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ABSTRACT

In recent years, Multi-Task Learning (MTL) attracts much attention due to its
good performance in many applications. However, many existing MTL models
cannot guarantee that its performance is no worse than its single-task counterpart
on each task. Though this phenomenon has been empirically observed by some
works, little work aims to handle the resulting problem, which is formally defined
as negative sharing in this paper. To achieve safe multi-task learning where no
negative sharing occurs, we propose a Safe Multi-Task Learning (SMTL) model,
which consists of a public encoder shared by all the tasks, private encoders, gates,
and private decoders. Specifically, each task has a private encoder, a gate, and a
private decoder, where the gate is to learn how to combine the private encoder and
public encoder for the downstream private decoder. To reduce the storage cost
during the inference stage, a lite version of SMTL is proposed to allow the gate to
choose either the public encoder or the corresponding private encoder. Moreover,
we propose a variant of SMTL to place all the gates after decoders of all the tasks.
Experiments on several benchmark datasets demonstrate the effectiveness of the
proposed methods.

1 INTRODUCTION

Multi-Task Learning (MTL) (Caruana, 1997; Zhang & Yang, 2021), which aims to improve the
generalization performance of multiple learning tasks by sharing knowledge among those tasks, has
attracted much attention in recent years. Compared with single-task learning, it not only improves
the performance but also reduces the training and inference time. Though MTL has demonstrated
its usefulness in many applications, MTL cannot guarantee to improve the performance of all the
tasks when compared with single-task learning. As empirically observed in (Lee et al., 2016; Guo
et al., 2020; Sun et al., 2020; Standley et al., 2020), when learning on multiple tasks together, each of
some existing MTL models can achieve better performance on some of the tasks than a single-task
model but perform worse on the other tasks. Such phenomenon is defined as the negative sharing
phenomenon here, which is similar to the ‘negative transfer’ phenomenon (Wang et al., 2019) in
transfer learning (Yang et al., 2020) but with some difference in the ways of knowledge transfer and
sharing in those two learning paradigms as discussed later. One reason for the occurrence of negative
sharing is that there are unrelated tasks among tasks in investigation, making jointly learning these
tasks impair the performance of some tasks.

To the best of our knowledge, there is little work to study the negative sharing problem for MTL.
In this paper, we firstly give a formal definition for negative sharing occurred in MTL. Then we
formally define an ideal and also basic situation of MTL, safe multi-task learning, where an MTL
model performs no worse than its single-task counterpart on each task. Hence, safe multi-task
learning means that there is no negative sharing occurred. According to the definition of MTL
(Caruana, 1997; Zhang & Yang, 2021), we can see that every MTL model should achieve safe
multi-task learning. Otherwise, single-task learning is more preferred than MTL, since an unsafe
MTL model may bring the risk of worsening the generalization performance of some or even all the
tasks. Moreover, we formally define η-partially safe multi-task learning as a loose version of safe
multi-task learning to allow the MTL model to perform worse than its single-task counterpart on
tasks with a proportion no larger than η.

To achieve safe multi-task learning, we propose a Safe Multi-Task Learning (SMTL) model. Specif-
ically, given m learning tasks, the SMTL model consists of a public encoder shared by all the tasks,
m private encoders for the m tasks, m gates for the m tasks, and m private decoders for the m
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tasks. Hence each task has a private encoder, a gate, and a private decoder. The gate of each task
is responsible of learning how to linearly combine the public encoder and the corresponding private
encoder for the downstream private decoder. To reduce the storage cost during the inference stage,
we propose a lite version of SMTL via the Gumbel-softmax trick (Jang et al., 2017; Maddison et al.,
2017) to enforce each gate to choose either the public encoder or private encoder. Moreover, to
study the impact of different locations of the gates, we propose variants of the SMTL model, which
place the gates after the decoders. Furthermore, we analyze the SMTL model from the perspec-
tives of generalization bound and optimization. Experiments on several MTL benchmark datasets
demonstrate the effectiveness of the proposed methods.

The main contributions of this paper are summarized as follows.

• We provide formal definitions for MTL, including negative sharing, safe multi-task learn-
ing, and η-partially safe multi-task learning.

• To achieve safe multi-task learning, we propose a simple and effective SMTL model. Built
on the SMTL model, we propose its variants.

• We conduct extensive experiments to demonstrate the superiority of the proposed methods
over state-of-the-art methods.

2 RELATED WORK

MTL has been extensively studied in recent years (Evgeniou & Pontil, 2004; Zhang & Yeung, 2010;
Kumar & Daume III, 2012; Zhang et al., 2021; Guo et al., 2021). How to design a good network
architecture for MTL is an important issue. The most popular model is the multi-head hard sharing
architecture (Caruana, 1997; Zhang et al., 2014; Long & Wang, 2015; Liu et al., 2015; Ruder et al.,
2019), which shares the first several layers among all the tasks and allow the subsequent layers to
be specific to different tasks. Then, to better handle task relationships, different MTL architectures
have been proposed. For example, Misra et al. (2016) propose a cross-stitch network to learn to
linearly combine hidden representations of different tasks. Liu et al. (2019) propose a Multi-Task
Attention Network (MTAN), which consists of a shared network and an attention module for each
task so that both shared and task-specific feature representations can be learned via the attention
mechanism. Gao et al. (2019) propose a Neural Discriminative Dimensionality Reduction (NDDR)
layer to enable automatic feature fusing at every layer from different tasks. Sun et al. (2020) propose
an Adaptive Sharing (AdaShare) method to learn the sharing pattern through a task-specific policy
that selectively chooses which layers to be executed for each task. Guo et al. (2020) propose an
algorithm to learn where to share or branch within a network for MTL. Cui et al. (2021) propose an
Adaptive Feature Aggregation (AFA) layer, where a dynamic aggregation mechanism is designed to
allow each task to adaptively determine the degree of the knowledge sharing between tasks. All the
existing works do not study how to achieve safe multi-task learning, which is the focus of this paper.

3 SAFE MULTI-TASK LEARNING

In this section, we first formally define some terminologies for MTL. Then we introduce the pro-
posed SMTL method. Moreover, we propose some variants of the SMTL model. Finally, we provide
some analyses for SMTL.

3.1 DEFINITIONS

Definition 1 (Negative Sharing). For an MTL model which is trained on multiple learning tasks
jointly, if its generalization performance on some tasks is inferior to the generalization performance
of the corresponding single-task model which is trained on each task separately, then negative shar-
ing occurs.
Remark 1. Negative sharing occurs when some tasks are totally or partially irrelevant to other
tasks. In this case, manually enforcing all the tasks to have some forms of sharing will impair
the performance of some or even all the tasks. In Definition 1, the MTL model and the single-
task model usually have similar architectures as totally different architectures may bring additional
confounding factors. Moreover, negative sharing is similar to negative transfer (Wang et al., 2019)
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in transfer learning (Yang et al., 2020). However, knowledge transfer in transfer learning is directed
as it is from a source domain to a target domain, while knowledge sharing in MTL is among all
the tasks, making it undirected. From this perspective, negative sharing is different from negative
transfer.
Definition 2 (Safe Multi-Task Learning). When no negative sharing occurs for an MTL model on a
dataset, this MTL model is said to achieve safe multi-task learning on this dataset.

