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Abstract
Understanding and mitigating the potential risks associated with large language
models (LLMs) hinges on the development of effective interpretability methods.
Sparse Autoencoders (SAEs) have emerged as a promising tool for disentangling
LLM representations, but they often struggle to capture rare, yet crucial, features,
especially those relevant to safety. We introduce Specialized Sparse Autoencoders
(SSAEs), a novel approach designed to illuminate these elusive “dark matter” fea-
tures by focusing on specific subdomains. We present a practical recipe for training
SSAEs, demonstrating the efficacy of Dense retrieval for data selection and the
benefits of Tilted Empirical Risk Minimization (TERM) as a training objective. We
evaluate SSAEs on standard metrics, such as downstream perplexity and L0 spar-
sity, and find that they effectively capture subdomain tail concepts, exceeding the
capabilities of general-purpose SAEs. Furthermore, TERM-trained SSAEs yield
more interpretable features, as evidenced by our automated evaluation using LLMs
to generate and assess feature explanations. SSAEs, particularly those trained with
TERM, provide a powerful new lens for peering into the inner workings of LLMs
in subdomains and hold significant promise for enhancing AI safety research.

1 Introduction

Interpretability is crucial for ensuring the safety and reliability of large language models (LLMs).
Sparse Autoencoders (SAEs) have emerged as a promising tool for disentangling the complex,
high-dimensional representations within LLMs into meaningful, interpretable features [9, 13, 7, 8].
However, recent work [29] suggests that even massively wide SAEs, trained on vast amounts of data,
may only be scratching the surface in terms of capturing the full spectrum of concepts present in these
model representations. A significant portion of rare or highly specific concepts remain essentially
invisible due to their infrequent activation. These elusive features, akin to “dark matter” in the universe
of interpretability, pose a significant challenge for understanding and mitigating potential risks
associated with LLMs. While larger SAEs did exhibit some features for rarer concepts, the researchers
found compelling evidence suggesting a vast amount of “dark matter” features were still being missed.
For example, they found features for some of San Francisco’s neighborhoods, but their model still
lacked features for smaller entities like coffee shops or street intersections. They observed that if a
concept is present only once every billion tokens, we may need a billion-feature SAE to capture it
reliably. This raises a critical question: can we develop more efficient methods than simply scaling
SAE width to capture the tail concepts we are interested in, particularly those relevant to safety?
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This paper introduces Specialized Sparse Autoencoders (SSAEs), a novel approach designed to ad-
dress this challenge. Instead of aiming to capture all concepts, as in current SAE practices, we propose
SSAEs as a more targeted method for efficiently extracting rare features related to specific subdomains,
especially those crucial for safety analyses. We show that by focusing on a particular subdomain,
we can train SSAEs to learn features representing tail concepts without needing to scale to billions of
features. Furthermore, instead of relying solely on scaling, we investigate whether Tilted Empirical
Risk Minimization (TERM), which approximates minimax risk at large tilt parameters, can further
improve the representation of tail concepts within SSAEs. Our primary contributions are threefold:

1. Specialized Sparse Autoencoders: We introduce SSAEs, a new approach for training SAEs
specifically designed to capture tail concepts within a given subdomain. We demonstrate
empirically that SSAEs capture a greater proportion of tail concepts compared to standard SAEs
trained on general-purpose data.

2. Subdomain Data Selection Strategies: We present a practical recipe for training SSAEs, starting
with a small seed dataset and leveraging various data selection strategies to identify relevant
training data from the LLM’s pretraining corpus. Our investigation reveals that Dense retrieval
is a particularly effective strategy, while TracIn reranking can offer further improvements.

3. Tilted Empirical Risk Minimization for SAEs: We propose Tilted Empirical Risk Minimization
(TERM) as a novel training objective for SAEs. At large tilt values, TERM encourages a more
balanced learning of both head and tail concepts. We show that TERM leads to more interpretable
features, while maintaining comparable downstream perplexity performance to ERM-trained SAEs.

