
Efficient Heterogeneity-Aware Federated Active Data Selection

Ying-Peng Tang 1 Chao Ren 2 1 Xiaoli Tang 1 Sheng-Jun Huang 3 Lizhen Cui 4 Han Yu 1

Abstract
Federated Active Learning (FAL) aims to learn
an effective global model, while minimizing label
queries. Owing to privacy requirements, it is chal-
lenging to design effective active data selection
schemes due to the lack of cross-client query in-
formation. In this paper, we bridge this important
gap by proposing the Federated Active data selec-
tion by LEverage score sampling (FALE) method.
It is designed for regression tasks in the presence
of non-i.i.d. client data to enable the server to
select data globally in a privacy-preserving man-
ner. Based on FedSVD, FALE aims to estimate
the utility of unlabeled data and perform data se-
lection via leverage score sampling. Besides, a
secure model learning framework is designed for
federated regression tasks to exploit supervision.
FALE can operate without requiring an initial
labeled set and select the instances in a single
pass, significantly reducing communication over-
head. Theoretical analyze establishes the query
complexity for FALE to achieve constant factor
approximation and relative error approximation.
Extensive experiments on 11 benchmark datasets
demonstrate significant improvements of FALE
over existing state-of-the-art methods.

1. Introduction
Training effective machine learning models typically relies
on large-scale labeled datasets, which are often expensive
and time-consuming to obtain. Active Learning (AL) (Set-
tles, 2009) addresses this issue by selectively querying the
most useful unlabeled data points for improving the model
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Figure 1. The overall framework of the proposed method. First,
the server aggregates data information from each client to facilitate
data selection. Next, it selects the most informative data points
and returns their corresponding indexes to the respective clients.
The clients then label the selected data locally. Finally, the global
model is trained on the server using the masked features and labels
of the queried data.

performance from an oracle for labeling, thereby reducing
the labeling cost while maintaining high model performance.
Traditional AL approaches usually focus on the centralized
learning setting, where all the data is readily accessible.
However, in many real-world applications, data is stored
in a distributed manner, raising the need to consider com-
munication costs, or across multiple parties, in which the
data cannot be directly accessed due to privacy concerns and
data governance regulations (Regulation, 2016). In these
challenging settings, existing methods often do not suffi-
ciently address data privacy, computational constraints, and
communication overhead. Consequently, their performance
can be limited.

Federated Learning (FL) (Yang et al., 2019; 2020) emerges
as an effective learning paradigm to address these challenges
by enabling collaborative model training across multiple
decentralized devices or institutions. It tries to learn an
accurate global model by aggregating local model updates
from multiple clients, without sharing raw data. Due to
the high demand for data privacy and security, each client
usually needs to label their own data locally and only share
the model updates during the learning process (Yang, 2021;
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Ren et al., 2024; Weng et al., 2025). However, this yields
a high risk of knowledge overlapping among clients data,
thus waste of labeling costs. This necessitates the research
on Federated Active Learning (FAL) (Wu et al., 2022; Kim
et al., 2023; Zhang et al., 2023a; Cao et al., 2023), to en-
able label-efficient and privacy-preserving model learning
in decentralized environments.

In FAL, each client possesses its own dataset, which may
contain limited or no initially labeled data, and the data
distribution can vary significantly across clients. The objec-
tive is to learn an effective global model while minimizing
the number of data queries among clients, all under strict
privacy constraints. The major challenges in FAL includes
1) designing a data selection algorithm that operates without
direct access to the data and within a limited communica-
tion budget, and 2) establishing theoretical guarantees of
the query complexity of the active selection algorithm in
distributed and privacy-preserving learning scenario. Ex-
isting FAL methods typically employ local data selection
strategies to comply with the privacy regulation, where each
client independently selects data samples for labeling based
on local model (Wu et al., 2022), global model (Kim et al.,
2023) and data distributions (Zhang et al., 2023b). These
approaches can unavoidably result in overlapping queries
due to the limited coordination among clients and incom-
plete knowledge of the global data landscape. Furthermore,
the theoretical guarantees regarding the query complexity
of active selection algorithms remain underexplored.