The ideal situation for an MTL model is to achieve safe multi-task learning. However, not all the
MTL methods can achieve safe multi-task learning and hence we define η-partially safe multi-task
learning, which can be viewed as a loose version of safe multi-task learning.
Definition 3 (η-Partially Safe Multi-Task Learning). Given multiple learning tasks in a dataset, η-
partially safe multi-task learning (0 ≤ η ≤ 100) indicates that on about η percentage of tasks, the
generalization performance of an MTL model is no worse than that of its single-task counterpart.

When η equals 100, η-partially safe multi-task learning becomes safe multi-task learning. When η
is equal to 0, the MTL model performs worse than its single-task counterpart in all the tasks.

3.2 SMTL

With m learning tasks {Ti}mi=1, our goal is to design a model that can achieve safe multi-task learn-
ing. To achieve this goal, we propose the SMTL model, which is introduced in the following.

Without loss of generality, we consider the case that different tasks share the input data or equiva-
lently each data point has an output for each task. As shown in the left figure of Figure 1, the SMTL
model can be divided into four parts: a public encoder fS shared by all the tasks, m private encoders
{ft}mt=1 for m tasks, m gates {gt}mt=1 for m tasks, and m private decoders {ht}mt=1 for m tasks. For
task t, its model consists of the public encoder fS , the private encoder ft, the gate gt, and the private
decoder ht, where fS and ft are combined by gt. Specifically, given a data point x, the gate gt in
task t receives two inputs: fS(x) and ft(x), and outputs gt(fS(x), ft(x)), which is fed into ht to
obtain the final prediction ht(gt(fS(x), ft(x))), which is used to define a loss for x.

Here the gate gt is to determine the contributions of fS and ft. Ideally, when task t is unrelated to
other tasks, gt should choose ft only. On another extreme where all the tasks have the same data
distribution, all the tasks should use the same model and hence gt should choose fS only. On cases
between the two extremes, gt can combine fS and ft in proportion. To achieve the aforementioned
effects, we use a simple convex combination function for gt as

gt(fS(x), ft(x)) = αtfS(x) + (1− αt)ft(x), (1)

where αt ∈ [0, 1] defines the weight of fS(x) and is a learnable parameter. When αt equals 0, only
the private encoder ft will be used, which corresponds to the unrelated case. When αt is equal to 1,
only the public encoder fS will be used, which is corresponding to the case that all the tasks follow
the same distribution. When αt is between 0 and 1, fS and ft are combined with proportions αt
and 1− αt, respectively, where αt can be adaptively learned to minimize the training loss on task t.
Thus, the entire objective function of SMTL is formulated as

min
Θ∈C

1

mn

n∑
i=1

m∑
t=1

Lt(yit, ht(gt(fS(xi), ft(xi)))), (2)

where xi denotes the ith data point, yit denotes the label of xi in task t, n denotes the total number
of data points in the training dataset, Θ includes all the parameters in fS , {ft}mt=1, {gt}mt=1, and
{ht}mt=1, C = {Θ|0 ≤ αt ≤ 1,∀t} denotes the feasible set for Θ, and Lt denotes the loss func-
tion for task t (e.g., the pixel-wise cross-entropy loss for semantic segmentation, L1 loss for depth
estimation, and element-wise dot product loss for surface normal prediction).

To see why the proposed SMTL model could achieve safe multi-task learning, we compare SMTL
and the corresponding Single-Task Learning (STL) model which consists of a private encoder ft and
a private decoder ht. It is easy to see that SMTL can reduce to the STL model for some or even all
the tasks by making the gates of those tasks choose the corresponding private encoders (i.e., setting
αt’s of those tasks to 0). So if a task is unrelated to other tasks, the SMTL model can use the gating
mechanism to separate this outlier task from other tasks, which may help achieve safe multi-task
learning. Moreover, we can show that the training loss of the SMTL model is no larger than the
average of that of the STL model on each task. To see that, it is easy to show that the STL model for
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Figure 1: Illustration of the SMTL and L-SMTL models. Left figure: Pipeline for the SMTL
model, which is identical to the training phase of L-SMTL. For task t, x is first fed into both the
public encoder fS and private encoder ft, then it is through the gate gt to obtain the combined
feature representation, and finally it is through the private decoder ht to obtain the output ŷt. The
number of tasks is set to three for illustration. Right figure: Test phase for L-SMTL. After finishing
the training process of L-SMTL, gt can choose which encoder (i.e., the public encoder fS or private
encoder ft) is used for each task. In this way, at the test process, only the chosen encoders need to be
saved, which could reduce the number of parameters and speedup the inference. In this illustration,
task 1 and task 3 choose the public encoder, while task 2 goes through its private encoder.

task t can be represented as ht(g0
t (∅, ft(x))), where g0

t denotes the gate of task t with αt as 0 and
∅ denotes a null network. As g0

t is a feasible gate for SMTL, after sufficient training, we probably
have

min
Θ∈C

1

mn

n∑
i=1

m∑
t=1

Lt(yit, ht(gt(fS(xi), ft(xi)))) ≤ min
Θ′

1

mn

n∑
i=1

m∑
t=1

Lt(yit, ht(g0
t (∅, ft(xi)))),

where Θ′ includes parameters in {ft}mt=1 and {ht}mt=1 in STL models for all the tasks. This in-
equality shows the benefit of the proposed SMTL model. Even though the training loss is not a tight
estimation of the generalization loss, we think that it is an indicator to reflect the generalization per-
formance of the two models. In Section 4.4, we study to use a bi-level formulation to learn the gates
as hyperparameters on a validation set and its performance is comparable with the SMTL model
based on problem (2), which proves the usefulness of the indication of the training loss.

Similarly, we can show that the training loss of the SMTL model is no larger than that of the DMTL
model (a.k.a. the multi-head hard sharing network) which consists of a shared encoder by all the
tasks and private decoders for m tasks. To see this, the DMTL model for task t can be represented
as ht(g1

t (fS(x), ∅)), where g1
t denotes the gate of task t with αt as 1. As g1

t is a feasible gate for
SMTL, it is easy to get that the training loss of the SMTL model after sufficient training is lower than
that of the DTML model, which could be one reason for the phenomenon that SMTL outperforms
DMTL in our experiments.