We envision SSAEs serving as versatile concept detectors within various AI safety applications.
They can be used to identify and analyze rare, potentially dangerous concepts, such as those
related to deception or harmful biases. Additionally, SSAEs could be employed to unlearn specific
concepts from a model or integrated with other SAEs in a mixture-of-experts fashion to achieve
more comprehensive interpretability.

2 Methodology

2.1 Sparse Autoencoders (SAE)

The superposition hypothesis in LLMs suggests that a limited number of neurons encode a much
larger number of concepts, leading to complex and overlapping representations [12]. Superposition,
while efficient, makes it challenging to interpret individual neuron representations or directions
in representation space. Sparse autoencoders (SAEs) offer a potential solution by learning to
reconstruct LLM representations at a layer using a sparse set of features in a higher-dimensional
space, potentially disentangling superposed features and revealing more interpretable representations
[11, 22]. In a well-trained SAE, individual features in the hidden dimension align with underlying
sparse, semantically meaningful features [10].

SAEs decompose a model’s activation x ∈ Rn into a sparse, linear combination of feature directions:
x ≈ x0 +

∑M
i=1 fi(x)di, where di are M ≫ n latent unit-norm feature directions, and the sparse

coefficients fi(x) ≥ 0 are the corresponding feature activations for x. The right-hand side of
this equation has the structure of an autoencoder: an input activation x is encoded into a (sparse)
feature activations vector f(x) ∈ RM , which is then linearly decoded to reconstruct x. We
parameterize a single-layer autoencoder (f, x̂) as follows: f(x) := ReLU(Wenc(x) + benc) and
x̂(f) := Wdecf + bdec where Wenc ∈ RM×n and Wdec ∈ Rn×M are the encoding and decoding
weight matrices, and benc ∈ RM and bdec ∈ Rn are the bias vectors. The training objective combines
a reconstruction loss and a sparsity penalty:

L(x) := ∥x− x̂(f(x))∥22 + λ∥f(x)∥1 (1)

where λ > 0 is a hyperparameter controlling the trade-off between reconstruction fidelity and
sparsity. We constrain the columns of Wdec to have unit norm during training [8].
In existing work, SAEs for LLMs are trained on the same large, general-purpose dataset used to
train the underlying language model [8, 9, 25, 13]. This approach ensures that the SAE captures
a wide array of concepts present in the general language domain. However, this can result in the SAE
learning features that are frequent in the pretraining data but miss concepts within specific domains
of interest, especially those that are rare by frequency in the pretraining data.
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2.2 Specialized Sparse Autoencoders (SSAE)

This work introduces Specialized Sparse Autoencoders (SSAEs), designed to learn features represent-
ing rare concepts within specific subdomains. Our approach begins with a small seed concept dataset,
comprising either a specific concept or limited data from the target subdomain (e.g., toxicity). We then
expand this seed dataset using a high-recall retrieval strategy that leverages the seed data to identify
and retrieve relevant examples from the LLM’s pretraining corpus. To create an SSAE, we finetune
a pretrained general-purpose SAE (GSAE) on this curated subdomain data using Equation 1. The
GSAE is initially trained to reconstruct activations on a large, general-purpose dataset, enabling it to
capture a broad range of concepts. Finetuning on the subdomain data allows the SAE to specialize and
learn features that may be infrequent in the general domain but prevalent within the target subdomain.

To evaluate the quality of the trained SAEs, we use two metrics: L0 and Perplexity with SAE [8]. L0

measures the sparsity of the SAE and is defined as the average number of active features on a given
input, i.e. Ex∼D∥f(x)∥0. Perplexity with SAE measures the reconstruction fidelity of the SAE and
is the average cross-entropy loss of the language model on an evaluation dataset, when the SAE’s
reconstructions are spliced into it. A better SAE recovers more of the base model’s performance. All
other things being equal, a better SAE needs fewer features (L0) to explain model performance on a
given datapoint. Unlike existing works that evaluate SAEs on subsampled training data, we evaluate
SSAE generalization using both in-distribution and out-of-distribution test sets drawn from the same
subdomain. This dual evaluation approach assesses the SSAE’s ability to both accurately capture
concepts within the specific training data distribution and generalize to unseen data, reflecting the
capability to learn broader subdomain concepts.
Specialization allows SSAEs to effectively uncover and interpret rare concepts that might be over-
looked by traditional SAEs trained solely on general-purpose data. Consequently, SSAEs provide
a valuable tool for detecting, understanding, and potentially mitigating risks associated with the
emergence of rare concepts within LLM representations.

