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Abstract

Metric learning is a fundamental problem in computer vision that aims to learn a semantically
useful embedding space via ranking losses. Traditionally, the effectiveness of a ranking loss
depends on the minibatch size, and therefore, it is inherently limited by the memory
constraints of the underlying hardware. While simply accumulating the embeddings across
minibatches proved useful (Wang et al. (2020)), we show that it is equally important to
ensure that the accumulated embeddings are up to date. In particular, it is necessary
to circumvent the representational drift between the accumulated embeddings and the
feature embeddings at the current training iteration as the learnable parameters are being
updated. In this paper, we model this representational drift as a transformation of the
distribution of feature embeddings and approximate it using the first and second moments
of the empirical distributions. Specifically, we introduce a simple approach to adapt the
stored embeddings to match the first and second moments of the current embeddings at
each training iteration. Experiments on three popular image retrieval datasets, namely, sop,
In-shop and DeepFashion2, demonstrate that our approach significantly improves the
performance on all scenarios.

1 Introduction

Metric learning is a fundamental problem in computer vision with various applications including image
retrieval (Yang et al. (2017); He et al. (2018)), zero shot learning (Bucher et al. (2016)), face recognition (Wen
et al. (2016)), and visual tracking (Tao et al. (2016)). The main objective is to learn a metric space where
the feature embeddings of instances from the same class are closer than the ones from different classes.

Since metric learning requires comparing the feature embeddings of different instances, the loss functions
used for this problem (Chopra et al. (2005); Schroff et al. (2015); Brown et al. (2020); Kim et al. (2020)) are
commonly referred to as ranking losses. Specifically, a ranking loss is computed by comparing the embedding
of each instance in the minibatch against all the embeddings of a reference set (usually the minibatch itself).
To improve the effectiveness of learning, the most informative samples are selected from the reference set via
sophisticated mining strategies (Harwood et al. (2017); Suh et al. (2019)).

Note that, the larger the reference set, the more accurate the ranking loss computation. However, the reference
set size is limited by the memory and computational constraints of the underlying hardware. Therefore, we
require a scalable approach to use a larger reference set (preferably as large as the training set) while ensuring
that the embeddings of the reference set are up to date. Cross Batch Memory (xbm) (Wang et al. (2020)) is
a recent technique to expand the reference set by accumulating embeddings across minibatches. While this
approach is efficient, it does not ensure that the embeddings are up to date. When the model is being trained
(especially in the beginning of training) the embeddings evolve rapidly and the previous embeddings quickly
become outdated. Such outdated embeddings not only limits the full potential of using a larger reference set
but also provide contradicting supervision signal which may lead to suboptimal learning.

In this paper, we introduce a technique to tackle the representational drift in the xbm approach to effectively
make use of a larger reference set. Specifically, we adopt a Bayesian framework and model the representational
drift as a transformation of the distribution of the embeddings. To this end, the ideal transformation to

1



Under review as submission to TMLR

mitigate representational drift is to ensure that the embeddings of the reference set (i.e., cross batch memory)
follow the same distribution as the embeddings of the full dataset at any given iteration. For practical
purposes we represent the empirical distributions of embeddings using their respective first and second
moments (i.e., mean and standard deviation).

We first introduce Cross Batch Normalization (xbn), which simply adapts the embeddings in the reference set
to match the first and second moments of the current minibatch embeddings at each training iteration. Then,
since the minibatch statistics can be noisy, to better estimate the dataset statistics at any given iteration,
we adopt a Kalman filter approach (Kalman (1960)). Specifically, we use Kalman filter to estimate the
mean and standard deviation of the dataset embeddings using the minibatch observations and the estimated
statistics are used to adapt the reference set embeddings. We refer to this approach as Adaptive Cross Batch
Normalization (axbn).

We provide extensive experiments on three popular image retrieval datasets, namely, sop (Oh Song et al.
(2016)), In-shop (Liu et al. (2016)) and DeepFashion2 (Ge et al. (2019)). Our results demonstrate significant
improvements over the xbm method in all scenarios, which confirms our hypothesis and the merit of our
approach. Furthermore, while the simpler xbn approach outperforms traditional xbm, the adaptive version is
better in the small batch regime, albeit by a small margin, providing evidence that classical noise modelling
approaches can be useful in deep learning.

2 Preliminaries

In this section, we discuss metric learning in the context of image retrieval, although it has a wide variety of
applications. Let D = {(xi, yi)}n

i=1 be the dataset where xi ∈ X is the input image corresponding to sample
i and yi ∈ Y is the label. The objective of metric learning is to learn an embedding function fw : X → Rd by
optimizing the parameters w ∈ Rm, such that images corresponding to the same label are clustered together
in the d-dimensional embedding space. For notational convenience we write z := fw(x) ∈ Rd. Ideally, for
any triplet (a, p, n) with ya = yp ̸= yn we want ∥za − zp∥ < ∥za − zn∥ for some appropriate distance metric
∥ · ∥. Once trained, given a set of gallery images, their corresponding embeddings are computed and stored1.
During testing, a new query image is passed through the embedding function and its k-nearest neighbours in
the embedding space are retrieved from the stored gallery embeddings.