3.3 LITE SMTL

The SMTL model is computationally efficient during both the training and inference stages, but it
requires to keep all the private encoders as well as the public encoder at the inference stage. In
some applications with limited storage resource such as edge computing, we hope to eliminate some
private encoders that have small contributions to the corresponding tasks to reduce the storage cost.
To achieve that, we propose a lite version of SMTL called L-SMTL. Specifically, the L-SMTL model
will enforce each gate to choose either the public encoder fS or the corresponding private encoder,
which is equivalent to forcing each αt to be either 1 or 0. Thus, as shown in the right figure of Figure
1, at the inference stage, the unchosen private encoders can be thrown away and we do not need to
store parameters in them. However, the objective function of the L-SMTL model, which is similar
to problem (2) by replacing the constraint αt ∈ [0, 1] with αt ∈ {0, 1}, is non-differentiable as each
αt is binary valued.

To optimize the non-differentiable objective function in L-SMTL, we adopt the Gumbel-softmax
trick (Jang et al., 2017; Maddison et al., 2017). Specifically, if task t chooses the public encoder
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with the probability αt, it can be cast as sampling α̃t from a Bernoulli distribution B(pt,1) with
probability pt,1 = αt to assign α̃t the value of 1 (i.e., using the public encoder for task t) and with
probability pt,0 = 1 − αt to assign α̃t the value of 0 (i.e., using the private encoder for task t).
However, since the sampling process is still non-differentiable, the Gumbel-softmax trick is used to
reparameterize αt. We first use an equivalent formulation for sampling α̃t based on the Gumbel-Max
trick (Gumbel, 1948) as

α̃t = arg maxk∈{0,1}(bk + log pt,k), (3)

where bk (k = 0, 1) is drawn from a Gumbel distribution Gumbel(0, 1) independently (i.e., bk =
− log(− log(u)) where u is sampled from a uniform distribution U(0, 1)). Then we use the softmax
function to approximate the arg max function and define

α̂t =
exp((b1 + log pt,1)/τ)∑

k∈{0,1} exp((bk + log pt,0)/τ)
, (4)

where τ is a temperature parameter. It is easy to show that α̂t = α̃t when τ → 0 and α̂t = 1
2 when

τ → ∞. Thus, we use a small value of τ to make a sharp distribution for α̂t. In implementations
as shown in (Jang et al., 2017), the arg max function in Eq. (3) is used in the forward pass and the
softmax function in Eq. (4) is used in the backward pass to approximate true gradients.

3.4 VARIANT OF SMTL AND L-SMTL

To study the impact of the position of gates in SMTL, we introduce a variant of SMTL called
SMTLc, where all the gates are placed after all the decoders. Similarly, the SMTLc model also has
a lite version called L-SMTLc. An illustration for the SMTLc and L-SMTLc models is shown in
Figure 2 in Appendix C.

Specifically, the SMTLc model can be divided into five parts, including a public encoder fS shared
by all the m tasks, m public decoders {hS,t}mt=1 for the m tasks, m private encoders {ft}mt=1 for
the m tasks, m private decoders {ht}mt=1 for the m tasks, and m gates {gt}mt=1 for the m tasks.
For task t, a data point x is fed into the public encoder fS and the public decoder hS,t to get an
output oS , and it is also fed into the private encoder ft and the private decoder ht to get another
output ot. Then the gate gt will adaptively combine the two outputs to obtain the final output, i.e.,
ŷt = αtoS + (1− αt)ot.
Similar to the SMTL model, when task t is unrelated to other tasks, ideally the SMTLc model can
only choose the private encoder ft and the private decoder ht with a zero αt. Hence, the SMTLc
model can achieve safe multi-task learning when the negative sharing occurs. Moreover, when
0 < αt < 1, the combination of the public component consisting of the public encoder and decoder
and the private component consisting of the private encoder and decoder may act in a way similar
to ensemble learning, which may help improve the generalization performance. Moreover, similar
to the SMTL model, the training loss of SMTLc could be lower than those of the STL and DMTL
models. Built on the SMTLc model, the L-SMTLc model approximately learns binary-valued {αt}
via the Gumbel-softmax trick.

3.5 ANALYSIS

We analyze the generalization bound for the SMTL method. We consider a general case that different
tasks can have different data distributions. The probability measure for the data distribution in task
t is denoted by µt and the data in all the tasks take the form of (X̄, Ȳ) ∼

∏m
t=1(µt)

n, where X̄ =
(X1, . . . ,Xm), Xt = (x1

t , . . . ,x
n
t ) and Ȳ denotes the label of X̄. Here we consider the encoders

f1, . . . , fm, fS : X → RP as mapping functions and define ϕ(x) = (f1(x), . . . , fm(x), fS(x)) :
X → RP (m+1). The functions ϕ and ht are assumed to be chosen from hypothesis classes F and
H, respectively. Note that we only use ft and fS for the representation in task t. For the ease of
analysis, we define a weight vector βt ∈Mt for task t, whereMt = {βt ∈ Rm+1

+ | βt,t+βt,m+1 =
1, βt,i = 0 if i 6= t and i 6= m + 1}, and βt,i represents the ith entry of βt. Thus, for given αt, the
corresponding βt satisfies βt,t = 1−αt and βt,m+1 = αt. Therefore, the risk of task t in SMTL can
be written as the expectation E(x,y)∼µt

[Lt(y, ht(βTt ϕ(x))]. We denote by E the average expected
risk of all the tasks. Then, the minimal risk is defined as

E∗ = min
ht∈H,βt∈Mt,ϕ∈F

E = min
ht∈H,βt∈Mt,ϕ∈F

1

m

m∑
t=1

E(x,y)∼µtLt(y, ht(β
T
t ϕ(x))).
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Then we obtain a generalization bound for the SMTL method with the proof in Appendix A.
Theorem 1 (Generalization bound). Assume that Lt(·, ·) ∈ [0, 1] for t = 1, . . . ,m is 1-Lipschitz
w.r.t the second argument, and the function ϕ in F is M -Lipschitz continuous. Then for (X̄, Ȳ) ∼∏m
t=1(µt)

n, with probability at least 1− δ, we have

E − E∗ ≤
C1MG(F(X̄)) + minz∈F(X̄) G(H′(z))

mn
+

2QC2 supϕ∈F ‖ϕ(X̄)‖
n
√
m

+

√
8 ln(4/δ)

mn
, (5)

where C1 and C2 are two constants, F(X̄) = {(ϕ(xit)) : ϕ ∈ F}, ‖ · ‖ denotes the `2 norm,
H′ = {z ∈ RmnP (m+1) 7→ ht(β

T
t z) : ht ∈ H, βt ∈ Mt}, G(·) denotes the Gaussian average, Qt

is defined as

Qt = sup
z 6=z̃∈RnP (m+1)

1

‖z − z̃‖E sup
h∈H,β∈Mt

n∑
i=1

γi(h(βT zi)− h(βT z̃i)),

Q = max1≤t≤mQt, and γ is a vector of independent standard normal variables.