2.3 Subdomain Data Selection Strategies

The effectiveness of SSAEs depends crucially on the quality and relevance of the selected subdomain
data used for finetuning. We study several data selection strategies, leveraging both sparse and dense
retrieval methods to identify data points from a larger corpus (the LLM’s pretraining data) that are
most relevant to the seed data:

Sparse Retrieval: Okapi BM25 [26], an advanced TF-IDF variant, ranks documents based on
relevance to a query, considering term frequency, inverse document frequency, and document length.
We use the seed dataset as a query to retrieve relevant documents from the larger corpus.

Dense Retrieval: Contriever [16], a dual-encoder based dense retriever, generates semantically
meaningful embeddings for queries and documents. We embed the seed dataset and candidate
documents, using cosine similarity to retrieve documents most similar to the seed concepts.

SAE TracIn: Training data Influence Score (TracIn) [24] quantifies the influence of training
examples on model predictions. We adapt TracIn to SAEs by calculating the dot product of the loss
gradients with respect to the training data and seed data: TracIn (z, z′) = ∇Lw (z) ·∇Lw (z′) where
z is a training data point, z′ is the seed dataset, w are the pretrained SAE weights, and Lw(·) is the
SAE loss (Equation 1). We identify influential data points from the larger corpus using a two-stage
approach: Initial Filtering with Sparse or Dense retrieval, followed by TracIn Reranking to select the
most influential data points for training the SSAE.

2.4 Refinement with Tilted Empirical Risk Minimization

Standard Empirical Risk Minimization (ERM) during finetuning tends to prioritize learning
features for the most frequent (“head”) concepts in the subdomain data. However, for safety
applications, capturing rare (“tail”) concepts is often crucial. To address this, we utilize Tilted
Empirical Risk Minimization (TERM) [21, 3]. TERM modifies the standard ERM objective by
introducing a tilt parameter (t) that controls the emphasis on different parts of the loss distribution:
L̃(t;w) = 1

t log
(

1
N

∑
i∈[N ] e

t·Lw(zi)
)

where Lw(zi) is the standard SAE loss for data point zi and
SAE parameters w.
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TERM generalizes ERM as the 0-tilted loss recovers the average loss, while it also recovers other
alternatives such as the max-loss (t → +∞) and min-loss (t → −∞). In this work we use large
tilt parameters (t ≫ 0) to effectively minimize the maximum loss, encouraging the model to learn
features that better represent the tail of the data distribution, including rare concepts. Incorporating
TERM during finetuning leads to a more balanced representation of both head and tail concepts
within the subdomain. We find that TERM can also lead to more compositional and interpretable
features. This is because, instead of creating many specific features for slightly different variations of
tail concepts, TERM can encourage the SAE to learn a smaller number of more general features that
capture the essence of these concepts.

3 Experiments And Results

3.1 Experimental Setup

We conduct our experiments using the publicly available pretrained Gemma-2b [28] residual stream
GSAE, specifically the ‘gemma-2b-res-jb’ checkpoint and the ‘blocks.12.hook_resid_post’ layer
[5]. These SAEs have a feature width of 16384 and were pretrained on OpenWebText (OWT) [14].
For plotting the Pareto front, we sweep over a range of 8 L1 penalty coefficients and choose the
best-performing model based on the validation split for each L1 value. The selected models are then
evaluated on the held-out test split.
All SAEs are trained using the Adam optimizer [19] with a learning rate of 5e-5. We employ a token
batch size of 4096 and shuffle the data within a batch buffer of size 4. We use a linear learning rate
decay schedule over the last 1000 steps. All experiments can be completed in under 12 hours using
four A6000 GPUs. We utilize the SAELens [6] library for our SAE training and analysis.

