIFAR10 and CIFAR100 with different imbalance
factors (“-” means there is no record of the results in the original paper.)

Data set Long-tailed CIFAR10 Long-tailed CIFAR100

Imbalance factor 200 100 50 20 10 200 100 50 20 10

CE (Baseline) 65.68 70.36 74.81 82.23 86.39 34.84 38.32 43.85 51.14 55.71
Focal loss γ=1 65.29 70.38 76.71 82.76 86.66 35.62 38.41 44.32 51.95 55.78
Focal loss γ=0.5 64.00 70.33 76.72 82.89 86.81 35.00 38.69 44.12 51.10 55.70
SPL Binary 65.64 70.94 76.82 82.41 87.09 35.56 38.16 42.77 50.91 56.70
SPL Log 62.05 70.46 75.64 82.66 86.62 33.08 38.51 41.71 49.71 54.79
L2RW 66.25 72.23 76.45 81.35 82.12 33.00 38.90 43.17 50.75 52.12
Class-balance CE loss 68.77 72.68 78.13 84.56 87.90 35.56 38.77 44.79 51.94 57.57
Class-balance Fine-tuning 66.24 71.34 77.44 83.22 83.17 38.66 41.50 46.12 52.30 57.57
Class-balance Focal loss 68.15 74.57 79.22 83.78 87.48 36.23 39.60 45.21 52.59 57.99
Equalised - 73.98 - - - - 42.74 - - -
Mixup - 73.06 77.82 - 87.10 - 39.54 44.99 - 58.02
Meta-weight net 67.20 73.57 79.10 84.45 87.55 36.62 41.61 45.66 53.04 58.91
LDAM 66.75 73.55 78.83 83.89 87.32 36.53 40.60 46.16 51.59 57.29
FlexW (easy-first) 66.20 73.79 79.11 84.51 88.07 37.21 39.23 44.80 52.11 57.73
FlexW (hard-first) 69.40 75.33 80.05 85.46 88.50 37.54 41.69 47.18 53.10 58.98

To study the performances of the hard-first and easy-first modes on each category, the accuracy for
each category is analyzed where the imbalance factor equals to 20. Fig. 4(a) indicates that methods
under hard-first mode (i.e., FlexW(hard-first) and Focal loss) increase the accuracies of most tail
categories compared with those under easy-first mode (i.e., SPL Binary). Fig. 4(c) shows that the
methods of hard-first mode significantly improve the accuracy of the last tail category. Table 4 com-
pares the performances of some advanced methods under different imbalance factors. Two typical
hard-first methods (i.e., FlexW (hard-first) and Class-balance) perform well. Furthermore, the per-
formances of FlexW are ranking first or second in all cases. In some cases, the performances of SPL
are approaching Focal loss which is because easy-first methods can improve the accuracies of the
head categories. However, these methods further enlarge the gap between head and tail categories.

Figs. 5(a) and (b) show the average weights of samples in the five head (a) and tail (b) categories,
reflecting the contribution of samples in each category to the model. The weights of the head cat-
egories drop quickly, whereas those of the tail categories remain high during the entire training
process. It indicates hard-first mode increases the influence of the tail categories on the model.

Fig. 5(c) shows the proportion of hard samples (with li ≥ log 10) in each category. Tail categories
have larger proportions of hard samples than head ones, which supports the common sense that
samples in the tail categories are harder to learn than those in the head on average. The confusion
matrices for CIFAR10 under varying imbalance factors are shown in the Appendix.

5.3 NODE CLASSIFICATION FOR GRAPH DATA SETS

Five benchmark graph data sets are used, namely, Cora, Citeseer, Pubmed, Coauthor CS, and Coau-
thor Physics (Yang et al., 2016; Shchur et al., 2018). The basic model in this experiment is an
eight-layer GCN (Bruna et al., 2014). In GCN, the heterogeneous nodes around a node negatively
affect the representation of that node. To study the effect of the hard-first and easy-first modes on
graph data sets, FlexW (both easy/hard-first) is compared with several variations of SPL and Focal
loss. More experimental information is shown in the Appendix.

Table 5 shows the results of the competing methods. In general, the easy-first schemes (i.e., SPL
and FlexW (easy-first)), are better than the hard-first ones (i.e., Focal loss and FlexW (hard-first)).
As the hard samples in a graph are mostly those with a large proportion of heterogeneous adjacent
nodes, easy-first schemes can reduce the negative influence of the information exchange among
heterogeneous nodes. To investigate it, the over-smoothing degree is measured by computing the

7



Under review as a conference paper at ICLR 2022

0 50 100 150 200

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a)

W
ei
gh

t

Epoch

 1
 2
 3
 4
 5

0 50 100 150 200

1.3

1.4

1.5

1.6

1.7

1.8

1.9

W
ei
gh

t

Epoch

 96
 97
 98
 99
 100

(b)
0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Epoch

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

(c)
1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
ist

an
ce

Layer

 FlexW (hard-first)
 FlexW (easy-first)
 W/O FlexW

(d)
Figure 5: (a) and (b) show the average weights of the first/last five head/tail categories on CIFAR100.
(c) shows the proportion of hard samples contained in each category on CIFAR10. (d) shows the
effect of relieving over-smoothing with different priority modes on the Cora data set.

Table 5: Accuracies (%) of the competing methods on five graph data sets.
Method\Data set Cora Citeseer Pubmed Coauthor CS Coauthor Physics

Original 86.50 78.70 90.90 90.70 94.00
SPL Poly 87.10 78.30 90.40 92.07 95.78
SPL Log 87.10 78.30 90.20 93.44 95.65
SPL Binary 86.50 78.90 89.90 93.16 94.48
Focal loss 86.10 78.70 89.70 89.43 93.03
FlexW (hard-first) 86.60 78.10 90.00 89.34 93.90
FlexW (easy-first) 87.50 79.50 91.30 93.71 95.85

Euclidean distance between the output of the current layer and that of the previous one (Rong et al.,
2020). The smaller the distance is, the more serious the over-smoothing is (Chen et al., 2020).
Fig. 5(d) indicates that the distances of the model with FlexW (easy-first) are larger than those of
the baseline and hard-first. Thus, the easy-first mode can relieve the over-smoothing phenomenon.

5.4 DENSE OBJECT DETECTION

Dense object detection is a typical application where the distribution of hard and easy samples is
imbalanced. PASCAL VOC (Mark et al., 2010; 2015) is used in this experiment. The original
VOC data has excessive easy samples, which is abbreviated as VOC-e. To investigate other data
distribution cases, we compiled two training data sets based on VOC: data set with excessive hard
samples (denoted by VOC-h) and data set with 8,000 medium hard samples (denoted by VOC-m).
The YOLOv4 (Bochkovskiy et al., 2020) model, which utilizes Focal loss (FL) to calculate the loss
of confidence, is used. More details of these experiments are shown in the Appendix.