In the generalization bound (5), the first term of the right-hand side can be regarded as the cost of
estimating the feature map ϕ, the second term corresponds to the cost of estimating task-specific
functions βt and ht, and the third term defines the confidence of the bound. The convergence rate of
this bound is O( 1√

mn
), which is as tight as typical generalization bounds for MTL such as (Maurer

et al., 2016). Moreover, in Appendix B, we discuss some necessary condition for the optimal αt
being 0 or 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Experiments are conducted on four MTL benchmark datasets, including CityScapes (Cordts et al.,
2016), NYUv2 (Silberman et al., 2012), PASCAL-Context (Mottaghi et al., 2014), and Taskonomy
(Zamir et al., 2018). Detailed introductions of the four datasets are put in Appendix D.1.

The baseline methods in comparison include the Single-Task Learning (STL) that trains each task
separately, the DMTL model which adopts the multi-head hard sharing architecture, Cross-stitch
network (Misra et al., 2016), MTAN (Liu et al., 2019), NDDR-CNN (Gao et al., 2019), AdaShare
(Sun et al., 2020), and AFA (Cui et al., 2021). For fair comparison, we use the same backbone for
all the models in comparison.

For each task in the benchmark datasets, we use one or more evaluation metrics to thoroughly
evaluate the performance. The detailed introduction of each evaluation metric is put in Ap-
pendix D.3. To better show the comparison between each method and STL, we report the rel-
ative performance of each method over STL in terms of the jth evaluation metric on task t as
∆t,j = (−1)pt,j (Mt,j − STLt,j), where for a method M, Mt,j denotes its performance in terms
of the jth evaluation metric for task t, STLt,j is defined similarly, pt,j equals 1 if a lower value rep-
resents a better performance in terms of the jth metric in task t and 0 otherwise. So positive relative
performance indicates better performance than STL, which is shown in green in the following tables,
while worse performance corresponding to negative relative performance is shown in red. The over-
all relative improvement of a method M over STL is defined as ∆I = 1

m

∑m
t=1

1
mt

∑mt

j=1
∆t,j

STLt,j
,

where mt denotes the number of evaluation metrics in task t. Moreover, to measure the safeness
of each method, the estimation η̂ of η in the definition of η-partially safe multi-task learning (i.e.,
Definition 3) for a method M is computed as η̂ = 1

m

∑m
t=1

1
mt

∑mt

j=1 δ(∆t,j)× 100, where δ(x) is
a step function that outputs 0 when x < 0 and otherwise 1.

We use the Deeplab-ResNet (Chen et al., 2017) with atrous convolutions, a popular architecture for
pixel-wise prediction tasks, as encoders and the ASPP architecture (Chen et al., 2017) as decoders.
We adopt the ResNet-50 for the CityScapes and NYUv2 datasets to implement the the Deeplab-
ResNet, and use the smaller ResNet-18 for the larger PASCAL-Context and Taskonomy datasets for
training efficiency. We use the cross-entropy loss for the semantic segmentation, human parts seg-
mentation and saliency estimation tasks, the cosine similarity loss for the surface normal prediction
task, and the L1 loss for other tasks. For optimization, we use the Adam method (Kingma & Ba,
2014) with the learning rate as 10−4. All the experiments are conducted on Tesla V100 GPUs.
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4.2 EXPERIMENTAL RESULTS Table 1: Performance of various models on the
CityScapes validation dataset. ↑ (↓) indicates the
higher (lower) the result, the better the perfor-
mance. The green color indicates that the cor-
responding method performs better than the STL
method and the red color indicates oppositely.

Method Segmentation Depth
∆I ↑ η̂ ↑

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
STL 67.48 91.00 0.0139 46.2507

DMTL −0.08 −0.08 −0.0003 +0.8245 −0.0014 25

Cross-stitch +0.53 +0.29 +0.0004 +1.8261 +0.0198 100

MTAN +1.49 +0.59 +0.0003 +2.4999 +0.0260 100

NDDR-CNN +0.54 +0.25 +0.0002 +1.3845 +0.0138 100

AdaShare +0.68 +0.20 −0.0005 −20.651 −0.1175 50

AFA +1.44 +0.52 −0.0019 −0.9136 −0.0323 50

SMTL +1.50 +0.62 +0.0005 +3.3886 +0.0346 100

L-SMTL +1.17 +0.51 +0.0001 +3.2747 +0.0252 100

SMTLc +1.62 +0.63 +0.0008 −1.9361 +0.0117 75

L-SMTLc +1.18 +0.38 +0.0008 +1.5060 +0.0279 100

Tables 1-4 show the performance of all the
models in comparison on the four benchmark
datasets. On the CityScapes dataset, the pro-
posed SMTL, L-SMTL, L-SMTLc, and some
baseline methods (i.e., Cross-stitch, MTAN,
and NDDR-CNN) all achieve safe multi-task
learning (i.e., η̂ = 100), which indicates that
their performance is better than that of the STL
model in all tasks. In addition, the proposed
SMTL model achieves the best overall relative
improvement ∆I , which demonstrates its effec-
tiveness. On the NYUv2 and PASCAL-Context
datasets, none of the baselines can achieve safe
multi-task learning, but the proposed meth-
ods (i.e., SMTL, SMTLc, and L-SMTLc) can
achieve that, which again shows the effectiveness of the proposed methods. Though the proposed
L-SMTL method does not achieve safe multi-task learning on these two datasets, it still achieves a
better η̂ than baseline methods on the NYUv2 dataset and a comparable η̂ on the PASCAL-Context
dataset. On the PASCAL-Context dataset, the overall relative improvement of all the baselines are
negative, while all the proposed methods achieves positive ∆I ’s, which shows the superiority of
the proposed methods. On the Taskonomy dataset, only the Cross-stitch network and the proposed
SMTL, SMTLc, and L-SMTLc methods can achieve safe multi-task learning. According to results
shown in Table 4, we can see that the AFA method achieves the best ∆I because it has the largest
improvements on the keypoint detection and edge detection tasks, but it does not achieve safe multi-
task learning, while the proposed methods can achieve that.

For the proposed methods, we can see that the lite versions (i.e., L-SMTL and L-SMTLc) per-
form comparable with SMTL and SMTLc, respectively, which suggests that the elimination strategy
works well on the four datasets. By comparing SMTL with SMTLc, it seems that the performance
is not so sensitive to the two positions of the gates, and similar observations hold for the L-SMTL
and L-SMTLc methods. Moreover, the proposed SMTL and L-SMTLc methods can achieve safe
multi-task learning on all the four datasets, while the proposed L-SMTL and SMTLc methods fail
to achieve this. This observation may suggest the SMTL and L-SMTLc methods are more preferred
than others.

Table 2: Performance of various models on the NYUv2 validation dataset. ↑ (↓) indicates the higher
(lower) the result, the better the performance. The green color indicates that the corresponding
method performs better than the STL method and the red color indicates oppositely.

