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ABSTRACT

We provide a unified algorithmic framework for ensemble sampling in nonlinear
contextual bandits and develop corresponding regret bounds for two most com-
mon nonlinear contextual bandit settings: Generalized Linear Ensemble Sam-
pling (GLM-ES) for generalized linear bandits and Neural Ensemble Sampling
(Neural-ES) for neural contextual bandits. Both methods maintain multiple es-
timators for the reward model parameters via maximum likelihood estimation on
randomly perturbed data. We prove high-probability frequentist regret bounds of

O(d*?\T + d°/?) for GLM-ES and O(dVT) for Neural-ES, where d is the

dimension of feature vectors, d is the effective dimension of a neural tangent ker-
nel matrix and 7' is the number of rounds. These regret bounds match the state-
of-the-art results of randomized exploration algorithms in nonlinear contextual
bandit settings. In the theoretical analysis, we introduce techniques that address
challenges specific to nonlinear models. Practically, we remove fixed-time hori-
zon assumptions by developing anytime versions of our algorithms, suitable when
T is unknown. Finally, we empirically evaluate GLM-ES, Neural-ES and their
anytime variants, demonstrating strong performance. Overall, our results establish
ensemble sampling as a provable and practical randomized exploration approach
for nonlinear contextual bandits.

1 INTRODUCTION

The contextual bandit is an online learning problem where an agent interacts with an environment by
pulling arms, each associated with a feature vector. After each pull, the agent receives a stochastic
reward whose expected value depends on the chosen arm’s feature vector. The agent’s goal is to
maximize the accumulated reward. Contextual bandits provide a natural abstraction for real-world
sequential decision-making problems such as content recommendation (Zhu & Van Royl [2023)) and
clinical trials (Varatharajah & Berry,|2022). To maximize rewards, the agent must learn the mapping
from an arm’s feature vector to its expected reward. Most prior work has focused on the linear con-
textual bandit setting (Abbasi-yadkori et al., [2011; |Abeille & Lazaric, |2017; [Kveton et al., 2020b),
where the expected reward is assumed to be a linear function of the feature vector. While this as-
sumption facilitates theoretical analysis and efficient implementations, it fails to capture complex
relationships between features and rewards. This has motivated the study of nonlinear contextual
bandits, where the expected reward is modeled as a nonlinear function of the arm’s features, e.g.,
through generalized linear models (GLMs) or neural networks. In the GLM setting (Filippi et al.,
2010; Kveton et al.l [2020b), the reward is generated by applying a nonlinear function u(-) to the
inner product of the feature vector and an unknown parameter vector, a setting referred to as gener-
alized linear bandits. In more general cases where the reward cannot be expressed within the GLM
structure, neural contextual bandits approximate the reward function with deep neural networks,
without assuming any particular functional form (Jacot et al., 2018}; Zhou et al., [2020; |[Zhang et al.,
20215 Xu et al., |2022a; Jia et al.} 2022). These nonlinear approaches have substantially improved the
empirical performance of linear bandit algorithms, especially in complex environments (Xu et al.,
2022bj; Jia et al., [2022).

While nonlinear models enhance expressivity, they also complicate the design of effective explo-
ration strategies. Existing exploration methods such as Upper Confidence Bound (UCB) (Abbasi-
Yadkori et al., |2011) and Thompson Sampling (TS) (Agrawal & Goyal, |2013)) heavily depend on
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reward structure and distributional assumptions. Extending them to nonlinear settings requires sig-
nificant approximations (Zhou et al., [2020; |[Zhang et al., [2021} [Xu et al., [2022ab), often making
the methods impractical in real-world applications. This motivates the search for exploration strate-
gies that combine strong empirical performance with theoretical guarantees in nonlinear bandits.
Ensemble sampling (Lu & Van Roy, [2017) has emerged as a promising class of algorithms for on-
line decision-making problems, including bandits (Lee & Ohl |2024), deep reinforcement learning
(Osband et al., 2016), and recommendation systems (Zhu & Van Roy}, [2023). Ensemble sampling
maintains an ensemble of m models, each trained on randomly perturbed historical data consisting
of arm features and rewards. At each round, one model is sampled to estimate expected rewards, and
the arm with the highest estimate is selected. After receiving the reward, the new data point—with
random perturbation—is added to the dataset, and all models are updated.

In recent years, ensemble sampling has gained popularity due to its strong empirical performance
and moderate computational cost. However, theoretical understanding has lagged behind. Existing
analyses provide regret guarantees only in the linear contextual bandit setting. For example, |[Lee

& Oh| (2024) proved a high-probability T-round regret bound of (5(d3/ 2/T) with ensemble size
m = Q(K log T'), where d is the feature dimension and K is the number of arms. More recently,

Janz et al.| (2024a) established a regret bound of 10) (d5/ 2\/?) for infinitely many arms with ensemble
size O(dlogT). While these theoretical works provide valuable insights, they are far from fully
elucidating the empirical success of ensemble sampling in complex decision-making applications,
where reward models are typically nonlinear in the arm features.

In this work, we extend ensemble sampling to nonlinear bandit settings with finitely many arms.
Specifically, we study the two most widely used models: generalized linear bandits and neural con-
textual bandits. We show that ensemble sampling in these settings achieves high-probability regret
bounds matching the state-of-the-art for randomized exploration algorithms, with ensemble size log-
arithmic in 7'. In addition, we develop anytime versions of ensemble sampling using the doubling
trick, addressing the limitation that ensemble size and other hyperparameters traditionally depend
on the horizon 7. These anytime variants significantly broaden the applicability of ensemble sam-
pling. Finally, we complement our theoretical results with experiments on Lin-ES, GLM-ES, and
Neural-ES against baselines. Our experiments highlight the practicality of ensemble sampling in
nonlinear bandits, balancing strong performance with computational efficiency.

Our contributions are summarized as follows.

* We propose a general framework for ensemble sampling in bandit problems and introduce
GLM-ES and Neural-ES as its realizations in nonlinear settings.

* We provide theoretical analyses of GLM-ES and Neural-ES, proving regret bounds of
O(d*?\/T 4 d°/?) and O(dV/T), respectively, both matching the state-of-the-art for random-
ized exploration algorithms. To the best of our knowledge, these are the first high-probability
regret bounds for ensemble sampling in nonlinear bandit settings.

* For generalized linear bandits, we optimize the warm-up procedure in existing literature, reducing
regret from d” to d°/2. This improvement also applies to perturbed-history type of exploration
strategies. We further remove the need for adaptive reward perturbations, simplifying the design
and improving the efficiency of our algorithm.

* We develop anytime versions of ensemble sampling using the doubling trick and show that their
asymptotic cumulative regret guarantees are preserved.

* We conduct empirical evaluations comparing cumulative regret and computational cost with base-
lines, demonstrating the practicality of ensemble sampling.

2 RELATED WORK

Randomized Exploration Randomized exploration strategies add controlled randomness to pro-
mote exploration of actions with high uncertainty. In sequential decision making problems, ran-
domized exploration strategies often outperforms deterministic strategies such as Upper Confidence
Bound (UCB) (Chu et al.l 2011} Lattimore & Szepesvari, 2020) by preventing early convergence
to suboptimal actions (Jin et al 2021 2023). Among such methods, Thompson Sampling (TS)
(Thompson, |1933)) is a key approach for multi-armed bandits (Agrawal & Goyal,[2017)), contextual
bandits (Agrawal & Goyall 2013), and RL (Osband et al., |2013). TS maintains a posterior over
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model parameters, updated each round from a prior (e.g., Gaussian) and observed rewards (Agrawal
& Goyall [2013), and samples a parameter from this posterior for arm selection. Despite its sim-
plicity, many TS variants rely on exact posteriors or accurate Laplace approximations, which can be
costly. To address this, approximate sampling methods such as Langevin Monte Carlo (LMC) (Xu
et al.,|2022b; Hsu et al.| [2024)), Stochastic gradient Langevin dynamics (SGLD) variants (Mazumdar,
et al., [2020; |Zheng et al., 2024) and variational inference (Clavier et al., |2024)) have been devel-
oped and applied to various problem settings, including multi-armed bandits with non-conjugate or
highly nonlinear rewards, nonlinear contextual bandits and RL (Ishfaq et al., 2024aib; |[Hsu et al.,
2024). Another important method is perturb-history exploration (PHE) method, which involves in-
troducing random perturbations in the historical data to approximate posterior sampling, making it
applicable to complex reward distributions (Kveton et al.l 2020bj [Ishfaq et al.l 2021). Ensemble
sampling maintains a small set of independently perturbed model replicas and selects arms using
a randomly chosen replica (Lu & Van Roy, 2017). Follow-up work provided theory for the linear
contextual bandit setting. |Qin et al.| (2022)) gave the first regret bound. Janz et al.| (2024al) tightened
guarantees with an ensemble of size O(d log T') for linear bandits with infinitely many arms. LinES

(Lee & Ohl|2024) further improved the regret to 5(d3/ zx/T ) and clarified its connection to LinPHE.

Generalized Linear Bandits Generalized linear contextual bandits model rewards via a link func-
tion of a linear predictor, extending linear bandits to a more general setting. Early work introduced
GLM-UCB and proved regret guarantees under standard regularity conditions (Filippi et al., [2010).
Subsequent advances focused on optimality and efficiency. |Li et al.| (2017 gave provably optimal
algorithms with refined confidence sets. |Ding et al.| (2021) combined online stochastic gradient up-
dates with Thompson Sampling for scalable inference. Kveton et al.|(2020b) developed randomized
exploration for GLMs with sharper analyses. Perturbation-based methods provide practical alter-
natives: linearly perturbed loss minimization yields simple, sampling-free exploration with strong
guarantees (Janz et al.| 2024b)), and PHE adapts perturb-history exploration to sub-Gaussian GLMs
(Liu, 2023). [Sawarni et al.| (2024) analyze GLMs under limited adaptivity (batched policies) with
communication and deployment constraints. Anytime-valid confidence sequences for GLMs enable
principled UCB/TS decisions and valid sequential inference (Lee et al.l 2024). At large horizons,
One-pass update methods achieve near-optimal regret with single-pass, low-memory updates (Zhang
et al.l [2025)).

