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Abstract
Although masked image generation models and
masked diffusion models are designed with dif-
ferent motivations and objectives, we observe
that they can be unified within a single frame-
work. Building upon this insight, we carefully
explore the design space of training and sam-
pling, identifying key factors that contribute to
both performance and efficiency. Based on the
improvements observed during this exploration,
we develop our model, referred to as eMIGM.
Empirically, eMIGM demonstrates strong per-
formance on ImageNet generation, as measured
by Fréchet Inception Distance (FID). In particu-
lar, on ImageNet 256 × 256, with similar num-
ber of function evaluations (NFEs) and model
parameters, eMIGM outperforms the seminal
VAR. Moreover, as NFE and model parameters
increase, eMIGM achieves performance compa-
rable to the state-of-the-art continuous diffusion
model REPA while requiring less than 45% of
the NFE. Additionally, on ImageNet 512× 512,
eMIGM outperforms the strong continuous diffu-
sion model EDM2. Code is available at https:
//github.com/ML-GSAI/eMIGM.

1. Introduction
Masked modeling has proven effective across various do-
mains, including self-supervised learning (He et al., 2022a;
Bao et al., 2021; Devlin, 2018), label to image genera-
tion (Li et al., 2023; Chang et al., 2022; Li et al., 2024;
Ni et al., 2024), text to image generation (Bai et al., 2024;
Shao et al., 2024) and text generation (Sahoo et al., 2024;
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Shi et al., 2024; Lou et al., 2024a). In image generation,
MaskGIT (Chang et al., 2022) introduced masked image
generation, offering efficiency and quality improvements
over autoregressive models but still lagging behind diffu-
sion models (Ho et al., 2020; Sohl-Dickstein et al., 2015;
Song et al., 2020) due to information loss from discrete
tokenization (Esser et al., 2021; Van Den Oord et al., 2017).
MAR (Li et al., 2024) eliminated this bottleneck via diffu-
sion loss, achieving strong results, yet key factors (e.g.,
masking schedule, loss function) remain underexplored.
Moreover, with limited sampling steps (e.g., 16), its per-
formance falls short of coarse-to-fine next-scale prediction
model VAR (Tian et al., 2024).

In parallel, masked diffusion models (Sahoo et al., 2024;
Shi et al., 2024; Lou et al., 2024a; Ou et al., 2024) have
shown promise in text generation, demonstrating scaling
properties (Nie et al., 2024) similar to ARMs and offering
a principled probabilistic framework for training and in-
ference. However, their applicability to image generation
remains an open question.

We propose a unified framework integrating masked image
modeling (Chang et al., 2022; Li et al., 2024; Bai et al.,
2024) and masked diffusion models (Lou et al., 2024a; Sa-
hoo et al., 2024; Shi et al., 2024), leveraging the strengths
of both paradigms. This enables a systematic exploration of
training and sampling strategies to optimize performance.
For training, we find that images, due to their high redun-
dancy, benefit from a higher masking ratio, a simple weight-
ing function inspired by MaskGIT and MAE (He et al.,
2022a) tricks, improving generation quality. We also present
CFG with Mask, replacing the fake class token with a mask
token for unconditional generation, further enhancing per-
formance. For sampling, predicting fewer tokens in early
stages improves results. However, early-stage guidance de-
creases variance, raising FID. To counter this, we propose a
time interval strategy for classifier-free guidance in masked
image generation, applying guidance only in later stages.
This maintains strong performance while significantly ac-
celerating sampling by reducing NFEs.

Building on our training and sampling improvements, we
develop eMIGM and evaluate it on ImageNet (Deng et al.,
2009) at 256×256 and 512×512 resolutions. As model pa-
rameters scale, eMIGM achieves progressively higher sam-
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Figure 1. Generated samples from eMIGM trained on ImageNet 512× 512.

ple quality in a predictable manner (Fig. 4(a)). Larger mod-
els further enhance efficiency, maintaining superior quality
with similar training FLOPs and sampling time (Fig.4(b),
Fig. 4(c)). Notably, eMIGM delivers high-quality samples
with few sampling steps. On ImageNet 256 × 256, with
similar NFEs and model parameters, it consistently out-
performs VAR (Tian et al., 2024). Increasing NFE and
model size, our best-performing eMIGM-H becomes com-
parable to state-of-the-art diffusion models like REPA (Yu
et al., 2024) (FID 1.57 vs. 1.42)—without requiring self-
supervised features. On ImageNet 512 × 512, eMIGM-L
surpasses EDM2 (Karras et al., 2024) while using a lower
parameter count, demonstrating efficiency and scalability.
Qualitatively, eMIGM generates realistic and diverse images
(Fig. 1).

In summary, our key contributions are as follows:

• We propose a unified formulation to systematically ex-
plore the design space of masked image generation mod-
els, uncovering the role of each component.

• We introduce the time interval strategy for classifier-free
guidance, maintaining high performance while signifi-
cantly reducing sampling time.

• We surpass the seminar diffusion models on ImageNet
512× 512.

• We demonstrate that eMIGM benefits from scaling, with
larger eMIGM models achieving greater efficiency.
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2. Preliminaries
2.1. Masked Image Generation

Let x = [xi]Ni=1 represent the discrete tokens of an image
obtained via a VQ encoder (Esser et al., 2021; Van Den Oord
et al., 2017), and let [M] denote the special mask token. We
consider two seminal masked image generation methods.

MaskGIT (Chang et al., 2022) first extends the concept
of masked language modeling from BERT (Devlin, 2018)
(i.e., predicting masked tokens based on unmasked tokens)
to image generation, achieving excellent performance with
low sampling cost (approximately 10 sampling steps) on
ImageNet (Deng et al., 2009). However, its performance
degrades when the number of sampling steps increases under
its default mask schedule.

During training, MaskGIT optimizes the cross entropy loss
as follows. A ratio r is sampled from [0, 1], and based on the
mask scheduling function γr, masked image xM is sampled
from masking distribution qγr

(xM|x) that randomly masks
⌈Nγr⌉ tokens of x as [M].

The loss function is then defined as:

L(x) = Er∼U [0,1]Eqγr (xM|x)

 ∑
{i|xi=[M]}

− log pθ
(
xi |xM

) .

(1)

During sampling, MaskGIT starts with an image where all
tokens are masked, x0. For each iteration t ∈ {1, 2, . . . , T},
the number of masked tokens is nt = ⌈γ t

T
N⌉, and the

model receives input x t−1
T

. The model predicts the proba-
bilities for all tokens, and the n̂t = nt−1 − nt tokens with
the highest confidence are unmasked, updating to x t

T
.