Method
Segmentation Depth Surface Normal

∆I ↑ η̂
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Angle Distance ↓ Within t◦↑

Mean Median 11.25 22.5 30

STL 53.11 75.20 0.3957 0.1632 22.26 15.49 38.61 64.43 74.69

DMTL +0.52 +0.16 +0.0104 +0.0032 −1.34 −1.57 −3.31 −3.42 −2.69 −0.0127 67

Cross-stitch +0.43 +0.09 +0.0082 +0.0052 −0.31 −0.52 −0.82 −0.93 −0.77 +0.0041 67

MTAN +1.03 +0.82 +0.0176 +0.0083 −0.51 −0.90 −1.80 −1.58 −1.16 +0.0098 67

NDDR-CNN +0.73 +0.03 +0.0086 +0.0072 −0.34 −0.58 −0.94 −1.00 −0.77 +0.0065 67

AdaShare −7.72 −5.42 −0.0508 −0.0213 −2.26 −2.08 −4.38 −4.40 −3.99 −0.1107 0

AFA −1.57 −1.29 −0.0073 −0.0060 −1.97 −1.91 −3.54 −4.21 −3.73 −0.0449 0

SMTL +0.16 +0.28 +0.0071 +0.0042 +0.26 +0.00 +0.03 +0.46 +0.53 +0.0102 100

L-SMTL +0.12 +0.10 +0.0078 +0.0035 +0.39 −0.06 −0.25 +0.55 +0.67 +0.0091 85

SMTLc +0.09 +0.02 +0.0091 +0.0045 +0.26 +0.10 +0.30 +0.62 +0.59 +0.0117 100

L-SMTLc +0.46 +0.21 +0.0132 +0.0081 +0.51 +0.28 +0.83 +1.09 +0.90 +0.0218 100

4.3 ANALYSIS ON LEARNED {αt}

We record the learned {αt} of the proposed models in Table 5. According to results for the SMTL
and SMTLc methods, we can see that some αt’s are closed to 0.5, which means in those cases, the
public encoder and the private encoder are both important to the entire model. Thus, only using
the public encoder (i.e., DMTL) and only using the private encoder (i.e., STL) cannot achieve good
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Table 3: Performance of various models on the PASCAL-Context validation dataset. ↑ (↓) indi-
cates the higher (lower) the result, the better the performance. The green color indicates that the
corresponding method performs better than the STL method and the red color indicates oppositely.

Method
Segmentation Human Parts Saliency Surface Normal

∆I ↑ η̂ ↑
mIoU↑ mIoU↑ mIoU↑ maxF↑

Angle Distance Within t◦

Mean ↓ RMSE ↓ 11.25 ↑ 22.5 ↑ 30 ↑
STL 65.14 58.58 65.02 77.47 15.94 24.87 48.42 80.79 90.03

DMTL −0.37 −0.67 −0.92 −0.51 −1.73 −1.29 −6.43 −4.86 −3.02 −0.0262 0

Cross-stitch −0.17 +0.05 −0.56 −0.40 −0.62 −0.45 −2.36 −2.68 −1.04 −0.0096 25

MTAN −0.58 +0.50 −0.45 −0.23 −1.20 −0.89 −4.58 −3.31 −2.04 −0.0147 25

NDDR-CNN +0.14 +0.60 +0.07 +0.00 −0.37 −0.24 −1.50 −0.94 −0.59 −0.0008 75

AdaShare −12.7 −7.30 −3.65 −2.50 −1.68 −1.23 −6.46 −4.66 −2.83 −0.1017 0

AFA +2.12 +2.11 −1.95 −3.96 −1.63 −1.28 −5.68 −4.42 −2.88 −0.0108 50

SMTL +0.01 +1.05 +0.20 +0.13 +0.26 +0.22 +1.08 +0.74 +0.39 +0.0082 100

L-SMTL +0.29 +1.39 −0.80 −0.16 +0.34 +0.40 +0.95 +1.18 +0.81 +0.0093 75

SMTLc +0.88 +1.43 +0.22 +0.12 +0.36 +0.32 +1.32 +1.08 +0.61 +0.0142 100

L-SMTLc +0.23 +0.82 +0.61 +0.57 +0.53 +0.38 +2.43 +1.36 +0.65 +0.0126 100

Table 4: Performance of various models on the Taskonomy validation dataset. ↑ (↓) indicates the
higher (lower) the result, the better the performance. The green color indicates that the correspond-
ing method performs better than the STL method and the red color indicates oppositely.

Method
Segmentation Depth Keypoints Edges Surface Normal

∆I ↑ η̂ ↑
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Abs Err ↓ Abs Err ↓ Angle Distance ↓ Within t◦↑

Mean Median 11.25 22.5 30

STL 65.42 97.63 0.0072 0.0117 0.1103 0.1349 10.39 4.19 73.67 86.21 90.52

DMTL −0.74 −0.07 −0.0026 −0.0043 −0.0022 −0.0025 −1.25 −0.88 −3.43 −1.93 −1.44 −0.0983 0

Cross-stitch +5.87 +0.67 +0.0005 +0.0009 +0.0100 +0.0019 +1.50 +0.17 +4.21 +3.81 +3.00 +0.0580 100

MTAN +6.34 +0.69 −0.0011 −0.0019 −0.0248 −0.0111 +0.99 −0.18 +2.30 +2.89 +2.41 −0.0767 36

NDDR-CNN +6.64 +0.69 +0.0002 −0.0028 +0.0133 +0.0043 +1.86 +0.47 +4.78 +4.18 +3.32 +0.0378 90

AdaShare +4.90 +0.50 −0.0045 −0.0073 +0.0087 −0.0001 −1.17 −1.93 −3.93 −0.37 −0.12 −0.1265 40

AFA +5.84 +0.57 −0.0016 −0.0027 +0.0465 +0.0524 +1.08 −0.17 +3.00 +3.27 +2.68 +0.1331 76

SMTL +4.99 +0.58 +0.0003 +0.0006 +0.0158 +0.0045 +1.64 +0.29 +4.62 +3.95 +3.06 +0.0676 100

L-SMTL +4.37 +0.53 −0.0006 −0.0011 +0.0129 +0.0026 +1.87 +0.19 +5.02 +4.49 +3.57 +0.0321 80

SMTLc +6.24 +0.68 +0.0001 +0.0002 +0.0171 +0.0047 +1.70 +0.28 +4.74 +4.14 +3.25 +0.0665 100

L-SMTLc +4.75 +0.54 +0.0005 +0.0009 +0.0173 +0.0040 +2.02 +0.42 +5.38 +4.62 +3.67 +0.0782 100

Table 5: {αt} learned on four MTL datasets. ‘SS’ stands for the semantic segmentation task, ‘DE’
denotes the depth estimation task, ‘SNP’ is for the surface normal prediction task, ‘HPS’ corresponds
to the human parts segmentation task, ‘SE’ stands for the saliency estimation task, ‘KD’ stands for
the keypoint detection task, and ‘ED’ denotes the edge detection task.