In this experiment, we reveal an interesting fact that Focal loss can also implement the easy-first
mode when its hyper-parameter γ is negative. In Table 6, we discuss the four weighting schemes
(FL (easy-first), FL (hard-first), FlexW (easy-first), FlexW (hard-first)) for the three data sets.

The two hard-first schemes obtain better results on VOC-e which contains excessive easy samples.
In contrast, when the data set has excessive hard samples, the easy-first methods get better results,
and the same is true for VOC-m. FlexW achieves the highest accuracies in all three cases.

5.5 STANDARD CIFAR DATA SETS

The standard CIFAR10 and CIFAR100 data sets are experimented. Detailed information on this
experiment is shown in the Appendix. Focal loss (hard-first) (Lin et al., 2017), SPL (easy-first) (Ku-
mar et al., 2010), importance sampling (Katharopoulos & Fleuret, 2018), MentorNet (Jiang et al.,
2018), LOW (hard-first) (Santiagoa et al., 2021), and FlexW (easy-first and hard-first) are compared
on the basic network WRN-28-2 (Zagoruyko & Komodakis, 2016) as shown in Table 7.

From Table 7 and results in the Appendix, a clear judgement between the easy-first and hard-first
modes on standard data can not be obtained. In practice, FlexW can achieve three priority modes
by adjusting its parameters, exhibiting flexibility when facing a new data set. More results in the
Appendix suggest that FlexW obtains better results than other compared methods on standard data.

5.6 MORE EXPERIMENTAL ANALYSIS FOR FLEXW

More analyses are conducted for FlexW. In the first scenario, different levels of prior knowledge are
combined into FlexW. In the second scenario, varied priority modes during the training process are
experimented. In the third scenario, data sets that contain both imbalance and noise are studied. The
conclusion is that when both imbalance and noise exist in a data set, a strategy with a more serious
deviation should be selected. The details are presented in the Appendix.
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Table 6: mAPs (%) of the four learning schemes on the three VOC data sets.
Scheme FL (hard-first) FL (easy-first) FlexW (hard-first) FlexW (easy-first)

VOC-e 75.21 66.96 76.84 71.70
VOC-h 66.62 68.30 67.67 69.25
VOC-m 55.74 62.36 60.14 62.71

Table 7: Accuracies (%) of different methods on CIFAR10 and CIFAR100.
Method Baseline Focal loss SPL IS MentorNet LOW FlexW (easy-first) FlexW (hard-first)

CIFAR10 92.80 92.40 92.30 92.10 91.50 93.20 92.68 94.15
CIFAR100 72.00 71.40 71.80 68.00 70.90 72.30 72.72 70.22

5.7 THE SELECTION OF HYPER-PARAMETERS IN FLEXW

During the experiments, we find that for easy-first and hard-first modes, parameters {γ = −0.5,
α = 0.15} and {γ = 0.5, α = 0.15} can achieve good results in most cases. Under the medium-
first mode, the preference for easy or hard samples still exists. When α = 0.58 and γ is chosen
arbitrarily, the preference for easy and hard samples is approximately equal. Also, the value of γ
can be set to 0.5. More detailed parameter value ranges for stable performances in different modes
are shown in Section B.5. Grid search can be used to select parameters within given intervals.

6 ANSWERS AND DISCUSSION

According to the aforementioned theoretical analysis and empirical observations, a comprehensive
answer is obtained for our investigated “easy-or-hard” question:

• No universal fixed optimal priority mode exists for an arbitrary learning task.

• The priority mode depends heavily on the distribution character for the easy, medium, and
hard samples. If easy/hard samples are excessive in the training set, hard/easy-first mode is
the primary choice when no prior knowledge exists.

• For long-tail data, hard-first is preferred; for noisy data, easy/medium-first are more appro-
priate; for graph data, easy-first can alleviate over-smoothing. For other scenarios, FlexW
can implement different modes and the best one can be selected based on validation data.

• The priority mode need not remain unchanged during training. Using varied priority modes
in different training stages may achieve better results.

The above answer indicates that the inference of the learning difficulty of samples is crucial. In most
existing studies (including ours), the learning difficulty is approximated by the loss (or the predicted
probability) (Lin et al., 2017; Kumar et al., 2010; Ben-Baruch et al., 2020). Nevertheless, an ideal
solution should fully consider factors such as loss, the sample’s neighborhood, category distribution,
and noise level. This study will be the focus of our future work.

Another important issue is the judgement of whether easy/hard samples are excessive in the training
set. The excess of easy/hard samples can be judged according to the difference between the distri-
butions of the entire sample space and the training data set. However, it is impractical to utilize the
distribution of the entire sample space. A feasible way is to take the distribution of the validation set
as a reference. The detailed analysis is shown in Appendix.

7 CONCLUSIONS

This study focused on an interesting and important question about the choices of priority modes on
easy, medium, and hard samples for learning tasks. A deep investigation for this question facilitates
the understanding of various existing weighting schemes and the choice of an appropriate scheme
for a new learning task. First, a unified weighted loss is proposed which can mathematically explain
most existing weighting functions. This unified loss provides a comprehensive view to theoretically
analyze the “easy-or-hard” question. The defects of existing weighting functions can be clearly
summarized by this loss. Second, a flexible weighting scheme is proposed inspired by the unified
weighted loss and the defects of existing weighting schemes. Third, extensive experiments in image
classification, graph classification, and object detection are conducted under different data charac-
teristics including standard, noisy, long-tail, and different difficulty distributions. A comprehensive
answer is obtained according to the theoretical analysis and the empirical verification. In addition,
our proposed scheme FlexW achieves competitive results under nearly all the experimental tasks.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi
Zelnik-Manor. Asymmetric loss for multi-label classification. arXiv preprint arXiv:2009.14119,
2020.
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A OTHER WEIGHTING METHODS

Apart from weighting schemes investigated in our study, there are also other sample weighting
techniques including meta-optimization, teacher-student strategies and sampling methods.

Meta-optimization leverages an additional unbiased data set to optimize sample weight (Shu et al.,
2019; Khan et al., 2018). Ren et al. (2018a) proposed the first meta-optimization method, which
assigns weights to training samples on the basis of their gradient directions. Meta-class-weight (Ja-
mal et al., 2020) exploits meta-learning to estimate class-wise weights. However, meta-optimization
methods heavily rely on unbiased data sets which are unavailable in many scenarios. By comparison,
our proposed FlexW is easier to implement because an additional data set is not necessary.

The teacher-student strategy uses an additional network as the teacher, with the help of the teacher
network’s performance to assign weights to samples in the student network (Fan et al., 2018).
MentorNet (Jiang et al., 2018) uses the teacher network to assign weights to samples in the student
network. Samples that are quite hard for the student network will be dropped (weights are set to 0
for these samples) in this case. However, this strategy is computationally expensive and requires an
additional network.