Neural Bandits Neural bandits combine deep neural networks (DNNs) with contextual bandit
algorithms. This setting leverages the representation power of DNNs and insights from neural tan-
gent kernel (NTK) theory (Jacot et al., 2018). NeuralUCB (Zhou et al.l 2020) builds confidence
sets using DNN-derived random features to enable UCB-style exploration. NeuralTS (Zhang et al.,
2021) extends Thompson Sampling to this setting by using a neural estimator to approximate the
posterior over rewards. NeuralLCB (Nguyen-Tang et al., 2022) studies offline neural bandits and
uses a neural lower confidence bound to take pessimistic decisions under uncertainty. To reduce the
compute burden of explicit exploration, NPR (Jia et al.|[2022) learns a neural bandit model with per-
turbed rewards, avoiding separate exploration updates. Subsequent work explores added networks
for exploitation (Ban et al. 2022), provable guarantees with smooth activations (Salgial [2023), and
extensions to combinatorial selection (Hwang et al., [2023; |Atalar & Joe-Wong, 2025; |Wang et al.,
2025)), where the learner selects a subset (e.g., multiple arms under constraints) each round and
receives a corresponding reward.

3 PROBLEM SETTING

Contextual bandits form a broad class of sequential decision making problems where the player
chooses an action from an observed action set based on interaction history. Each action is associated
with a feature vector (context). At round ¢, the player observes an action set X; C RY, where we
assume for any X € A, || X||]2 < 1. The agent then selects an arm (action) X; € X; and the
environment immediately reveals a reward Y;. We consider the setting that the action set is finite
with K arms and fixed across different rounds. We assume that the mean reward for a feature
X € R? is generated by an unknown function h(X) : R? — R, and the observed reward satisfies
Y = h(X) + n, where ) is observation noise and is assumed to be o-sub-gaussian. In general, the
form of h(X) is unknown. One special case is that we set reward model to be a linear function
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h(X) = X T0*, then h(X) is parameterized using a vector * € R and we have the standard linear
contextual bandit setting (Chu et al.,|2011; |Abbasi- Yadkori et al., 201 1; |Agrawal & Goyall 2013).

In this work, we consider nonlinear contextual bandits where the reward model h(X) is a nonlinear
function of feature vector X. We focus on two most common nonlinear settings: (1) generalized
linear bandits with h(X) = u(X "0, ), where 0%, € R? is the true parameter with |05, || < S
and p(-) is a strictly increasing link function (Li et all 2017; Kveton et al., [2020b); (2) neural
contextual bandits where no assumptions are made about 2 (X) other than that it is bounded, we
use a neural network f(X; Oneural) to approximate h(X ), where Oneyra is the concatenation of all
weights and its dimension is determined by the structure of the neural network (Zhou et al., 2020;
Zhang et al., 2021} Jia et al.| [2022).

The goal of a bandit algorithm is to maximize the cumulative reward over a horizon 7T, equivalently
to minimize the pseudo-regret (Lattimore & Szepesvari, [2020)

Z hXy)), 3.1

t=1

where X; € A} is the arm played at round #, and X = argmaxy y, h(X) is the arm with the
highest expected reward at that round. To minimize the cumulative regret R(T"), the agent needs to
collect information and learn the true reward model (X ) from interactions with the environment.

Notations We adopt the following standard notations throughout this paper. The set {1,2,...n}
is denoted by [n]. For any positive semi-definite matrix M, we use Apax (M) and Apin (M) > 0 to
denote maximum and minimum eigenvalues of M. The 2-norm of a symmetric matrix M is defined
W”Q = |)\max M)|. For any positive semi-definite matrices M; and My, M7 < Ms if and only
1f x' Mz < 2T Myz for all z € R®. All vectors are column vectors. For any vector z, we use the
following vector norms: ||z||2 = Va Tz, ||z||]m = VT Mx. The indicator function that event £

occurs is 1{E}. We use O for the big-O notation up to logarithmic factors.

4 ENSEMBLE SAMPLING FOR NONLINEAR CONTEXTUAL BANDITS

We apply the design principle of ensemble sampling to nonlinear contextual bandits, extending
previous works on linear ensemble sampling (L.in-ES) to broader applications. In this section, we
first present a unified algorithm framework for ensemble sampling in nonlinear contextual bandit,
then we focus on two common nonlinear cases: 1) generalized linear contextual bandits (GLM); 2)
neural contextual bandits, and respectively provide algorithms GLM-ES and Neural-ES.

4.1 UNIFIED ALGORITHM FRAMEWORK

Ensemble sampling follows the randomized exploration principle and exploration is realized through
adding perturbations to observed rewards. Therefore, the perturbed history Dy = {(X;,Y;+2;)}i_,
is utilized to estimate the true reward model 2(X) and choose the best arm, where {X;}!_, are
pulled arms, {Y;}_, are observed rewards and {Z;}!_, are perturbations.

In particular, we maintain an ensemble of perturbed models, each with different perturbed history
DJ, where j € [m] is the model index. At each round, we randomly select one model to estimate
the mean reward of each arm in the arm set, then select the arm that maximizes the estimated mean
reward. We use f;(X) to denote the estimated mean reward of arm X from the chosen model in
round ¢. After observing the reward Y; from the environment, each model in the ensemble is updated
incrementally based on history Dt 41- At each round, we only sample one perturbation Z J for each
model j € [m], the previous perturbations {Zl] }:=1 do not need to be resampled.

Remark 4.1. The design of ensemble sampling is similar to that of perturb-history exploration
(PHE)-based algorithms. In PHE-based algorithms (Kveton et al., 2020alb), we only keep one
model, but the entire perturbation sequence {Z;}_, is freshly sampled in each round. As a result,
the per-round computational cost due to sampling increases linearly in t, the algorithm becomes
impractical for large T. Ensemble sampling can significantly reduce the computational cost by
keeping previous perturbations, the per-round sampling cost remains constant for any t.
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A unified algorithmic framework is given in For the generalized linear and neural
bandit settings, we specify (i) a warm-up/initialization step (Line [2) and (ii) a parameter-estimation
loss Lyoniin (Line E]) The following sections detail these two algorithmic instantiations.

Algorithm 1 Ensemble Sampling for Nonlinear Contextual Bandits

1: Input: ensemble size m, regularization parameter A, reward-perturbation distribution Pg on R,
number of warm-up exploration rounds 7

2: Warm-up for the first 7 rounds and initialization < GLM-ES or Neural-ES

3:fort=7+1,..,Tdo

4:  Sample j; uniformly from [m]
5. Pull arm X; < argmax y v, f+(X) and receive reward Y}
6. forj=1,2,....,mdo
7: Sample Z} ~ Pgr
8: Update Dy« Dy_q U{(Xt,Y;g—f—th)}
9: 67 «+ argming Lyoniin(6; D) <4 GLM-ES or Neural-ES
10:  end for
11: end for

4.2 ENSEMBLE SAMPLING FOR GENERALIZED LINEAR MODEL (GLM-ES)

We first consider the generalized linear model (GLM) and provide the algorithm design of GLM-ES.

Generalized Linear Model with Regularization: We assume that the reward Y given feature
vector X has an exponential-family distribution with mean (X "6, \;), where y(-) is the link func-
tion and 6 ; € R? is the (true) model parameter. Specifically, at each round ¢, the observed reward
is generated by Y; = (X T6%; ) + nt, where 7, is the o-sub-Gaussian random noise. Detailed
discussions on the exponential-family assumption are included in[Appendix A] Given observed data
set Dy = {(X},Y])}_,, the A-regularized negative log-likelihood of D; under parameter 6 is

t

Lo (05 Dr) = %llf)ll2 =2 (- XT0-0(X[0).  b() =n(). @.1)
=1

Algorithm Design: In GLM-ES, we maintain an ensemble of m models (estimators), each model
is parametrized by parameter 6/, j € [m], which is an estimation of 6¢; ,, based on perturbed history.
We use the A-regularized negative log-likelihood to obtain the parameter estimation,

0] = argmingcpa Laum (603 { X0, Vi + Z7 }i_1), (4.2)

where Z lj € R are perturbations sampled from distribution Pr. In GLM-ES, we also use a warm-up
procedure that approximates a G-optimal design, that is,

= argmin max || X||?, -1, where V(¢) = ) XXT.
¢ = argmin e X ) ©=3 <

We then sample X, ..., X based on G-optimal design ¢ by following the rounding procedure
Algorithm 3|given in/Pukelsheim| (2006, Chapter 12) and detailed in Fiez et al.[(2019). The complete
warm-up procedure is provided in[Appendix B.5]

Remark 4.2. The algorithm GLM-ES is an application of ensemble sampling in GLM settings.
Compared to Lin-ES, a warm-up procedure[Algorithm 2|is required to guarantee that optimism is
satisfied with constant probability. In the generalized linear bandit literature, the number of rounds
in warm-up procedure is typically chosen by enforcing a lower bound on the minimum eigenvalue
of the empirical feature covariance matrix (Kveton et al.| [2020b; |Li et al.| 2017} |\Liu, 2023). How-
ever, most works do not specify the required order for the number of warm-up rounds — effectively
treating it as an assumption. We propose a practical warm-up scheme that directly controls the
uncertainty level (see[Lemma B.5|for details). The same procedure is also used in|Liu|(2023). Addi-
tionally, compared to the algorithm design in|Liu| (2023), we removed the requirement for adapted
perturbation on rewards and reduced requirements on the number of rounds in the warm-up proce-
dure, making the algorithm simpler and more efficient.



Under review as a conference paper at ICLR 2026

4.3 ENSEMBLE SAMPLING FOR NEURAL CONTEXTUAL BANDIT (NEURAL-ES)

We now introduce neural contextual bandit setting and introduce the algorithm Neural-ES.

Neural Contextual Bandit: In the GLM setting, we assume the mean reward is given by
(X T0*), where the link function y(-) is known to the agent. In neural contextual bandits, we
only assume that the reward model h(X) is bounded as 0 < h(-) < 1. Since we add no assumptions
to h(-) except that it is bounded, we need to use a deep neural network (DNN) to approximate the
true relation. We adopt the following fully connected neural network f(X; 6) to approximate h(X):

F(X50) = VNWLo(Wiag( - - ¢(W1 X)),
where N and L are the width and depth of the neural network, ¢(x) = ReLU(z), W, are learnable
parameter matrices, and 6 = [vec(W}),- - -, vec(Wy)] € R? is the concatenation of all learnable

parameters. The dimension of § is d’ = N + Nd+ N?(L — 1). For simplicity, we design the neural
network such that each layer has the same width L.

To learn the parameters in the neural network, we define the following A-regularized loss function:
1 ¢ 2 1
Lneurat(65 D) = 5; (X1:0) = Y2)" + SAN (|6 = 6ol 13,

where parameter 0y is randomly sampled at initialization. The parameter 6 is estimated using
(stochastic) gradient descent to minimize the loss function.

Algorithm Design:  We follow the unified algorithm framework to design
Neural-ES. We maintain m different models to approximate the true mapping h(-), each model
is a deep neural network with the same structure. We first initialize the neural network in each
model 6 = [vec(W)),- - -, vec(Wy)] € R? using random parameters sampled from Gaussian
distribution: for 1 < [ < L — 1, W; = (W, 0;0, W) with each entry sampled from N (0,4/N);
Wi, = (w',—w ") with each entry sampled from A/(0,2/N).