Method CityScapes NYUv2 PASCAL-Context Taskonomy

SS DE SS DE SNP SS HPS SE SNP SE DE KD ED SNP

SMTL 0.5002 0.4960 0.4383 0.5188 0.1997 0.4739 0.5529 0.3701 0.2304 0.4886 0.4565 0.4504 0.4578 0.2584
L-SMTL 0.4782 0.4823 0.4475 0.4402 0.3745 0.4982 0.5142 0.4964 0.4277 0.4749 0.4472 0.4079 0.4068 0.4135
SMTLc 0.4896 0.4891 0.3779 0.5320 0.4299 0.4619 0.8729 0.3823 0.4652 0.3988 0.5163 0.4952 0.5208 0.4336
L-SMTLc 0.4972 0.4995 0.5155 0.5242 0.3836 0.5427 0.5826 0.4964 0.3757 0.4878 0.4669 0.3959 0.4102 0.3784

performance, while the proposed models can take the advantages of these two methods to achieve
better performance in most cases. Moreover, some of the learned αt’s have relatively small values
(i.e., values smaller than 0.3), which are shown in box in Table 5. These small values indicate that
for the surface normal prediction task on the NYUv2, PASCAL-Context, and Taskonomy datasets,
the public encoder is relatively unimportant, which may imply that the surface normal prediction
task is not strongly related to other tasks on these datasets. On the other hand, this observation
may explain why DMTL is much worse than STL and why the proposed SMTL method has good
performance on these datasets (refer to Tables 2-4).

For the L-SMTL and L-SMTLc methods, when the learned αt is larger than 0.5, the corresponding
task t will choose to use the public component and otherwise choose the corresponding private
component at the inference stage. According to Table 5, we can see that in some cases, all the
tasks will choose private components on some datasets (i.e., both methods on the CityScapes and
Taskonomy datasets, and L-SMTL on the NYUv2 dataset) and other cases are mixed in that some
tasks choose the public component and other tasks choose private components. Interestingly, for
both methods, the surface normal prediction task chooses to use private components on the NYUv2,
PASCAL-Context, and Taskonomy datasets, which corresponds to the small values for αt in the
SMTL method.
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4.4 EXPERIMENTS ON BI-LEVEL FORMULATION

In this section, we use a bi-level formulation for the SMTL model to study the effects of different
formulations. Specifically, the original training dataset is divided into two parts, including a training
set with ntr data points and a validation set with nval data points. The training set is used to learn
parameters in the public encoder, m private encoders, andm private decoders, which corresponds to
the lower-level subproblem in the following problem (6). Parameters in the m gates are viewed as
hyperparameters and the validation set is used to learn them, which is corresponding to the upper-
level subproblem in problem (6). The objective function of SMTL under the bi-level formulation is
formulated as

min
{gt}

1

mnval

nval∑
i=1

m∑
t=1

Lt(ỹit, h∗t (gt(f∗S(x̃i), f
∗
t (x̃i))))

s.t. f∗S , {f∗t }, {h∗t } = arg min
fS ,{ft},{ht}

1

mntr

ntr∑
i=1

m∑
t=1

Lt(ȳit, ht(gt(fS(x̄i), ft(x̄i)))), (6)

where x̄i denotes the ith data point in the training set, ȳit denotes the corresponding label of x̄i in task
t, and x̃i as well as ỹit is defined similarly in the validation set. Then we conduct experiments on the
CityScapes and NYUv2 datasets to compare the performance of SMTL under different formulations.
According to experimental results shown in Table 6, we can see that, on the CityScapes dataset,
the learned {αt} by the bi-level formulation (i.e., problem (6)) is similar to that by the single-
level formulation (i.e., problem (2)), thus the performance has no much difference. However, on
the NYUv2 dataset, SMTL with the bi-level formulation learns a large αt for the surface normal
prediction task, which makes its performance inferior to SMTL with the single-level formulation
in some tasks (i.e., depth estimation and surface normal prediction). One reason is that the surface
normal prediction task is not so strongly related to other tasks that learning them together may
impair not only its own performance but also the performance of other tasks. Moreover, it is well
known that the complexity of solving a bi-level optimization problem is much higher than that of
solving the corresponding single-level optimization problem and so experiments on larger datasets
(i.e., PASCAL-Context and Taskonomy) based on problem (6) are too computational demanding to
be conducted. Hence, the single-level formulation of the SMTL model (i.e., problem (2)) is preferred
as it is both effective and efficient. For other variants of SMTL, we have similar observations so that
we do not report the results for them.

Table 6: Performance and learned αt of SMTL on the CityScapes and NYUv2 validation datasets,
where values in the normal font correspond to the performance of SMTL through the single-level
formulation (i.e., problem (2)) and values in the italic font are those through the bi-level formulation
(i.e., problem (6)). ↑ (↓) indicates the higher (lower) the result, the better the performance.

Dataset
Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Angle Distance ↓ Within t◦↑
Mean Median 11.25 22.5 30

CityScapes
Performace 68.98 91.62 0.0134 42.8621 - - - - -

68.98 91.63 0.0136 43.4661 - - - - -

Learned αt
0.5002 0.4960 -
0.7019 0.5327 -

NYUv2
Performace 53.27 75.48 0.3886 0.1590 22.00 15.49 38.64 64.89 75.22

53.40 75.40 0.4088 0.1612 22.76 16.47 36.63 62.62 73.43

Learned αt
0.4383 0.5188 0.1997
0.6288 0.5468 0.5825

5 CONCLUSION

In this paper, to study the problem of safe multi-task learning, we propose a simple and effective
SMTL method that can automatically learn to combine encoders via a gating mechanism. To reduce
the storage cost, we design lite SMTL by learning a binary gate. Furthermore, we study to place
the gates after the decoders. Extensive evaluations demonstrate the effectiveness of the proposed
methods. In the future work, we are interested in identifying the location for the gates via neural
architecture search.
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APPENDIX

A PROOF OF THEOREM 1

In this section, we analyze the generalization bound for the SMTL method.

To analyze the generalization bound for SMTL, we introduce a useful theorem in terms of Gaussian
averages (Bartlett & Mendelson, 2002; Maurer et al., 2016).
Theorem 2. Let G be a class of functions Ψ : X → [0, 1]T , and µ1, ..., µm be the probability
measure on X with X̄ = (X1, ...,Xm) ∼

∏m
t=1(µt)

n where Xt = (x1
t , . . . ,x

n
t ). Let Z be the

random set {(Ψt(x
i
t)) : Ψ ∈ G} and γ be a vector of independent standard normal variables. Then

for all Ψ ∈ G, with probability at least 1− δ in X̄, we have

1

m

∑
t

(
Ex∼µt [Ψt(x)]− 1

n

∑
i

Ψt(x
i
t)

)
≤
√

2πG(Z)

mn
+

√
9(ln(2/δ))

2mn
,

where G(Z) = E[supz∈Z 〈γ, z〉] is the Gaussian average of the set Z.