In this paper, we propose a novel FAL method, called FALE,
for regression task on non-i.i.d. client data, as shown in
Fig. 1. Our proposed method designs a global selector that
minimizes redundant information across clients, as well
as a global model learning paradigm, supported by theo-
retical guarantees on the query complexity. To achieve
the effective data selection, our method leverages the lat-
est FedSVD method (Chai et al., 2022; 2024), which is a
privacy-preserving method for Singular Value Decomposi-
tion (SVD) in FL setting. FedSVD provides an efficient
mechanism to gathering global information without expos-
ing individual client data. Based on these results, we employ
leverage score sampling (Mahoney, 2011; Woodruff et al.,
2014) to identify and query the most informative data points.
To fully exploit the queried supervision, we further pro-
pose a model learning paradigm for federated regression.
It securely trains a global model on the server by using
masked feature matrices and label vectors of the queried
data. Then, the learned model can be unmasked with a se-
cret matrix on the client side. In this way, FALE can operate
with no initial labeled set and select instances in a single
pass, substantially reducing communication overhead. Fur-
thermore, our theoretical analysis shows that our proposed
FALE method achieves a constant factor approximation us-
ing O(d log d) queries, and relative error approximation

using Ω(d log d+d/ϵ) queries with high probability in FAL
setting, where d is the feature dimension, ϵ is the error con-
trol parameter. We demonstrate the effectiveness of our
proposed FALE approach through extensive experiments on
11 benchmark datasets, showing significant improvements
over existing methods.

2. Related Works
AL (Settles, 2009; Ren et al., 2021) focuses on selec-
tive querying of high-potential unlabeled data. Numer-
ous query strategies have been developed, generally falling
into two categories: informativeness-based (Kirsch et al.,
2019; Huang et al., 2024) and representativeness-based
(Sener & Savarese, 2018; Sinha et al., 2019) approaches.
Informativeness-based methods measure the prediction un-
certainties of data points, while representativeness-based
methods aim to capture the underlying data distribution
by data selection. However, most existing AL algorithms
assume centralized data storage, which restricts their appli-
cability in decentralized settings.

Leverage score sampling is an effective technique with
provable guarantees for active ℓ2-regression problems
minθ ∥Xθ − y∥2 (Woodruff et al., 2014; Mahoney, 2011),
where the feature matrix X ∈ Rn×d is known while
the label vector y ∈ Rn needs to be queried with some
costs. Theoretical analyses are widely conducted for ob-
taining (1 + ϵ)-approximate solutions, i.e., ∥Xθ′ − y∥2 ≤
(1 + ϵ)∥Xθ∗ − y∥2, where θ′ is the output of the algo-
rithm and θ∗ is the true minimizer. For examples, Mahoney
(2011) show thatO(d log d+d/ϵ) suffices to solve. Chen &
Price (2019) propose an algorithm that achieves the optimal
O(d/ϵ) query complexity. Besides, the time complexities
have also been analyzed (Woodruff et al., 2014). How-
ever, existing methods are designed for centralized learning
settings and its applicability to privacy-preserving and dis-
tributed learning scenarios is underexplored.

FL (Liu et al., 2024; Ren et al., 2025; Fan et al., 2025) is a
decentralized approach to machine learning where multiple
clients collaboratively train a model without sharing their
raw data. Perhaps the most popular setting is the horizontal
FL (Yang et al., 2019), where multiple clients have the same
feature space but different data distributions. Furthermore,
according to the data distributions among clients, it can be
further categorized into i.i.d. (Yang, 2021) and non-i.i.d. (Lu
et al., 2024) settings. Most of existing FAL methods focus
on i.i.d. setting and apply off-the-shelf AL algorithms on
each local node independently (Wu et al., 2022; Zhang et al.,
2023b). The selections from different clients may contain
repeated and redundant supervision, leading to suboptimal
global model performance. There are some works studying
the non-i.i.d. client data for federated active classification
problem (Kim et al., 2023; Zhang et al., 2023a; Cao et al.,
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2023). They share a similar idea that considers both informa-
tiveness and representativeness in data selection. However,
the querying is also conducted locally, which can be myopic
and suboptimal. Besides, the theoretical guarantees of the
query complexity has not been analyzed.

3. Preliminaries
Notations and Problem Settings Throughout the paper,
we denote scalars by lowercase letters, vectors by bold
lowercase letters, and matrices by bold uppercase letters.
∥ · ∥ denotes the norm of a vector. ej represents the j-
th standard basis vector, where the j-th entry is equal to
1, and all other entries are 0. This work focuses on the
horizontal FL with non-i.i.d. data, where multiple clients
have the same feature space but different data distribu-
tions. Assuming that there are k clients, each client i has
its own dataset Di = {xj

i}
ni
j=1, which is assumed to be

fully unlabeled. xj
i ∈ Rd is the feature vector. We de-

note Xi = [x1
i , . . . ,x

ni
i ]⊤ as the feature matrix of data in

client i, and yi = [y1i , . . . , y
ni
i ]⊤ ∈ Rni is the unknown

label vector. ni is the number of data points in client i, and
n =

∑k
i=1 ni. Denote by X = [X⊤

1 , . . . , X⊤
k ]⊤ ∈ Rn×d.

We assume that X is column full-rank and n≫ d.