MAR (Li et al., 2024) proposes using a diffusion
model (Sohl-Dickstein et al., 2015) to model the per-token
distribution, which eliminates the need for discrete tokeniz-
ers. By avoiding the information loss of discrete tokenizers,
MAR achieves excellent image generation performance.

During training, MAR samples the masking ratio mr from
a truncated Gaussian distribution with mean 1.0, standard
deviation 0.25, truncated to [0.7, 1.0]. For sampling, MAR
adopts a decoding strategy similar to that of MaskGIT.

2.2. Masked Diffusion Models

Let x = [xi]Ni=1 represent the discrete text tokens of a
sentence, [M] denote the special mask token, and γt rep-
resent the mask schedule. MDMs (Lou et al., 2024b; Shi
et al., 2024; Sahoo et al., 2024) gradually add masks to the
data in the forward process and remove them during the
reverse process. Here, we focus on the parameterized form
of RADD (Ou et al., 2024). Given a noise level t ∈ [0, 1],

the forward process of MDM is defined as adding noise
independently in each dimension:

qt|0(xt|x0) =

N−1∏
i=0

qt|0(x
i
t|xi

0), (2)

where

qt|0(x
i
t|xi

0) =

{
1− γt, xi

t = xi
0,

γt, xi
t = [M].

(3)

The training objective of MDM is to optimize the upper
bound of the negative log-likelihood of the masked tokens,
which defined as:

L(x0) =

∫ 1

0

γ′
t

γt
Eq(xt|x0)

 ∑
{i|xi

t=[M]}

− log pθ(x
i
0|xt)

 dt.

(4)

Interestingly, the explicit time input of MDM is theoretically
redundant 1 (Ou et al., 2024), and has also been empirically
validated in image generation (Hu & Ommer, 2024).

During sampling, given two noise levels s and t, where
0 ≤ s < t ≤ 1, the reverse process is characterized as:

qs|t(xs|xt) =

N−1∏
i=0

qs|t(x
i
s|xt), (5)

where

qs|t(x
i
s|xt) =


1, xi

s = xi
t, x

i
t ̸= [M],

γs

γt
, xi

s = [M], xi
t = [M],

γt−γs

γt
q0|t(x

i
s|xt), xi

s ̸= [M], xi
t = [M],

0, otherwise.
(6)

3. Unifying Masked Image Generation
After removing the explicit time input from MDM, we ob-
serve that the MaskGIT objective (Eq. 1) can be expressed in
terms of the general MDM loss formulation (Eq. 4). Specif-
ically, the Monte Carlo expectation over r in Eq. 1 is equiv-
alent to integrating over t from 0 to 1, where r can be
interpreted as a scaled time variable t corresponding to the
masking schedule. In this reinterpretation, the masked im-
age xM in MaskGIT can be understood as xt in the general

1Unlike continuous state diffusion which require both xt and
t as inputs to the model input to denoise, the mask discrete diffu-
sion operates by using pθ(x

i
0|xt) instead of pθ(xi

0|xt, t). That’s
because the timestep dependence can be extracted as a weight
coefficient outside of the cross-entropy loss.
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Table 1. Comparison of different masked image modeling approaches through a unified framework. The differences among these
approaches are defined by the choice of masking distribution q(xt|x0), weighting function w(t), and conditional distribution pθ(x

i
0 | xt).

METHOD MASKING DISTRIBUTION WEIGHTING FUNCTION CONDITIONAL DISTRIBUTION
q(xt|x0) w(t) pθ(x

i
0 | xt)

MASKGIT UNIFORMLY MASK ⌈Nγt⌉ TOKENS W/O REPLACEMENT w(t) = 1 CATEGORICAL DISTRIBUTION

MAR UNIFORMLY MASK ⌈Nγt⌉ TOKENS W/O REPLACEMENT w(t) = 1 DIFFUSION MODEL

MDM MASK N TOKENS INDEPENDENTLY WITH RATIO γt w(t) =
γ′
t

γt
CATEGORICAL DISTRIBUTION

framework, representing the noisy or partially masked im-
age at time t. That is, the masking distribution qγr

(xM|x)
can be mapped to a specific instance of q(xt|x0), charac-
terized by the chosen mask scheduling function γt. See
the equivalence between these two masking distributions
in Appendix A. After aligning these two masking distribu-
tions, MaskGIT, MAR, and MDM can be expressed within
a unified loss function, defined as:

L(x0)=

∫ tmax

tmin

w(t)Eq(xt|x0)

 ∑
{i|xi

t=[M]}

− log pθ
(
xi
0 |xt

)dt.
(7)

In this unified formulation, the key differences between
the models primarily lie in the three components outlined
in Table 1. We explain these components as follows:

Masking distribution q(xt|x0). For MaskGIT and MAR,
⌈Nγt⌉ tokens are uniformly masked without replacement
as [M]. For MDM, each of the N tokens is masked with
probability γt independently.
Weighting function w(t). The weight function w(t) de-
termines the importance of the loss at each time step. For
MaskGIT and MAR, w(t) = 1; for MDM, w(t) = γ′

t

γt
.

Conditional distribution pθ
(
xi
0 |xt

)
. For MaskGIT and

MDM, the conditional distribution pθ
(
xi
0 |xt

)
is modeled

as a categorical distribution. In contrast, for MAR, we
employ a diffusion model assisted by a latent variable z,
leading to the following formulation:

pθ(x
i
0|xt) =

∫
δθ1(z

i|xt)p
diff
θ2

(xi
0|zi)dzi. (8)

Here, δθ1(z
i|xt) represents the output of the mask pre-

diction model with input xt, and pdiff
θ2

(xi
0|zi) donated the

output of diffusion model conditioned on zi.

4. Investigating the Design Space of Training
Building upon the unified framework, we now explore vari-
ous design choices within this formulation. Given the equiv-
alence of masking distributions, we adopt MDM’s as the
default setting. Furthermore, to mitigate the information
loss introduced by the discrete tokenizer (Van Den Oord

et al., 2017; Esser et al., 2021), we use a diffusion model
to model the conditional distribution pθ(x

i
0|xt). Our ex-

ploration begins with the standard MDM, which utilizes a
single encoder transformer architecture and a linear mask
schedule, in addition to using the diffusion model to model
the conditional distribution pθ

(
xi
0 |xt

)
.