We then perform a simple warm-up by pulling each arm once. At each round, we uniformly ran-
domly choose one model j, from the ensemble and choose arm X; which maximizes the learned
function f(X; 07") and receive reward Y;. We use gradient descent on the A\-regularized loss function
to obtain the parameter estimation:

6] = argming par Iewral (05 { X1, Y1 + Z11E2)). (4.3)

Remark 4.3. The most relevant design is Neural Bandit with Perturbed Reward (NPR) proposed
by (Jia et al| 2022), except that our Neural-ES keeps an ensemble of models and updates the
perturbations incrementally instead of resampling the all perturbations at each round. While this
design could consume more memory, different models can be updated in parallel if we distribute the
ensemble in m different machines. Since the computational cost of updating one model is reduced
compared to NPR, our algorithm can still accelerate the overall training process in this setting.

5 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis to the proposed algorithms.

5.1 REGRET BOUND OF GLM-ES

To analyze GLM-ES, we first lay down the following assumptions commonly used in the literature
or generalized linear bandits. The assumption on the derivative of link function p(-) is standard in
the GLM setting (L1 et al., 2017; Kveton et al.,[2020b)), while the M -self-concordant assumption is
recently proposed and applies to a broad class of functions (Liu et al., [2024).

Assumption 5.1 (Link function in GLM). The link function p(-) is strictly increasing and the deriva-
tive of u(+) is bounded as follows: [1(s) > 0,Vs € R and 0 < funin < 1(8) < fimax-

Assumption 5.2 (M -Self-concordant). The link function u(-) is M -self-concordant with a constant
M > 0 known to the agent: |ji(u)| < Mp(u),Vu € R.
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Remark 5.3. We adopt the M -self-concordant assumption as a mild, notation-simplifying condi-
tion for exponential family models. In fact, for common reward distributions (Gaussian, exponential,
Poisson, and Beta), it have been shown that [Assumption 5.2) automatically holds (Liu, 2023, Table
3.1). This assumption is used to get an upper bound on H (0;Dy) in terms of Q(6,6'; D;)
[mas A1\ and[A2). This assumption has also been used inlJanz et al.| (2024b| Theorem 2).

Remark 5.4 (Removal of the regularity assumption). We use A\-regularized negative log-likelihood
in @I). This is used to remove the additional regularity assumptions in existing papers
(Li et al.| 2017; \Kveton et all [2020b|): (i) there exists a constant o9 > 0 such that
Amin (B[ > aelK] Xt,aX/4)) = 08 for all t, and (ii) arm context vectors {X; 4|la € [K]} C R?
are i.i.d. drawn. These two assumptions are usually used to guarantee V, is invertible. By deploying
the A-regularized negative log-likelihood in (&), our analysis does not require these assumptions.

We present the frequentist regret bound of GLM-ES as follows. The complete proof and expression
of the regret bound is presented in[Appendix Al

Theorem 5.5 (Regret Bound for GLM-ES). Fix 6 € (0,1]. Assume |X| = K < oo and run
GLM-ES with regularization parameter A = 1V (2dM/S)log (e\/1 + TL/dV 1/§), ensemble size
m = Q(KlogT), perturbation distribution Pr = N (0,0%), where or = ©(dlogT). Then, with
probability at least 1 — 46, the cumulative regret of GLM-ES is bounded by

R(T) = O(d3VT + d?). (5.1)

Remark 5.6. When we choose T = O(d®), the regret bound of GLM-ES becomes O(d2 v/T), which
matches the result of GLM-TSL, GLM-FPL (Kveton et al.| 2020b), EVILL (Janz et al., |2024b) and
Lin-ES (Lee & Oh,2024), achieving a state-of-the-art theoretical guarantee for randomized explo-
ration algorithms in the GLM setting. Compared with EVILL (Janz et al.| |2024b), we also improve
the number of rounds of warm-up from d° to d°/%. We also develop novel analysis techniques to
avoid the adapted perturbation requirement as in|Liu|(2023), where the distribution of perturbation
changes in each round. This makes our algorithm more efficient and easier to implement.

5.2 REGRET BOUND OF NEURAL-ES

For the regret analysis of Neural-ES, we first introduce the following notations. A detailed intro-
duction to neural tangent kernel is provided in (Jacot et al., 2018]), here we only list the important
notations for our theoretical results. We use H to denote the neural tangent kernel (NTK) matrix
defined on the context set X and h = (h(X1), ..., h(Xk)). Then, we use notation Sxeura as the

upper bound of v2hTH~1h. The effective dimension d of the neural NTK matrix is defined as
T logdet(I + TH/))
~ log(1+TK/N)

(5.2)

Now we present the frequentist regret bound of Neural-ES as follows. The complete proof and

expression of the regret bound is presented in

Theorem 5.7 (Regret Bound for Neural-ES). Fix § € (0,1]. Let d be the effective dimension of
the neural tangent kernel matrix. Assume |X| = K < oo and run Neural-ES with ensemble
size m = Q(KlogT), regularization parameter A > max{1, S lgeiral}’ perturbation distribution
Pr = N(0,0%) with o given by (C.6). Then, with probability at least 1 — &, the cumulative regret
of Neural—-ES is bounded by

R(T) = O(dVT). (5.3)

Remark 5.8. The regret bound of Neural—ES matches the order of Neural-PHE (Jia et al.|
2022), Neural-TS (Zhang et al.| 2021) and Neural-UCB (Zhou et al., |2020), achieving the
state-of-the-art theoretical guarantee in the neural bandit setting. Compared to Neural—-PHE, the
computational cost per model is considerably reduced because we do not resample all perturbations
in each round. Compared to Neural—-TS and Neural-UCB, we do not need to construct high-
probability confidence sets for exploration, which is relatively difficult to implement and typically
involves very high computational cost.
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(a) Linear Bandit. (b) Logistic Bandit. (c) Distance Bandit. (d) Quadratic Bandit.

Figure 1: Experiment results in various bandit settings.

6 EXTENSION TO ANYTIME ALGORITHMS

Ensemble sampling algorithms are inherently not anytime due to the fact that hyper-parameters such
as ensemble size m and reward perturbation distribution Pr explicitly depend on the number of
total rounds 7. In the original version of ensemble sampling algorithms, these parameters need to
be determined before starting the algorithm to obtain the desired regret bound.

In this section, we present how to use doubling trick (Besson & Kaufmann,|2018]) to extend ensemble
sampling into anytime algorithms while keeping the asymptotic behavior of regret bound. Here we
present the algorithm design and theoretical guarantee of anytime versions of ensemble sampling,

the analysis of regret bound are presented in

To apply doubling trick, we choose a sequence of time steps {7;} = {71y, T1, 1%, ...} and fully
restart the original (non-anytime) algorithm when we reach ¢ = T; + 1. Therefore, after each
reset, the algorithm runs from 7; + 1 until min {7541, 7'}, and we can initialize the T-dependent
parameters for 7; = T — T; rounds. The number of rounds follows the sequence:

{r:} ={To, L = To, Ta = T, ...}.

The doubling trick approach treats the original non-anytime algorithm as a black box, thus we can
easily extend both GLM-ES and Neural-ES into anytime algorithms using the same method.

Our main theory of anytime versions of ensemble sampling is as follows.

Theorem 6.1 (Regret Bound of Doubling Trick). Set sequence T; = |Tob®|, where T, > 100
and b = (3 4+ +/5)/2 ~ 2.6. Use R(T,6) to denote the regret bound of non-anytime algorithms
GLM-ES or Neural-ES that holds with probability at least 1 — §, and RPT (T, §) to denote its

corresponding anytime version using doubling trick. Then, by applying doubling trick for GLM-ES
and Neural-ES, with probability at least 1 — 0, the cumulative regret is bounded by

RPT(T,$) < 3.3R(T,9).

Remark 6.2. By directly applying doubling trick, we obtain the same asymptotic behavior of regret
bound. By properly setting the sequence {T;}, extending ensemble sampling to anytime algorithm
comes with the cost of only a constant factor. This constant factor is determined by the parameters
Ty and b, the choice of these parameters can considerably affect the empirical performance.

7 EXPERIMENTS

We conduct experiments to demonstrate the practicality of ensemble sampling and its anytime vari-
ants in bandit settings. We use linear bandit environment to test Lin-ES, logistic bandit to test
GLM-ES, then distance bandit and quadratic form bandit to test Neural-ES. Our result shows that
ensemble sampling can give competitive cumulative regret with reduced computational cost.

7.1 ENVIRONMENT SETUP

Linear Bandit We assess the empirical performance of Lin-ES using linear bandit environment,
where the reward is generated by Y; = X' 6* +1;. Specifically, we set the number of arms K = 50,
dimension of feature vector d = 20 and total steps T = 10*. The noise of reward are generated from
Gaussian distribution 7, ~ N'(0, 0?) with o = 0.5. In the Lin-ES algorithm, we set ensemble size
m = 25, regularization A = 1.0, and perturbation distribution N(0,0%) with or = 0.1. There is
no warm-up procedure in Lin-ES.
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Generalized Linear Bandit We assess the empirical performance of GLM-ES using logistic ban-
dit environment, where the link function is given by Y; = 1/(1 + exp(—X,  6*)) + 1. We set the
number of arms K = 50, dimension of feature vector d = 20, total steps T = 10%. The noise of
reward are generated from Gaussian distribution 7, ~ A'(0, 0%) with o = 0.5.

Neural Bandit We test Neural-ES on two nonlinear reward models: (1) distance bandit:
hi(X) = —||X — 6*||2; and (2) quadratic bandit: ho(X) = 1072(XTAATX), where A is a
d X d matrix with each entry randomly sampled from N'(0, 1). In the experiments, we set number
of arms K = 50, dimension of feature vector d = 20 and total steps 7' = 10%. The noise of reward
are generated from Gaussian distribution 7; ~ N (0, 0?) with o = 0.5.

7.2 IMPLEMENTATIONS OF ALGORITHMS

GLM-ES We implement GLM-ES assuming that the link function p(-) is known to the agent. The
parameter 6 is learned through gradient descent of the A-regularized negative likelihood. Specif-
ically, we use 100 iterations of gradient descent with step size 0.01. In the non-doubling-trick
experiment, we set ensemble size m = 10, perturbation distribution A'(0,0%) with o = 0.1,
warm-up steps 7 = 500 and regularization A = 1.0. In the experiment with doubling trick, for
number of rounds 7;, we set ensemble size m = 2 x logT;, perturbation distribution N (0, a?%) with
or = 0.02 x logT;, warm-up steps 7 = 500 and regularization A = 1.0.