Initially, each client has an empty labeled dataset Li = ∅
and an unlabeled set Ui = Di. At each FAL iteration, each
client i selects a subset of data Qi ⊂ Ui for querying and
update the sets Li = Li ∪ Qi, Ui = Ui \ Qi. Then, a
global model θg is trained using the queried data by, e.g.,
FedAvg (McMahan et al., 2017). Existing FAL methods
iteratively repeat this cycle until the querying budget is ex-
hausted or specific performance criteria are met. In contrast,
the method proposed in this paper is a one-pass querying
approach, selecting all data points in a single iteration.

FedSVD FedSVD (Chai et al., 2022) calculates the SVD
of the entire dataset securely in FL setting. The main steps
of the FedSVD is summarized as follows

(1) A trusted authority generates random orthogonal ma-
trices P ∈ Rn×n and Q ∈ Rd×d, where P can be sim-
plified as diag(P1, . . . , Pk) for computational efficiency,
Pi ∈ Rni×ni is a random orthogonal matrix. Q is sent to
all clients and Pi is sent to client i.
(2) All clients mask their local data by X ′

i = PiXiQ and
send X ′

i to the FL server.
(3) The FL server securely aggregates X ′ from all clients.
(4) The FL server performs SVD to obtain X ′ = U ′ΣV ′⊤,
where U ′ ∈ Rn×n, Σ ∈ Rn×d, and V ′ ∈ Rd×d.
(5) Users download the decomposed matrices and recover
them using Pi and Q. After recovering, each user will have
the complete Σ and V ⊤, but only part of U , denoted by Ui,
that corresponds to their local data.

Leverage Score Sampling Leverage score sampling (Ma-
honey, 2011; Woodruff et al., 2014) samples rows in a matrix
with probability proportional to their leverage scores:
Definition 3.1 (Statistical Leverage Score). The leverage
score τ i(X) of the ith row xi of a matrix X ∈ Rn×d is
equal to:

τ i(X) = xT
i

(
XTX

)−1
xi (1)

Moreover, when X is column full-rank, τ i(X) = ∥e⊤i U∥2,
where the columns of U is an orthogonal basis of the column
space of X .

Importance Sampling Matrix Importance sampling ad-
justs the weights of sampled data points to preserve the
underlying distribution.
Definition 3.2 (Importance Sampling Matrix). Let
{p1, . . . , pn} ∈ (0, 1]n be a given set of probabilities with∑

i pi = 1. A matrix S is an ns × n importance sampling
matrix if each of its rows is chosen to equal 1√

ns·pi
· ei with

probability proportional to pi. ns is the sampling size.

4. The Proposed FALE Method
4.1. Global Data Selection

To perform global data selection in FL, we need to gathering
necessary information of all clients’ data, while preserving
privacy. Fortunately, a recent technique called FedSVD
(Chai et al., 2022) provides a secure and efficient way to
achieve this goal. As introduced in Sec. 3, it calculates the
SVD results for all clients’ data, which provides abundant
information for data selection. Therefore, our proposed
FALE method first invokes FedSVD as a subroutine. No-
tably, the clients are only required to recover the left singular
matrix to reduce the communication cost. After this process,
each client will have Ui. Next, each client calculates the
leverage scores of their local data τi = [τ1i , . . . , τ

ni
i ], where

τ ji = ∥e⊤j Ui∥2. The clients then send the leverage scores to
the FL server for aggregation.

On the server side, it concatenates the leverage scores to
obtain τ = [τ1, . . . , τk], and calculates the sampling prob-
ability p = [p1, . . . , pn], where pi = τ i/∥τ∥1. Given the
query budget nq, the server performs i.i.d. sampling of in-
tegers from the set [1, . . . , n] with probability p. Note that
duplicates may appear during sampling, they only affect
the training weights and do not reduce the query budget.
The server continues sampling until nq distinct data points
have been selected, and we denote the total number of sam-
ples drawn as ns. Denote by Q = {q1, . . . , qns

} the set of
sampled integer indices. Construct an importance sampling
matrix S ∈ Rns×n, where each row i is equal to 1√

nspqi
·eqi

with probability pi, for i = 1, . . . , ns. After sampling, the
server sends the selected indices to the respective clients,
which label these data points locally.
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4.2. Global Model Learning

One simple way to learn the global model is to perform
a global aggregation of the local models from all clients,
e.g., using FedAvg (McMahan et al., 2017). However, this
method can be suboptimal due to the non-i.i.d. data distri-
bution among clients. Inspired by Chai et al. (2022), we
propose to learn a global model directly on the server using
the masked feature matrix and label vector of the queried
data points.

