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ABSTRACT

Recently, TabPFN has gained attention as a foundation model for tabular data.
However, it struggles to integrate heterogeneous modalities such as images and
text, which are common in domains like healthcare and marketing, thereby lim-
iting its applicability. To address this, we present the Multi-Modal Prior-data
Fitted Network (MMPFN), which extends TabPFN to handle tabular and non-
tabular modalities in a unified manner. MMPFN comprises per-modality encoders,
modality projectors, and pre-trained foundation models. The modality projectors
serve as the critical bridge, transforming non-tabular embeddings into tabular-
compatible tokens for unified processing. To this end, we introduce a multi-
head gated MLP and a cross-attention sampler that extract richer context from
non-tabular inputs while mitigates attention imbalance issue in multimodal learn-
ing. Extensive experiments on medical and general-purpose multimodal datasets
demonstrate that MMPFN consistently outperforms competitive state-of-the-art
methods and effectively exploits non-tabular modalities alongside tabular features.
These results highlight the promise of extending prior-data fitted networks to the
multimodal setting, offering a scalable and effective framework for heterogeneous
data learning.

1 INTRODUCTION

Tabular data is one of the most widely used data types in domains such as healthcare and marketing.
Traditionally, tree-boosting algorithms (Dorogush et al., 2018) have dominated this field due to their
fast training and strong predictive performance. However, with the advent of TabPFN (Hollmann
et al., 2022) and various tabular deep learning models (Somepalli et al., 2021; Bahri et al., 2021), it
has become clear that deep learning can achieve superior results in learning tabular representations.
This progress has expanded tabular data analysis into a broader range of applications, where it is of-
ten combined with unstructured data (Hager et al., 2023). For instance, diagnostic tasks may jointly
leverage structured test results and medical images (Huang et al., 2020; Schilcher et al., 2024), while
marketing tasks may combine numerical sales records with textual product reviews (Das et al., 2024;
Sukel et al., 2024). Despite this growing interest, attempts to extend tree-boosting algorithms such
as CatBoost to heterogeneous data types have yielded only modest gains. In parallel, deep learning
models that embed and jointly process tabular data with images or text have shown potential, but
they often suffer from limited performance and slow training (Cui et al., 2023; Zhao et al., 2024). A
representative example, TabPFN, excels on purely tabular tasks but remains limited in its ability to
directly integrate unstructured modalities.

We propose the Multi-Modal Prior-data Fitted Network (MMPFN), an extension of TabPFN that
processes tabular and non-tabular modalities in a unified manner. MMPFN first extracts features
with per-modality encoders for tabular, image, and text inputs: the original TabPFN encoder for
tabular data and modality-specific pretrained foundation models for non-tabular data. MMPFN then
align these embeddings using a novel modality projector, which maps non-tabular embeddings into
the tabular embedding space. The projected non-tabular embeddings are concatenated with tab-
ular embeddings and jointly processed by the pre-trained TabPFN backbone. This plug-and-play
design enables seamless integration of diverse foundation models and improves performance via
fine-tuning, yielding faster convergence and more stable training.
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In addition, we address two failure modes in multimodal learners: (i) overcompressed non-tabular
embeddings (e.g., a single [CLS] token) and (ii) attention imbalance induced by token-count dispar-
ities across modalities. We theoretically and empirically show that MMPFN is also susceptible to
the latter. To mitigate overcompression, we introduce a multi-head gated MLP (MGM) that expands
and enriches non-tabular representations into multiple tokens. We then develop a cross-attention
sampler (CAS) that merges a compact, informative subset, thereby rebalancing attention. MGM and
CAS build our modality projector.

We evaluate MMPFN on medical and general-purpose benchmarks that pair tabular inputs with im-
ages or text inputs. Across nearly all datasets, MMPFN surpasses recent state-of-the-art multimodal
methods (Hager et al., 2023; Du et al., 2024; Hemker et al., 2024; Luo et al., 2025; Bonnier, 2024)
and strong AutoML baselines (Tang et al., 2024b). Extensive experiments demonstrate that MGM
and CAS effectively mitigate the identified failure modes. In addition, we confirm that MMPFN
scales positively as modalities are added and preserves the strengths of TabPFN’s attention-based
modeling, delivering robust performance in low-data regimes. Furthermore, MMPFN reduces the
training time by an order of magnitude.

Our main contributions are summarized as follows:

• We propose MMPFN, the first framework to extend TabPFN to heterogeneous inputs (tab-
ular + image/text) through a unified pathway.

• We identify two failure modes in multimodal learners: overcompressed non-tabular em-
beddings and token-count–induced attention imbalance. To overcome this, we introduce
MGM and CAS as components of the modality projector.

• Through extensive experiments across medical and general-purpose datasets, we show that
MMPFN consistently outperforms competitive baselines, scales positively as modalities
are added, and maintains robust performance under data scarcity and limited compute.

2 RELATED WORK

Vision–Language Multimodal Models Early research in multimodal learning developed fusion
and conditioning mechanisms for integrating text and images. FiLM (Perez et al., 2018) introduced
feature-wise modulation for language-conditioned visual reasoning, while early transformer-based
models such as ViLBERT, VisualBERT, VL-BERT, LXMERT, and UNITER (Lu et al., 2019; Li
et al., 2019; Su et al., 2019; Tan & Bansal, 2019; Chen et al., 2020) explored co-attention and unified
architectures, achieving state-of-the-art results on vision–language benchmarks. A major shift came
with CLIP (Radford et al., 2021), which used large-scale contrastive pretraining for scalable zero-
shot transfer. More recent approaches, such as BLIP-2 (Li et al., 2023) and LLaVA (Liu et al., 2023),
integrated large language models for generalizable multimodal reasoning.