Mask schedule. The first critical aspect of our exploration
is the choice of γt, which determines the probability of
masking each token during the forward process (See Ap-
pendix B for details). In this section, we use the weighting
function of w(t) = γ′

t

γt
, which is mainly used in MDM. We

consider three mask schedules: (1) Linear: γt = t; (2) Co-
sine: γt = cos

(
π
2 (1− t)

)
; (3) Exp: γt = 1 − exp(−5t).

The first two mask schedules are also mentioned in Shi
et al. (2024), while the last one is our design to achieve a
higher masking ratio during training. As shown in Fig. 2(a),
the cosine schedule outperforms the linear schedule. We
hypothesize that, due to the high information redundancy
in images, the cosine schedule achieves a higher mask ra-
tio during training, providing stronger learning signals and
leading to improved performance. The exp schedule fur-
ther increases the mask ratio but destabilizes MDM training,
likely due to the persistently large weighting function w(t),
even at high mask ratios (see Fig. 5 for visualization of w(t)
and γt).

Weighting function. We consider two choices for w(t).
(1) w(t) =

γ′
t

γt
, as used in MDM; (2) w(t) = 1, as used

in MaskGIT. Notably, the weighting function significantly
affects the choice of mask schedule. For instance, using
w(t) =

γ′
t

γt
led to unstable training, particularly with the exp

schedule. In contrast, as shown in Fig. 2(b), setting w(t) = 1
stabilized the training process and improved performance,
similar to the phenomenon observed in DDPM (Ho et al.,
2020); under this setting, the exp schedule yielded the best
results. Therefore, we adopted this combination (w(t) = 1
and the exp schedule) as our default.

Model Architecture. We consider two model architectures:
(1) A single-encoder transformer; (2) The MAE (He et al.,
2022a) architecture, which decomposes the transformer into
an encoder-decoder structure, where the encoder processes
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Figure 2. Exploring the design space of training. Orange solid lines indicate the preferred choices in each subfigure.

only unmasked tokens. The primary difference between
these architectures is whether the encoder receives masked
tokens as input. As shown in Fig. 2(c), under the exp sched-
ule, the MAE architecture outperforms the single-encoder
transformer. Interestingly, despite being originally designed
for self-supervised learning, MAE retains its advantages in
image generation. Therefore, unless otherwise specified, we
adopt the MAE architecture as the default setting.

Time Truncation. To achieve a higher mask ratio during
training, in addition to selecting a more concave function
for γt, we can also use time truncation, which restricts the
minimum value of t to tmin. We consider three choices: (1)
tmin = 0, the original design; (2) tmin = 0.2; (3) tmin = 0.4.
As shown in Fig. 2(d), we observed that an appropriate
time truncation (tmin = 0.2) can be beneficial and acceler-
ates training convergence. However, excessive truncation
(tmin = 0.4, where over 80% of image tokens are masked
during training) provides no benefit and may even degrade
performance compared to no time truncation. Unless other-
wise noted, we adopt tmin = 0.2 as the default setting.

CFG with Mask. Classifier-Free Guidance (CFG) (Ho &
Salimans, 2022) is widely used for guiding continuous dif-
fusion models and masked image generation. It combines
outputs of a conditional model (with class information) and
an unconditional model (without class information) to im-
prove alignment with the conditional output. In standard
CFG, the unconditional model typically receives a learn-

able fake class token as input. Unsupervised classifier-free
guidance was initially developed for text generation (Nie
et al., 2024), a process involving the unconditional model
receiving a special mask token as input. Inspired by this
method, our paper adapts it for image generation. We term
this adapted approach CFG with Mask to emphasize its fo-
cus on masked image generation. As shown in Fig. 2(e),
CFG with mask improves generation performance compared
to standard CFG. Notably, here we use only simple condi-
tional generation without guidance, our results suggest that
using a fake class token negatively impacts the conditional
generation performance of MDM. Thus, we adopt CFG with
mask as the default setting.

5. Investigating the Design Space of Sampling
In the previous section, we carefully explore the training
design space. In the following sections, we investigate
the sampling design space. On one hand, we expect the
model’s performance to improve as the number of mask
prediction steps increases. On the other hand, we aim to
maintain strong performance even with a low number of
mask prediction steps (e.g., 16).

5.1. Mask Schedule during Sampling

During training, we observe that the exp schedule achieves
the best performance. However, during sampling, different
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Figure 3. Exploring the design space of sampling. For each plot, points from left to right correspond to an increasing number of mask
prediction steps: 8, 16, 32, and up to 256. In each subfigure, DPM-Solver is donated as DPMS. (a) The exp schedule outperforms others by
predicting fewer tokens early. (b) DPM-Solver performs better with fewer prediction steps. (c) The time interval maintains performance
while reducing sampling cost for each mask prediction step, particularly for high mask prediction steps.

schedules may be employed. We are interested in identify-
ing which mask schedule can achieve both of our goals.

To this end, we first conduct a simulation experiment (see
details in Appendix B.2) to compare the number of tokens
predicted during each mask prediction step across differ-
ent mask schedules. We observe that the linear schedule
predicts a nearly constant number of tokens per step, while
the cosine schedule predicts fewer tokens early in the pro-
cess and progressively more later. This observation aligns
with the findings reported in Shi et al. (2024). Besides, the
exp schedule predicts even fewer tokens initially, with a
more gradual increase as the process continues. As shown
in Fig. 3(a), we observe that each mask schedule benefits
more prediction steps. Moreover, for low mask prediction
steps (e.g., 8 or 16), the exp schedule outperforms the co-
sine schedule, which in turn outperforms the linear schedule.
This suggests that, in the early stages of sampling, predict-
ing fewer tokens may contribute to improved performance at
lower mask prediction steps. Thus, we adopt the exp sched-
ule as our default for sampling unless otherwise specified.

5.2. The Sampling Method of Diffusion Loss

We use the diffusion loss to model the distribution of
pθ

(
xi
0 |xt

)
. Previously, we follow MAR (Li et al., 2024)

and use DDPM (Ho et al., 2020) sampling method with 100
diffusion steps. Additionally, MAR employs the tempera-
ture τ sampling method from ADM (Dhariwal & Nichol,
2021) to scale the noise by τ , which requires careful tuning
for optimal performance.