Based on Theorem 2, in the following section, we give the proof of Theorem 1.

Proof. By Theorem 2, with probability at least 1 − δ in (X̄, Ȳ) ∼
∏m
t=1(µt)

n, for all ht ∈ H,
αt ∈Mt and ϕ ∈ F , we have

E − 1

mn

∑
ti

Lt(yit, ht(βTt ϕ(xit))) ≤
√

2πG(S)

mn
+

√
9(ln(2/δ))

2mn
, (7)

where S = {(Lt(yit, ht(βTt ϕ(xit)))) : ht ∈ H, αt ∈Mt, ϕ ∈ F} andG(S) is the Gaussian average
of the set S. Then by the Lipschitz property of Lt and Slepian’s Lemma (Ledoux & Talagrand,
2013), we have G(S) ≤ G(S′), where S′ = {(ht(βTt ϕ(xit))) : ht ∈ H, αt ∈Mt, ϕ ∈ F}.

Note that the input data X̄ ∈ Xmn, and hence F(X̄) ⊆ RmnP (m+1) is defined as F(x̄) =
{(ϕ(xit)) : ϕ ∈ F}. We define a class of functions H′ = {z ∈ RmnP (m+1) 7→ ht(β

T
t z) :

ht ∈ H, βt ∈ Mt}. Then we have S′ = H′(F(X̄)). By using Theorem 2 in (Maurer, 2016), we
obtain the following inequality

G(S′) ≤ C1L(H′)G(F(X̄)) + C2D(F(X̄))Q(H′) + min
z∈F(X̄)

G(H′(z))

where C1 and C2 are two constants, L(H′) represent the Lipschitz constant of the functions in H′ ,
D(F(x̄)) = 2 supϕ∈F ‖ϕ(X̄)‖ denotes the Euclidean diameter of the set F(X̄), and

Q(H′) = sup
z 6=z̃∈RmnP (m+1)

1

‖z − z̃‖
E sup
ψ∈H′

〈γ, ψ(z)− ψ(z̃)〉 .

Let z, z̃ ∈ RmnP (m+1), where z = (zit) with zit ∈ RP (m+1) and z̃ = (z̃it) with z̃it ∈ RP (m+1).
Then for any functions ψ ∈ H′, we have

E sup
ψ∈H′

〈γ, ψ(z)− ψ(z̃)〉 = E sup
ht∈H,βt∈Mt

∑
ti

〈
γti, ht(β

T
t z

i
t)− ht(βTt z̃it)

〉
=

m∑
t=1

E sup
h∈H,βt∈Mt

n∑
i=1

γi(h(βTt z
i
t)− h(βTt z̃

i
t))

≤
√
m

 m∑
t=1

(
E sup
h∈H,βt∈Mt

n∑
i=1

γi(h(βTt z
i
t)− h(βTt z̃

i
t))

)2
1/2

≤
√
m

(
m∑
t=1

Q2
max

n∑
i=1

‖zit − z̃it‖2
)1/2

≤
√
mQmax‖z − z̃‖,
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where Qmax = max1≤t≤mQt. Therefore, Q(H′) ≤
√
mQmax. Moreover, we have

‖ψ(z)− ψ(z̃)‖2 =
∑
ti

(ht(β
T
t z

i
t)− ht(βTt z̃it))

≤M2
∑
ti

‖βTt zit − βTt z̃it‖2 ≤M2‖βTt ‖2‖z − z̃‖2

where the first inequality is due to the Lipschitz property and the second inequality is due to the
Cauchy-Schwarz inequality. Note that ‖βt‖ ≤ 1, hence L(H′) ≤M . Then, we have

G(S) ≤ G(S′) ≤ C1MG(F(X̄)) + 2C2

√
mQmax sup

ϕ∈F
‖ϕ(X̄)‖+ min

z∈F(X̄)
G(H′(z)). (8)

Let ϕ∗, h∗1, ..., h
∗
m, β∗1 , ..., β

∗
m be the minimizer in E∗, then we have

E − E∗ =

(
E − 1

mn

∑
ti

Lt(yit, ht(βTt ϕ(xit)))

)
+

(
1

mn

∑
ti

Lt(yit, h∗t (β∗Tt ϕ∗(xit)))− E∗
)

+

(
1

mn

∑
ti

Lt(yit, ht(βTt ϕ(xit)))−
1

mn

∑
ti

Lt(yit, h∗t (β∗Tt ϕ∗(xit)))

)
, (9)

where the first term can be bounded by substituting inequality (8) into (7) and the second term
can be regarded as mn random variables Lt(yit, h∗t (β∗Tt ϕ∗(xit))) with values in [0, 1]. By using
Hoeffding’s inequality, with probability at least 1− δ, we have

1

mn

∑
ti

Lt(yit, h∗t (β∗Tt ϕ∗(xit)))− E∗ ≤
√

ln(1/δ)

2mn
.

The last term is non-positive due to the definition of minimizers. Therefore, we have

E − E∗ ≤
C1MG(F(X̄)) + minz∈F(X̄)G(H′(z))

mn
+

2QC2 supϕ∈F ‖ϕ(X̄)‖
n
√
m

+

√
8 ln(4/δ)

mn
.

B NECESSARY CONDITION FOR OPTIMAL αt

We analyze the conditions that model parameters except {αt} satisfy when the optimal αt equals 0
or 1 for each task. By taking the cross-entropy loss as an example, we have following result.
Theorem 3. When Lt is the cross-entropy loss of task t that is formulated as Lt =
− 1
n

∑n
i=1(yit)

T log ht(αtfS(xi) + (1 − αt)ft(xi)) where yit denotes the one-hot label vector, if
α∗t is a local minimum of Lt over αt, then we have

n∑
i=1

(yit)
T ft(xi)(fS(xi)− ft(xi))

ht(ft(xi))
≤ 0, if α∗t = 0,

n∑
i=1

(yit)
T fS(xi)(fS(xi)− ft(xi))

ht(fS(xi))
≥ 0, if α∗t = 1,

Proof. Fix αt and define the function Ht(ε) = Lt(α∗t + ε(αt − α∗t )), which is continuously dif-
ferentiable in an open interval containing [0, 1]. By using the chain rule to differentiate Ht, we
have

0 ≤ lim
ε→0

Lt(α∗t + ε(αt − α∗t ))− Lt(α∗t )
ε

=
dHt(0)

dε
=
∂Lt(α∗t )
∂αt

(αt − α∗t )

where the inequality follows from the assumption that α∗t is a local minimum.

If α∗t = 0, then αt − α∗t ≥ 0. To satisfy ∂Lt(α
∗
t )

∂αt
(αt − α∗t ) ≥ 0, we have ∂Lt(α

∗
t )

∂αt
≥ 0.