The problem of metric learning can be written as:

minimizew L(w;D) := 1
n

n∑
i=1

ℓ(w, (xi, yi);D) , (1)

where ℓ denotes the embedding function composed with a metric learning loss. Note that in addition to w
and the sample (xi, yi), ℓ also depends on the full dataset D. Specifically, metric learning requires comparing
the embedding of a sample with all other embeddings to ensure that the samples belong to the same class
are clustered together while other class samples are pushed away. For example, the commonly used triplet
loss (Schroff et al. (2015)) computes

ℓtriplet(w, (xi, yi);D) := 1
|Ti|

∑
(i,p,n)∈Ti

[
∥zi − zp∥2 − ∥zi − zn∥2 + α

]
+ , (2)

where Ti denotes the set of all triplets for sample i such that yi = yp ̸= yn, α ≥ 0 is a margin, ∥ · ∥2 is the L2
norm, and [·]+ projects onto the nonnegative real numbers.

Since the dataset is large, it is infeasible to compare all the samples in a dataset at each iteration. To this end,
the standard approach is to use a reference set Rk ⊂ D in place of the whole dataset for each optimization
iteration k. Additionally, minibatch based Stochastic Gradient Descent (sgd) is employed to optimize the

1The set of gallery embeddings are sometimes referred to as the index.
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loss function. Putting these two together, the sgd update equation at iteration k can be written as:

wk+1 = wk − ηk∇L
(
wk;Bk,Rk

)
, (3)

L
(
wk;Bk,Rk

)
:= 1
|Bk|

∑
(x,y)∼Bk

ℓ
(
wk, (x, y);Rk

)
. (4)

Here, ηk > 0 is the learning rate, Bk is the minibatch, and Rk is the reference set. In almost all metric
learning scenarios the minibatch itself is used as the reference set, i.e., Rk = Bk.

2.1 Cross Batch Memory (XBM)

The idea of xbm (Wang et al. (2020)) is to expand the reference set beyond the minibatch. To alleviate the
computational complexity of performing the forward pass on a larger reference set, the insight is to store the
embeddings computed during the previous iterations and use them as the reference set.

Let B̄k = {(zk := fwk (x), y) | (x, y) ∈ Bk} ⊂ Rd×Y denote the embeddings and their labels corresponding to
the minibatch Bk at iteration k. Then the analogous reference set of embeddings R̄k is the union of the most
recent M embeddings2, where |R̄k| ≤M is the limit on reference set size. In certain cases, M can be as large
as the dataset itself. These accumulated embeddings R̄k are used to optimize the loss function, specifically
the xbm loss function at each iteration k can be written as L

(
wk;Bk, R̄k

)
.

The benefit of xbm relies heavily on the assumption that the embeddings evolve slowly. In the xbm paper, it
is empirically shown that the features evolve slowly after a certain number of training iterations (refer to
Fig. 3 in Wang et al. (2020)), where feature drift at iteration k is defined as:

D(x, k, ∆k) :=
∥∥zk − zk−∆k

∥∥
2 , (5)

where zk is the embedding vector for the image x, ∆k is the iteration step, and ∥ · ∥2 is the L2 norm. We
note that this quantity is merely an empirical diagnostic and is not practical to compute during training to
determine whether the features have become outdated or not. Furthermore, even though the features may
change slowly in absolute terms, the relative order of elements (i.e., rank) in the reference set can change
dramatically. Moreover, the drift accumulates over time (large ∆k), which is problematic when the minibatch
size is small, relative to the size of the cross batch memory. Altogether this could lead to an inaccurate
supervision signal from the ranking loss.

As noted in Wang et al. (2020), the slow-drift assumption is violated in the early phase of training. While
we believe the initial training phase is most important, as discussed above, the embeddings in the reference
set R̄k can become outdated even in the slow-drift regime. Such outdated embeddings not only limits the
full potential of using a larger reference set, but also provides contradicting supervision signal degrading
performance.

Therefore, we believe, it is important to ensure that the embeddings in the reference set are up to date
throughout the whole training process.

3 Adapting the Cross Batch Memory

Our idea is to adapt the embeddings in the cross batch memory at each iteration to circumvent the
representational drift between the embeddings in the reference set R̄k and the current minibatch B̄k. Here
the term representational drift refers to the notion that statistics computed on batches of embeddings vary
as training progresses since fwk (x) ̸= fwk′ (x) where wk′ ̸= wk are model parameters from some previous
iteration k′ < k. We model the representational drift as a (linear) transformation of the distribution of
the embeddings. Then, the ideal transformation to mitigate representational drift is to ensure that the
embeddings of the reference set (i.e., cross batch memory) follow the same distribution as the embeddings of
the full dataset at any given iteration.

2For brevity we refer to R̄k as the reference set embeddings, however it contains the embeddings and the corresponding labels.
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For practical purposes, we represent the empirical distributions of embeddings with their respective first
and second moments (i.e., mean and standard deviation). To this end, at any iteration, we intend to ensure
that the mean and standard deviation of the embeddings of the reference set match the mean and standard
deviation of the embeddings of the dataset at that iteration.