In contrast, DPM-Solver (Lu et al., 2022a;b) is a training-
free, fast ODE sampler that accelerates the diffusion sam-
pling process and converges faster with fewer steps. Inter-
estingly, although DPM-Solver is designed for accelerating
the diffusion process, we observe that, with low mask pre-
diction steps, it outperforms DDPM, as shown in Fig. 3(b).

For example, with 8 mask prediction steps, DPM-Solver
achieves an FID of 6.6, while DDPM, with a temperature
of 1.0, achieves an FID of 10.6. We hypothesize that for
low mask prediction steps, DDPM requires careful tempera-
ture tuning, whereas DPM-Solver, being an ODE sampler,
does not require such adjustments. Moreover, DPM-Solver
achieves good performance with fewer than 15 diffusion
steps, while DDPM requires 100 diffusion steps. Therefore,
unless specified, we default to DPM-Solver.

5.3. Time Interval for Classifier Free Guidance

Previously, we adopt a linear CFG schedule following
MAR (Li et al., 2024), where the CFG value gradually
increased from 0 to the target value during the mask predic-
tion process. With a constant CFG schedule, we find that
the generation performance is highly sensitive to the CFG
value, as shown in Fig. 7. We hypothesize that, for MDM,
token generation is irreversible—once a token is generated,
it cannot be modified. Therefore, a strong guide in the early
stages may reduce the variation in the results, leading to a
higher FID. This is similar to our earlier observation with
the linear mask schedule, where generating too many incor-
rect tokens early can cause error accumulation and degrade
the performance. We conduct an experiment with a total of
256 sample tokens and 16 mask prediction steps (see details
in Appendix C) to validate our hypothesis. Let si and ti
denote the endpoint and start of the i-th step in the mask
prediction process. We apply CFG if si ∈ [cfgtmin

, cfgtmax
];

otherwise, we use simple conditional generation. As shown
in Fig. 8(a), when cfgtmin

< cfgtmax
≤ 0.5, we achieve a

relatively low FID, supporting our hypothesis. In particular,
the best performance is achieved when cfgtmin

= 0.1 and
cfgtmax

= 0.3, using only 60% of the NFE (the number of
function evaluations) compared to standard CFG. Specifi-
cally, for standard CFG, NFE = 16× 2, while for the time
interval, NFE ≈ 16 + 16× (0.3− 0.1).
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Figure 4. Scalability of eMIGM. (a) A negative correlation demonstrates that eMIGM benefits from scaling. (b) Larger models are more
training-efficient (i.e., achieving better sample quality with the same training FLOPs). (c) Larger models are more sampling-efficient (i.e.,
achieving better sample quality with the same inference time).

Table 2. Image generation results on ImageNet 256× 256. † denotes results taken from MaskGIT (Chang et al., 2022), and ⋆ indicates
results that require assistance from the self-supervised model. With 42% of function evaluations (NFE), eMIGM-H achieves performance
comparable to the state-of-the-art diffusion model REPA (Yu et al., 2024). We bold the best result under each method and underline the
second-best result.

METHOD NFE (↓) FID (↓) #Params

Diffusion models

ADM-G (Dhariwal & Nichol, 2021) 250× 2 4.59 554M
ADM-G-U (Dhariwal & Nichol, 2021) 750 3.94 554M
LDM-4-G (Rombach et al., 2022) 250× 2 3.60 400M
VDM++ (Kingma & Gao, 2024) 512×2 2.40 2B
SimDiff (Hoogeboom et al., 2023) 512×2 2.44 2B
U-ViT-H/2 (Bao et al., 2023) 50×2 2.29 501M
DiT-XL/2 (Peebles & Xie, 2023) 250×2 2.27 675M
Large-DiT (Alpha-VLLM, 2024) 250×2 2.10 3B
Large-DiT (Alpha-VLLM, 2024) 250×2 2.28 7B
SiT-XL (Ma et al., 2024) 250×2 2.06 675M
DIFFUSSM-XL-G (Yan et al., 2024) 250×2 2.28 660M
DiffiT (Hatamizadeh et al., 2025) 250×2 1.73 561M
REPA (Yu et al., 2024)⋆ 250×1.7 1.42 675M

ARs

VQGAN (Esser et al., 2021)† 256 18.65 227M
VAR-d16 (Tian et al., 2024) 10×2 3.30 310M
VAR-d20 (Tian et al., 2024) 10×2 2.57 600M
VAR-d24 (Tian et al., 2024) 10×2 2.09 1B
VAR-d30 (Tian et al., 2024) 10×2 1.92 2B

METHOD NFE (↓) FID (↓) #Params

GANs

BigGAN (Brock, 2018) 1 6.95 -
StyleGAN-XL (Sauer et al., 2022) 1×2 2.30 -

Masked models

MaskGIT (Chang et al., 2022)† 8 6.18 227M
MAR-B (Li et al., 2024) 256×2 2.31 208M
MAR-L (Li et al., 2024) 256×2 1.78 479M
MAR-H (Li et al., 2024) 256×2 1.55 943M

Ours

eMIGM-XS 16×1.2 4.23 69M
eMIGM-S 16×1.2 3.44 97M
eMIGM-B 16×1.2 2.79 208M
eMIGM-L 16×1.2 2.22 478M
eMIGM-H 16×1.2 2.02 942M

eMIGM-XS 128×1.4 3.62 69M
eMIGM-S 128×1.4 2.87 97M
eMIGM-B 128×1.35 2.32 208M
eMIGM-L 128×1.4 1.72 478M
eMIGM-H 128×1.4 1.57 942M

As shown in Fig. 3(c), we observe that the time interval
maintains performance at each mask prediction step while
reducing sampling time. This demonstrates its efficiency
and effectiveness. Therefore, we adopt the time interval for
all subsequent experiments in this paper.

6. Experiments
By fully considering the design space mentioned above, we
evaluate eMIGM on ImageNet 256 × 256 and ImageNet
512 × 512 (Deng et al., 2009), benchmarking the sample
quality using Fréchet Inception Distance (FID) (Heusel
et al., 2017). See experiment settings in Appendix D.