Specifically, denote by XL
i ∈ Rnl

i×d and yL
i ∈ Rnl

i as the
feature matrix and label vector of the labeled data in client
i, where nl

i is the number of labeled data points. Clients
mask their feature matrix by PiX

L
i Q and the label vector

by Piyi, where Q ∈ Rd×d is the orthogonal matrix gen-
erated in FedSVD, Pi ∈ Rnl

i×nl
i is an arbitrary random

orthogonal matrix generated by client i locally. The masked
feature matrix and label vector are then sent to the server
for aggregation. According to Chai et al. (2022), such a
masking operation can preserve the privacy of individual
data, as given a masked feature matrix X ′ = [PXQ], there
are infinitely many possible X̄ can be masked into X ′.

The server performs secure aggregation, as Step 3
in FedSVD, to obtain the complete masked feature
matrix [PXLQ] and the label vector PyL, where
XL = [XL

1 , . . . , X
L
k ] and yL = [yL

1 , . . . ,y
L
k ], P =

diag(P1, . . . , Pk). The importance sampling matrix S is
then transformed to a reweighting matrix such that the non-
zero element in each row is moved to the diagonal, denoted
by S′ ∈ Rns×ns . The server solves the following optimiza-
tion problem to learn the global model:

min
θ
∥[PS′XLQ]θ − PS′yL∥22, (2)

or equivalently,

min
θ
∥[PSXQ]θ − PSy∥22. (3)

Once the server computes a solution θ̂g to the optimization
problem (2), it sends θ̂g to all clients. Each client then
recovers the prediction model by computing θg = Q⊤θ̂g .

Our proposed global model learning method offers several
benefits. First, it preserves the privacy of raw data and the
prediction model, as the global model learned on the server
needs to be recovered on the client side. Second, solving
the optimization problem with masked data is equivalent to
the original regression problem, thereby fully utilizing the
available supervisory information.

Overall, our proposed FALE is summarized in Algorithm 1.

Algorithm 1 The FALE Algorithm
Input: query budget nq , feature matrices Xi, i = 1, . . . , k.
Output: prediction model θg

1: Initialization: ns ← 0, s ← [ ], Qi ← ∅, for i =
1, . . . , k.
Global Data Selection:

2: Perform FedSVD and each client obtains Ui, the left
singular matrix that corresponds to their local data

3: Each client i calculates τ j
i = ∥e⊤j Ui∥2 and sends to the

server
4: Server aggregates the leverage scores τ = [τ1, . . . , τk]

and calculates sampling probabilities p, where pj =
τ j/∥τ∥1

5: while Fewer than nq distinct elements sampled do
6: q ← sample a number from {1, . . . , len(τ )} with

replacement with probability p
7: ns ← ns + 1
8: s← append(1/

√
pq)

9: i← q belongs to which client
10: append q to Qi

11: end while
12: sj ← sj/

√
nsfor j = 1, . . . , ns

13: Server sends Q1, . . . ,Qk to corresponding clients
Global Model Learning:

14: Each client i locally labels the selected data points in
Qi. {Note that repeated entries in Qi will not use extra
querying budget}

15: Clients mask XL
i and yL

i by PiX
L
i Q and Piy

L
i and

send to the server
16: S′ ← diag(s)

17: Server aggregates masked data and solves θ̂g =
argmin

θ
∥[PS′XLQ]θ − PS′yL∥22

18: Server sends θ̂g to clients
19: Clients recover the prediction model θg = Q⊤θ̂g

20: Return: θg

4.3. Analysis

4.3.1. PRIVACY ANALYSIS

The server cannot reveal the original matrix and predic-
tion model: The privacy of the raw data is guaranteed by
the FedSVD algorithm, as the masked feature matrix X ′

can be mapped to infinitely many raw feature matrices X̄ .
In the selection phase, the server only has information of
the ℓ2 norm of the left singular value matrix of local client
data. After obtaining the selection probability, the server
distributes the index of selected data to each client for la-
beling, it cannot recover the raw data. The privacy of the
prediction model is also guaranteed with a similar argument,
as the global model learned on the server is encrypted by
a secret random orthogonal matrix Q. According to the
Theorem 5 in (Zhang et al., 2019), the masked vector is
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computationally indistinguishable from a random vector.

The users cannot know the data owned by the others:
In our proposedFALE method, each client holds local data
and Ui, Pi that correspond to their data. Although all clients
share the same matrix Q, knowing Q, Ui, Pi is insufficient
to reconstruct any other client’s local data, as discussed
in Chai et al. (2022). During the model learning phase,
the global model trained on selected instances may reflect
a coarse distribution of the global dataset, but it does not
directly reveal the underlying data.

4.3.2. COMMUNICATION COST ANALYSIS

The overall communication cost of FALE includes four main
components: (1) performing FedSVD, (2) transmitting lever-
age scores and the indices of selected data, (3) uploading
masked feature matrices and label vectors, and (4) sharing
the global model.