3.1 Cross Batch Normalization (XBN)

In this section, we outline our algorithm with a simplifying assumption that the minibatch statistics match
the statistics of the dataset. In the subsequent section, we discuss an approach to circumvent this assumption.

Since we only have access to a minibatch of data at each iteration, we simply adapt the embeddings of the
reference set to have the mean and standard deviation of the embeddings of the current minibatch. Suppose
E[·] and σ[·] denote the mean and standard deviation of the embeddings, then Cross Batch Normalization
(xbn) can be written as:

ẑk =
zk − E

[
R̄k

]
σ

[
R̄k

] σ
[
B̄k

]
+ E

[
B̄k

]
, for each (zk, y) ∈ R̄k . (6)

Here, the division and multiplication are performed elementwise. After the adaptation, the current batch
embeddings are added to the cross batch memory and the combined set is used as the reference set to compute
the metric learning loss. This updated reference set is stored in memory and used in the subsequent iteration,
ensuring that at every iteration, the cross batch memory is only an iteration behind the current batch.

Note that, this is just one additional line to the xbm code, but as can be seen in the experiments, it improves
the results significantly.

3.1.1 Justification for XBN

Let z = fw(x) and z′ = fw′(x) be two embeddings for the same image x computed using different parameters
of the model, w and w′, respectively. Assume that z′ = g(z) for some unknown function g := fw′ ◦ f−1

w .3 We
can approximate z′ by the first-order Taylor expansion of g around an arbitrary point z0 as follows:

z′ ≈ g(z0) +∇g(z0)T (z− z0) , (7)
= Az + b .

To estimate coefficients A and b we need quantities that can be estimated independently from either the
minibatch or the cross batch memory. By the method of moments (Casella & Berger (2021)),

µ′ = E[z′] = E[Az + b] = Aµ + b , (8)
Σ′ = E

[
(z′ − µ′)(z′ − µ′)T

]
= E

[
A(z− µ)(z− µ)T AT

]
= AΣAT . (9)

Here, µ and Σ denote the mean and the covariance and the expectations are taken over samples drawn from
the same distribution. However, in practice, we estimate µ and Σ from the reference set R̄k, and µ′ and Σ′

from the minibatch B̄k, at each iteration k. Solving for A and b we have,

A =
(
Σ′Σ−1) 1

2 , (10)

b = µ′ −
(
Σ′Σ−1) 1

2 µ . (11)

Assuming independence in components of z we can consider scalar equations:

z′
j = Ajj zj + bj =

σ′
j

σj
zj + µ′

j −
σ′

j

σj
µj = σ′

j

zj − µj

σj
+ µ′

j , (12)

3The function g may not actually exist if f is not injective, which is typically the case. Nevertheless, we can still estimate the
approximation to a notional g.
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where σj := Σ
1
2
jj is the standard deviation. This is same as our adaptation formula (Eq. (6)). Here, we are

taking a linear approximation of the transformation function g. Nevertheless, higher-order Taylor series
expansions, requiring higher-order moments to be calculated, may give better results with increased complexity,
but we do not consider that direction further in this paper.

3.2 Adaptive Cross Batch Normalization (AXBN)

Note that, we intend to circumvent the representational drift by adapting the statistics of the reference set
to match the statistics of the dataset at each iteration. Since we only have access to a minibatch of data
at each iteration, we only have a noisy estimation of the dataset statistics. Therefore, we adopt a Bayesian
framework to model the process of estimating dataset statistics from minibatches. With the dataset statistics
in hand, we can simply transform the reference set embeddings to match the estimated dataset statistics.

3.2.1 Kalman Filter based Estimation of Dataset Statistics

The Kalman filter is a special case of recursive Bayesian filter where the probability distributions are assumed
to be Gaussians (Kalman (1960); Roweis & Ghahramani (1999)). To this end, we first briefly review Bayesian
filtering and then turn to the Kalman filter.

Recursive Bayesian Filter. Let u be the random variable correspond to a dataset statistic (e.g., mean or
standard deviation of the embeddings) that we want to estimate and v be that statistic computed using the
minibatch of data. Bayesian filtering assumes the Markovian property where the probability of the current
state given the previous state is conditionally independent of the other earlier states (Chen et al. (2003)).
With this assumption, let p(uk | u0:k−1) = p(uk | uk−1) be the process noise distribution and p(vk | uk) be
the measurement noise distribution at iteration k. Since u is hidden and we only get to observe v, one can
estimate the dataset statistic at iteration k given the past observations as:

p(uk | v1:k−1) =
∫

p(uk | uk−1)p(uk−1 | v1:k−1)duk−1 . (13)

Now, with the current observation vk the updated estimation becomes:

p(uk | v1:k) = p(vk | uk)p(uk | v1:k−1)
p(vk | v1:k−1) . (14)

Once p(uk | v1:k) is estimated, the mean of the distribution can be taken as the estimated value. This is a
general form of Bayesian filtering and depending on the application, certain assumptions have to be made
(e.g., the type of probability distributions, their initial values, etc.)