Importance sampling aims to reduce the variance of gradient estimates by selecting samples with
an adaptive sampling distribution, instead of the traditional uniform sampling (Needell et al., 2014;
Zhao & Zhang, 2015). However, it needs to know the gradient of loss with respect to each of the
network’s parameters and for each training sample before each single gradient descent step. In the
context of deep learning, this is computationally infeasible. Alternatively to importance sampling,
other types of sample selection strategies have also been investigated. These are based on ranking
samples according to the corresponding loss (Loshchilov & Hutter, 2016), or using more complex
metrics that combine classifier uncertainty, class balance, and sample representativeness (Kabkab
et al., 2016). Compared to the sampling-based methods, our proposed weighting scheme can process
all samples each epoch, thus guaranteeing that we always know how the network is performing on
each sample.

B THEORETICAL ANALYSIS

B.1 SUPPLEMENT TO SECTION 3.2 (REQUIREMENTS THAT THE UNIFIED WEIGHTED LOSS
NEEDS TO SATISFY)

In addition to the non-negative and convex constraints introduced in Section 3.1, The unified
weighted loss should also satisfy the following requirement.

• If the easy-first mode is adopted in an epoch, then the weighting function decreases with
respect to the sample’s learning difficulty.

• If the medium-first mode is adopted, then the weighting function increases firstly and then
decreases with respect to the sample’s learning difficulty.

• If the hard-first mode is adopted, then the weighting function increases with respect to the
sample’s learning difficulty.

The three conditions guarantee that LUW can implement the three different priority modes, namely,
easy-first, medium-first, and hard-first. LUW also satisfies the following properties (Castells et al.,
2020):

• Translation-invariance: Adding a constant to the input loss should have no effect on LUW ’s
gradient, i.e. ∀K,∃K ′ | LUW (wi, li +K,R(wi,Γ, λ)) = K ′ +LUW (wi, li, R(wi,Γ, λ)),
where K and K

′
are constant.

• Homogeneity: LUW should have a multiplicative scaling behavior: ∃λ, λ′ | ∀ K >

0,LUW (wi,Kli, R(wi,Γ, λ)) = KLUW (wi, li, R(wi,Γ, λ
′
)), where K is a constant.

With this property, we can handle losses of any amplitude.
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B.2 SUPPLEMENT TO SECTION 3.3 (THE DERIVATION OF FOCAL LOSS’S REGULARIZATION
FUNCTION)

Because Focal loss applies li to approximate di, the optimization problem for the weights of Focal
loss is shown in Eq. (13).

1

N

N∑
i=1

max
wi

(wili +R(wi, γ)), (13)

where the hard-first mode is used. To implement the maximization, the following equation should
be satisfied:

∂(wili +R(wi, γ))

∂wi
= li +

∂R(wi, γ)

∂wi
= 0. (14)

Thus, we have
∂R(wi, γ)

∂wi
= −li. (15)

We know that the weight function of Focal loss is as follows:

wi = (1− pi)γ . (16)

The loss can be subsequently expressed as

li = − log pi = − log(1− wi
1
γ ). (17)

Then we have
∂R(wi, γ)

∂wi
= log(1− wi

1
γ ). (18)

By solving the above differential equation, R(wi, γ) of Focal loss can be obtained as follows:

R(wi, γ) =
∫

log(1− wi
1
γ )dwi

= wi
wi

1
γ

2F1(1,1+γ,2+γ,wi
1
γ )

1+γ + log(1− wi
1
γ )

, (19)

where 2F1 is the Hypergeometric function (Seaborn, 1991) and γ is the hyper-parameter of Focal
loss.

B.3 SUPPLEMENT TO SECTION 3.4 (THEORETICAL ANALYSIS FOR PROPOSITION 1)

A strict proof for Proposition 1 is challenging. We give a proof under a special case that the weights
exerted on Reasy are identical. Without loss of generality, the weights on each sample in Rhard are
denoted as (1 + ε), where ε > 0.

Let BiasT (c) and V arT (c) be the values of bias and variance terms defined in Eq. (7) in Section
3.4, respectively, when the model complexity is c. First, we have

∂Err

∂c

∣∣∣∣
c∗

=
∂BiasT (c)

∂c

∣∣∣∣
c∗

+
∂V arT (c)

∂c

∣∣∣∣
c∗

= 0. (20)

According to Assumptions 1 and 2, we have

∂BiasTeasy(c)
∂c

∣∣∣∣
c∗

+
∂V arTeasy(c)

∂c

∣∣∣∣
c∗
> 0

∂BiasThard(c)
∂c

∣∣∣∣
c∗

+ ∂V arThard(c)
∂c

∣∣∣∣
c∗
< 0

. (21)

Let peasy , pmedium, phard be the proportions of samples in Reasy , Rmedium, Rhard, respectively.
We have

BiasT (c∗) = peasyBiasTeasy(c∗) + pmediumBiasTmedium(c∗) + phardBiasThard(c
∗)

V arT (c∗) = peasyV arTeasy(c∗) + pmediumV arTmedium(c∗)

+ phardV arThard(c
∗)

. (22)
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When the weights (1 + ε) are exerted on Rhard, then BiasT (c∗) and V arT (c∗) become

BiasTε(c
∗) = peasyBiasTeasy(c∗) + pmediumBiasTmedium(c∗) + phardBiasThard

+ εphardBiasThard(c
∗)

V arTε(c
∗) = peasyV arTeasy(c∗) + pmediumV arTmedium(c∗)

+ phardV arThard(c
∗) + εphardV arThard(c

∗)

. (23)

Based on Eqs. (21) and (23), we have

∂BiasTε(c)

∂c

∣∣∣∣
c∗

+
∂V arTε(c)

∂c

∣∣∣∣
c∗
< 0. (24)

Accordingly, in order to attain the new balance between the bias and variance terms, the model
complexity should be increased. Alternatively, the new optimal model complexity c∗new will be
larger than c∗. Likewise, we have the following proposition with the similar inference manner.

Proposition 2: If weights higher than one are exerted on samples in the Reasy , and the weights
in other regions remain one, the new optimal model complexity c∗new over the entire space will be
smaller than c∗.

Proposition 2 supports the situation in the second requirement when easy samples are excessive.

B.4 SUPPLEMENT TO SECTION 4 (THE DERIVATION OF FLEXW’S REGULARIZATION
FUNCTION)

Similar to the derivation process of the Focal loss’s regularizer, the underlying regularizer for FlexW
when di is approximated by li can also be inferred.

In the easy-first mode, the optimization for the weights is in the following form:

1

N

N∑
i=1

min
wi

(wili +R(wi, γ, α)). (25)

Note that the weighting function of FlexW is as follows:

wi = (1− pi + α)γe−γ(1−pi+α). (26)

We also express the loss function with the weight, which is

li = − log pi = log
1

1 + α+W (−(wi)
1
γ )
. (27)

Then we solve the differential equation ∂R(wi,γ,α)
∂wi

= −li, and the expression of the FlexW’s regu-
larizer is as follows:

R(wi, γ, α) =

∫
− log

1

1 + α+W (−(wi)
1
γ )
dwi, (28)

where W is the Lambert W function (Corless et al., 1996) which is the inverse function of

f(x) = xex. (29)

Likewise, the regularizer in the hard-first mode can also be inferred with the above steps.