If α∗t = 1, then αt − α∗t ≤ 0. To satisfy ∂Lt(α
∗
t )

∂αt
(αt − α∗t ) ≥ 0, we have ∂Lt(α

∗
t )

∂αt
≤ 0.
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Based on the formulation of Lt, we can compute ∂Lt(α
∗
t )

∂αt
as ∂Lt(α

∗
t )

∂αt
=

− 1
n

∑n
i=1

(yi
t)

T (α∗t fS(xi)+(1−α∗t )ft(xi))(fS(xi)−ft(xi))
ht(α∗t fS(xi)+(1−α∗t )(ft(xi)))

.

Then we have
n∑
i=1

(yit)
T ft(xi)(fS(xi)− ft(xi))

ht(ft(xi))
≤ 0, if α∗t = 0,

n∑
i=1

(yit)
T fS(xi)(fS(xi)− ft(xi))

ht(fS(xi))
≥ 0, if α∗t = 1,

in which we reach the conclusion.

Theorem 3 provide a necessary condition for the optimal αt being 0 or 1. Such analysis can easily
be extended to other loss functions such as the square loss, and we omit it due to similar proofs.

C ILLUSTRATION OF THE SMTLc AND L-SMTLc MODELS

Similar to the SMTL and L-SMTL models, an illustration of the SMTLc and L-SMTLc models is
shown in Figure 2.

...

...

...

...

public encoder 

private encoder 

private encoder 

private encoder 

＋

＋

＋

...

...

public encoder 

private encoder 

Figure 2: Illustration of the SMTLc and L-SMTLc models. Left figure: Pipeline for the SMTLc
model, which is identical to the training phase of L-SMTLc. For task t, x is first fed into the public
encoder fS and the public decoder hS,t to get an output oS , and it is also fed into the private encoder
ft and the private decoder ht to get another output ot. Then it is through the gate to obtain the
combined output, i.e., ŷt = αtoS + (1− αt)ot. The number of tasks is set to three for illustration.
Right figure: Test phase for L-SMTLc. After finishing the training process of L-SMTLc, gt can
choose which component (i.e., the public component fS and hS,t or the private component ft and
ht) is used for each task. In this way, at the test process, only the chosen components need to be
saved, which could reduce the number of parameters and speedup the inference. In this illustration,
task 1 and task 3 choose the public component, while task 2 goes through the private component.

D EXPERIMENTAL SETUP

D.1 DETAILS OF DATASETS

CityScapes. The CityScapes dataset (Cordts et al., 2016) consists of high resolution outside street-
view images, which contains 2, 975 images for training and 500 images for validation. This dataset
contains 19 classes for pixel-wise semantic segmentation, together with ground-truth inverse depth
labels. By following (Liu et al., 2019), we evaluate the performance on the 7-class semantic seg-
mentation and depth estimation tasks. All training and validation images are resized to 128× 256.
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NYUv2. The NYUv2 dataset (Silberman et al., 2012) consisting of RGB-D indoor scene images
has 795 images for training and 654 images for validation. We evaluate the performance on three
learning tasks: 13-class semantic segmentation, depth estimation, and surface normal prediction. By
following (Liu et al., 2019), all the training and validation images were resized to 288× 384.

PASCAL-Context. The PASCAL-Context dataset (Mottaghi et al., 2014) is an annotation extension
of the PASCAL VOC 2010 challenge and it contains 4, 998 images for training and 5, 105 images
for validation. We evaluate the performance on four learning tasks: 21-class semantic segmentation,
7-class human parts segmentation, saliency estimation, and surface normal estimation, where the
last two tasks are generated by (Maninis et al., 2019).

Taskonomy. The Taskonomy dataset (Zamir et al., 2018) which contains over 4.5 million indoor
images from over 5, 000 buildings with 26 tasks. By following (Standley et al., 2020), we sample
five learning tasks, including 17-class semantic segmentation, depth estimation, keypoint detec-
tion, edge detection, and surface normal prediction. Furthermore, we select 5 building images (i.e.,
“allensville”, “collierville”, “mifflinburg”, “noxapater”, and “onaga”) from the standard tiny bench-
mark as our dataset, which contains 13, 286 images for training and 3, 794 images for validation.

D.2 SETTINGS OF BATCH SIZE

The settings of the batch size for all the models on different datasets are shown in Table 7.

Table 7: Settings of batch size for all the models on the four datasets.
Dataset STL DMTL Cross-stitch MTAN NDDR-CNN AdaShare AFA SMTL L-SMTL SMTLc L-SMTLc
CityScapes 180 180 100 80 80 120 150 70 70 70 70
NYUv2 8 4 4 4 4 4 4 4 4 4 4
PASCAL-Context 40 40 24 20 18 32 8 18 18 15 15
Taskonomy 230 230 120 130 100 180 40 100 100 90 90

D.3 EVALUATION METRICS

On the PASCAL-Context dataset, by following (Maninis et al., 2019), the semantic segmentation is
evaluated by the mean Intersection over Union (mIoU) and on the other three datasets, by following
(Sun et al., 2020), this task is additionally evaluated by the Pixel Accuracy (Pix Acc). For the depth
estimation task, the absolute error (Abs Err) and relative error (Rel Err) are used as the evaluation
metrics. For the surface normal prediction task, the mean and median angle distances between the
prediction and ground truth of all pixels are used as measures. For this task, the percentage of pixels,
whose prediction is within the angles of 11.25◦, 22.5◦, and 30◦to the ground truth, is used as another
measure. For the keypoint detection and edge detection tasks, the absolute error (Abs Err) is used
as the evaluation metric. For the human parts segmentation task, the mIoU is used as the measure.
For the saliency estimation task, the mIoU and max F-measure (maxF) are adopted as the evaluation
metrics.

E COMPARISON OF TRAINING TIME

The training time per epoch for all the models on the CityScapes dataset is recorded in Table 8.
According to the results, the training time of the proposed SMTL and L-SMTL methods is compa-
rable with all the baseline methods, implying that the proposed SMTL and L-SMTL methods are as
efficient as baseline methods. The training time of the proposed SMTLc and L-SMTLc methods is
a bit longer due to additional public decoders introduced.

Table 8: Training time per epoch for all the models on the CityScapes dataset.
DMTL Cross-stitch MTAN NDDR-CNN AdaShare AFA SMTL L-SMTL SMTLc L-SMTLc

Time (s) 122 150 153 175 141 58 175 175 272 272

16


	Introduction
	Related Work
	Safe Multi-Task Learning
	Definitions
	SMTL
	Lite SMTL
	Variant of SMTL and L-SMTL
	Analysis

	Experiments
	Experimental Setup
	Experimental Results
	Analysis on Learned {t}
	Experiments on Bi-Level Formulation

	Conclusion
	Proof of Theorem 1
	Necessary Condition for Optimal t
	Illustration of the SMTLc and L-SMTLc Models
	Experimental Setup
	Details of Datasets
	Settings of Batch Size
	Evaluation Metrics

	Comparison of Training Time