FedSVD is highly efficient and scalable to billion-scale
datasets. For a detailed analysis of its communication over-
head, we refer to the work (Chai et al., 2022). The trans-
mission of leverage scores and selected data indices incurs
relatively low costs, with complexities of O(n) and O(ns),
respectively. Since the masked feature matrices retain the
same dimensionality as the raw data, their transmission does
not introduce significant additional overhead. Furthermore,
the communication cost associated with global model trans-
mission remains consistent with standard FL frameworks.

A key advantage of FALE is its single-pass selection ap-
proach, where communication is performed only once. This
makes it a communication-efficient solution.

4.3.3. THEORETICAL ANALYSIS

We analyze the query complexity of FALE as follows.

Theorem 4.1. Considering federated learning with non-
i.i.d. data. Let k be the number of clients, ϵ ∈ (0, 1] be an
error parameter, Xi ∈ Rni×d be the corresponding data ma-
trices and yi ∈ Rni be the initially unknown target vector.
Denote by X = [X⊤

1 , . . . , X⊤
k ]⊤ and y = [y⊤

1 , . . . ,y
⊤
k ],

θ∗ = argminθ ∥Xθ − y∥22. Algorithm 1 computes the
global leverage scores for the data in each client. Moreover,
if Algorithm 1 queries O(d log d) data points and outputs
the model θg , it holds with probability at least 0.99 that

∥Xθg − y∥22 ≤ α∥Xθ∗ − y∥22, (4)

with constant α. In addition, if it queries Ω(d log d+ d/ϵ)
data points and outputs θg , it holds with probability at least
1/3 that

∥Xθg − y∥22 ≤ (1 + ϵ)∥Xθ∗ − y∥22. (5)

Remark: Our proposed algorithm selects unlabeled data
proportional to their leverage scores and re-weights them in
global training phase. Using the properties of leverage score
sampling, this approach provides a subspace embedding
(Woodruff et al., 2014) of X , which is a key component in
proving our theorem. The detailed proof is provided in the
appendix A.

Our theoretical results establish that the query complexity
of our method in the FAL setting matches with the leverage
score sampling of the centralized setting (Mahoney, 2011;
Derezinski et al., 2018). By securely computing the lever-
age scores across different clients in the FL framework, we
establish that leverage score sampling can be effectively
applied to a privacy-preserving decentralized learning envi-
ronment without any degradation in performance.

5. Experiments
5.1. Experimental Setup

We employ 9 UCI (Dua & Graff, 2017) and OpenML (Bischl
et al., 2021) regression benchmarks in our experiments. The
information of is summarized in Table 1. For each dataset,
we uniformly sample 20% of the instances for testing, while
the remaining instances are distributed across k = 10 clients
in a non-i.i.d. manner, with each client receiving a different
number of instances. To simulate the non-i.i.d. setting in
regression task, we perform binning on the regression target
vector, with the number of bins equal to the number of
clients. We then adopt the Dirichlet distribution strategy
(Yurochkin et al., 2019) with a Dirichlet alpha of 5 to assign
instances to clients using the bins as a class label. Note that
some clients may not have instances from certain bins. We
believe this is a common scenario in real-world applications.
Since most existing FAL methods require an initial labeled
set, we randomly select 1% of the instances from each client
to form the initial labeled set. FALE does not require any
initial labeled data, although it can accommodate an initial
labeled set if available. At each iteration, we allocate a
query budget of 5 instances per client, resulting in a total
of 50 instances queried per round. Our method performs

Table 1. The summary of datasets.

Dataset (Reference) # Ins. # Fea.
ct (Graf et al., 2011) 53500 379

kegg undir (Shannon et al., 2003) 64608 27
online video (Deneke et al., 2014) 68784 26
wec sydney (Neshat et al., 2018) 72000 48

sarcos (Vijayakumar & Schaal, 2000) 44484 21
diamonds (OpenML ID: 42225) 53940 29

stock (OpenML ID: 1200) 59049 9
protein (OpenML ID: 42903) 45730 9

mlr knn rng (OpenML ID: 42454) 111753 132
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Figure 2. The learning curves of the compared methods. The error bars represent the standard deviation of the performances over 10 runs.

global data selection within this same budget. The data
splitting process is repeated 10 times, and the performance
comparison results are averaged over these runs.

For comparison, we include the state-of-the-art FAL method
LOGO (Kim et al., 2023) in our experiments. Although
LOGO is originally designed for classification tasks, Kim
et al. (2023) suggests that its uncertainty scoring function
can be replaced with alternative informativeness scoring
functions. Based on this, we extend LOGO to the regression
setting by replacing its entropy-based selection mechanism
with the regression-specific uncertainty metric BAIT (Ash
et al., 2021). Other existing FAL methods are primarily
designed for classification tasks, and adapting them to re-
gression problems remains a non-trivial challenge. In addi-
tion, we compare our approach with state-of-the-art active
regression methods that operate locally within each client.
Specifically, the following methods are included:

• Random: Uniformly select unlabeled data points for
querying.