B.5 SUPPLEMENT TO SECTION 4 (ANALYSIS OF THE THREE PRIORITY MODES ACHIEVED BY
FLEXW)

The priority modes that the weight function can achieve are determined by the attributes of the
function (e.g. extreme point). What’s more, the value of the function on p ∈ [0, 1] needs to be
greater than 0. The FlexW weight function we give is an example that can implement all the three
priority modes, there are also other functions that can achieve this. Below we analyze FlexW.

The weight function of FlexW when di is approximated by 1− pi is:

wi = (1− pi + α)γe−γ(1−pi+α), (30)
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Figure A-1: The intervals of the weight function under the three priority modes.

Figure A-2: Gradients of different losses.

where γ is the shape parameter and α is the translation parameter. α controls the translation of the
curve so that different segments of the curve can be taken when p ∈ [0, 1].

To simplify the form, we let t = 1− p+ α. So that, the weight function becomes:
f(t) = tγe−γt. (31)

Taking the derivative of Eq. (31), we get:

f
′
(t) = γtγ−1e−γt(1− t). (32)

Regardless of the value of γ, the function either has both a local maximum point and a local mini-
mum point, or only contains a local maximum point or a local minimum point. Taking the case of
containing both a local maximum point and a local minimum point as an example, we analyze how
this function implements three priority modes:

Without considering translation, t = 1− p. Fig. A-1 shows the function’s curve when γ = 2. When
the segment of (a) is selected, the priority mode is the easy-first; when the (b) segment is selected,
the priority mode is the hard-first; when the segment of (c) is selected, the priority mode is the
medium-first. Because of p ∈ [0, 1], the curve can be translated by the parameter α, so that when
p ∈ [0, 1], different segments of the curve can be taken.

B.6 SUPPLEMENT TO SECTION 4 (GRADIENT ANALYSIS OF FLEXW)

To better understand FlexW, its loss gradient is analyzed. The loss gradient of FlexW function is:
dL
dz

=
∂L
∂p
× ∂p

∂z
= p(1− p)(1− p+ α)γ−1e−γ(1−p+α)(γ log p(p− α)− 1− p+ α

p
), (33)

where p = 1
1+e−z . The gradient of FlexW is in comparison to the gradients of cross entropy (CE)

loss, Focal loss (Lin et al., 2017), SPL Log (Jiang et al., 2014a), and ASL (Ben-Baruch et al.,
2020). Fig. A-2(a) shows the gradients of different losses. Under CE loss, harder samples have
larger gradients than easier ones. Focal loss increases the gradients of hard samples. However, it
is sensitive to noise. ASL decreases the gradients of quiet-hard samples. Fig. A-2(b) shows the
gradients of three variants of FlexW with CE loss. The weight curves of the three variants are shown
in Fig. A-2(c). When the easy/medium/hard-first mode of FlexW is used, the loss gradients of
easy/medium/hard samples are increased compared with those under CE loss shown in Fig. A-2(b).
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Table A-1: Hyper-parameter value intervals in which the performance is stable.
Priority mode Easy-first Medium-first Hard-first

Intervals [-0.6,-0.2]×[0.1,0.4]
[0.2,0.6]×[0.9,1.2]

[0.2,0.6]×[0.4,0.8]
[-0.6,-0.2]×[0.4,0.8]

[0.2,0.6]×[0.1,0.4]
[-0.6,-0.2]×[0.9,1.2]

Figure A-3: Weighting function (a) and regularizer (b) curves of the FlexW in two cases.

B.7 SUPPLEMENT TO SECTION 4 (THE PARAMETER VALUE RANGES UNDER DIFFERENT
MODES.)

For ease of use, we give the parameter value ranges with stable effects corresponding to the three
priority modes which are shown in Table A-1.In the three priority modes, the recommended values
of the parameters are shown in Section 4. In practical applications, grid search can be used to search
parameters within the given parameter value ranges. We have verified that the performances of
FlexW are stable within these ranges.

B.8 SUPPLEMENT TO SECTION 6 (ANALYSIS OF THE EXCESS OF EASY AND HARD SAMPLES)

In our point of view, the judgement whether easy or hard samples are excessive should be based on
a reference or reliable prior knowledge. In other words, it is nearly impossible to judge which parts
are excessive without a reference or reliable prior knowledge. The proportions of easy and hard
samples on validation data can be used as the reference. Assuming that there is an effective measure
of samples’ learning difficulty, if the proportion of easy samples on the training set is larger than
that of the validation set, then we can conclude that easy samples are excessive. If the proportion of
hard samples on the training set is larger than that of the validation set, then we can conclude that
hard samples are excessive.

C EXPERIMENTAL DETAILS AND MORE EXPERIMENTS

C.1 SUPPLEMENT TO SECTION 4 (CURVES OF FLEXW)

Fig. A-3 shows the curves of the weighting function and the regularizer R(wi, γ, α) when (γ =
1/3, α = 0) (red) and (γ = 1/5, α = 0) (blue), respectively. Hard-first is used in these two cases
shown in Fig. A-3. Hence, a smaller value of pi (larger value of loss li) indicates a larger value of
the weight wi. Notably, the solving of w is a maximum optimization problem in this mode. The
regularization function monotonically decreases with respect to the weight to prevent all weights
from taking the maximum value of the weighting function.

C.2 SUPPLEMENT TO SECTION 4 (MORE CURVES OF FLEXW)

C.2.1 PRIORITY MODE OF BOTH-ENDS-FIRST

Apart from the three modes mentioned in Section 4, FlexW can implement the priority mode of both-
ends-first when both (a) and (b) segments are selected in Fig. A-1. This mode can be achieved when
the weighting function has a local minimum point. The curves of both-ends-first under different
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Figure A-4: Both-ends-first mode implemented by FlexW.

parameters are shown in Fig. A-4. Only a few tasks utilize this priority mode. For example, Yang
et al. (2020a) proposed the self-paced balance learning that considers the priority as a combination of
the easy-first and hard-category-first modes which is an approximation of the both-ends-first mode.

C.2.2 CURVES OF FLEXW WITH DYNAMIC WEIGHTING MANNER

As mentioned in Section 4, the dynamic weighting manner can be integrated into FlexW. Fig. A-5
shows the FlexW (easy-first and hard-first) weight curves using the dynamic weighting manner. The
first and the second rows present the easy-first (the smaller the 1 − pi is, the larger the weight wi
is.) and hard-first (the larger the 1 − pi is, the larger the weight wi is.) modes, respectively. In the
easy-first mode, the easier the sample is, the larger the weight will be; and in the hard-first mode, the
harder the sample is, the larger the weight will be. In the dynamic weighting manner, hard samples
gradually participate in the training process.

Figure A-5: Weight curves of FlexW (easy-first (γ = −2, α = 0.15) and hard-first (γ = 5, α = 0))
with the dynamic weighting manner.