6.1. Larger Models Are Training and Sampling Efficient

First, to demonstrate the scaling properties of eMIGM, we
plot the FID-10K at 400 training epochs for different model
sizes of eMIGM against training FLOPs. As shown in
Fig. 4(a), we observe a negative correlation between train-
ing FLOPs and FID-10K, indicating that eMIGM benefits
from scaling. Second, for different model sizes of eMIGM,
we scale the FLOPs and analyze the FID-10K in relation to
training FLOPs. As shown in Fig. 4(b), for each model size
of eMIGM, as training epochs and training FLOPs increase,
performance also improves. Additionally, we observe that
for the same training FLOPs, larger eMIGM models achieve
better performance. For instance, eMIGM-L outperforms

7
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Table 3. Image generation results on ImageNet 512 × 512. † denotes results taken from MaskGIT (Chang et al., 2022). ‡ denotes
results obtained using Guidance Interval (Kynkäänniemi et al., 2024). With 20 function evaluations (NFE), eMIGM-L outperforms strong
visual autoregressive models VAR (Tian et al., 2024). When the NFE increases to 80, eMIGM-L surpasses the strong diffusion model
EDM2 (Karras et al., 2024). We bold the best result under each method and underline the second-best result.

METHOD NFE (↓) FID (↓) #Params

Diffusion models

ADM-G (Dhariwal & Nichol, 2021) 250× 2 7.72 559M
ADM-G-U (Dhariwal & Nichol, 2021) 750 3.85 559M
VDM++ (Kingma & Gao, 2024) 512×2 2.65 2B
SimDiff (Hoogeboom et al., 2023) 512×2 3.02 2B
U-ViT-H/4 (Bao et al., 2023) 50×2 4.05 501M
DiT-XL/2 (Peebles & Xie, 2023) 250×2 3.04 675M
Large-DiT (Alpha-VLLM, 2024) 250×2 2.52 3B
SiT-XL (Ma et al., 2024) 250×2 2.62 675M
EDM2-XXL (Karras et al., 2024) 32×2 1.81 1.5B
EDM2-XXL (Kynkäänniemi et al., 2024)‡ 32×1.2 1.40 1.5B

Consistency models

sCT-XXL (Lu & Song, 2024) 2 3.76 1.5B
sCD-XXL (Lu & Song, 2024) 2 1.88 1.5B

GANs

BigGAN (Brock, 2018) 1 8.43 -
StyleGAN-XL (Sauer et al., 2022) 1×2 2.41 -

METHOD NFE (↓) FID (↓) #Params

ARs

VQGAN (Esser et al., 2021)† 1024 26.52 227M
VAR-d36-s (Tian et al., 2024) 10×2 2.63 2.3B

Masked models

MaskGIT (Chang et al., 2022)† 12 7.32 227M
MAR (Li et al., 2024) 256×2 1.73 481M

Ours

eMIGM-XS 16×1.2 4.63 104M
eMIGM-S 16×1.2 3.65 132M
eMIGM-B 16×1.2 2.78 244M
eMIGM-L 16×1.2 2.19 478M

eMIGM-XS 64×1.25 4.45 104M
eMIGM-S 64×1.25 3.29 132M
eMIGM-B 64×1.25 2.31 244M
eMIGM-L 64×1.25 1.77 478M

eMIGM-B with approximately 1020 FLOPs. Third, we ob-
served the inference-time scaling behavior of eMIGM. As
shown in Fig. 4(c), we plot the performance of different
eMIGM model sizes across various mask prediction steps
(ranging from 16 to 256). The speed is measured using a
single A100 GPU with a batch size of 256. We observe
that as the number of prediction steps increases, each model
size of eMIGM achieves better performance, particularly
for smaller models (i.e., eMIGM-XS and eMIGM-S). For
larger model sizes, a similar best performance is reached
with just 64 steps. Additionally, we also find that larger
eMIGM models achieve better performance while maintain-
ing similar inference speeds. For example, at a speed of
about 0.2 seconds per image, eMIGM-L achieves a strong
FID of 1.8, outperforming eMIGM-B with an FID of 2.3.

6.2. Image Generation on ImageNet

In Tab. 2, we compare eMIGM with state-of-the-art gener-
ative models on ImageNet 256 × 256. Notably, in Tab. 2
and Tab. 3, we list only the NFE of eMIGM’s transformer
component. When measured on a single A100 GPU with a
batch size of 256, we found that the MLP diffusion block
introduces approximately 14% additional computational
overhead beyond the NFE of the main transformer. How-
ever, since the transformer component remains the primary
computational bottleneck, NFE continues to be a valid effi-
ciency metric. By exploring the design space of sampling,
eMIGM with few NFEs (approximately 20) outperforms
VAR (Tian et al., 2024) with a similar model size. Specifi-
cally, eMIGM-B achieves an FID of 2.79 with only 208M
parameters, while VAR-d16 achieves an FID of 3.30 with

310M parameters. Notably, as we increase the NFE, all of
our models consistently show significant improvements in
generation performance. For instance, eMIGM-L achieves
an FID of 1.72 with 180 NFEs, compared to an FID of
2.22 with 20 NFEs. By increasing the NFE, eMIGM-L,
despite having only 478M parameters, outperforms the best
VAR-d30, which achieves an FID of 1.92 with 2B param-
eters. Lastly, our more powerful eMIGM-H achieves an
FID of 1.57 with just 180 NFEs, outperforming strong diffu-
sion models such as Large-DiT (Alpha-VLLM, 2024) and
DiffiT (Hatamizadeh et al., 2025). eMIGM-H is also com-
parable to the best diffusion models REPA (Yu et al., 2024),
which require 425 sequential steps and the assistance of the
self-supervised model. Furthermore, compared to the state-
of-the-art GAN model StyleGAN-XL (Sauer et al., 2022),
eMIGM-B achieves superior performance. We also present
more evaluation metrics on Tab. 8 in the appendix.

We also evaluate eMIGM on higher resolution images (i.e.,
512 × 512) in Tab. 3. Specifically, with similar NFEs,
eMIGM-L (with only 478M parameters) achieves an FID of
2.19, outperforming the strong generative model VAR (Tian
et al., 2024) (with 2.3B parameters), which achieves an
FID of 2.63. Furthermore, compared to the strong diffusion
model EDM2 (Karras et al., 2024), eMIGM-L achieves an
FID of 1.77, outperforming EDM2’s FID of 1.81. These
quantitative results demonstrate that eMIGM achieves excel-
lent generation performance and high sampling efficiency
across diverse resolutions. However, when using the guid-
ance interval (Kynkäänniemi et al., 2024), EDM2-XXL
achieves superior performance while needing more param-
eters. A comparison of the sampling speeds for eMIGM
and EDM2 (Karras et al., 2024) is also presented in Tab. 10.
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Furthermore, when compared to MAR, eMIGM-L achieves
competitive performance while using an NFE of less than
20%.