• BAIT (Ash et al., 2021): Select informative data points
by optimizing a bound on the maximum likelihood esti-
mator error in terms of the Fisher information.

• ACS-FW (Pinsler et al., 2019): Select a batch of repre-
sentative data by optimizing a sparse subset approxima-
tion to the log posterior induced by the full dataset.

• CoreSet (Sener & Savarese, 2018): Select a batch of
representative data points that minimizes the maximum
distance to the remaining data.

• LCMD (Holzmüller et al., 2023) (Largest Cluster Max-
imum Distance): Select a batch of representative data
points based on clustering.

• BADGE (Ash et al., 2020): Select a batch of informa-
tive and diverse data points based on clustering and the
gradient magnitude of the model parameters.
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Table 2. Significance testing results (Win/Tie/Loss counts) based on paired t-test with 0.05 significance level of FALE (Algorithm 1,
the upper table) and FALE-local (Algorithm 2, the lower table) versus the rest methods. The comparison is conducted on the model
performances when 10%, 20%, . . . , 100% of the query budget are consumed over 10 runs of experiments.

Datasets FALE versus
FALE-local Random BAIT ACS-FW CoreSet BADGE LCMD LOGO Total

ct 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0
diamonds 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0

kegg undir. 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0
mlr knn. 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0

online video 2/8/0 10/0/0 10/0/0 10/0/0 2/8/0 2/8/0 2/8/0 10/0/0 48/32/0
protein 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0
sarcos 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 80/0/0
stock 6/2/2 10/0/0 10/0/0 10/0/0 10/0/0 7/1/2 5/5/0 10/0/0 68/8/4
wecs 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 79/1/0
Total 77/11/2 90/0/0 90/0/0 90/0/0 82/8/0 79/9/2 77/13/0 90/0/0 675/41/4

Datasets FALE-local versus
FALE Random BAIT ACS-FW CoreSet BADGE LCMD LOGO Total

ct 0/0/10 10/0/0 10/0/0 10/0/0 10/0/0 0/10/0 1/9/0 10/0/0 51/19/10
diamonds 0/0/10 10/0/0 10/0/0 10/0/0 4/6/0 1/1/8 2/8/0 10/0/0 47/15/18

kegg undir. 0/0/10 9/1/0 8/2/0 9/1/0 6/4/0 0/3/7 0/5/5 6/4/0 38/20/22
mlr knn. 0/0/10 10/0/0 10/0/0 10/0/0 7/3/0 6/3/1 5/4/1 10/0/0 58/10/12

online video 0/8/2 10/0/0 10/0/0 10/0/0 7/3/0 3/5/2 4/5/1 10/0/0 54/21/5
protein 0/0/10 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0 10/0/0 69/1/10
sarcos 0/0/10 10/0/0 10/0/0 10/0/0 1/9/0 0/9/1 0/8/2 10/0/0 41/26/13
stock 2/2/6 10/0/0 10/0/0 10/0/0 10/0/0 2/8/0 1/9/0 10/0/0 55/19/6
wecs 0/1/9 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 70/1/9
Total 2/11/77 89/1/0 88/2/0 89/1/0 65/25/0 31/40/19 33/48/9 86/4/0 483/132/105

• LOGO (Kim et al., 2023): An FAL method that select
informative and diverse data points locally.

• FALE: The method proposed in this paper, which per-
forms global data selection and global model learning.

• FALE-local: A degenerated version of FALE that per-
forms global data selection but trains the model locally.
The algorithm is summarized in the appendix A.2.

Note that some of the active query strategies are originally
designed for classification tasks. For these, we adopt the
adaptation methods proposed by (Holzmüller et al., 2023)
to extend them to regression tasks. For all the other com-
pared methods, the global model is trained using FedAvg
(McMahan et al., 2017).

We implement the regression model using PyTorch, consist-
ing of a single layer to accommodate methods that require
gradient information, as well as the existing FL framework.
The model is trained by optimizing the mean squared error
(MSE) with the Adam optimizer, using a learning rate of
0.01 for 25 epochs. For local active regression methods,
we utilize the implementation provided by Holzmüller et al.
(2023). The implementation of LOGO (Kim et al., 2023) is
sourced from the authors. The FL framework is built upon
the FedLab (Dun Zeng & Xu, 2021) toolbox.

5.2. Results

We plot the mean learning curves over 10 runs for the com-
pared methods in Fig. 2. The mean and standard deviation
of MSE on the test set are reported. Although we also
include the learning curve of our proposed FALE method
for comparison, it is important to note that FALE performs
one-pass querying, meaning that each batch selection is
independently determined and does not accumulate commu-
nication overheads.