Kalman Filter. As noted earlier, the Kalman filter (Kalman (1960)) assumes the distributions are Gaussians
and for simplicity we assume a static state model. Let us consider the case where we estimate the mean of the
embeddings of the dataset at iteration k. Then uk, vk ∈ Rd. Let ûk be the estimate of uk and Q, R, P ∈ Rd×d

be the process covariance, the measurement covariance and the estimation covariance, respectively. Now, the
distributions used in Eq. (14) take the following forms:

p(uk | uk−1) = N (uk−1, Qk) , (15)
p(vk | uk) = N (uk, Rk) , (16)

p(uk−1 | v1:k−1) = N (ûk−1, Pk−1) , (17)

where N (µ, Σ) denotes the multi-variate Gaussian distribution. The Kalman filtering steps are then:

ûk,k−1 = ûk−1 , predicted state estimate (18)
Pk,k−1 = Pk−1 + Qk , predicted variance estimate (19)

Kk = Pk,k−1(Pk,k−1 + Rk)−1 , Kalman gain (20)
ûk = ûk,k−1 + Kk(vk − ûk,k−1) , updated state estimate (21)
Pk = (I−Kk)Pk,k−1 . updated variance estimate (22)
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Here, ûk,k−1 and Pk,k−1 denote the intermediate state and noise variance estimates. In our approach, we
assume that the dimensions are independent so that Q, R, and P are diagonal matrices (and each dimension
can be processed independently), which has computational advantages for high dimensional spaces.

For our estimation model, we need to initialize the estimation variance P and most importantly the
process noise Q and measurement noise R needs to be identified. Even though there are some heuristic
approaches to estimate these noise covariances (Odelson et al. (2006)), for simplicity, we treat them as
constant hyperparameters in our implementation and use the same hyperparameter value for all dimensions
to limit the number of hyperparameters. In summary, there are three hyperparameters p0, q, and r, where
P0 = po I, Qk = q I and Rk = r I.

It is known that the initial estimation variance p0 is not important as the Kalman filter converges quickly.
Moreover, for scalar systems, it can be shown that the static system depends on λ = r/q (Formentin & Bittanti
(2014)). Therefore, essentially there is only one hyperparameter to be tuned. In our case, measurement noise
is inversely proportional to the minibatch size. Therefore, we use r/|Bk| as the measurement noise, tune
r only, and the same value can be used with different minibatch sizes. Note that, when the measurement
noise is assumed to be zero (r = 0), this process specializes to directly using the minibatch statistics (refer to
Section 3.1). Our final update in its simplest form is provided in Appendix E.

3.2.2 Adaptation

Suppose µ̂k and σ̂k be the estimated mean and variance of the dataset at iteration k from the Kalman filter.
Then the adaptation can be written as:

ẑk =
zk − E

[
R̄k

]
σ

[
R̄k

] σ̂k + µ̂k , for each (zk, y) ∈ R̄k , (23)

where E
[
R̄k

]
and σ

[
R̄k

]
denote the mean and standard deviation of embeddings in the reference set. After

the adaptation, the current batch embeddings are added to the cross batch memory and the combined set is
used as the reference set to compute the metric learning loss.

We would like to emphasize that our approach does not add any overhead to the memory and computational
requirements of the xbm method. Furthermore, our adaptation is a simple change to the xbm code which
results in significant performance improvements.

4 Related Work
Metric Learning Methods. Recent advances in metric learning are mostly on improving the effectiveness
of learning by modifying the loss function and/or the example mining strategy. Based on how embeddings of
different instances are compared against each other, the loss functions can be broadly categorized into 1)
pair/triplet based approaches (Chopra et al. (2005); Schroff et al. (2015); Sohn (2016); Wang et al. (2019);
Khosla et al. (2020)), 2) methods that directly optimize average precision (Cakir et al. (2019); Brown et al.
(2020)), and 3) proxy-based losses (Movshovitz-Attias et al. (2017); Qian et al. (2019); Kim et al. (2020)). It
is worth noting that the differences in these loss functions impact the learning effectiveness, however, they
are theoretically equivalent.

Apart from the loss, example mining strategy is important to ensure that the deep learning model focuses more
on the informative examples. In addition to the popular (semi)-hard mining, there are many sophisticated
strategies have been developed recently (Hermans et al. (2017); Harwood et al. (2017); Suh et al. (2019);
Wang et al. (2019)). We only mentioned a few works here and we refer the interested reader to (Musgrave
et al. (2020a;b)) for a comprehensive list of metric learning losses and example mining strategies.

In contrast to these works, we focus on expanding the reference set which allows us to compare more examples
across minibatches while benefiting from these recent advances.

Using External Memory. Using external memory in metric learning is not new (Vinyals et al. (2016); Li
et al. (2019); Zhong et al. (2019); Wang et al. (2020)). However, an important distinction is that we use an
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external memory to expand the reference set and ensure that those embeddings are kept up to date so that they
can be used for effective learning. Similarly, in self-supervised learning, Momentum Contrast (MoCo) (He
et al. (2020)) uses an external memory along with a separate encoding network to compute the features and
uses momentum based updates to ensure slow-drift of encoder parameters. Another conceptually similar
approach is cross iteration batch normalization (Yao et al. (2021); Ioffe & Szegedy (2015)), which estimates
minibatch statistics across training iterations using first order information. In contrast to both of these
methods, we simply store the feature embeddings at each iteration and directly tackle the representational
drift by adapting the distribution parameters for effective metric learning.