Neural-ES We implement the fully connected neural network f(X;60) using L = 3 layers, the
width is set to N = 20 for each layer and we use ReLLU as the activation function. The network
structure is the same for Neural-ES, Neural-TS and Neural-UCB. We optimize the loss func-
tion using gradient descent with 100 steps and learning rate 0.01. Similar to GLM-ES, in the non-
doubling-trick experiment, we set ensemble size m = 10, perturbation distribution A'(0, 0%) with
or = 0.1, warm-up steps 7 = 50 and regularization A = 1.0. In the experiment with doubling trick,
for number of rounds 7;, we set ensemble size m = 2 X logr;, perturbation distribution A (0, 0%)
with og = 0.02 X logr;, warm-up steps 7 = 50 and regularization A = 1.0.

7.3 RESULTS AND DISCUSSIONS

The empirical results are plotted in[Figure T} The cumulative regret of ensemble sampling are plotted
in gray dashed lines, the results of ensemble sampling with doubling trick are also plotted in dashed
lines. Specifically, “DT100” and “DT300” indicate that we choose Ty = 100 and 7, = 300 in
doubling trick, respectively. We set b = (3 + 1/5)/2 ~ 2.6 for all doubling trick simulations. All
numerical results are averaged over 10 problem instances.

According to simulation results, the cumulative regret of ensemble sampling is competitive com-
pared to baseline algorithms in both linear and nonlinear bandit settings, the design of keeping
previous perturbations also considerably reduces per-model computational cost at large time step ¢.
Additionally, the doubling trick variants of ensemble sampling demonstrates its practicality by giv-
ing competitive cumulative regret while removing the requirement of total rounds 7" prior to running
the algorithm. Overall, our experiment result shows that ensemble sampling is practical in both lin-
ear and nonlinear bandit settings, its cumulative regret is similar to or outperforms baseline models
in different bandit environments.

8 CONCLUSION

In this work, we studied ensemble sampling in nonlinear contextual bandit settings. We proposed a
general framework of algorithm design for ensemble sampling in bandit problems, then discussed
two realizations GLM-ES and Neural-ES for generalized linear bandit and neural bandit, respec-
tively. We proved high-probability regret bound O(d®/2\/T + d°/?) for GLM-ES and O(dv/T) for
Neural-ES, both match the state-of-the-art result of randomized exploration algorithms in bandit
problems. We used synthetic bandit environments to evaluate the performance of the proposed algo-
rithms in terms of cumulative regret and computational cost. The empirical results demonstrate that
ensemble sampling and its anytime variants can achieve competitive cumulative regret with con-
siderably reduced computational cost. Our work establishes ensemble sampling as a provable and
practical algorithm framework in bandit problems.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of all methodologies used in this paper, including algorithm design
and implementation, theoretical guarantee of proposed ensemble sampling algorithms and experi-
ment instances. For theoretical results in this work, we provide detailed proof in the Appendix. For
experiment results in this work, we provide the source code as supplementary materials including the
implementations of the bandit environment and algorithms. With the parameters listed in
our numerical results are reproducible.
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A PROOF OF REGRET BOUND OF GLM-ES

A.1 PRELIMINARY ANALYSIS

In this section, we present basic technical lemmas directly from the definition and assumptions of
the GLM setting. The technical lemmas and notations introduced in this section are fundamental
and will be extensively utilized in the following analysis.

In the GLM setting with exponential family distribution assumption, given feature vector X € R%,
the conditional distribution of reward Y is given by

p(Y|X) =bo(Y)exp[Y - XT0—b(X"0)],
where 6 € RY is a fixed parameter for a given model. We define the link function (-) as
u() =0(),

the expected value of Y is given by 1.(X " #). We make additional assumptions that the link function
wu(+) is strictly increasing and the derivative of u is bounded as follows:

M(S) > Oa Vs € Ra 0< /:Lmin S ;U'(S) S ,[Jlma)v
Using the mean value theorem, for each pair s; < s9, we have

p(s2) — p(s1) = fu(so)(s2 — s1), so0 € (51, 52)-
Therefore, we have that
fomin (82 — s1) < p(s2) — p(s1) < frmax(s2 — 1)
We add regularization to the algorithm design for the analysis of the warm-up procedure. Given

input data set D, = {(X;,Y;)}/_,, we define the following \-regularized negative log-likelihood:

)\ t
Lam(0: D) = SI01° = D (Vi X,[0 — b(X[[0)). (A1)
1=1
Then, for time step t, we can define the (regularized) MLE as follows:

0; = argmin Lgpm(0; Dy). (A.2)
0eRd

Based on (A.IJ), we can compute the gradient

t

t t
VoLom(0:De) = > u(X, )X+ 20— Y XYy = f,(0) - Y XY,
=1 =1 =1

where we define f;(0) as

t

Fo(0) = (X" 0) X, + 0. (A.3)

=1

Note that ét = argmineeRd LGLM (0, Dt), thus VQLGLM(ét; Dt) = O, we have

t
fiB0) =Y XiYi.
=1

We further define the Hessian matrix as follows
t

H(0:Dy) = VLo (0:D1) = > (X, 0) X, X" + AL (A4)
=1

For simplicity of notation, we define the Hessian matrix at true parameter #* and MLE 0, as

Ht = H(9*7Dt), gt = H(ét,Dt)

14
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Next, we introduce a “secant approximation” of Hessian matrix H (6;D;). We define the secant

function as follows:
, f(w) ifu=1,
a(u, v') = § L —pw) ,

5 otherwise.
uU—u

Note that lim,, s a(u, ") = f1(u). Then we give the following approximation of H(6; D;),
¢
Q0,0';D;) = Z (X0, X0 X, X" + AL

Note that Q(0,6’; D) — H(0;D;) as 0 — 0’.

Then, we can obtain the following technical lemma that provides upper and lower bounds for the
secant function o(u, u’).

Lemma A.1 (Corollary 2 in|Sun & Tran-Dinh| (2019)). Given that u(-) is M-self-concordant, for
u,u’ € R, we have

)y (~Mu—u']) < alu,’) < lw)hy(Mu— o), (A5)

where we define

(T g
hs(x)_{l x =0.

Based on [Lemma A.1] we can obtain the following upper bound on H(#;D;) in terms of
Q(6,0";Dy):
Lemma A.2 (Lemma 3.9 in|Liu (2023)). For any 6,6 € R?, we have

H(0;Dy) = (1+MD(0 —0'))Q(0,0;Dy) = (1 + MD(0 - 0")Q(¢', 0; Dy), (A.6)
where D(v) is defined as D(v) = maxxex | X " v| for input vector v € R<.

From the definition of D(v), we note the following inequality:
= Tol < <
D(v) = wax | X o] < ma X[l < [lol2

where we used the assumption || X||2 < 1. This inequality is very useful in the following analysis.
By definition, we can directly obtain the following relation, which is critical in the later analysis:

£(0) = £.(6") = Q(6,0';D,) (0 — ') = Q(¢,0;D;) (6 — ). (A7)

According to this relation, finding upper bound of ||§ —6’|| can be decomposed to bounding || f+(6) —
f¢(6)]| and Q(6,0'; D;), which provides convenience in the following analysis.

We also define an auxiliary matrix G as follows:

Z X X"+ =1
HMmin
Since we assumed that fimin < f1(+) < fimax, We have
fiminGe = H(0;Dy) 2 fimax Gy, VO € RY. (A8)

A.2 TECHNICAL LEMMAS

In this section, we list the main technical lemmas required in the analysis of regret bound, these
technical lemmas are proved in The main idea of analyzing GLM is that we use the
lower and upper bound of fi(-) to find similarities between GLM and linear bandit. Despite the
similarities of linear bandit and generalized linear bandit settings, the GLM setting is considerably
more challenging to analyze due to the fact that we do not have closed form solution for parameter
estimate ; and @7 . In our analysis, we introduce the M-concordant assumption with novel analysis
tools to overcome these difficulties.

We list the concentration results of the estimated parameters 9{ as follows.
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Lemma A.3 (Concentration of MLE). Fix § € (0, 1]. Define the following parameters:

_ 1 2M d t/lmax 1
2 2
oo, 3 = O[O AR

A A
Fort € N, define a sequence of events
E = {110 — 0", < (1 + MBr (5, \)vr(d,N)},

and their intersection & = N1_&,. Then, we have P(€) > 1 — 6.

Lemma A.4 (Concentration of Perturbation). Fix 6 € (0,1] and t € [T]. Define the following
parameter:

~ t/lmin T
=4/dl 1 2log —.
7e(0, ) \/ 0g< + 0 )+ g 5
For round t, define the following event
v =110 = bul s, < ol rpin TR AT (5,0}

Then, gl,t holds with probability at least 1 — §/T.

Combining the concentration results [Lemma A.3|and [Lemma A.4] we have the following result of
the concentration of 67*.

Lemma A.5 (Concentration of Estimation 9{ “). Define a sequence of events as
gli = {Heff - e*HHt < ’Y}’ where ~y = (1 + M/BT)’YT(& )‘) + /Lrln{; :un_u}L OR ?T((Sa /\)v
and their intersections £, = ﬂthlé'l,t. Then, &1 holds with probability at least 1 — 24.

Next, the following lemma demonstrates that optimism holds with constant probability in GLM-ES.

Lemma A.6 (Optimism). Let constant pyy = 1 — ®(1) = 0.16, and a sequence of events defined as
o = {]P(X*TQ* < X, 0, and gl,t |]:t—1) > pN/4}7
and their intersection £ = ﬂlegg,t. Then, E5 holds with probability at least 1 — 6.

We need the following lemma to introduce the notations of ¢, and X, , which will be used in
Append A

Lemma A.7. Assume the conditions of [Theorem 5.5 Let J(0) = sup,c p(z"0), where 0
Re Let ©, = {6 € RY|[|0 — 0°||z,_, < ~}. Define 07 = argming.g, J(0) and X; =
argmax ¢ w(xT0,). For any 6 € RY and an event &', we introduce the following notation:

g:(0,&") = (J(0) — J(6;)) 1{&"}.

Then, g;(0*,E") > 0 holds for any event &' € F, and g;(0¢,E") > 0 holds almost surely for any
event such that " C & ;.

Finally, we need the following lemma to calculate the summation in

Lemma A.8 (Lemma 2 inLi et al.[(2017)). Let {X;}52, be a sequence in R? satisfying || X¢|| < 1.
Define Xo =0and Gy_1 = A I—i—ZZ;é XiXiT. Suppose there is an integer n such that Ay, (Gr,) >

1, then for all T > n,

m

3 T
Z HXtHG;_ll < \/Q(T—n)d log<1 + d)\>

t=n+1
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A.3 REGRET ANALYSIS

With the technical lemmas listed above, we prove [Theorem 5.3|as follows.