C.2.3 THE INFLUENCE OF DIFFERENT HYPER-PARAMETERS ON THE FLEXW WEIGHTING
FUNCTION

We can obtain different weight curves by gradually changing the value of the parameter γ in FlexW,
as shown in Fig. A-6. The left four curves are in the hard-first mode, while the right four curves are
in the easy-first mode. Fig. A-7 shows additional examples including easy-first ((1)), medium-first
((4), (5), (7), and (8)), and hard-first ((2), (6) and (9)) modes as well as the equal weights in (3). We
obtain several weight curves by adjusting the translation parameter α while γ remains unchanged
as shown in Fig. A-8. The results indicate that our FlexW weighting function can also achieve

19



Under review as a conference paper at ICLR 2022

switching from the hard-first mode to the medium-first model and then to the easy-first only when α
is adjusted.

Figure A-6: Different weight curves obtained by only changing the parameter γ.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure A-7: Different weight curves of FlexW.

Figure A-8: Different weight curves obtained by only changing the translation parameter α.

C.3 SUPPLEMENT TO SECTION 5.1 (MORE DETAILS FOR EXPERIMENTS ON NOISY CIFAR
DATA SETS)

C.3.1 EXPERIMENTAL SETUP

CIFAR10 and CIFAR100 are two benchmark image data sets. Both data sets consist of 50,000
training samples and 10,000 test samples. Each sample is a 32× 32 image from 1 out of 10 or 100
categories, respectively. They are balanced data sets where each category holds the same number
of images. There are two settings of corrupted labels on the training set that are used: uniform
noise and flip noise. Uniform noise is simulated according to the manner that the label of each
sample is independently changed to a random category. Flip noise is simulated according to the
manner that the label of each sample is independently flipped to similar classes. The settings of
both types of noise follow the same setting in (Zhang et al., 2017). Wide ResNet-28-10 (WRN-28-
10) (Zagoruyko & Komodakis, 2016) and ResNet-32 (He et al., 2016) are used as the basic network
in the experiments under uniform and flip noises, respectively.

The comparison methods include Baseline which refers to the basic classifier network with CE
loss; the robust learning methods including Reed (Reed et al., 2015), S-Model (Goldberger & Ben-
Reuven, 2017), SPL (Kumar et al., 2010; Jiang et al., 2014a), Focal Loss (Lin et al., 2017), Co-
teaching (Han et al., 2018), D2L (Ma et al., 2018), and MentorNet (Jiang et al., 2018); and Fine-
tuning (Shu et al., 2019) which refers to fine-tuning the result of Baseline on the meta-data with
clean labels to further enhance its performance.

In this experiment, the networks are trained using SGD with a momentum 0.9, a weight decay
5 × e−4, and an initial learning rate 0.1. At the 60th, 120th, and 160th epochs, the learning rate is
reduced to one-fifth of that in the previous epoch. The values of the batch size and epoch are set to
32 and 200, respectively. All the results are the average of five experiments with different seeds.

C.3.2 RESULTS UNDER UNIFORM NOISE

In addition to the comparison under flip noise shown in Section 5.1, the test accuracies under uni-
form noise are shown in Table A-2. The performances of FlexW(easy-first) are better than that of
FlexW(hard-first). In some cases, the performances of FlexW (hard-first) and Focal loss are close
to or even better than SPL log which is because that using loss as the criterion to distinguish noise
samples form hard ones is not completely accurate. What is certain is that for the same method,
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the easy-first mode will always achieve better results than the hard-first mode. What’s more, the
performance of FlexW is the best or the second-best in all cases under uniform noise.

Table A-2: Test accuracies (%) of the competing methods under uniform noise.
Data set Noise ratio Baseline Reed Hard S-Model Co-teaching SPL Binary SPL Log D2L Focal loss Fine-tuning MentorNet FlexW (hard-first) FlexW (easy-first)

CIFAR10
0 95.60±0.22 94.38±0.14 83.79±0.11 88.67±0.25 90.81±0.34 94.94±0.22 94.64±0.33 95.70±0.15 95.65±0.15 94.35±0.42 95.26±0.42 95.85±0.31

40% 68.07±1.23 81.26±0.51 79.58±0.33 74.81±0.34 86.41±0.29 77.50±0.50 85.60±0.13 75.96±1.31 80.47±0.25 87.33±0.22 86.16±0.85 88.15±0.22
60% 53.12±3.03 73.53±1.54 - 73.06±0.25 53.10±1.78 53.40±0.38 68.02±0.41 51.87±1.19 78.75±2.40 82.80±1.35 77.96±1.11 81.87±1.23

CIFAR100
0 79.95±1.26 64.45±1.02 52.86±0.99 61.80±0.25 78.31±0.26 75.60±0.56 66.17±1.42 81.04±0.24 80.88±0.21 73.26±1.23 78.70±0.58 81.15±0.42

40% 51.11±0.42 51.27±1.18 42.12±0.99 46.20±0.15 55.11±0.75 54.94±0.21 52.10±0.97 51.19±0.46 52.49±0.74 61.39±3.99 54.25±0.34 57.72±0.36
60% 30.92±0.33 26.95±0.98 - 35.67±1.25 36.56±0.57 37.17±0.32 41.11±0.30 27.70±3.77 38.16±0.38 36.87±1.47 39.40±1.55 42.50±0.87

C.3.3 THE AVERAGE LOSSES OF CLEAN AND NOISY SAMPLES

The average losses of clean samples and noise samples under 40% flip noise are shown in Fig. A-9.
The average loss of the noise samples is always higher than that of the clean ones during the training
process. Therefore, using loss as the criterion to distinguish clean and noisy samples is reasonable.
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Figure A-9: The average losses of clean and noise samples of the three methods.

C.3.4 RESULTS OF MORE ROBUST METHODS UNDER THE UNIFORM NOISE

The accuracies of more robust methods under the uniform noise on CIFAR10 are shown in Fig. A-
10. FlexW (easy-first) achieves the highest accuracies under most noise rates. Another easy-first
method SuperLoss (Castells et al., 2020) also achieves good performance. The results indicate that
the easy-first mode is more suitable for noisy data sets than the hard-first mode.

0.0 0.2 0.4 0.6 0.8
20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Noise rate

 MixUp
 D2L
 Co-teaching+
 F-correction
 Focal loss
 Trun-LQ
 LQ
 SuperLoss
 Self-paced
 Co-Teaching
 MentorNet
 FlexW(easy-first)

Figure A-10: Accuracies of different methods under varied uniform noise rates. The accuracies of
other methods are from Castells et al. (2020).
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Table A-3: The performances of different parameter settings on CIFAR10 under 40% flip noise.
Scheme Parameters Accuracy (%)

Easy-first γ = -0.4, α = 0.15 85.64±0.11
Hard-first γ = 0.4, α = 0.15 83.28±0.45
Medium-first γ = 0.7, α = 0.45 85.81±0.45

C.3.5 THE PERFORMANCE OF FLEXW UNDER MEDIUM-FIRST MODE ON NOISY DATA

In this part, we use FlexW to implement the medium-first mode and compare its performance with
those of easy-first and hard-first modes. Table A-3 indicates that both the medium-first and easy-first
modes obtain better results and the hard-first performs poorly on noisy data. It verifies the conclusion
that the easy-first and medium-first modes are more suitable for noisy data than the hard-first mode.