5 Experiments

We first describe the experimental setup and the datasets and then discuss the results.

5.1 Experimental Setup

We follow the standard approach and use an ImageNet (Russakovsky et al. (2015)) pretrained ResNet-
50 (He et al. (2016)) backbone and set the embedding dimension d to 512. ResNet-50 architecture is used
as is and therefore batch normalization (Ioffe & Szegedy (2015)) layers are enabled. We implemented
our code in the PyTorch framework (Paszke et al. (2019)) and made use of the Pytorch Image Models
(timm) (Wightman (2019)) library for training pipline including data augmentations and pretrained weights.
For metric learning specific components including the implementation of xbm, we used the Pytorch Metric
Learning (pml) (Musgrave et al. (2020b)) library.

For all experiments we use the supervised contrastive loss (Khosla et al. (2020)) with a pair margin miner, where
the default values are used, i.e., pos_margin=0.2 and neg_margin=0.8 (Musgrave et al. (2020b)). Default
data augmentations in the timm library are used along with RandAugment (Cubuk et al. (2020)) profile rand-
m9-mstd0.5, reprob is set to 0.2 and mixed precision training. The embeddings are L2-normalized and cosine
similarity is used as the distance metric for training and evaluation. We used AdamW optimizer (Loshchilov
& Hutter (2017)) with initial learning rate 0.0001 and the learning rate is multiplied by 0.33 at every 15
epochs. We train for a total of 50 epochs and the best model with respect to Recall@1 on the validation set is
selected. We used a custom sampler to ensure that there are four images per class in each minibatch.

To ensure that the feature embeddings are stable, for all methods, we employ a pre-warmup stage to finetune
the randomly initialized last layer4 which projects the backbone features to a 512 dimensional embedding.
Specifically, we finetune this layer for 2 epochs with the standard supervised constrastive loss. For this stage,
sgd with the learning rate of 0.001 is used.

For our axbn method, the noise hyperparameters are set as follows: q = 1, p0 = 1, and r = 0.01. We did a
small grid search on the sop dataset for batch size 64 to obtain r and other parameters are not tuned. The
same value of r is used for all datasets and all batch sizes. In addition to this, we also tune the interval at
which to update the Kalman gain (Eq. (20)). We found the value 100 to work well for sop and In-shop,
and the value 10 is used for DeepFashion2. While it may possible to tune these hyperparameters for each
setting individually to squeeze out a bit more performance, we did not do that in our experiments. All our
experiments are performed on a V100 gpu in the aws cloud.

As noted earlier, our technique is a simple modification to the xbm approach and we implemented it as a
custom loss in the pml library. Our code will be released upon publication.

5.2 Datasets

We evaluated on three large-scale datasets for few-shot image retrieval following the standard protocol.

Stanford Online Products. Stanford Online Products (sop) (Oh Song et al. (2016)) contains 120,053
online product images in 22,634 categories. There are only 2 to 10 images for each category. Following (Oh Song

4Note that the rest of the network is pretrained on ImageNet.
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Figure 1: Top: Recall@1 vs. batch size where cross batch memory size is fixed to 50% (sop and In-shop) or
100% (DeepFashion2) of the training set. Bottom: Recall@1 vs. cross batch memory size with batch size is
set to 64. In all cases, our algorithms significantly outperform xbm and the adaptive version is better than
the simpler xbn method especially for smaller batch sizes.

Algorithm sop In-shop DeepFashion2
Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10

No-xbm 75.94 ± 0.03 89.74 ± 0.05 88.76 ± 0.15 97.76 ± 0.13 36.45 ± 0.06 61.44 ± 0.31
xbm 76.80 ± 2.65 89.34 ± 1.90 86.17 ± 0.18 96.58 ± 0.28 41.22 ± 2.96 62.24 ± 3.54

O
ur

s xbn 80.62 ± 0.17 91.85 ± 0.11 91.49 ± 0.07 98.31 ± 0.10 45.12 ± 0.08 66.32 ± 0.17
axbn 80.73 ± 0.30 91.98 ± 0.15 91.51 ± 0.20 98.35 ± 0.09 45.33 ± 0.28 66.26 ± 0.63

Table 1: Summary of results for a particular setting where batch size is 64 and the cross batch memory size
is 50% (sop and In-shop) or 100% (DeepFashion2) of the training set. The experiments are repeated
three times and the mean and standard deviation are reported. Best numbers are in bold and the second
best numbers are underlined. In all cases, our methods significantly outperform xbm. The larger standard
deviations for xbm indicate its training instability.

et al. (2016)), we use 59,551 images (11,318 classes) for training, and 60,502 images (11,316 classes) for
testing.

In-shop Clothes Retrieval. In-shop Clothes Retrieval (In-shop) (Liu et al. (2016)) contains 72,712
clothing images of 7,986 classes. Following (Liu et al. (2016)), we use 3,997 classes with 25,882 images as the
training set. The test set is partitioned to a query set with 14,218 images of 3,985 classes, and a gallery set
having 3,985 classes with 12,612 images.