Proof of Theorem Recall that the cumulative regret is defined as
T
R(T) = Z (u(w*TH*) - ,u(XtTO*)).
t=1
In the warm-up procedure, the regret for each round is bounded as
Amax = sup,cy p(z10%) —infoer p(z'60%).
Therefore, we have
T
R(T) < 7Amax + Z ((u(x*Tﬁ*) — ,u(XtTG*)).
t=T+1
We only consider ¢ € [T + 1,77 in the following discussions.

We first bound the instantaneous regret at time t. Define event £ as & = N, (51,t N Sg,t), we
discuss the per-round regret under event £.

(1@ T0%) = (X[ 0%)) 148} = ((@*T0") = p(X,T00)) 1EY + (X[ 0) = u(X[[0") ) 1{E}.

Iy Iy

From the expression, [; is related to optimism, I5 is related to concentration of 6;. I is directly
bounded under &:

I = (u(X, 6,) — (X[6%)) 1{E)
< fomax | Xy 0 — X, 07| 1{E}
< fomax || Xe|| =1 [100 — 07|, 1{E}
Sﬂmax’YHXtHH;l'

Now we consider ;. Using the definitions in[Lemma A.7] we have
I =(p(@*70%) = u(XT0)) 1{E}
(e767) — (X T67) ) 1{E} + (n(XT6;) — (X 0) 14}

%) = J(0;)) L{E} + (J(0; ) — T (6)) 1{E}
t(9*75) - gt(9t75)
t((‘)*,S) < gt(a*agz,t)~

I
=

<
We use Markov’s inequality to bound g, (6%, £ 4):
9t(9*752,t)]P’(9t(9t,51,t NE) > g:(0%, &) | ]:t—l) <E[ge(0s, €10 NEay) | Fia].
Now we need the lower bound for ]P’(gt(ﬁt, E1iN&ay) > (0, E) | .7-}_1) (we relate this to the
probability of optimism) and the upper bound for g (0, &1 . N Eat).

Using the assumption that ;) is strictly increasing, under the event (I*TQ* < XtT Gt) NELNEo 4,
we have the following results:

0N < X0, ep(a*T0%) — u(X7T07) < (X7 0) — (X TO7)
e (e T0) — u(X;T07) TEne) < (KT 00 — p(X; T0,) 1{Ere 0 E2)
S g1(07,8¢) < g1(0:, 816N E2y).

o —
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Therefore, we have
P(Qt (9t,51,t N 52,t) > gi(0%, &) | ftfl) > pn /4.
Next, we consider the upper bound of g,(6;, &1, N E2+). Using the definition, we have
ge(0s, E1,0 N Exp) = ((X, 0p) — (X7 60;)) 1{Er e N Ea}
< (X[ 0r) — (X[ 0,)) 1{E1 1 N Ea}
< fimax| X, 0 — X1 0; | 1{E14 N Exr}
< fumas | Xl L2 1161 — 07 |,y {1 N E2)
< 2 i || Xt 1. -
Using the results above, the instantaneous regret at time ¢ € [T 4 1, T is bounded as:
(n@"Te) - u(XT0%)) 1€}
87 Ftmax
pN

< Vw1 Xel 11, + 2B || Xel g, | Fioa

. 8 max
=wmx(1+)|xt|H o+ 2 (1 | Fica] = (Xl ).
pN t—1 t—1

The cumulative regret is bounded as:
T

. 8
RTYLEY <+ s (14 ) 3 1Xell
t=174+1
. T
87 ftmax
o 2 (B[, | Fima] = 11Xl )- (A9)

t=7+1

Next, we calculate the two summations in (A.9). From the fact that fiminGy < H(0;D;) =< fimaxGis
for any z € R?, we have

V< el <

1
—||x|| ~- x|l .-
\/m” ||G’ m” HG’

Therefore, the first summation in (A-9) is bounded by

Z Xl g, < Z Xt -

t=7+1 [imsin t=7+1

From the fact that H; = \I, we have Apin(H;) > A. The first summation in (AJ9) is bounded as
follows by using [Cemma A8}

T T/
)3 ||Xt||G;1s¢2<T—T>dlog<1+ n).

t=7+1

Now we consider the second summation in (A29). Note that

0< ||Xt||H;11 S

)‘maX(Htill)|‘Xt| |2 <1
according to Azuma-Hoeffding inequality, we can bound the second summation in (A.9) by

d T—717 1
> (B[l | Fima] = 11Xl g, ) </ 5 log
t=1+1

with probability at least 1 — §. Combining these results, with probability at least 1 — 49, we have

R(T) 1{&}

! max 8 Ty min 4y max 1
g7“a<y%> m@—rn%@+ a )+7Wa 2T — 7)logs + 7 Amax,
Lmin DN d\ PN )

18
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Combining the fact that the warm up rounds 7 = 6(d9/ %) and set regularization A\ = 1V
(2dM/S)log (en/1+ TL/dV 1/6), the final regret bound is

R(T) < O(d**VT + d?),
with probability at least 1 — 49. This completes the proof. O

B PROOF OF TECHNICAL LEMMAS IN GLM-ES

B.1 PROOF OF[LEMMA A.3|(CONCENTRATION OF MLE)

In this section, we study the distance between the MLE 6, and the true parameter §*. Our main
goal is to obtain a high probability upper bound of ||§* — 6| ,. From the previous sections, the
definitions of H; and H; are as follows:

t
Hy = H(0";Dy) = V3L(0":Dy) = > _ (X, 0%) X, X," + M,
=1
— — —_ t —
Hy = H(0y;Dy) = ViL(0Dr) = Y (X, 0,) X, X," + AL
=1

To achieve the upper bound of ||§* — ;|| 7, , we first focus on upper bounding || f;(6;) — f:(6*)|| o
Recall from definition, we have that

t t
=3 VX, fi(07) = u(X,0°) X, + A0".
= =1

By defining ¢, = Y; — u(X,'6*), S; = 30)_, e/ X;, we have

t

Fie0r) = f1(67) = > (Vi = (X[ 67) Xy — A" = S, — A0".

=1
Therefore, we have the following decomposition:
168~ £ s < Stll g + A6 s < 1Sl s+ VAS,
where we used the fact that \] < H; and ||6*|| < S.
Next, we need the upper bound for ||S¢|| w1~ We need the following result from Janz et al.| (2024b).

Lemma B.1 (Theorem 2 in Janz et al|(2024b)). Fix \, M > 0. Let (X;)ien+ be a BS-valued
random sequence, (Vt)ien be a non-negative valued random sequence. Let ' = (F})icn be fil-
tration such that (i) (Xt)sen+ is F'-predictable and (ii) (Y:)ien+ and (vi)ien are F'-adapted. Let
e: = Y — E[Y; | F;_,] and assume that the following condition holds:

Elexp(se;) | F;_,] < exp(s*vi_1), V|s|<1/Mandt € NT. (B.1)
Then, for H, = Zz 1 X X[ + M and Sy = Zl 1 €X; and any § > 0,

VX 2M | sdet(Hy)VPATY2N 2M
3 + . > 22 it il 7S B -
(teN R > onr T A8 ( 5 )+ﬁ

According to previous discussions, we choose the sequences in the lemma as follows:

dlog(?)) <.

Vi1 — ,u(XfTO*), f:{t — Ht.

To apply we need to prove that ¢, satisfies the sub-exponential condition Eq. (B.I).
Note that now we have ¢; = Y; — u(X/6*), we need to utilize the assumption that the reward Y
given feature vector X has an exponential-family distribution to prove this property.
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From definition, we can write (we use notation u := X T6* for simplicity)
Blexp(se) | 1) = | explo(y — ) iy ) dy
From previous sections,
ply ) = hy)exply-u—bw)] [ bl exp(um) ay = expa).
Therefore, we have

Blexp(ser) | 1] =exp(—sy(u) ~ b(u)) [ hly) exp((s +u)y) dy
— exp(—sa(u) — b{u) + b(s + ).
Next, observing the expressions of (B.I), we need to prove that for |s| < 1/M, we have
“sp(u) — b(u) + b(s +u) < s%iw) = bls+u) — b(u) < salu) + s%i(u).
By definition, we have 1(-) = b(-), the expression above is equivalent to
b(s +u) — b(u) < sb(u) + s2b(u).
Using Taylor expansion, we can write
b(s 4 u) — b(u) = sb(u) + SEb(c)7 ¢ € [u, s+ ul.
By self-concordance assumption, we can bound B(c) as
b(c) < b(u) exp(M|c — u|) < b(u)exp(M|s|) < e - b(u).

Therefore, we proved that b(c) < 2b(u), the sub-exponential condition holds in this setting.

Applying we have that

fA 2M (det(Ht)l/QA—d/2)+y
S PR 5 NG

holds with probability at least 1 — §. From the definition of H;, we have

1St g2 < dlog(2), Vte [T

t.max
det(H,) < M(1 4 Emaxyd,

Ad
Therefore, we can write the high probability upper bound as
VA d t 1
S (d Stog(1+ L) 4 log ).
1Sellr < 5 + f + log(1+ == ) +log

We can further write the upper bound of || f¢(6;) — f(6*)|| ;;—1 as follows:

18 = 0o < VA + )+ 27+ Gloa(1+ ) + log) = 36
(B.2)

holds for all ¢ € [T'] with probability at least 1 — 4.

Now we are ready to bound ||6* — ;|| 7, . Recall that we have the following relation:

t
Fi0) = £:(0)) = Q(O',6; D) (6 — ), Q(6,0;Dr) := Y a(X,"0,X,70') X, X,T + AL
=1
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We denote Q; = Q(f;,0*;D;), then 0, —6* = Q; ' (f:(A;) — f:(6*)). We have the following bound:
Het - = HQt H(fe(Br) — fu(0 ))H XHft (0:) = f: (0|2 ot

1

it f(67

3150 Fo)

< (1+ M|6; = 671) 5 (6. 0)°.

The first inequality holds due to the fact A\ < @),. The second inequality holds because H (6*; D;) <

(1 + MD(0* — 6;))Q(6*,0;; D;) (Lemma A.2). The last inequality holds because D(v) < ||v|

for v € R? and is under the assumption Hft(Ot) - ft(H*)\|H;1 < (4, ). Note that for any

b,c >0,z € R, if 22 < bxr + ¢, we have # < b + \/c. Based on this result, we have

< (14 MD(; — 6"))

2 2

A

+ =: By(5, \). (B.3)

Next, we can write

18 — 6%, = (| Q7" (fe(B2) — Fu(8)) |,

— @) — 167)T Q7 HQ (J(8)) — u(6°))
< (14 MD(8; —6%)) || £:(8:) — f:(67)
< (14 M8, — 0°[)%(5.)