C.3.6 CONFUSION MATRICES OF FLEXW UNDER VARIED NOISE RATES

Confusion matrices of the true labels and predictions generated by FlexW on CIFAR10 under dif-
ferent noise rates of flip and uniform noise are shown in Fig. A-11. The results indicate that even
when the data set contains heavy noise, FlexW can also achieve good results.

Figure A-11: Confusion matrices of the true labels and prediction results under varied noise condi-
tions on CIFAR10. (a) 20% flip noise rate, (b) 40% flip noise rate, (c) 40% uniform noise rate, and
(d) 60% uniform noise rate.
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Table A-4: Details of the five graph data sets.
Data set Categories Features Nodes Edges Label rate Edge density

Cora 7 1,433 2,485 5,069 0.0563 0.0004
Citeseer 6 3,703 2,110 3,668 0.0569 0.0004
Pubmed 5 500 19,717 44,324 0.0030 0.0001
Coauthor CS 15 6,805 18,333 81,894 0.0164 0.0001
Coauthor Physics 5 8,415 34,493 247,962 0.0029 0.0001

C.4 SUPPLEMENT TO SECTION 5.2 (MORE DETAILS TO EXPERIMENTS ON IMBALANCED
CIFAR DATA SETS)

C.4.1 EXPERIMENTAL SETUP

Following Cui et al. (2019), we discard some training samples to construct imbalanced data sets.
We build ten training sets with a varied imbalance factor µ ∈ {200, 100, 50, 20, 10}. The factor µ
denotes the image amount ratio between the largest and the smallest categories. It is calculated by

µ = max
i

(ni)/min
j

(nj), (34)

where ni is the number of samples in the i-th category. The new sample size of Category c is
calculated by the following equation (Li et al., 2021):

Ncs = Nc × (1/µ)
c

C−1 , (35)

where Ncs is the number of samples after discarding some samples. C is the number of categories.
Nc is the original number of samples in category c.The compared methods include the Baseline
model which uses a cross-entropy loss to train ResNet-32 on the training set, Focal loss (Lin et al.,
2017), SPL (Kumar et al., 2010; Jiang et al., 2014a), Mix up (Zhang et al., 2018), LDAM (Cao et al.,
2019), Class-balanced (Cui et al., 2019), L2RW (Ren et al., 2018b) which leverages an additional
meta-data to adaptively assign weights for training samples, Equalised (Tan et al., 2020), and Class-
balanced Fine-tuning (Cui et al., 2018) which means that the model is fine-tuned using the meta-data.

In this experiment, the optimizer used is SGD. The momentum and weight decay are set to 0.9 and
5 × 10−4, respectively. The values of the epoch and batch size are set to 32 and 200, respectively.
The initial learning rate is 0.1. At the 60th, 120th, and 160th epochs, the learning rate is reduced
to one-fifth of the original. The experimental results of FlexW are the average of five repeated
experiments with different seeds.

C.4.2 THE ACCURACIES OF THE THREE METHODS ON CATEGORIES 2-9

Fig. A-12 shows the accuracies during the training process of the three methods (i.e. SPL Binary,
FlexW (hard-first), and Focal loss) on Categories 2-9. The accuracy curves during the training
process of Categories 1 and 10 are shown in Section 5.2. Methods under the hard-first mode increase
the accuracies of most tail categories.

C.4.3 THE AVERAGE WEIGHT OF SAMPLES IN EACH CATEGORY ON CIFAR10

Fig. A-13 shows the average weight of samples in each category on CIFAR10 data. The average
weights of the two head categories (Categories 1 and 2) are much lower than those of the rest eight
categories before the 150th epoch.

C.5 SUPPLEMENT TO SECTION 5.3 (MORE DETAILS TO EXPERIMENTS ON GRAPH DATA
SETS)

C.5.1 EXPERIMENTAL SETUP

The details of the five graph data sets Cora, Citeseer, Pubmed (Yang et al., 2016), Coauthor CS, and
Coauthor Physics (Shchur et al., 2018) are shown in Table A-4: Transudative training is used and
all node features are accessible during training. We apply the full-supervised training setting used
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Figure A-12: Accuracies during the training process of Categories 2-9 on CIFAR10 when the im-
balance factor equals to 20.
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Figure A-13: The average weights of samples in the Categories 1-5 (a) and the (rest) Categories
6-10 (b) on CIFAR10.

in Huang et al. (2018) and Chen et al. (2018) on all data sets in our experiments. During training,
Adam (Kingma & Ba, 2015) is used as the optimizer. The value of the learning rate is 0.001. The
weight decay is set to 5 × 10−4. The value of the epoch is set to 400. The dimension of hidden
layers is 128.

C.6 SUPPLEMENT TO SECTION 5.4 (MORE DETAILS FOR THE EXPERIMENTS ON OBJECT
DETECTION)

C.6.1 EXPERIMENTAL SETUP

The PASCAL VOC (Mark et al., 2010; 2015) data set contains 20 sub-categories. The training set
consists of VOC2007 and VOC2012 train+val with a total of 16,551 samples. As the training set
contains excessive easy samples, it is abbreviated as VOC-e. Both the two artificially constructed
training sets contain 8,000 images. For VOC-h, 7,000 images are from the images with the largest
loss-conf in the original VOC training set, and the remaining 1,000 images are randomly selected
from training data except for the hardest 7,000 ones. The other training set VOC-m is composed of
8,000 images with moderate loss-conf values. VOC2007 test is used as the test set with a total of
4,952 samples.

YOLOv4 (Bochkovskiy et al., 2020) is used as the basic model. The optimizer we used is SGD
where the momentum and weight decay are set to 0.9 and 5 × 10−4, respectively. The value of
epoch is set to 50 and the batch size is set to 4. The initial learning rate is 1 × 10−4, and the final
learning rate is 1× 10−6. The value of the warm-up epoch is set to 2.

C.6.2 MAPS ON EACH CATEGORY OF THE THREE DATA SETS

MAPs of the four weighting schemes (FL(easy-first), FL(hard-first), FlexW(easy-first), and FlexW
(hard-first)) for all the 20 categories in the original VOC data (VOC-e) are shown in Table A-5.
In this case, the accuracies of the hard-first weighting schemes (i.e. FL (hard-first) and FlexW
(hard-first)) are relatively higher than those of easy-first on most categories. Furthermore, the per-
formances of the FlexW (hard-first) are better than those of the FL (hard-first). This experiment
supports the conclusion in Section 3.4 that when a data set contains excessive easy samples, the
hard-first mode is a better choice.