Deep Fashion 2. Deep Fashion 2 (DeepFashion2) (Ge et al. (2019)) consumer to shop retrieval dataset
contains 217,778 cloth bounding boxes that have valid consumer to shop pairs. We use ground truth bounding
boxes in training and testing. We follow the evaluation protocol described in (Ge et al. (2019)) and use the
validation set for evaluation. It has 36,961 items in the gallery set and 12,377 items in the query set. We
consider a pair is unique if the pair_id, category_id, and style match, following the original paper. To this
end, there are about 31,517 unique labels in the training set, 7,059 labels in the gallery set, and 3,128 labels
in the query set. Note that, in contrast to the other two datasets, DeepFashion2 is much larger and there is
a domain gap between the images in query and gallery sets.
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Algorithm sop In-shop
Recall@1 Recall@10 Recall@1 Recall@10

No-xbm 75.94 ± 0.03 89.74 ± 0.05 88.76 ± 0.15 97.76 ± 0.13
No-xbm512 79.63 ± 0.13 91.76 ± 0.02 90.39 ± 0.01 98.18 ± 0.03
xbm 76.80 ± 2.65 89.34 ± 1.90 86.17 ± 0.18 96.58 ± 0.28
xbm* 79.53 ± 0.09 91.64 ± 0.01 90.91 ± 0.10 98.20 ± 0.03

O
ur

s xbn 80.62 ± 0.17 91.85 ± 0.11 91.49 ± 0.07 98.31 ± 0.10
axbn 80.73 ± 0.30 91.98 ± 0.15 91.51 ± 0.20 98.35 ± 0.09

Table 2: Additional comparisons on smaller datasets where batch size is 64 and memory size is 50% of the
training set. Here, No-xbm512 denotes No-xbm with batch size 512 and xbm* denotes adding the loss on the
minibatch to the xbm loss to stabilize training. The experiments are repeated three times and the mean and
standard deviation are reported. Best numbers are in bold and the second best numbers are underlined. In all
cases, our methods clearly outperform both versions of xbm.

5.3 Results

Following the paradigm of Musgrave et al. (2020a), we compare our approach against the original xbm method
and the one without any cross batch memory while keeping everything else the same for fair comparison. In
this way, we can clearly demonstrate the benefits of expanding the reference set (i.e., cross batch memory)
and adapting it to ensure that it is up to date.

In Fig. 1, we plot the performance of different methods by varying the batch size and varying the cross batch
memory size. We can clearly see that our methods significantly outperform xbm in all cases, validating our
hypothesis that it is important to ensure that the reference set embeddings are up to date. Furthermore,
while our simpler xbn method is powerful, our adaptive method yields slightly better performance for the
smaller minibatches where the sampling noise is higher.

In Table 1, we summarise results for a particular setting with batch size 64 and reference set size is 50%
of the training set for sop and In-shop and 100% for DeepFashion2. We repeat the experiments three
times and report the mean and standard deviation of the results. In all cases, our methods significantly
outperform xbm, confirming the merits of tackling representational drift. Furthermore, the xbm results have
large standard deviations for repeated experiments, which we believe indicates its training instability due to
outdated embeddings.

5.3.1 Additional Comparisons
On the smaller sop and In-shop datasets we perform further experiments to understand the benefits of a
larger and up to date reference set. To this end, in Table 2 we provide the results of No-xbm version with a
larger minibatch size. Even with the 8× larger minibatch, the performance is worse than our approach. Note
that, larger minibatch size significantly increases the required gpu memory, whereas storing the embeddings
adds little overhead (Wang et al. (2020)).

Furthermore, we include the performance of a modified xbm method where the xbm loss is summed with
the loss on the minibatch to stabilize training. This is a trick used in the original xbm code5 but was not
mentioned in the paper. While this helps the xbm performance, it is still worse than both of our methods.
Clearly this trick diminishes the value of using a larger reference set and confirms our hypothesis that it is
necessary to ensure that the reference set embeddings are up to date.

In the plots and table above, xbm is sometimes worse than not using the cross batch memory. We believe this
is due to outdated embeddings providing inaccurate supervision signal. Note that, when the loss on minibatch
is added to the xbm loss, performance improves and the standard deviation of repeated experiments decreases.
For our methods, we did not observe any improvements when adding the minibatch loss.

More experiments comparing other normalization techniques and feature drift diagnostics are provided in the
appendix.

5https://github.com/msight-tech/research-xbm

9

https://github.com/msight-tech/research-xbm


Under review as submission to TMLR

6 Discussion
In this paper, we have introduced an efficient approach that adapts the embeddings in the cross batch memory
to tackle representational drift. This enables us to effectively expand the reference set to be as large as the
full training set without significant memory overhead. Our simple xbn approach significantly outperforms
the standard xbm method, demonstrating the significance of ensuring that the reference set embeddings are
up to date. Furthermore, we introduced an adaptive version (named axbn) which uses Kalman filter to
model the noisy estimation process, performs slightly better than the simpler xbn method for smaller batch
sizes. We believe our technique will become part of the toolset for metric learning due to its simplicity and
effectiveness. Indeed, other applications where accumulation of examples of many minibatches is needed may
also benefit from our approach.