3.2 Data Selection Strategies

We evaluate the effectiveness of various data selection strategies for training SSAEs.
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Figure 1: Pareto curves for Physics SSAE trained with various data selection strategies as the sparsity
coefficient is varied on arXiv Physics test data. We plot (a) Perplexity with spliced in SAE relative to GSAE
(baseline) (b) Absolute Perplexity with the spliced in SSAE. Dense TracIn and BM25 TracIn achieve comparable
performance, performing slightly Dense retrieval, which in turn outperforms BM25 retrieval and OWT Baseline.
All curves are averages over three SAE training seeds.

SSAE for Physics We start with a seed concept dataset (Validation) consisting of 9.2K tokens
sampled from the arXiv Physics dataset [1]. We then employ three data selection strategies–Sparse
Retrieval, Dense Retrieval, and SAE TracIn to expand this seed dataset and retrieve 13.9M tokens from
the OWT. The SSAE is trained on this expended set by finetuning the GSAE for 1000 iterations. For
SAE TracIn, we first reduce the candidate pool to 1% of OWT using either BM25 or Dense retrieval.
Then, we rerank this filtered set using TracIn scores and select the most influential data points for
training the SSAE, referring to these methods as BM25 TracIn and Dense TracIn, respectively.
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We train an SSAE for each strategy and compare its performance to a baseline SAE finetuned on
the full OWT dataset (baseline) across various sparsity coefficients (λ). We evaluate the models on
two test splits: 4.8M tokens from the arXiv Physics dataset (in-distribution) and 700K tokens from
the Physics instruction tuning dataset [15](out-of-distribution). Testing on instruction data helps
measure whether the SAEs are overfitting to the specific template of the text as opposed to identifying
concepts. Figure 1 and 4 show the patched perplexity vs. L0 curves for these experiments.

We measure performance using area under the curve for a range of L0 from 60 to 140 i.e., a selection
strategy with lower perplexity when the SSAE is spliced in is better. Our findings indicate that Dense
TracIn and BM25 TracIn achieve comparable performance, surpassing Dense retrieval alone, which in
turn outperforms BM25 retrieval. Training on the full OWT dataset yields the lowest performance. We
observe: (a) Dense retrieval outperforms BM25. SSAEs trained on data selected with Dense Retriever
consistently achieve lower perplexity for a given L0 than those trained with BM25, both in and out
of distribution. (b) BM25 exhibits poor out-of-distribution generalization. While BM25 performs
reasonably well on the in-distribution test set, its performance degrades significantly on the out-of-
distribution test set. (c) Multiple passes on seed data (Validation) during SSAE training improves in-
distribution performance but degrade out-of-distribution performance. This suggests multiple passes
can overfit to the structure or template of the seed dataset. (d) While TracIn reranking after Dense
retrieval yields a marginal performance gain, Dense retrieval alone proves to be highly competitive.

SSAE for Toxicity We repeat the experiment using a seed concept dataset of 4072 tokens from the
Pile Toxicity dataset [20]. We retrieve 5.25M tokens from OWT using the same strategies as before
and train SSAEs on this data for 500 iterations. We then evaluate the models on a test split of 3.357M
tokens from the Pile Toxicity dataset (in-distribution).
Appendix Figure 5 displays the patched perplexity versus L0 curves for these experiments. The
results largely align with the physics experiment, with Dense retrieval outperforming BM25 and
TracIn offering a marginal improvement over Dense retrieval alone.

3.3 Specialized SAEs and Tail Concept Learning

(a) (b)

Figure 2: (a) Proportion of tokens with SAE features vs. Token frequency in Physics arXiv data. SSAE trained
with dense retrieval captures more tail tokens (concepts) in its features. (b) Cumulative proportion of tokens
with SAE features vs. cumulative percentage of tokens in Physics arXiv data, normalized per model so that the
cumulative proportion of tokens with features is 1 over the entire dataset. SSAE trained with dense retrieval and
larger tilt captures more tail tokens (concepts) in its features.