The mAPs of the four weighting schemes on each category in the VOC-h are shown in Table A-6.
The performances of the easy-first weighting schemes exceed those of hard-first on most categories.
This comparison corroborates the conclusion in Section 3.4 that when a data set contains excessive
hard samples, the easy-first mode is the primary choice.

The mAPs of the four weighting schemes for each category in the VOC-m are shown in Table A-7. In
indicates that the performances of the easy-first mode exceed those of hard-first for most categories.
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Table A-5: mAPs (%) of the four weighting schemes for 20 categories in VOC-e.
Category FL (hard-first) FL (easy-first) FlexW (hard-first) FlexW (easy-first)

Aeroplane 82.38 72.54 82.71 75.31
Bicycle 85.50 76.57 84.49 84.80
Bird 70.88 63.67 73.46 73.70
Boat 65.35 56.06 71.72 61.94
Bottle 72.73 67.00 75.34 67.73
Bus 81.13 76.47 81.28 76.21
Car 90.30 81.64 91.66 90.61
Cat 76.11 67.52 80.69 72.78
Chair 62.06 55.03 63.52 62.40
Cow 66.34 54.02 66.81 52.74
Diningtable 71.03 62.38 70.58 63.45
Dog 71.19 62.62 77.15 64.56
Horse 82.02 72.63 81.81 78.56
Motorbike 85.59 72.64 86.95 83.88
Person 89.22 81.92 89.88 89.39
Pottedplant 54.94 50.02 58.52 53.80
Sheep 69.56 64.62 70.17 62.75
Sofa 71.44 63.11 68.61 70.46
Train 81.34 73.22 83.08 74.80
Tvmonitor 75.15 65.50 78.43 74.08

Table A-6: mAPs (%) of the four weighting schemes for 20 categories in VOC-h.
Category FL (hard-first) FL (easy-first) FlexW (hard-first) FlexW (easy-first)

Aeroplane 69.12 62.51 75.88 69.03
Bicycle 74.60 81.02 81.53 81.27
Bird 54.83 61.03 57.06 59.49
Boat 52.14 61.60 59.19 60.23
Bottle 67.08 69.15 69.03 69.22
Bus 70.64 75.81 75.63 79.93
Car 86.98 86.90 87.60 88.77
Cat 61.19 59.01 59.31 63.58
Chair 53.77 61.91 59.47 57.70
Cow 52.15 56.11 48.27 53.01
Diningtable 68.65 69.40 67.26 67.66
Dog 60.49 47.54 46.88 58.57
Horse 70.43 68.00 73.76 72.35
Motorbike 82.23 79.55 84.27 80.88
Person 86.87 89.05 87.90 88.29
Pottedplant 52.80 57.73 51.55 53.74
Sheep 64.64 66.30 54.78 65.70
Sofa 62.73 64.37 67.08 65.07
Train 71.89 73.09 75.30 76.31
Tvmonitor 69.21 76.01 71.65 74.12

C.7 SUPPLEMENT TO SECTION 5.5 (MORE DETAILS TO EXPERIMENTS ON BENCHMARK
CIFAR DATA SETS)

C.7.1 EXPERIMENTAL SETUP

The following networks are used: GoogLeNet (Szegedy et al., 2015), VGG (Karen & Andrew,
2014), ResNet (He et al., 2016), MobileNet (Howard et al., 2017), MobileNetV2 (Howard et al.,
2017), DenseNet (Huang et al., 2017), and Wide ResNet (Zagoruyko & Komodakis, 2016). General
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Table A-7: mAPs (%) of the four weighting schemes on 20 categories in VOC-m.
Category FL (hard-first) FL (easy-first) FlexW (hard-first) FlexW (easy-first)

Aeroplane 59.80 68.74 70.51 70.31
Bicycle 63.22 73.51 68.82 75.23
Bird 41.85 54.05 52.86 55.15
Boat 40.86 56.11 52.88 54.14
Bottle 34.65 53.94 46.63 54.24
Bus 64.31 73.68 73.52 75.21
Car 81.12 86.57 85.93 85.74
Cat 62.65 67.44 61.48 63.74
Chair 34.59 40.94 41.21 46.84
Cow 54.33 46.85 44.09 51.81
Diningtable 45.26 45.48 50.68 51.79
Dog 56.12 52.61 53.58 55.78
Horse 72.25 73.98 59.98 61.09
Motorbike 68.28 76.35 72.48 76.69
Person 78.45 83.04 80.22 82.82
Pottedplant 30.32 36.19 38.53 34.69
Sheep 49.29 54.14 51.03 56.65
Sofa 52.28 63.41 59.51 62.67
Train 67.68 76.02 76.28 77.17
Tvmonitor 57.58 64.17 62.58 62.35

Table A-8: Accuracies (%) of different methods on CIFAR10 and CIFAR100.
Data set Baseline SPL Inverse-SPL SPLD LGL Focal loss FlexW (easy-first) FlexW (hard-first)

CIFAR10 93.03 92.60 92.96 92.85 93.97 93.45 93.73 94.00
CIFAR100 71.11 70.30 70.50 70.25 74.17 74.13 74.96 73.01

pre-processing steps are used in training including zero-padding with four pixels, random crops with
size 32× 32, random flips, and standardizing the data.

All the networks are trained to converge from scratch utilizing an SGD optimizer. The weight decay
and momentum are set to 5× e−4 and 0.9, respectively. The value of the epoch is 200. The learning
rate is set to 0.05. The value of batch size is set to 32. The experimental results of FlexW are the
average of five repeated experiments with different initialization.

C.7.2 RESULTS OF DIFFERENT METHODS ON THE STANDARD DATA SETS

Apart from the results presented in Section 5.5, FlexW (easy-first and hard-first) is compared with
SPL (Kumar et al., 2010) (easy-first), Inverse-SPL (Cheng et al., 2019) (hard-first), SPLD (Jiang
et al., 2014b) (easy-first), LGL (Cheng et al., 2019), and Focal loss (Lin et al., 2017) (hard-first).
VGG-16 (Karen & Andrew, 2014) is used and the results are shown in Table A-8.

It indicates that neither the easy-first mode nor the hard-first mode is consistently better on both
standard data sets. The hard-first mode is better on CIFAR10, while the easy-first mode is better on
CIFAR100. As stated in Section 5.5, FlexW can implement different priority modes by adjusting its
parameters. The optimal mode can be selected by comparing their validation performances.

C.7.3 THE PERFORMANCES OF EASY-FIRST AND HARD-FIRST MODES ON THE STANDARD
CIAFR10 DATA.