6.1 Limitations and Societal Impact

In our xbn method, we only consider a linear transformation function to tackle representational drift.
Nevertheless, as noted earlier, it is possible to incorporate higher-order terms and/or cross-correlation among
the elements of the embeddings. Additionally, in our axbn method, it is not clear how to choose the Kalman
filter noise variances as they are problem dependent. Currently we treat them as hyperparameters. However,
it would be interesting to come up with an automatic mechanism to obtain these variances depending on the
dataset and architecture. We also made some simplifying assumptions for this method such as independence
among the dimensions for computational benefits. While our resulting method works well in our experiments,
the full potential of our approach may be limited due to these assumptions.

Our method focuses on improving the learning effectiveness in metric learning by ensuring the cross batch
memory embeddings are up to date. As with any method that optimises for performance on the training
data, our method may amplify dataset bias, however, methods that combat dataset bias may also benefit
from the better training signal. Overall, our method may contribute to the societal impact of deep metric
learning, both positive and negative.
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Algorithm L2 + BN L2 + MBN L2 + LN L2
Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10

No-xbm 48.96 65.06 48.96 65.06 75.77 89.54 75.94 89.74
xbm 48.96 65.06 48.96 65.06 79.51 91.17 76.80 89.34

xbn 48.96 65.06 48.96 65.06 80.58 91.77 80.62 91.85

Table 3: Experiments with BN, MBN, and LN for emebedding normalization and compared against our
method on the sop dataset. While networks with BN and MBN yield poor results, LN improves over the
standard xbm method. Nevertheless, our approach (xbn) improves further and the best performance of our
method is attained when only L2 is used for embedding normalization. Note, the best results for BN and
MBN are achieved during the warmup stage and hence identical.

Algorithm CIFAR-10 CIFAR-100

MoCo 82.96 56.02
MoCo+xbn 83.22 55.90

Figure 2: MoCo with and without our xbn approach. The left two figures show the the training curves for
the first 50 epochs and the right table shows the final k-NN accuracy after 200 epochs. xbn clearly improves
the training of MoCo early in the training demonstrating the benefit of adapting stored embeddings even when
a momentum encoder is used.

Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua, and Lei Zhang. Momentum batch normalization
for deep learning with small batch size. In European Conference on Computer Vision, pp. 224–240. Springer,
2020.

Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and Yi Yang. Invariance matters: Exemplar memory
for domain adaptive person re-identification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 598–607, 2019.

A Comparison to other Normalizations

We experiment with Batch Normalization (BN) (Ioffe & Szegedy (2015)), Momentum Batch Normalization
(MBN) (Yong et al. (2020)), and Layer Normalization (LN) (Ba et al. (2016)) to normalize the feature
embeddings and the results on the sop dataset with batch size 64 are reported in Table 3. Here, the
nomalization approach is preceded by L2 normalization to mimic the protocol of our approach. For BN and
MBN the best validation performance is obtained during the warmup stage and we found the networks with
BN/MBN for embedding normalization untrainable. While networks with BN and MBN yield poor results,
LN improves over the standard xbm method. Nevertheless, our approach (xbn) improves further and the
best performance of our method is attained when neither BN nor LN is used for embedding normalization.

Even though we are unaware of any work that used BN to normalize feature embeddings, we used BN
for embedding normalization in various settings (with/without L2 normalization, freezing/not freezing BN
parameters, and with/without tracking running statistics) and the resulting networks were untrainable for a
range of learning rates and attained poor results. We hypothesize that BN is not designed to be used for
embedding normalization and it would require deeper analysis and modifications to it if one wants to use it.
Similar behaviour is observed even for MBN where we used the recommended hyperparameters and tested
with two batch sizes: 64 (with m0 = 128) and 16 (with m0 = 32). In both the settings the behaviour is
similar to BN.
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Figure 3: Maximum and mean feature drift on a minibatch of samples on the sop dataset for xbm and our
xbn method, and the corresponding performance on the validation set. Our method has much smaller feature
drift for the most part of the training compared to xbm and yields improved performance on the validation set.

B MoCo with XBN

MoCo He et al. (2020) is a self-supervised learning approach that uses an external memory similar to xbm
and uses a momentum based encoder to handle representational drift. To understand if our approach is
beneficial despite the presence of the momentum encoder, we experimented MoCo on CIFAR-10/100 datasets
with our xbn approach to adapt the stored embeddings. Specifically, we followed the MoCo example provided
in pml6 including all hyperparameter values except the batch size, which is set 128.

As shown in Fig. 2, our approach indeed improves the training of MoCo especially early in the training (e.g.,
∼ 4% improvement at epoch 15 for both datasets) where features are adapted quickly. Note this improvement
is on top of the momentum encoder where the momentum parameter is set to 0.99. Even though the gap is
reduced towards the end of training, this clearly demonstrates the benefits of our approach outside of metric
learning.