As shown in Fig. 2, FALE consistently outperforms baseline
methods across all benchmarks, demonstrating the effec-
tiveness of the proposed global data selection and global
model training schemes in non-i.i.d. setting. FALE-local of-
ten achieves the second-best performance or is comparable
to the second-best method, demonstrating that our global
selection strategy effectively identifies the most informative
data points in each client. This allows the global model,
even when aggregated using FedAvg, to maintain strong
performance. The learning curves of some baselines, such
as LOGO and ACS-FW, exhibit an increase in test error as
more data is queried on some datasets. This phenomenon
aligns with our expectations. Because there are discrep-
ancies between the data distribution of individual clients
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Figure 3. The performance comparison results of the compared methods in the image regression datasets. The proposed methods conduct
one-pass selection with query budget of 7500 and 15000.

and the latent distribution of the entire dataset. In such a
challenging setting, selecting data locally based on repre-
sentativeness may mislead global model learning. Among
the baselines, LCMD and BADGE generally perform well,
indicating that clustering-based data selection is effective
in non-i.i.d. setting. This finding may serve as an inspira-
tion for future research in this domain. The performance of
Random and CoreSet varies across datasets, suggesting that
there remains significant room for improvement through the
development of more effective AL algorithms.

Table 2 presents the significance testing results based on
a paired t-test with a 0.05 significance level, conducted
over 10 runs, comparing FALE and FALE-local with the
other methods. The counts of Win/Tie/Loss are calculated
based on the model performances as the query budget is
consumed in increments of 10%, 20%, . . . , 100%, with 10
comparisons for each case.

The results show that FALE consistently outperforms the
other baselines and rarely loses, demonstrating the effective-
ness of the proposed framework. Additionally, FALE-local
outperforms other local selection methods in most cases. No-
tably, 77 out of the total 105 losses are attributed to FALE.
These findings indicate that our global selection method can
effectively identify the most informative unlabeled instances
in non-i.i.d. distributed data within the FL setting.

5.3. Study on Image Regression Dataset

We further employ 2 large scale image regression datasets
to validate the effectiveness of the proposed method.

• CelebA is a facial image dataset containing 162.7K
training instances and 19.9K testing instances. Follow-
ing Lyu et al. (2025), we use the abscissa of the right
side of the mouth as the regression target.

• IMDB-WIKI (Rothe et al., 2018) is a facial image
dataset with age annotations. We adopt the dataset
settings from Yang et al. (2021), which include 191.5K

images for training and 11K images for testing.

For each dataset, 5% of each client’s data is uniformly sam-
pled to form the initial labeled set. We employ a pre-trained
ResNet-50 to extract a 2048-dimensional feature vector for
each image. All other empirical settings remain consistent
with those described in the previous section.

The comparison results are presented in Fig. 3. Notably,
FALE and FALE-local perform one-pass querying, with
query budgets of 7,500 and 15,000, respectively. The results
indicate that FALE significantly outperforms iterative selec-
tion methods, while FALE-local achieves performance com-
parable to the second-best method. These findings demon-
strate the effectiveness and cost-efficiency in terms of both
label and communication of the proposed FALE method in
high-dimensional image data scenarios.

6. Conclusion
This paper presents a novel FAL method, FALE, which
queries the most informative unlabeled data globally in a
FL setting. FALE leverages FedSVD to extract cross-client
query information, enabling global data selection and min-
imizing redundant supervision across clients. Building on
this, we employ a leverage score sampling strategy for data
selection and re-weighting. To fully exploit the queried
data points, we further design a model training scheme
that securely learns the global regression model using the
masked labeled data points on the server. Theoretical analy-
sis demonstrates that FALE requires O(d log d) queries to
achieve a constant factor approximation and Ω(d log d+d/ϵ)
queries to achieve a relative error approximation with high
probability. Extensive experiments on 11 regression bench-
marks validate the effectiveness of the proposed method.
The experimental results, compared with state-of-the-art
FAL methods, show that FALE significantly reduces the
number of queries to learn an effective global model on
non-i.i.d. client data.
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A. Appendix
A.1. Proof of Theorem 4.1

We begin by introducing the definition of subspace embedding.

Definition A.1 (ℓ2 Subspace Embedding). Let ϵ ∈ (0, 1) be the distortion parameter. A matrix S ∈ Rns×n is said to be
an ℓ2 ϵ-subspace-embedding matrix for X ∈ Rn×d if it holds simultaneously for all vectors θ ∈ Rd that (1− ϵ)∥Xθ∥2 ≤
∥SXθ∥2 ≤ (1 + ϵ)∥Xθ∥2.

Recall that Algorithm 1 invokes FedSVD as a subroutine to securely calculate the left singular matrix of the data in each
client. The clients then upload the ℓ2 norm of each row of the left singular matrix to the server. According to Definition 3.1,
the server has the leverage scores τ of the entire dataset X .