We visualize the feature spaces of test samples under the three priority modes including easy-first,
baseline, and hard-first using the t-SNE algorithm (van der Maaten & Hinton, 2008). Fig. A-14
shows the visualized feature spaces under different weighting schemes. The priority modes of the
three pictures from left to right are easy-first mode, baseline, and hard-first mode, respectively.
Baseline means that all samples have equal weights. A universal optimal setting can not be obtained
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Table A-9: Accuracies (%) of the three methods under different models on CIFAR10.
Model Method Acc Model Method Acc

VGG-16
Baseline 92.71

ResNet-50
Baseline 94.70

SPL Binary 92.99 SPL Binary 93.50
FlexW(easy-first) 94.00 FlexW(easy-first) 94.73

ResNet-110
Baseline 93.41

ResNet-32
Baseline 92.56

SPL Binary 92.69 SPL Binary 92.84
FlexW(easy-first) 93.47 FlexW(easy-first) 93.26

ResNet-34
Baseline 93.85

GoogLeNet
Baseline 94.18

SPL Binary 92.48 SPL Binary 94.24
FlexW(easy-first) 94.15 FlexW(easy-first) 95.02

MobileNet
Baseline 90.86

MobileNetV2
Baseline 93.35

SPL Binary 91.00 SPL Binary 93.47
FlexW(easy-first) 92.18 FlexW(easy-first) 93.48

DenseNet
Baseline 94.68

Wide ResNet
Baseline 92.54

SPL Binary 94.33 SPL Binary 92.48
FlexW(easy-first) 94.88 FlexW(easy-first) 92.61

on standard data set, as indicated by the minimal differences among the feature spaces under the
three weighting schemes. This finding is consistent with the analysis in Section 7.2.

Figure A-14: Feature spaces under different priority modes. Left: easy-first; middle: baseline; right:
hard-first.

C.7.4 THE PERFORMANCES OF FLEXW ON MORE BASIC NETWORKS

On CIFAR10, the performances of three different schemes (FlexW (easy-first), SPL Binary, and
baseline) with different basic networks are shown in Table A-9. When different basic networks are
used, FlexW (easy-first) consistently outperforms the baseline model and SPL Binary. The results
on CIFAR100 are shown in Table A-10. FlexW still achieves the best results. In some cases of
Tables A-9 and A-10, SPL Binary outperforms the baseline, whereas it is inferior to the baseline
in some other cases. Therefore, SPL Binary has only marginal benefits on the standard data sets,
which is consistent with the conclusion in (Wu et al., 2021).

C.8 SUPPLEMENT TO SECTION 5.6 (MORE EXPERIMENTAL ANALYSIS FOR FLEXW)

C.8.1 EXPERIMENTS ON ADDING PRIOR KNOWLEDGE

Prior knowledge can be encoded in the regularizer as previously stated. We consider two types
of prior knowledge, including the sample-level and the category-level, where an eight-layer
GCN (Bruna et al., 2014) is used. The category-level prior knowledge used is the proportion of each
category. A smaller proportion indicates more hard samples in this category as shown in Fig. 5(c).
The weighting scheme should also assign large weights for samples in tail categories. We use the
following proportion of heterogeneous nodes around each node πi for sample-level prior knowledge:

πi = hi/ai, (36)
where hi is the number of heterogeneous nodes around Node i and ai is the number of adjacent
nodes of Node i. A large value of πi indicates a high learning difficulty. We assign small weights
for these nodes to further alleviate the over-smoothing phenomenon.
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Table A-10: Accuracies (%) of the three methods under different models on CIFAR100.
Model Method Acc Model Method Acc

VGG-16
Baseline 71.42

ResNet-50
Baseline 75.23

SPL Binary 70.69 SPL Binary 75.32
FlexW(easy-first) 74.26 FlexW(easy-first) 75.61

ResNet-110
Baseline 71.67

ResNet-32
Baseline 70.50

SPL Binary 70.13 SPL Binary 70.05
FlexW(easy-first) 71.89 FlexW(easy-first) 70.82

ResNet-34
Baseline 74.13

GoogLeNet
Baseline 76.51

SPL Binary 73.46 SPL Binary 73.54
FlexW(easy-first) 74.65 FlexW(easy-first) 76.68

MobileNet
Baseline 65.35

MobileNetV2
Baseline 72.64

SPL Binary 65.15 SPL Binary 73.16
FlexW(easy-first) 67.05 FlexW(easy-first) 73.27

DenseNet
Baseline 76.97

Wide ResNet
Baseline 68.82

SPL Binary 76.99 SPL Binary 70.98
FlexW(easy-first) 77.38 FlexW(easy-first) 72.72

Table A-11: Accuracies (%) when different levels of prior knowledge are considered.
Method Acc
Original 90.70
SPL Log 93.44
SPL Binary 93.16
FlexW(easy-first) 93.71
FlexW(easy-first+sample-level prior) 95.65
FlexW(easy-first+category-level prior) 95.08

Before and after adding different prior knowledge, the performance comparison on the Coauthor
CS data set is shown in Table A-11 which indicates that adding prior knowledge to FlexW further
improves the performance.

C.8.2 EXPERIMENTS ON VARIED MODES

Unlike existing weighting schemes that remain fixed priority mode during the training process,
FlexW can flexibly switch the priory mode during the training process. For example, in the early
training stages on imbalanced data, the easy-first mode can be leveraged to ensure the performance
of the head categories, and then the hard-first mode can be leveraged to improve the performance of
the tail categories in later periods. Table A-12 shows the performance of FlexW with varied modes
during training. “Varied modes” means that easy-first is used in the first 100 epochs and hard-first is
used in the rest of the epochs. This strategy achieves good results in some cases (imb200, imb100,
and imb50).

C.8.3 EXPERIMENTS ON IMBALANCED AND NOISY DATA SETS

Although label noise and imbalance are usually studied as independent research, these two label
deviations may happen simultaneously in real-world applications. Few studies on this kind of data
set exist (Karthik et al., 2021; Zhang & Pfister, 2021). We discussed how to select the optimal

Table A-12: Accuracies (%) under the hard-first mode and varied modes of FlexW on CIFAR10.
Imbalance factor 200 100 50 20 10
FlexW (hard-first) 69.40 75.33 80.05 85.46 88.50
FlexW (varied modes) 69.59 75.63 80.43 85.03 88.00

29



Under review as a conference paper at ICLR 2022

learning strategy when both types of deviations exist. Tables A-13 and A-14 show the results of
different priority modes in different cases.

Table A-13: Accuracies (%) on the imbalanced CIFAR10 under 20% flip noise.
Imbalance factor FlexW (easy-first) FlexW (hard-first) FlexW (medium-first)

200 56.30 57.37 55.61
50 70.59 73.92 73.73

Table A-14: Accuracies (%) on the imbalanced CIFAR10 under 40% flip noise.
Imbalance factor FlexW (easy-first) FlexW (hard-first) FlexW (medium-first)

200 46.79 44.73 45.31
50 58.63 53.29 55.82

The main deviation of the data set is the imbalance when the data set contains relatively less (e.g.,
20%) noise. Thus, increasing the weights of samples in the tail categories is preferred, that is, to take
the hard-first mode. Meanwhile, the influence of noise is strong when the data set contains relatively
larger (e.g., 40%) noisy labels. At this time, the weighting scheme of the hard-first mode will yield
poor performance, and thus the easy-first mode is preferred. Therefore, the priority mode adopted
depends on which deviation is more serious when both types of deviations exist in the data set.
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