In Figure 2(a), we leverage the unembedding matrix as a logit lens to analyze the top-10 token logits
associated with each SSAE feature [17]. For each frequency bucket in the Physics arXiv test data,
we calculate the percentage of tokens that appear among the top-10 logits for at least one feature.
This analysis allows us to assess the extent to which SSAE features represent tokens across different
frequency ranges. We compare two SSAEs at the same test L0 of 100: one finetuned on the full
OWT dataset and another finetuned using Dense retrieval. Our findings reveal that the Dense retrieval
finetuned SSAE captures a significantly higher proportion of tail tokens in its features compared to
the OWT finetuned SSAE. Moreover, these captured tail tokens often correspond to physics-specific
concepts, suggesting that SSAEs are indeed learning to represent rare, domain-relevant concepts.
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3.4 Can Tilted ERM further learn tail concepts?

(a) (b)

Figure 3: (a) Feature activation count vs. feature rank for SSAEs trained on the Physics arXiv dataset using
different strategies: full OWT, Dense retrieval, and Dense retrieval with tilt. Tilt encourages the learning of more
broadly activating features, indicating increased concept coverage and recall. (b) Automated interpretability:
F1 score distributions for feature activation prediction on the Physics arXiv dataset, based solely on LLM-
generated feature explanations. An LM is provided with examples that activate a feature and is asked to generate
an explanation. These explanations are then used to predict feature activations on new examples. Dense retrieval
with tilt yields explanations that are more predictive compared to the OWT baseline and Dense retrieval alone.

While standard ERM finetuning of SSAEs on Dense retrieval data improves tail concept coverage
compared to GSAEs, it still prioritizes learning head concepts. To address this and further enhance tail
concept representation, we investigate TERM. At high tilt parameters, TERM minimizes maximum
risk, encouraging the model to learn features that better capture the tail of the data distribution.

Figure 2(b) plots the cumulative proportion of tokens with SAE features (identified using the logit lens
approach [17]) versus the cumulative percentage of tokens in the Physics arXiv data. We normalize
the curves per model at a validation L0 of 100, ensuring that the cumulative proportion of tokens
with features reaches 1 over the entire dataset. Results show that SSAEs trained with Dense retrieval
and tilt capture a greater proportion of tail tokens compared to Dense retrieval alone, with the effect
increasing with tilt. Figure 7 presents the histogram of differences in feature activation counts for the
same features between SSAEs and the OWT baseline. Comparing SSAEs trained with Dense retrieval
and Dense retrieval with tilt, we observe that the tilted SSAE exhibits a greater shift towards higher ac-
tivation counts, indicating more pronounced learning of domain-specific features. Figure 3(a) further
analyzes feature activation by plotting feature activation count versus feature rank, demonstrating that
TERM encourages learning of more broadly activating features, suggesting increased concept cover-
age and recall. This represents a fundamentally different mechanism for feature learning compared to
standard ERM, promoting more compositional features that improve recall and capture tail features.

Capturing rare concepts is not synonymous with having rare features (i.e., features that only activate
on a few data points). Consider training an SAE with a single feature capacity on data representing
online gaming communication. Let’s define three concepts: “general trash talk” (frequent), “targeted
harassment” (less frequent), and “credible threats of violence” (rare). A GSAE would likely learn a
feature that fires predominantly for “trash talk” due to its prevalence, neglecting the more serious
“targeted harassment” and “credible threats”. An SSAE trained with standard ERM might exhibit
similar behavior. However, a tilted SSAE, by effectively minimizing the maximum risk, could learn a
single, more general feature representing “toxic behavior” that represents all three concepts more
equally. Tilted SSAEs can therefore improve concept coverage by mitigating the dominance of
frequent concepts and ensuring a more balanced representation that includes both common and rare,
but equally harmful, behaviors within a unified feature.

Figure 6 shows that TERM-finetuned SSAEs achieve comparable downstream perplexity to ERM-
trained SSAEs within a specific L0 regime (85-100). However, outside this range, our current
training methodology faces challenges in precisely controlling L0 using only the sparsity penalty,
potentially resulting in decreased performance or numerous inactive features. The effectiveness
of tilted ERM can be attributed to its connection to minimax losses, which improve robustness
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and out-of-distribution (OOD) generalization [30, 27]. By optimizing for the worst-case scenario,
minimax methods encourage learning of more invariant features that generalize better to unseen data.
We argue that interpretability, particularly for detecting rare safety-relevant features, is fundamentally
an OOD problem, as these features are often underrepresented in the training data.