< (14 MB (5, 0)7(0, ).

The first inequality holds because H(0*;D;) = (1 + M D(6* — 6;))Q(6*,0;;D;) (Lemma A.2).
The second inequality holds because D(v) < ||v|| for v € R and is under the assumption [ f;(6;) —
f:(0%)]] -t < 7t(6,A). The last inequality holds because of (B-3). Therefore, we have

H?

holds with probability at least 1 — 6.

While this concentration result of MLE is valid and tight, we need ||f; — 6*|| 5, to be bounded
by a constant to prove the regret bound. Therefore, we need to take the upper bound of (4, A).
From the definitions, both ~;(d, \) and 5;(d, A) increase as ¢ increases, thus (0, A) < (4, A),
Be(6,\) < Br(d, A). Therefore, we have the following concentration result:

10 — %[l 1z, < (1+ MBr(8,M)yr(8,A), Vt € [T
holds with probability at least 1 — §. This completes the proof.

B.2 PROOF OF[LEMMA A.4|(CONCENTRATION OF PERTURBATION)

In this section, our main goal is to find a high probability upper bound of |6/ — ;||z,, where
6] = argming s L(0; D} ) is the estimate of §* from ensemble element j, D} = {(X;,Yi+2Z])}i_,
is the perturbed dataset used by element j, and Z lj ~ N (0, 0%) are perturbations of rewards. Recall
from the definition, we have

fi(6 ZH X 0)X, + M\, = ZXlYla

=1

ZN X;'6]) X, + M6] = ZXZ(YHFZ{).
=1

Thus we have f;(67) — f:(6:) = S_i_, Z]X;. We use the following lemma to provide a high
probability upper bound.
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Lemma B.2 (Lemma 8 of|Lee & Ohl(2024)). Let {F;} be a filtration. Let {n; }32, be a sequence of
real-valued random variables such that 7, is F;_1-conditionally o-sub-Gaussian for some o > 0.
Let {X}2, be a sequence of Re-valued random vectors such that X, is F;_1-measurable and

[| X¢ll2 < 1 almost surely for allt > 1. Fix X\ > 1. Let V; = A + Zle X, X,". Then, for any
d € (0, 1], with probability at least 1 — §, the following inequality holds for all t > 0:

t
1
X 14+ — 2log—.
Zm l o \/dlog< +d)\)+ log6
=1 t

Applying we have that

t
>zl x
=1

1 a t-min T ~
1 £2060) = £:00) ] g = < oR\/dlog (1 o ) +200g T = 07:(6.3)
Gt

(B.4)

holds for all ¢ > 0 with probability at least 1 — §/7".

Next, we use this result to prove a high probability upper bound of [|67 — 04| z7,. Recall from (A.7),
we have

101 = £:(8:) = QU806 D) (6] — 00) = Q] (6] — B0).
From the definition,
- t
Q] =Q67,0:Dy) = oX,"607,X,"0,) X, X, + AL
=1
Based on the definition of (-, -) and mean value theorem, there exists ((I) = aX| 0+ (1 -
a)X,;"0; € R with 0 < a < 1 such that
w(X[07) — (X0,

a(XlTegleTe_t) = XT;j e = p(¢(1)).
1t l

Note that we have assumed 0 < fimin < £4(*) < ftmax, thus we have
ﬂminGt j Qg j /lmaxGb

Combining the discussions above and the fact fiinG¢ = H(6;D;) = fimaxGt, Wwhen holds, we
have the following upper bound:

16 = e, = @D (56D = 5@,

— (09 - *>)T<@z>’1ﬂt<éz>”(ft<ez>—ft@))

> M%‘l{lﬁ :u‘mm ||ft (ét)Hgf—l

< /“Lrln{ii N’mm OR ’Yt (5 /\)

The result above is for fixed ensemble element j € [m]. We further define the following event for
each round ¢:

Eve =167 = 0|y, < it firam O R AT (5, M)}

Since j; is sampled independently, we have

51t ZIP]t—L

Therefore, for each round ¢ € [T, the concentration of perturbation holds with high probability.
This completes the proof.

- 1)
= Oul|y, < ol frin ORAT(0, X)) 2 1= .
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B.3 SUFFICIENT CONDITION OF OPTIMISM

In this section, our main goal is to obtain a sufficient condition of optimism X," 6] — X*T¢* > 0.
The motivation is that we need to find a lower bound of probability of optimism for each round,
while analyzing this probability directly is very challenging. Therefore, we need to find a sufficient
condition for optimism using variables { X;}_, and {Z} }!_, explicitly, by analyzing the probability
of the sufficient condition, we obtain a lower bound of probability of optimism. To achieve this, we
consider the following inequality:

X607 — x* T > x*Tol — x*To*
= X*T(0] + 6, — %)
=Xx*T07 + X*7 (8, — 0%), (B.5)
where @7 = 0{ — 0;. Next, we introduce the following notations:
zZ] = (0.0, Zi o 2D €RMY @y = (N fuminda X1, Xp) € RO,
d
then we have <I>tZ{ = Zle X le . Recall that we have

5= 0] 0, Q) (h6) ~ £:8) = (@) Y. Xz,

=1
we obtain the relation 67 = (Q7) o, ZJ. We further define
U =2 TH'®, e R,
then we have
IX72, 0 = X X < 2, X H 0] Hy e = 2|0
This relates the norm of X™* to U;.

With these notations and results, we can continue analyzing [B.3] First, we can use concentration to
directly bound X* T (; — 6*) as follows:

X0 = 07) > —|IX* | o1 110s = %[, > — i | U113 1162 — 0% || 12, -
Assume that ||0; — 0*||g, < ¢, where ¢ > 0 is a constant, then
X0 = 07) > —c i | U3
Next, we analyze X *Tbv{ From previous discussions, we have the following expression:
X0 = xT(Q]) @2
Recall that from the definition,

t
Q% = Q Ht,ﬂt,Dt ZO[ Xl—rog,XlTa_t)XleT +>\I
=1

Since @g includes the information of {Zl] }_,., the randomness from perturbation is not fully de-
coupled and we cannot directly use tail bound of the distribution of Z. To overcome this difficulty,
we define W/ = Q7] — Hy, and we have the following relation:

-1 -1
<Qg> - (Ht + Wg) =H; ' — H'W} (H, + Wg)’l.

Note that H; does not include information of perturbations. Based on (B.3), to guarantee that opti-
mism holds, it suffices to satisfy that

X*Tgi + X*T(ét _ 9*)
—X*TH &, 7] — X*T (H;'Wi (H, + W{) ") ®,Z] + X*T (8, —6") > 0
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Then it suffices to satisfy that

+ X7 (0, — 0%)].

X TH 0,21 > ’X*T ((Htlwg (H; + Wtj)_l)@Z{

Note that in X*T H,; ' ®, Z{ , the randomness of {Z lJ }i_, only appears in Z{ , thus we decoupled the
randomness of perturbation and we can utilize the tail bound of Z;.

Next, we need to upper bound the right-hand-side of the inequality to obtain a sufficient condition
of optimism. We already have the result

|X*T (0 — 07)| < iU

We upper bound ’X*T(Ht_lwtj(Ht + Wtj)*l)@tZﬂ as follows.
X (W (@D T @z = [ () (H W E ) (1, 2(QF) T 02|
< e (@) ez

= X g [l W (@) @z
= XNy 2 (@ — H) 2|6

I

I,

According to the definition, for symmetric matrix A, we have
[Allz = max )y =1[|Avllz = [Amax (A)]-
From definition,
HV(Q) - H)H] MV < H_1/2<Z 'a(XlTét,XlTH{) (X, 6%) XZXT>H_1/2
=1
From[Cemma A1} we have
~ ; . ~.exp(MD;) —1
a(XlTat’XlTeg) < M(Xl—ret)M—Dt,
where D; = max;<; |X," (8; — 67)]. Then we have
t—1
H V2 (Q] - H)H? < Hﬂ/?(z (X, 80, X, 6]) — (X[T0")| XX )H/
=1

Let R; = % — 1, then for any v € R? with ||v|| = 1, we have

o (B, V2@ - BB o < ReoTH VA~ ADH; 0 < Ry
We then obtain that
1772(QF = )| = [ (2 (@F = ) H2)| < R
From concentration results, under event £1, we have
16: — 0" ||, < (1+ MBr)yr, (B.6)
167127, < findst Frin FTO R, (B.7)
forall t € [T], and & holds with probability at least 1 — 20. Therefore, we have

X T (H; W (H+ W) ®,28 |+ | X7 (6, - 07)

<((1+ MBr)yr + Refindy firan 71O R) [ X 11

Finally, we obtain the sufficient condition for optimism as follows:

X TH ®,2] > (L+ MBr)vr + B2 i 310 w) [ X7 1. (B.8)
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Recall the definition U,” = X* T H, '®, € R? and the result

T .
X1 = X H X < U213,

we obtain the final expression of the sufficient condition for optimism:
U2 2 fimax (1 + MB)Yr + Refinli frin 770 R) Ui |2-

To simplify the notations, define by = fima (1 + M Br)yr and by = ﬂ?néiﬂ;ii:ﬁ, we have the
following expression:

U Z] > (by + baReor)|| Ut 2.
We summarize these discussions to the following lemma.
Lemma B.3 (Sufficient Condition for Optimism). For t € [T and j € [m], define vector U,' =
X *THt_ltbt € RY, b1 = funax(1 + M B7)yr and by = /l%?/ln:iiﬁp Then, under the concentration
event £y, optimism X*T0* < X,T0; holds if the following inequality is satisfied

U ZI > (by + boRyo) | U |2 (B.9)

B.4 PROOF OF[LEMMA A.6|(PROBABILITY OF OPTIMISM)

With the sufficient condition of optimism and the fact that perturbations only appear
in Z{ , we can apply the tail bound of perturbations to obtain the probability of optimism. We use
Gaussian noise Z lj ~ N (0, 0%) for reward perturbation, thus we can apply the following tail bound:
for any u € R™ and Z ~ N(0,0%1,,), we have the following inequality

P(u'Z > oglull2) > px,

where py is a constant and py > 0.15. Based on this result, if we fix the sequence of pulled arms

{X;}i_, and element j € [m)], in holds with probability at least py if we choose

o that satisfies

o > by +bR;0. (B.10)

Next, we define the indicator function I7 := 1{(U,” Z] > (b1 + by R,0)||Us||2) N gli}- We proved
that &, holds with probability at least 1 — §/7, thus we have

S PN

T~ 2

Now we add the randomness of choosing arm j; at round ¢, the probability of optimism after uni-
formly randomly choosing arm j; is given by Z;nzl P(I} = 1)/m. Using Azuma-Hoeffding in-
equality, we have the following result:

1 & pN pam
J N
P(m;[t <f7) ew(-57).