7. Related Work
Visual generation. Modern visual generation models pri-
marily fall into four categories: GANs (Goodfellow et al.,
2014; Brock, 2018; Sauer et al., 2022), diffusion mod-
els (Song et al., 2020; Sohl-Dickstein et al., 2015; Ho et al.,
2020), masked prediction models (Chang et al., 2022; Li
et al., 2023; 2024; Bai et al., 2024; Shao et al., 2024; Ni et al.,
2024), and autoregressive models (Esser et al., 2021; Tian
et al., 2024; Sun et al., 2024; Tang et al., 2024). The most
related works to our study are MaskGIT (Chang et al., 2022)
and MAR (Li et al., 2024). We provide a unified framework
that integrates both approaches and systematically explore
the impact of each component. Additionally, guidance in-
terval (Kynkäänniemi et al., 2024) and CADS (Sadat et al.,
2023) also observed that strong guidance early in the pro-
cess negatively affects diversity. Therefore, they proposed
sampling strategies to adjust the guidance application dur-
ing sampling. Besides, Wang et al. (2024) also analyses the
schedule of classifier-free guidance in continuous diffusion
models. However, unlike our proposed time interval, which
applies guidance at the token level, their methods operate
at different noise levels of the entire image. Besides, our
proposed time interval is motivated by MDM’s unique ir-
reversible token generation constraint. Furthermore, Shao
et al. (2024) proposed an enhanced inference technique to
improve the speed and performance of masked image gen-
erative models such as MaskGIT (Chang et al., 2022) and
Meissonic (Bai et al., 2024). Their technique is orthogonal
to our method and can also be applied to our work.

Masked discrete diffusion models. Recently, masked dis-
crete diffusion models (Austin et al., 2021; Campbell et al.,
2022), a special case of discrete diffusion models (Sohl-
Dickstein et al., 2015; Hoogeboom et al., 2021), have
achieved remarkable progress in various domains, including
text generation (He et al., 2022b; Lou et al., 2024a; Shi et al.,
2024; Sahoo et al., 2024; Ou et al., 2024; Zheng et al., 2023;
Chen et al., 2023; Gat et al., 2024; Nie et al., 2024), mu-
sic generation (Sun et al., 2023), protein design (Campbell
et al., 2024), and image generation (Hu & Ommer, 2024).

8. Conclusion
In this paper, we present a single framework to unify masked
image generation models and masked diffusion models
and carefully examine each component of design space to
achieve efficient and high-quality image generation. Empiri-
cally, we demonstrate that eMIGM can achieve comparable
performance with the state-of-the-art continuous diffusion

models with fewer NFEs. We believe that eMIGM will
inspire future research in masked image generation.
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M. Argmax flows and multinomial diffusion: Learn-
ing categorical distributions. NeurIPS, 34:12454–12465,
2021.

Hoogeboom, E., Heek, J., and Salimans, T. simple diffu-
sion: End-to-end diffusion for high resolution images.
In International Conference on Machine Learning, pp.
13213–13232. PMLR, 2023.

Hu, V. T. and Ommer, B. [mask] is all you need, 2024. URL
https://arxiv.org/abs/2412.06787.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T.,
and Laine, S. Analyzing and improving the training
dynamics of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24174–24184, 2024.

Kingma, D. and Gao, R. Understanding diffusion objectives
as the elbo with simple data augmentation. Advances in
Neural Information Processing Systems, 36, 2024.

Kynkäänniemi, T., Aittala, M., Karras, T., Laine, S., Aila, T.,
and Lehtinen, J. Applying guidance in a limited interval
improves sample and distribution quality in diffusion
models. arXiv preprint arXiv:2404.07724, 2024.

Li, T., Chang, H., Mishra, S., Zhang, H., Katabi, D., and
Krishnan, D. Mage: Masked generative encoder to unify
representation learning and image synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2142–2152, 2023.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregres-
sive image generation without vector quantization. arXiv
preprint arXiv:2406.11838, 2024.

Lou, A., Meng, C., and Ermon, S. Discrete diffusion mod-
eling by estimating the ratios of the data distribution,
2024a.

Lou, A., Meng, C., and Ermon, S. Discrete diffusion mod-
eling by estimating the ratios of the data distribution. In
Forty-first International Conference on Machine Learn-
ing, 2024b.

10

https://arxiv.org/abs/2412.06787


Effective and Efficient Masked Image Generation Models

Lu, C. and Song, Y. Simplifying, stabilizing and scal-
ing continuous-time consistency models. arXiv preprint
arXiv:2410.11081, 2024.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-
Eijnden, E., and Xie, S. Sit: Exploring flow and diffusion-
based generative models with scalable interpolant trans-
formers. arXiv preprint arXiv:2401.08740, 2024.

Ni, Z., Wang, Y., Zhou, R., Lu, R., Guo, J., Hu, J., Liu,
Z., Yao, Y., and Huang, G. Adanat: Exploring adaptive
policy for token-based image generation. In European
Conference on Computer Vision, pp. 302–319. Springer,
2024.

Nie, S., Zhu, F., Du, C., Pang, T., Liu, Q., Zeng, G., Lin, M.,
and Li, C. Scaling up masked diffusion models on text.
arXiv preprint arXiv:2410.18514, 2024.

Ou, J., Nie, S., Xue, K., Zhu, F., Sun, J., Li, Z., and Li,
C. Your absorbing discrete diffusion secretly models the
conditional distributions of clean data. arXiv preprint
arXiv:2406.03736, 2024.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Sadat, S., Buhmann, J., Bradley, D., Hilliges, O., and Weber,
R. M. Cads: Unleashing the diversity of diffusion models
through condition-annealed sampling. arXiv preprint
arXiv:2310.17347, 2023.

Sahoo, S. S., Arriola, M., Schiff, Y., Gokaslan, A., Marro-
quin, E., Chiu, J. T., Rush, A., and Kuleshov, V. Simple
and effective masked diffusion language models. arXiv
preprint arXiv:2406.07524, 2024.

Sauer, A., Schwarz, K., and Geiger, A. Stylegan-xl: Scaling
stylegan to large diverse datasets. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022.

Shao, S., Zhou, Z., Ye, T., Bai, L., Xu, Z., and Xie, Z. Bag
of design choices for inference of high-resolution masked
generative transformer. arXiv preprint arXiv:2411.10781,
2024.