3.5 Automated Interpretability

SAEs offer a framework for more interpretable representations, leading researchers to explore methods
for automatically interpreting the features they learn. Existing works [4, 29] have employed LLMs
like GPT-4 to generate neuron explanations based on strongly activating text, or analyze SAE features.

We employ a sequence-level classification task for interpretability evaluation [18]. Instead of pre-
dicting feature activation at each token, we task an LLM with identifying whether entire sequences
contain a given feature. This simplified task requires fewer few-shot examples, fewer input/output
tokens, and allows for the use of smaller, faster LLMs while maintaining reliable scores. We utilize
Claude 3.5 Sonnet [2] as both the Interpreter and the Predictor in our automated interpretability
framework. The Interpreter generates explanations for each feature based on the top 10 activating
examples (see Appendix E for examples). Subsequently, the Predictor receives these explanations
along with 5 examples drawn from the quintiles of the top activating examples (not used for explana-
tion generation) and 5 randomly selected non-activating examples. The Predictor is then tasked with
predicting whether each example activates the feature (see Appendix F for the LLM prompts). We
evaluate the interpretability of the explanations by measuring the F1 score between the Predictor’s
predictions and the true feature activations.

Figure 3(b) presents F1 score distributions for feature activation prediction on the Physics arXiv
dataset, based solely on LLM-generated explanations. Dense retrieval with tilt consistently achieves
higher F1 scores compared to both the OWT baseline and Dense retrieval alone, indicating that expla-
nations generated for these features are more effective in predicting activation on new examples. Inter-
estingly, while SSAEs with dense features demonstrated superior performance in terms of downstream
perplexity versus L0, their feature explanations were not necessarily more interpretable. This observa-
tion aligns with findings in existing work [23], that observed a decrease in interpretability (measured
by Pearson correlation) with increasing SAE width, attributed to the learning of fine-grained features
that are challenging to interpret. Since TERM tends to encourage the learning of coarser and more
compositional features, we find that the resulting explanations tend to be more readily interpretable.

4 Conclusion and Future Work

This work introduces SSAEs, a novel approach for interpreting rare, subdomain-specific features in
LLMs. SSAEs trained with Dense retrieval and TERM outperform standard SAEs in capturing tail
concepts, while also yielding more interpretable features. We believe SSAEs hold significant potential
for advancing AI safety by enabling the detection and analysis of potentially harmful or unexpected
LLM behaviors. Future work could investigate leveraging SSAEs for targeted concept unlearning.
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A Evaluating Specialized SAE for Physics on OOD data
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Figure 4: Pareto curves for SSAE trained with various data selection strategies as the sparsity coefficient is
varied on Physics instruction test data. We plot absolute perplexity with the spliced in SSAE. We find that both
BM25 retrieval and training on the validation data generalize poorly when tested out of domain.

B Specialized SAE for Toxicity
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Figure 5: Pareto curves for Toxicity SSAE trained with various data selection strategies as the sparsity coefficient
is varied on Pile toxicity test data. We plot (a) Perplexity with spliced in SAE relative to a GSAE (Baseline) (b)
Absolute Perplexity with the spliced in SSAE. Dense TracIn achieves the best performance, followed by Dense
retrieval, BM25 TracIn, BM25 and OWT baseline.

C Evaluating Tilted ERM SAE

Figure 6 evaluates SSAEs trained with Tilted ERM, displaying Pareto curves where the x-axis
represents L0 and the y-axis shows downstream perplexity with patched-in SAE.

D Relative Feature Activation Distribution

Figure 7 plots the histogram of differences in feature activation counts between specialized SSAEs
and the OWT baseline on the Physics arXiv dataset.