The server samples the data according to the leverage scores p = [p1, . . . , pn], where pi = τ i/∥τ∥1. Then, it calculates a
re-weighting matrix S where each row i is equal to 1√

nspqi
·eqi , for i = 1, . . . , ns. It is easy to verify that S is an importance

sampling matrix according to Definition 3.2.

Now we introduce the following lemma.

Lemma A.2 (Constant-factor Subspace Embedding, (Cohen et al., 2015, Theorem 7.1)). Given X ∈ Rn×d. Suppose that
ti ≥ βτ i for all i ∈ [n], where β ≳p log d

δ is a sampling parameter. Let ns =
∑n

i=1 ti. If S ∈ Rns×n is a reweighted
sampling matrix with sampling probability pi =

ti
ns

for all i, then S is an ℓ2
1
2 -subspace-embedding matrix for X with

probability at least 1− δ.

Since ∥τ∥1 ≤ d, let ns = O(d log d), by applying Lemma A.2, we have that S has constant-factor subspace embedding
property of X with probability at least 1− δ.

Nota that the output of Algorithm 1 θg is exactly θ̄ = argminθ ∥SXθ − Sy∥22. To see this, note that θg = Q⊤θ̂g and P is
an orthogonal matrix which does not change the problem, i.e.,

min
θ
∥PSXQθ − PSy∥22 = min

θ
∥SXQθ − Sy∥22 = min

θ̄
∥SXθ̄ − Sy∥22. (6)

Next, we show that θg is a constant factor approximation to the minimizer of minθ ∥Xθ − y∥2.

Lemma A.3 (Constant factor approximation, (Musco et al., 2022, Theorem 3.2)). For X ∈ Rn×d, y ∈ Rn. For any
δ ∈ (0, 1], if θ̄ = argminθ ∥SXθ − Sy∥22, such that

∥SXθ̄ − Sy∥2 ≤ (1 + γ)min
θ
∥SXθ − Sy∥2, (7)

where S ∈ Rns×n is an ℓ2
1
2 -subspace-embedding matrix of X . Then, with probability at least 1− δ,

∥Xθ̄ − y∥2 ≤ 64(3 + γ)/δ1/2 min
θ
∥Xθ − y∥2 . (8)

By letting δ = 1/100 and γ = 0, then ∥Xθ̄ − y∥2 ≤ α ·min ∥Xθ − y∥2 for constant α.

To achieve relative error approximation, we introduce the following lemma.

Lemma A.4 (Relative error approximation, (Sarlós, 2006, Theorem 12 and Claim 13) ). Given matrix X ∈ Rn×d. For all

1 ≤ i ≤ n set pi =
∥e⊤

i U∥2
2

∥U∥2
F

, where the columns in U are orthonormal basis of the column space of X . Let S ∈ Rns×n be a

row-sampling matrix such that Pr
(
S(j) =

ei√
nspi

)
= pi for all 1 ≤ j ≤ ns. For any 0 < ϵ ≤ 1, if ns = Ω(d log d+ d/ϵ),

it holds with probability at least 1/3 that

∥Xθ̄ − y∥22 ≤ (1 + ϵ)∥Xθ∗ − y∥22, (9)

where θ∗ = argminθ ∥Xθ − y∥22, and θ̄ = argminθ ∥SXθ − Sy∥22.
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Let the sampling size ns be Ω (d log d+ d/ϵ). By applying Lemma A.4, we have

∥Xθ̄ − y∥22 ≤ (1 + ϵ)∥Xθ∗ − y∥22, (10)

holds with probability at least 1/3, which completes the proof.

A.2. Algorithm of FALE-local

We summarize the main steps of FALE-local method as follow

Algorithm 2 FALE-local Algorithm
Input: query budget nq , feature matrices Xi, i = 1, . . . , k.
Output: prediction model θ

1: Initialization: Qi ← ∅, for i=1,. . . ,k.
2: Perform FedSVD and each client obtains Ui, the left singular matrix that corresponds to their local data
3: Each client i calculates τ j

i = ∥e⊤j Ui∥2 and sends to the server
4: Server aggregates the leverage scores τ = [τ1, . . . , τk] and calculates sampling probabilities p, where pj = τ j/∥τ∥1
5: while Fewer than nq distinct elements sampled do
6: q ← sample a number from {1, . . . , len(τ )} with replacement with probability p
7: i← q belongs to which client
8: append q to Qi

9: end while
10: Server sends Q1, . . . ,Qk to corresponding clients
11: Clients receive the queried indexes of data and label them locally
12: Clients train a regression model locally based on their labeled data and upload the model parameters to the server
13: Server aggregates local models using FedAvg to obtain the global model θ
14: Return: θ
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