C Feature Drift Diagnostics

We measure feature drift (refer to Eq. (5)) for xbm and our xbn method for the sop dataset in Fig. 3. We
fix ∆k = 1 and measure the drift on a minibatch of training samples with batch size 64. The maximum or
mean drift is computed on the minibatch and the respective quantities are averaged over the epoch. Our
method has much smaller feature drift for the most part of the training compared to xbm and yields improved
performance on the validation set.

Note that, xbm* also reduces feature drift similar to our method, however, its performance is inferior to our
approach as reported in Table 2 and Fig. 3. We hypothesize that, even though xbm* shows slow-drift, adding
minibatch loss diminishes the value of using a larger reference set, leading to inferior performance.

As opposed to our approach which directly tackles feature drift, the slow-drift phenomenon is emergent for
xbm* (also for No-xbm as shown in Wang et al. (2020)), and the reason is not well understood. We believe
relying on a principled approach to handle feature drift is valuable and as shown in the experiments our
approach yields superior performance.

D Large Model Experiments

All the experiments in the main paper are provided with ResNet-50 architecture. Here, we experiment
with much larger SwinTransformer (Liu et al. (2021)). Similar to other experiments in the paper ImageNet
pretrained weights are used to initialize the network. The results are provided in Table 4. The behaviour is
similar to ResNet-50 and our approaches clearly outperform the original xbm. However, even with small batch
sizes the improvement due to the adaptive version is marginal. We hypothesize that these large models are

6https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/MoCoCIFAR10.ipynb
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Algorithm 1 axbn update at iteration k

Require: R̄k−1, B̄k, µ̂k−1, σ̂k−1, Kk−1, pk−1, q, r ▷ Reference set, current batch, and state variables
Ensure: R̄k, µ̂k, σ̂k, Kk, pk ▷ Updated reference set and state variables

1: pk,k−1 ← pk−1 + q ▷ Predicted noise estimate
2: Kk ← pk,k−1/ (pk,k−1 + r) ▷ Kalman gain
3: pk ← (1−Kk) pk,k−1 ▷ Updated noise estimate
4: µ̂k ← µ̂k−1 + Kk

(
E

[
B̄k

]
− µ̂k−1

)
▷ Mean estimate

5: σ̂k ← σ̂k−1 + Kk

(
σ

[
B̄k

]
− σ̂k−1

)
▷ Variance estimate

6: zk ←
(
zk−1 − E

[
R̄k−1])

σ̂k/σ
[
R̄k−1]

+ µ̂k , for each (zk−1, y) ∈ R̄k−1 ▷ Normalization
7: R̄k ← {(zk, y)} ▷ Store the updated reference set

Algorithm Batch size = 16 Batch size = 32
Recall@1 Recall@10 Recall@1 Recall@10

No-xbm 77.80 90.70 81.81 92.91
xbm 61.18 76.95 86.99 95.39

O
ur

s xbn 86.25 94.89 87.59 95.57
axbn 86.40 94.96 87.74 95.66

Table 4: SwinTransformer results on the sop dataset with batch size 16 and 32. As expected, in both cases
our approaches clearly outperform xbm and our adaptive version axbn is slightly better than the simple xbn
method.

stable pretrained models and therefore the noise in minibatch based feature statistics is small, and Kalman
filter based noise estimation does not improve significantly.

E More on the AXBN Method

Since we have made several simplifying assumptions to the Kalman filter based noise estimation, we provide
the update in its simplest form in Algorithm 1.

Note that, Exponential Moving Average (ema) can be thought of as a special case of our final axbn approach
where the Kalman gain is replaced with a constant throughout training. To this end, we perform an experiment
with ema on the sop dataset with batch size 64 using ResNet-50 architecture. We varied the momentum
parameter within the range {0.1, 0.2, ..., 0.9} (where 0 corresponds to xbn) and the best performance is
obtained when the momentum parameter is 0.1. The results are reported in Table 5.

Algorithm sop
Recall@1 Recall@10

xbn 80.62 91.85
xbn+ema 80.48 91.95
axbn 80.73 91.98

Table 5: Results with ema version of our approach. The results are competitive to both of our methods but
estimating the Kalman gain performs slightly better.

As discussed in Section 5.3, the AXBN approach is useful when the sampling noise due to minibatches is high.
There are two factors that affect the sampling noise: 1) minibatch size, and 2) the stability of the embedding
network. The adaptive method may not be necessary when one has a stable embedding network (a network
that shows slow feature-drift) and/or the minibatch size is large.
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Algorithm sop
Recall@1 Recall@10

No-xbm 78.69 91.21
xbm 78.38 90.39

O
ur

s xbn 79.96 91.02
axbn 80.31 91.31

Table 6: Results with batch size 256. The gap between different methods decreased compared to smaller batch
sizes.

F Larger Batch Sizes

We performed an experiment with batch size 256 on the sop dataset (maximum batch size allowed by our
A10G gpu with 25GB memory) and the results are reported in Table 6. From these results and Fig. 1 top-row
in the main paper, one may extrapolate that larger batch sizes tend to lead to smaller gap between the
methods. This is expected as when the batch size is large enough, cross batch memory may not be required.

Nevertheless, the point of our paper is not about when to use cross batch memory (which has already been
established in (Wang et al. (2020))), rather in cases where cross batch memory is relevant, our approach is
the most effective way to use it.
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