10



Figure 6: Pareto curves for SSAEs finetuned on the Physics arXiv dataset using different strategies: full
OpenWebText (OWT), Dense retrieval, and Dense retrieval with Tilted Empirical Risk Minimization (TERM,
tilt=500). TERM-finetuned SSAEs achieve competitive performance with Dense retrieval alone within the L0

range of 85-100. Outside this range, our current training methodology results in a high percentage of inactive
(dead) features.

Figure 7: Histogram of differences in feature activation counts for the same features between specialized
SSAEs and the OWT baseline on the Physics arXiv dataset. We compare SSAEs trained with Dense retrieval
(blue) and Dense retrieval with tilt (orange). Positive values indicate features activating on more data points
in the specialized models compared to the baseline, suggesting adaptation to the physics domain. The tilted
SSAE exhibits a greater shift towards higher activation counts, indicating a more pronounced learning of
domain-specific features.

E Automated Intepretability Explanations

We list the feature explanations generated by the Interpreter for the first ten features of the GSAE
and SSAE, considering only those that were activated on the arXiv Physics test set. We observe
that the SSAE specializes its features to handle a wider range of cases, but these specialized feature
explanations are more complex and less easily understood. We find that the tilted SSAEs produce
feature explanations that are easier to interpret, although they have fewer active features on the test
set. This may be because the tilted SSAE learns more compositional features, some of which may be
rare.
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Generalized SAE

0. The token "0" appearing in scientific notation, journal article citations, or encoded ASCII representa-
tions, often in the context of physics or chemistry literature references.

5. This neuron appears to activate on mathematical and scientific notation, particularly symbols,
equations, and specialized formatting in technical documents. It may play a role in recognizing and
processing scientific or mathematical content within text.

7. The neuron appears to activate on punctuation marks, particularly commas and quotation marks,
when they are used to separate or enclose items in a list, mathematical expressions, or technical notation
in scientific or mathematical text. It may play a role in parsing and understanding the structure of
complex technical writing.

8. This neuron appears to activate on tokens that are part of or follow noun phrases, often in technical or
academic contexts. It seems to be sensitive to words that introduce or refer to specific objects, concepts,
or pieces of information within a larger text. The neuron may play a role in tracking referential elements
or key pieces of information in complex, information-dense text.

9. The token "," appearing after complex scientific or technical phrases, often preceding conjunctions or
additional clauses that provide further explanation or context in academic or scientific writing.

10. This neuron appears to activate on abbreviated references to academic or scientific sources,
particularly in bibliographies or citation lists. It responds to: 1. Abbreviated journal names (e.g. "NY",
"APS", "Euro") 2. Abbreviated organization names (e.g. "SIAM", "INSPEC") 3. URL components
of online references (e.g. "citeseer", "philsci", "biology-") 4. Abbreviated publisher names (e.g.
"TERRAPUB") The neuron seems to play a role in recognizing citation patterns.

Specialized SAE

0. The token "0" appearing in scientific paper citations, journal volume numbers, or ASCII code
representations, often in the context of physics or mathematics literature.

4. This neuron appears to activate on tokens related to academic and scientific writing, particularly
in the context of physics, science education, and the philosophy of science. It frequently activates on
words like "universities", "science", "class", "theories", and other academic terminology. The neuron
may be involved in recognizing and generating text related to scientific discourse and academic writing.

5. This neuron appears to activate on scientific and mathematical notation, particularly superscripts,
subscripts, and special characters used in equations and formulas. It may play a role in processing and
understanding technical or scientific text.

7. The token "by" often appears before introducing a variable, parameter, or label in mathematical
or scientific text. It is frequently used to define or denote specific elements in equations, models, or
experimental setups.

8. The neuron appears to activate on numerical digits, particularly the digit "4", within scientific or
technical contexts such as citations, measurements, or equipment specifications. This suggests the
neuron may play a role in identifying or processing numerical information in academic or technical
writing.

9. The token "," after various phrases in scientific or technical writing, often used to separate clauses or
elements in a list. This neuron may be detecting punctuation patterns in formal, academic-style text.