Shi, J., Han, K., Wang, Z., Doucet, A., and Titsias, M. K.
Simplified and generalized masked diffusion for discrete
data. arXiv preprint arXiv:2406.04329, 2024.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Sun, H., Yu, L., Dai, B., Schuurmans, D., and Dai, H. Score-
based continuous-time discrete diffusion models. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Sun, P., Jiang, Y., Chen, S., Zhang, S., Peng, B., Luo,
P., and Yuan, Z. Autoregressive model beats diffusion:
Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Tang, H., Wu, Y., Yang, S., Xie, E., Chen, J., Chen, J.,
Zhang, Z., Cai, H., Lu, Y., and Han, S. Hart: Efficient
visual generation with hybrid autoregressive transformer.
arXiv preprint arXiv:2410.10812, 2024.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via
next-scale prediction. arXiv preprint arXiv:2404.02905,
2024.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Wang, X., Dufour, N., Andreou, N., Cani, M.-P., Abre-
vaya, V. F., Picard, D., and Kalogeiton, V. Analysis of
classifier-free guidance weight schedulers. arXiv preprint
arXiv:2404.13040, 2024.

Yan, J. N., Gu, J., and Rush, A. M. Diffusion models without
attention. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8239–
8249, 2024.

Yu, S., Kwak, S., Jang, H., Jeong, J., Huang, J., Shin, J.,
and Xie, S. Representation alignment for generation:
Training diffusion transformers is easier than you think.
arXiv preprint arXiv:2410.06940, 2024.

11



Effective and Efficient Masked Image Generation Models

Zheng, L., Yuan, J., Yu, L., and Kong, L. A reparameter-
ized discrete diffusion model for text generation. ArXiv,
abs/2302.05737, 2023.

12



Effective and Efficient Masked Image Generation Models

Table 4. Mask schedule formulations.

Mask schedule γt
−γ′

t

γt

Linear t − 1
t

Cosine cos
(
π
2 (1− t)

)
−π

2 tan
(
π
2 (1− t)

)
Exp 1− exp(−5t) − 5 exp(−5t)

1−exp(−5t)

A. Equivalence of the masking strategies of MaskGIT and MDM
In this section, we demonstrate that the masking strategies of MaskGIT and MDM are equivalent in expectation. MaskGIT
first samples a ratio r from [0, 1] and then uniformly masks ⌈Nγr⌉ tokens of x as [M]. In contrast, for MDM, each token is
independently masked as [M] with probability γt.

First, for MDM, the cross-entropy loss in Equation (4) has multiple equivalent forms (Ou et al., 2024). To facilitate better
understanding, we reformulate Equation (4) as an expectation over t:

L(x0) = Et∼U [0,1]Eq(xt|x0)

γ′
t

γt

∑
{i|xi

t=[M]}

− log pθ(x
i
0|xt)

 . (9)

As an example, we consider the linear mask schedule, where γt = t. In this formulation, the forward process involves
independently masking each token based on a uniformly sampled t. Under this setting, the loss simplifies to:

L(x0) = Et∼U [0,1]Eq(xt|x0)

1

t

∑
{i|xi

t=[M]}

− log pθ(x
i
0|xt)

 . (10)

For MaskGIT, the number of masked tokens l is sampled from a uniform distribution U [1, N ], after which l tokens in x0 are
randomly masked as [M]. Under this scheme, the loss function can be rewritten as:

L(x0) = El∼U [1,N ]Eq(xl|x0)

 1
l
N

∑
{i|xi

l=[M]}

− log pθ(x
i
0|xl)

 . (11)

As shown in Ou et al. (2024), Equation (11) and Equation (10) are equivalent in expectation. In this paper, we adopt the
formulation of Equation (4) with an exponential mask schedule as the default setting.

B. Mask schedules
B.1. Formulations and Illustrations of Mask Schedules

We present different choices of mask schedules in Fig. 5 and Tab. 4. The linear schedule achieves the best empirical
performance in text generation, as demonstrated in previous work (Lou et al., 2024b; Sahoo et al., 2024; Shi et al., 2024). In
comparison to the linear schedule, the cosine and exp schedules mask more tokens during the forward process of MDM.

B.2. Sampling Simulator Experiment

During sampling, we conducted a simulation experiment with a total of 256 sample tokens and 16 sampling steps. Therefore,
the temporal interval [0, 1] is discretized into 16 equally sized segments for sampling purposes. Let si and ti represent the
endpoint and starting point of the i-th segment, respectively, where i ∈ {1, 2, . . . , 16}. The indexing is defined such that t1
corresponds to the start of the first segment. Specifically, the endpoints are defined as si = 16−i

16 and the starting points as
ti =

16−i+1
16 . In each step i, the prediction for each token is made with a probability of γti

−γsi

γsi
, as given by Equation (6).
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Figure 5. Different choices of mask schedules. Left: γt (i.e., the probability that each token is masked during the forward process).
Right: Weight of the loss in MDM.
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Figure 6. Comparison of mask removal for different sample mask schedule.

We simulated the process 10,000 times and calculated the average number of tokens predicted in each step. The experimental
results are shown in Fig. 6.

We observed the following trends: For the linear schedule, the model predicts almost the same number of tokens in each
step. In contrast, for the cosine schedule, the model predicts fewer tokens in the earlier steps and more tokens in the later
steps. Compared to the cosine schedule, the exp schedule predicts even fewer tokens in the earlier steps and progressively
more tokens in the later steps.

C. Time Interval for Classifier Free Guidance
To validate our hypothesis that an excessively strong guide in the early stages may drastically reduce the variation in
generated samples, leading to a higher FID, we conducted an experiment with a total of 256 sample tokens and 16 sampling
steps. A more detailed description of the sampling procedure can be found in Appendix B.2. Let si and ti represent the
endpoint and starting point of the i-th sampling step, respectively. We define tmin and tmax for CFG. If si ∈ [tmin, tmax], we
apply CFG to guide the sampling; otherwise, we do not use CFG and rely solely on simple conditional generation. As
shown in Fig. 8, we observe that when tmin = 0 and tmax = 1, the FID value is 22.48, demonstrating low variation in the
generated samples. Additionally, in the top left corner of Fig. 8(a) (i.e., when tmin < tmax ≤ 0.5), we achieve a relatively low
FID (indicating higher variation), which supports our hypothesis and encourages the application of CFG guidance only
during the later stages of sampling.
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Figure 7. Generation performance is sensitive to the CFG value when using the constant schedule.
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Figure 8. Performance across different time intervals. Subplots show (a) FID and (b) Inception Score(IS).