P(I] =1) > P(U,Z] > (b + baRy0)|Ui]|2) —

The results above are obtained under fixed sequence of pulled arms {X;}]_,, we use the following
result to count equivalent permutations of {X;}i_;.

Lemma B.4 (Claim 1 in [Lee & Oh| (2024)). There exists an event £* such that under E*,
= I > p /4 holds for all t € [T), and P(E*) < TXexp( — piym/8).

Therefore, by choosing ensemble size

8 1
m > —(KlogT + log5 ).
Py

we have P(£*) < 1 — 4, with high probability, optimism holds with constant probability. This
completes the proof.
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B.5 WARM-UP PROCEDURE

In the analysis of optimism, we assumed that has a solution. In this section, we analyze how
to guarantee that solution of (B.10) exists. From the expression, we need to set warm-up parameter
7 to make sure that R, is sufficiently small, so that the solution is approximately cr = b;. Recall
from the definition of R;, we have

eXp(MDt)—l _1< ].+MDt+(MDt)2—].
MDt o MDt

where the inequality holds when M D; < 1. Therefore, we should use warm-up procedure to reduce
D, until sufficiently small. Note that

Rt: —].ZMDt,

Dy = max X (8 —6])] < max 12Xl 2116 — 0711,

where the inequality holds due to Cauchy-Schwarz inequality. Therefore, we should focus on upper
bounding max,¢ x ||| z,. This is achieved by the following warm-up procedures.

Algorithm 2 Warm-up of GLM-ES

Input: arm set X C R?, 7,¢ € (0,1)
I: Set ¢ = argmin ¢, maxzex |23 )
2: Pull zy,...,2, = round(7,(,¢)
3: Observe rewards y1, ..., Y-

Return: {(x37 ys)};r:l

Algorithm 3 Rounding procedure of

Input: 7, ¢ and €

Lr(e) = (d(d+1)/2+1)/e

2: p <« [supp(C)|

3: {wi}izy  supp(()
4: N; + [(t—p/2)¢], foralli <p
5: while > | N, # 7 do
6.
7
8

if >-7 | N; < 7 then
j + argmin,(N; — 1)/¢;

: Nj <« Nj +1
9:  endif
10:  if Y7 | N; > 7 then
11: j  argmax,,(N; — 1)/¢;
12: Nj — Nj -1
13:  endif

14: end while
15: N; < max(N;,r(€)/p)
Return: Ny, ..., N, foralli <p

In GLM-ES, is initialized by calling a warm-up procedure that approxi-

mates a G-optimal design. This is necessary to guarantee the sufficient condition for optimism (B-9)
happens with constant probability. Here, ( € Ay is a probability measure over arm set X', which is
set to minimize

2 _ T
mase ]3¢, where V(Q) = 3 (@)

reEX
We then sample x4, . . ., x, based on G-optimal design ¢ by following the rounding procedure (Line
[2)in[Algorithm 2)). The complete rounding procedure is given in[Algorithm 3| which is proposed in

Chapter 12 of |[Pukelsheim|(2006) and is detailed in [Fiez et al.|(2019).

We provide a theoretical guarantee for the warm-up procedure as follows.
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Lemma B.5 (Warm-up). Let { be the G-optimal design solution over a compact feature set X whose
span is Re. Let 1 > 0 and € = 0.5. By setting the number of warm-up rounds as 7 = [1.512d/ i |,

Algorithm 2| returns a dataset {(xs,ys) }I_, such that for all t > T, we have

o<l . .
mas 2], < 1/1 B.11)

Proof of[Lemma B.5] The proof mainly follows the proof of (Liu, [2023| Lemma 4.10), we write
it here for completeness. Note that for all ¢ > 7, we have H, '(0;) < H-'(0;) where H;() is
H (6, D;) defined in (A4). Then we have
2 2
m;iX ”xHH;l(gt) < man Hxl|H;1(§t)'

We further define H (¢, 0) = Y., .y ((@)fu(xT0)za" where ( is a probability measure over X
Then it is sufficient to prove that for all ¢ > 7, max [|z[| ;-1 4,) < 1/¢ holds.

1+e€

max ||37||§{;1(§t) < — max HiC”?q—l(g,ét)
1+4e€

< d(l+e)

T HUmin

< 2
= m§lX||$||v ()

7

where the first inequality holds because of (Jun et al.,|2021, Lemma 13), the second inequality holds
because H((,0;) = fiminV (¢) and the last inequality holds due to (Lattimore & Szepesvari, 2020,
Theorem 21.1 (Kiefer—Wolfowitz)). The proof is completed by setting 7 = ¢*d(1 + €) / fimin- O

To guarantee that (B.I0) holds, we desire to have R, < MD, < o5 < 1 where € € (0,1).
Therefore, it suffices to have

L > Mbofimm o i e
Also note that the solution for op > b + bzallgs satisfies (B.10), and we have o 2> (dlog T)i.

Recall that 7 = [1.5:%d/ fumin |, then we can obtain the order of warm-up parameter 7 as follows

14

€
e
3

7> Cd*log T(dlogT)
where C is a constant with respect to (M, fimax, fimin)- BY setting € = %, we can obtain

7 =0(d?). (B.12)

Note that in |Liu| (2023), the warm-up parameter 7 = O(d?), which is much larger than that
we derive.

In summary, to guarantee that (B.10) has a solution, we should set warm-up rounds 7 = 5(d9/ 2)

with [Algorithm 2| Accordingly, the variance of perturbation o should satisty o > b1 + b allz/ 5,
3/2
we should set o = O (b1 + by’ 7).

C PROOF OF REGRET BOUND OF NEURAL-ES

C.1 PRELIMINARY ANALYSIS

Recall that we adopt a fully connected neural network f(X;6) : RY — R to approximate the true
reward model h(X):

F(X:0) = VN WL¢(WL1¢( - ¢<W1X>)),
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where N is the width of each layer, § = [vec(W}),- - -, vec(W)] € R is the concatenation of
all learnable parameters. We use g(X;0) = Vof(X;6y) € R? to denote the gradient of the
initial neural network. For convenience and comparison with linear contextual bandit, we define the
following mapping:
9(X;0o)
p(x) = £520
As we will see in the following analysis, after we map the d-dimensional feature vector X into the
d’'-dimensional (X)), the analysis of Neural—-ES is similar to that of Lin—-ES.

R?% — RY. (C.1

We define the covariance matrix A; at round ¢ as

1
N

t—1 t—1

> 9(X1360)9(X1:600) " + Ao = > p(X)(X)" + M, (C2)
=1 =1

Ay

and the following auxiliary vectors
t—1

t—1
by = TIN > Yig(Xi 00) = 3 Yiv(Xi)
) 1 t—1 ] t—1 )
b] = Ve ;(Yl +Z]) 9(X1;60) = ;(Yl + Z] ) ¢(X1).

Then, similar to linear contextual bandit, the MLE without perturbation is 0 = Ap ! by, the least

square solution for parameter 9{ (of model j € [m])is A;* b{ . These notations and results will be
utilized extensively in the following analysis.

C.2 TECHNICAL LEMMAS

In this section, we list the main technical lemmas required to obtain the high-probability regret
bound of Neural-ES. We present the proof of the technical lemmas in Appendix D}

First, we need the following common assumption and well-known result to demonstrate that our
neural network f(X; #) and its gradient g(X; fy) can accurately approximate the true reward model
h(X).

Assumption C.1. We use H to denote the neural tangent kernel (NTK) matrix on the context set.
We assume that H = A\oI. Moreover, for any X € X, || X||2 < 1 and [X]; = [X]j14/2.

Lemma C.2. (Lemma 4.1 inJia et al.|(2022))) There exists a positive constant C such that for any
§ € (0,1), with probability at least 1 — 6, when N > CK*L5log(K2L/§)/)\, there exists a
0* € RY such that for all X € X,

B(X) = (g(X:00), 6" — 6) = (6(X), VN(8" — 60)), VN6" —bylls < V2hTH 1h < 5,

where H is the NTL matrix defined on the context set X and h = (h(X1),...,h(Xk)), S is the
upper bound of vV2hTH—1h.

Compare this result with linear contextual bandit, where the mean reward is given by X T 6*, we can
see that when the neural network is wide enough, the mean reward at contexts X € X’ can be well
approximated by a linear function of ¢ (X). If our learned parameter 6 is close to 6*, the distance
between neural network approximation f(X;6,) and true mean reward i (X') can be controlled by
the distance | f(X¢; 6;) — (g(Xy;60),0:)| and |(g(Xy;60), 6;) — h(X¢)|. Following these intuitions,
we need the following lemmas to provide concentration of these distances.

Lemma C.3. (Lemma 4.2 inJia et al.|(2022))) Define a sequence of events &, 1 as follows:
&1 = {VXt € X, [(9(X1;60), A 'y /VN) — h(X,)| < atHg(Xt;HO)HAt—l},
where o is a scalar scale of deviation. Then, for anyt € [T], A > 0 and 6 > 0, with oy set as
ap = \/02 log(det(Ay)/(6%det(N))) + VS, (C3)
where S is the upper bound of V2hTH=1h, we have P(1 ;| F1_1) > 1 — 4.
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Under event & 1, the distance | (1/(X;), 6;) — h(X,)| is bounded by o ||g(X; 00)|| 41 Recall that

we assume the random noise 7 is o-sub-Gaussian, thus oy reflects the deviation caused by the noise
in the observed reward. This result is valid for any algorithms in the neural contextual bandit setting,
as it does not involve any perturbations. The estimate 6, is only based on the sequence of pulled arms
{X;}!=! and observed rewards {Y;}!Z!. Next, we need the following lemma to upper bound the

distance between neural network output and linear approximation ’ F(X; 00 ) — (W(X)),6,) ’ The
following lemma is adapted from Lemma 4.3 in Jia et al.,| (2022) and the proof is mostly the same.

Note that in our lemma, the probability [P (Sé 7t) is not conditioned on the history of the perturbations.