10. This neuron appears to activate on abbreviations and short identifiers in academic or scientific
references, particularly those related to publications, databases, or online resources. Examples include
"cites", "NY", "ZIN", "TER", "SI", "e-", "cond", "Compustat", "ASP", "IN", "CAS", "Physics", "Pren",
"ourworld", "compuserve", and "APS". These often appear in bibliographic entries, URLs, or other
citation-related contexts in academic writing.
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Specialized SAE with Tilt 500

0. The token "0" appearing in scientific notation, particularly in journal citations, volume numbers, and
page numbers. This neuron may be involved in recognizing and processing numerical information in
academic or scientific contexts.

5. This neuron appears to activate on mathematical and scientific notation, particularly equations,
variables, and symbols. It seems to be sensitive to complex mathematical expressions, physical
constants, and scientific formulas across various fields including physics, chemistry, and engineering.
The neuron may play a role in processing and generating technical scientific content.

7. The neuron appears to activate on punctuation marks, particularly commas and angle brackets, when
used to separate or enclose items in mathematical or scientific notation. It may play a role in parsing
and understanding the structure of technical or mathematical text.

9. The token "," after phrases or clauses, often used to separate elements in scientific or technical
writing. This neuron may be detecting punctuation patterns in formal, academic text.

F Automated Interpretability Prompts

In this section, we present the Interpreter and Predictor prompts used in our automated interpretation
process.

F.1 Interpreter Prompt

The Interpreter prompt is designed to analyze neuron activations and explain what causes a specific
neuron to activate. It is given a list of text examples where the neuron activates, with the activating
tokens highlighted.

Interpreter Prompt

SYSTEM = """You are a meticulous AI researcher conducting
an important investigation into a certain neuron in a
language model. Your task is to analyze the neuron and
explain what causes the neuron to activate.
{prompt}
Guidelines:
You will be given a list of text examples on which the
neuron activates. The specific tokens which cause the
neuron to activate will appear between delimiters like
<<this>>. If a sequence of consecutive tokens all cause
the neuron to activate, the entire sequence of tokens
will be contained between delimiters <<just like this>>.
- You must produce a concise final description. Simply

describe the text features that activate the neuron,
and what its role might be based on the tokens it
predicts.

- The last line of your response must be the formatted
explanation.

- Think carefully about the patterns in the text examples
and the tokens that activate the neuron. Pay attention
to detail.

{subject_specific_instructions}"""

F.1.1 Example Application of Interpreter Prompt

Here’s an example of how the Interpreter prompt is applied:
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Interpreter Example

EXAMPLE_1 = """
Example 1: and he was <<over the moon>> to find
Example 2: we’ll be laughing <<till the cows come home>>! Pro
Example 3: thought Scotland was boring, but really there’s more
<<than meets the eye>>! I’d
"""
EXAMPLE_1_EXPLANATION = """
[EXPLANATION]: Common idioms in text conveying positive sentiment.
"""

F.2 Predictor Prompt

The Predictor prompt is used to determine whether given text examples possess a specific linguistic
feature. It returns a binary classification for each example.

Predictor Prompt

DSCORER_SYSTEM_PROMPT = """You are an intelligent and
meticulous linguistics researcher.
You will be given a certain feature of text, such as
"male pronouns" or "text with negative sentiment".
You will then be given several text examples. Your task
is to determine which examples possess the feature.
For each example in turn, return 1 if the sentence is
correctly labeled or 0 if the tokens are mislabeled. You
must return your response in a valid Python list. Do not
return anything else besides a Python list.
"""

F.2.1 Example Application of Predictor Prompt

Here’s an example of how the Predictor prompt is applied:

Predictor Example

DSCORER_EXAMPLE_1 = """Feature explanation: "of" before words that start
with a capital letter.
Text examples:
Example 0: climate, Tomblinâ Chief of Staff Charlie Lorensen said.
Example 1: no wonderworking relics, no true Body and Blood of Christ,
no true Baptism
Example 2:Deborah Sathe, Head of Talent Development and Production
at Film London,
Example 3: It has been devised by Director of Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director of
Athletics? Finally, we believe the
"""
DSCORER_RESPONSE_1 = "[1,1,1,1,1]"
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