Table 5. The code links and licenses.

Method Link License

MAR https://github.com/LTH14/mar MIT License
DPM-Solver https://github.com/LuChengTHU/dpm-solver MIT License
DC-AE https://github.com/mit-han-lab/efficientvit Apache-2.0 license

D. Experiment settings and results
We implement eMIGM upon the official code of MAR (Li et al., 2024), DC-AE (Chen et al., 2024), DPM-Solver (Lu et al.,
2022a;b), whose code links and licenses are presented in Tab. 5.

Image Tokenizer. For ImageNet 256× 256, we use the same KL-16 image tokenizer as in MAR (Li et al., 2024), which
has a stride of 16. That is, for an image of size 256× 256, it outputs an image token sequence of length 16× 16, with each
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Table 6. Training configurations of models on ImageNet 256×256.

Model Size

XS S B L H

Architecture Configurations

Transformer blocks 20 24 24 32 40
Transformer width 448 512 768 1024 1280
MLP blocks 3 3 6 8 12
MLP width 1024 1024 1024 1280 1536
Params (M) 69 97 208 478 942

Training Hyperparameters

Epochs 800 800 800 800 800
Learning rate 4.0e-4 4.0e-4 8.0e-4 8.0e-4 8.0e-4
Batch size 1024 1024 2048 2048 2048
Adam β1 0.9 0.9 0.9 0.9 0.9
Adam β2 0.95 0.95 0.95 0.95 0.95

Table 7. Training configurations of models on ImageNet 512×512.

Model Size

XS S B L

Architecture Configurations

Transformer blocks 20 24 24 32
Transformer width 448 512 768 1024
MLP blocks 6 6 8 8
MLP width 1280 1280 1280 1280
Params (M) 104 132 244 478

Training Hyperparameters

Epochs 800 800 800 800
Learning rate 4.0e-4 4.0e-4 8.0e-4 8.0e-4
Batch size 1024 1024 2048 2048
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.95 0.95 0.95 0.95

token having a dimensionality of 16. For ImageNet 512× 512, we use the DC-AE-f32 tokenizer (Chen et al., 2024) for
efficiency, which has a stride of 32, and each token has a dimensionality of 32.

Classifier-Free Guidance (CFG). In the original CFG, during training, the class condition is replaced with a fake class
token with a probability of 10%. During sampling, the prediction model takes both the class token and the fake class token
as input, generating outputs zc and zu. Conceptually, CFG encourages the generated image to align more closely with the
result conditioned on zc while deviating from the result conditioned on zu. For CFG with Mask, we replace the fake class
token with a masked token as the input for unconditional generation. We use a constant CFG schedule and the time interval
strategy in our main results presented in Tab. 2 and Tab. 3, achieving excellent performance while significantly reducing the
sampling cost. Moreover, we observed that with the time interval strategy, we can use a consistently high CFG value to
guide generation at each prediction step, eliminating the need for CFG value sweeping.

Training Settings. The detailed training settings for ImageNet 256× 256 and ImageNet 512× 512 are provided in Tab. 6
and Tab. 7, respectively.
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Table 8. Image generation results on ImageNet 256× 256.

Method NFE FID↓ sFID↓ IS↑ Precision↑ Recall↑
VAR-d30 (Tian et al., 2024) 10×2 1.92 - 323.1 0.82 0.59

REPA (Yu et al., 2024) 250×1.7 1.42 4.70 305.7 0.80 0.65

eMIGM-XS 16×1.2 4.23 5.74 218.63 0.79 0.50
eMIGM-S 16×1.2 3.44 5.31 244.16 0.80 0.53
eMIGM-B 16×1.2 2.79 5.20 284.62 0.82 0.54
eMIGM-L 16×1.2 2.22 4.80 291.62 0.80 0.59
eMIGM-H 16×1.2 2.02 4.66 299.36 0.80 0.60

eMIGM-XS 128×1.4 3.62 5.47 224.91 0.80 0.51
eMIGM-S 128×1.4 2.87 5.53 254.48 0.80 0.54
eMIGM-B 128×1.35 2.32 4.63 278.97 0.81 0.57
eMIGM-L 128×1.4 1.72 4.63 304.16 0.80 0.60
eMIGM-H 128×1.4 1.57 4.68 305.99 0.80 0.63

Table 9. Ablation study on different mask schedules, reporting FID scores.

Epoch Linear Cosine Exp Log-Exp

100 38.66 24.99 28.63 25.38
200 30.55 16.70 17.97 11.81
300 24.55 15.00 11.57 12.48
400 24.96 12.39 11.90 9.91

Table 10. Comparison of sampling speed.

Model Avg sec per image↓ FID↓
eMIGM-L 0.165 1.77
EDM2-XXL (Karras et al., 2024) 0.552 1.81
EDM2-XXL with guidance interval (Kynkäänniemi et al., 2024) 0.481 1.40

More Evaluation Metrics. We present additional evaluation metrics on ImageNet 256× 256 in Tab. 8.

More Mask Schedules. In this paper, we explored three mask schedules: (1) Linear: γt = t; (2) Cosine: γt =
cos

(
π
2 (1− t)

)
; and (3) Exp: γt = 1 − exp(−5t). All these schedules are designed to satisfy the approximate boundary

conditions γ0 ≈ 0 and γ1 ≈ 1. We observed that the exp mask schedule, when used in conjunction with w(t) = 1, achieves
superior performance compared to other settings.

Furthermore, we developed a log-exp schedule, γt =
log(1+(e5−1)·t)

5 , which aims to balance mask ratios by reducing
extremes in both high and low masking. Following the experimental setup detailed in Fig. 2(b), we present the FID results
in Tab. 9. We observed that the log-exp schedule demonstrates improved convergence and performance, thereby validating
the benefit of exploring new masking schedules. We leave further investigation of more mask schedules for future work.

Sampling Speed Comparison with EDM2. Compared with EDM2’s generation network, EDM2’s guidance network is
relatively small. We therefore conducted additional experiments to compare sampling speeds on a single A100 GPU (batch
size 256), with the results presented in Tab. 10. eMIGM-L achieves faster sampling than EDM2-XXL, primarily due to its
lower parameter count. Despite requiring a higher NFE, it still maintains competitive performance.

17