Lemma C.4. For each model j € [m], define a sequence of events Eg7t as follows:

€y = {¥X0 € 27X 00 = (9(X: 00 A DV < () + Billg(Xis )l |2
where By is a scalar scale of the deviation, and €(N) is defined as
€(N) =CcaN“VOT*SN"2PL3\flog N + Cea(1 = nNA)’ VTL/X
+ CaN VO AL flog N (1 + VT/N),

where 1) is learning rate, J is the number of steps for gradient descent in neural network learning,
{C;}3_, are constants. Then, there exist positive constants {C;}3_,, such that with step size 1 and
the neural network satisfy the following conditions:

n=Cy{(NX+NLT)™ !,
N > CovV/AL™*?[log(TK L?/5)]
NlogN] ™3 > Cymax{TLX~ ", T"A\" L' (A + LT)%, L*' T"X\""(1 + \/T/\)°},

and set By as
Bt = or+/4logt + 2logK , (C.5)

where Ak is the covariance matrix constructed after the initial K -round arm pulling, and Ak (Ak)
represents the K -th largest eigenvalue of matrix Ay, we have }P’(é’g’t) >1—-t2

(C.4)

3/2
b

Recall that the perturbations th are sampled from N(0, o), thus §; reflects the deviation caused by
perturbations. After uniformly randomly choosing model j; € [m] from the ensemble, we further
define the event for round ¢:

Ea0 = {¥X0 € X, [ F(Xi50]11) = (9(X4300), AT b/ V)| < e(N) + Bullg(Xe3 00) L,
Then, at round ¢, we have the probability for & ; as:

P(527t) = ZP(jt =Js gé,t) >1- 2
j=1

Next, we present the optimism condition (anti-concentration) in the following two lemmas. First,
we fix the sequence of pulled arms {X;}_; and model j € [m], the only source of randomness

is the perturbations {Z]}, we can apply tail bound of Gaussian distribution to lower bound the
probability of optimism. Next, we add randomness of choosing arm j; at round ¢, and apply the
Azuma-Hoeffding inequality. Finally, we count equivalent sequences of {X;}/_, and prove the
probability of optimism considering all randomness of the procedure.

Lemma C.5. Fix the model j € [m]. For any t € [T, fix the sequence of pulled arms {X;}}_,.
Define a sequence of events 8§7t as follows:

&, = { F(XG0) = h(X") = () }.
Then, by choosing variance of perturbations o r as
or = ar(l — M (Ak)) V2, (C.6)
we have P(Efﬁ) > (dey/m) ™ =1 ply.
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Lemma C.6. Fix the ensemble size m as

2 1
m > % (KlogT + log5>.

Define a sequence of events Es ; as follows:
€0 1= {F(Xis0]1) = h(X") = e(N) }.
Then, for any t € [T, we have P(Es) > ply /2.

Finally, we need the following lemma to calculate the summation.

Lemma C.7 (Lemma 4.6 in|Jia et al.|(2022)). With d as the effective dimension of the NTK matrix
H, we have

T
me{ 19(X:60)/ VNI, 1 1} < 2(dlog(1+ TK/A) +1). .7
t=1

C.3 REGRET ANALYSIS

From the design of the algorithm, we use the first K rounds to pull each arm once, thus the cumula-
tive regret can be decomposed as

T
RT)< > (MX") (X)) + K.
t=K+1

Next, we analyze the per-round regret bound for ¢ € [K + 1,T]. We assume that &; ; holds for the
rest of the analysis. For each round ¢, the regret can be written as

h(X7) = h(Xy) < (M(X7) = h(Xy)) T{Er2} + P(Er2),

where we used the assumption that 4(X) in bounded in [0, 1]. From the technical lemmas, P(&; 5) ~
=2, thus we only need to focus on (h(X*) — h(X;)) under events & 1 N & 2.

For the following analysis, we introduce the set of sufficiently sampled arms in round ¢:

Q= {VXy € X 1 2e(N) + (s + By)l19( X5 00)|| 41 < h(X™) — h(X0)}-

We also define the set of under-sampled arms Q; = X\Q;. From the definition, the per-round regret
of X; € Q, is bounded by (2¢(N) + (ou + B¢)||9(Xy; QO)HATI), we expect that the pulled arm X,

should come from €2; with high probability as the algorithm proceeds. We further define the least
uncertain and under-sampled arm Xt(e) at round ¢ as

X{ = argminy g, ||9(X;00)/VN|| y-1. (C8)

Now we can write the per-round regret
(A(X*) = h(X0)) 1{Ex,}
=(h(X") = h(X[7) + h(X(7) = h(X0)) 1{E2}
< (26 + (e + B0l 00l ) + (X)) ) 182 )

46(N) + (ae + B) (2l19(X{7500) / VN 4= + ||g(Xe5 00) /N 4-1)

IN

From the per-round regret bound, we should upper bound ||g(X t(e); 60)/V'N|| A~ Using expression
of ||g(Xy;00)/VN]| A-1» then we can apply to compute the cumulative regret. We have

the following result

19(X4:00) [V [ 41 = [l9(X (7 00) [V 4 P(X, € D),

) l9(X4:00)/VNI| 5,
g5 000V Lo < =g
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As mentioned previously, we should lower bound the probability of P(X; € ;).
P(X; € Q) >P(3X € Q : f(X;6;) > maxxreq, f(X';60;))
>P(f(X*;60;) > maxxcq, f(X';6:),Ea)
>P(f(X*50:) > h(X*) = e(N)) = P(E2)
>P(Es,) — P(En).
Therefore, the per-round regret can be bounded as

B(X") = h(X0) < P(E2) +4e(N) + (r + B) (1 + 5 M19(X1360)/V/ N1l 51

2
F(€s,) - P(&

Now we sum up the per-round regret bound and compute the cumulative regret R(7T"). From
ILemma C.3| & ; holds for all ¢ € [T] with probability at least 1 — 4, thus we can compute the
summation under N}, & ; as follows.

R(T) 1{N{_1 €1}
T

<K +ATe(N) + 3 P(E0) + (o + B (1+

t=K+1 (SM) -P

)oK o) VL

For ]P)(gg’t) , we have the following bound:

From ]P’(Sg’t) > ply /2, we have

Combining these results, we have

9 T
R(T) <K +4Te(N) + T + (1+ i)(aT +87) Y 119(Xe;60)/VN]| 4.
PN t=K+1
2 ~
< K +4T¢(N) + % +2(1+ ;%) (ar + Br) (dlog(1 + TK/) +1)

=O(dVT),

with probability at least 1 — 6.

D PROOF OF TECHNICAL LEMMAS IN NEURAL-ES

D.1 PROOF OF[LEMMA C.3
Under event &; ; N Eit, we have
R(X2) > (9(Xe300), A7 "Be/VI) = aullg(Xei 60) |4+
Therefore, we have the following sufficient condition for optimism f(X,;67) > h(X*) — ¢(N):
(9(X15600), Ay "o /VN) > (9(X4:60), A, by /VN) + ul|g(Xi560) /VN|| 1. (D)

From the definitions of covariance matrix and auxiliary vectors, we have

t
(9(X1;60), A7 Y (by —by) /VN) = Z 19(X1500) T A7 g(X05600) =: U (D.2)
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Fix the sequence of pulled arms {X;}/_,, then the only randomness comes from the perturbation
sequence {Z} }!_,. Since the perturbations are i.i.d., we can use the following tail bound:

X —p exp(—5°)
P > 7
( o ~ 6) = 478
The mean of Uy is zero, the variance is bounded by
Var[Uy] > o(1 — A/\1?<1(z‘hr())|\g(Xt;90)/\/NHZ;1

Therefore, by choosing variance of perturbation

OR = Olt(]. — )\)\;(1(141{))71/2,

we have the probability of optimism:

(#0630 > WX~ )} 2 2(Ur > allg X bo) VNI 1) 2 e D

D.2 PROOF OF[LEMMA C.6

Define random variable I, tJ for round ¢ and model j as I t] = ]l{Eit}. Then, from previous technical

lemmas, we have IP’(Itj = 1) > p/y. For each round ¢, we further define I; = Itj *. After uniformly
choosing the model j € [m], we have

1 m
P(1, == Z (D.4)

Apply Azuma-Hoeffding inequality, we have the following probability of optimism:

( ZIJ )<e p( pim). (D.5)

Following the discussions inLee & Oh (2024), we have the following lemma, which is adapted from
Claim 1 in the paper.

Lemma D.1. There exists an event £* such that under £*, - Z;n:l I > pl /2 holds for all t € [T),
and ]P’(g*) < TKexp( —p’]\z,m/Q).

Therefore, setting ensemble size as follc)WS'

m> — 2 (KlogT-l—log(S)

then we have P(£*) > 1 — §. In summary, by setting the ensemble size m = Q(KlogT'), we have
P(Es,) = P(F(Xe;0] 1) > W(X") = e(N) | Foor, E21) 2 Py /2. (D.6)

E ANALYSIS OF DOUBLING TRICK

In this section, we provide theoretical analysis of regret bound with doubling trick. To preserve the
asymptotic regret bound of ensemble sampling, we need to properly set the schedule {7;}. We need
the following result of the regret bound of doubling trick.

Lemma E.1 (Theorem 4 in Besson & Kaufmann|(2018)). If an algorithm A satisfies Ry (Ar) <
T (logT)? + f(T), for 0 < v < 1, § > 0 and for ¢ > 0, and an increasing function f(t) =
o(t"(logt)?) (at t — o), then the anytime version A' := DT (A, (T})ien) with the geometric
sequence (T;);en of parameters Ty € N*, b > 1 (i.e., T; = | Tyb'|) with the condition To(b—1) > 1
if § > 0, satisfies,

Ry (A ) 1,6, To, b)eT" (logT)° + g(T),

with a increasing function g(t) = o(t"(logt)?), and a constant loss (-, §, Ty, b) > 1,
(To(b—1)+1)\° b(b—1)
1(7,9, T .
(7,0, To, b ( log(To(b — 1)) ) T 1
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With the regret bound analysis is straightforward. From the regret bound of ensem-
ble sampling, the dependency on T is given by O((logT)%\/T). Therefore, apply [Lemma E.1

to ensemble sampling algorithms (GLM—-ES or Neural-ES), we have v = 1/2, § = 3/2. We
can minimize the expression of [(v,d, To, b) by properly selecting the parameter of the doubling

sequence T and b. The optimal choice of bis (3++/5)/2 = 2.6 and we can choose Tj large enough
to reduce the other factor. For example, if we choose T = 100, the extra factor [(y, 6, Ty, b) =~ 3.3.

From the discussions above, we can choose the sequence
{T;} = {Tv, Tob, Tob?,...}.
The number of rounds follows the sequence:
{1} = {Ty, To(b—1), To(b — 1)b, To(b — 1)b?,...}.

From the discussions above, by directly applying doubling trick, we obtain the same asymptotic
regret bound with the cost of a constant factor.

USAGE OF LLM

All ideas and research are conducted by the authors, and the paper itself is written by the authors.
The LLM is used as a tool for polishing the written content of the paper and checking the grammar
errors.
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