Tabular and Multimodal Models The pretraining-driven paradigm has since expanded to struc-
tured data. In the tabular domain, approaches typically adopt either a row-as-text strategy, serializing
entire rows for large language model (LLM) processing (Hegselmann et al., 2023), or a per-column
embedding strategy with modality-specific encoders. Methods such as Tab2Text (Lin et al., 2024)
transform rows into textual narratives for improved alignment, while others (Bonnier, 2024) demon-
strate that careful design of fusion layers substantially improves benchmarks. LANISTR (Ebrahimi
et al., 2023) extended this direction with similarity-based multimodal masking, enabling joint learn-
ing from language, images, and structured inputs even with missing modalities.

Unstructured–structured integration has also been explored in image-centric datasets. Represen-
tative works include MMCL (Hager et al., 2023), which aligned tabular and image embeddings
with contrastive learning; TIP (Du et al., 2024), which improved robustness to incomplete fea-
tures; STiL (Du et al., 2025), which leveraged unlabeled data via semi-supervised pseudo-labeling;
TIME (Luo et al., 2025), which employed TabPFN (Hollmann et al., 2022) as a tabular encoder;
and Turbo (Jiang et al., 2025), which strengthened cross-modal reasoning. Beyond individual mod-
els, toolkits such as AutoGluon (Tang et al., 2024a) and modular pipelines (Gu & Budhkar, 2021)
provide practical infrastructure for integrating text, image, and tabular features.
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Despite progress, most multimodal approaches remain concentrated on vision–language tasks, with
systematic treatment of structured data still limited. Fusion strategies are often heuristic, with weak
guarantees under low-data regimes or modality imbalance. Addressing these gaps is critical for
building generalizable multimodal tabular systems.

General-Purpose Pre-trained Models Pretraining large foundation models has transformed rep-
resentation learning across domains. In NLP, models progressed from masked language modeling to
more efficient self-supervised strategies such as ELECTRA (Clark et al., 2020) and DeBERTa (He
et al., 2021b). Later refinements including DeBERTaV3 (He et al., 2021a), ModernBERT (Warner
et al., 2024), and multilingual encoders such as BGE/M3 (Chen et al., 2023) introduced architec-
tural improvements (e.g., disentangled embeddings, FlashAttention-2, optimized tokenization) and
broadened applications to retrieval and cross-lingual tasks.

In computer vision, self-supervised pretraining emerged as the dominant paradigm. DINOv2 (Oquab
et al., 2023) and DINOv3 (Siméoni et al., 2025) demonstrated scalable self-distillation for robust
visual features, EVA (Fang et al., 2022; 2024) advanced masked image modeling with large Vision
Transformers, and iBOT (Zhou et al., 2022) combined masking with self-distillation for effective
ViT representation learning.

For structured data, TabPFN (Hollmann et al., 2022; 2025) extended this paradigm by pretraining
on large synthetic datasets, learning a general prior over tabular distributions. This enables strong
performance on small- and medium-sized datasets in a single forward pass without task-specific
fine-tuning, positioning TabPFN as a foundation model for tabular learning.

Taken together, these advances demonstrate the effectiveness of pretraining. Yet, compared to NLP
and vision, pretraining for multimodal tabular data remains underexplored. Bridging this gap—
particularly for multimodal integration with structured inputs—is a key step toward more compre-
hensive foundation models.

3 PRELIMINARY

TabPFN (Hollmann et al., 2022; 2025) is a tabular foundation model that treats tabular learning
as amortized Bayesian inference: a transformer pretrained on synthetic tabular datasets sampled
from structural causal model priors, which jointly processes a training set and query set to produce
posterior-predictive label distributions in one forward pass.

Architecturally, TabPFN stacks 2D TabPFN blocks. Each block splits attention into two steps: fea-
ture attention, where a feature looks at other features in the same sample; and sample attention,
where the same feature looks across all samples. This design is permutation-invariant over samples
and features and scales efficiently to larger tables than those seen during training. An MLP follows
the attention steps. All sublayers use residual connections and layer normalization.

For in-context inference, TabPFN processes the concatenated training and test rows with masks that
allow self-attention within labeled training rows and restrict test rows to cross-attend only to training
rows. A lightweight MLP head then maps the resulting test embeddings to predictions.

4 MULTIMODAL PFN

4.1 ARCHITECTURE

We extend TabPFN to the multimodal setting, where image or text modalities accompany tabular
inputs. Section 3 outlines our multimodal PFN (MMPFN), which consists of per-modality encoders,
a modality projector, a TabPFN backbone. The encoders map each modality to a feature vector.
The modality projector aligns image and text features in a shared embedding space. TabPFN then
processes the resulting multimodal embeddings, and the decoder produces predictions for the test
samples.

Per-Modality Encoders The per-modality encoders comprise tabular, image, and text branches.
The tabular branch is identical to the TabPFN v2 encoder and remains frozen during fine-tuning.
For images, we use the DINOv2 ViT-B/14 backbone. Thus, the inputs are resized so that height

3
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Figure 1: The architecture of MMPFN. MMPFN extends TabPFN by incorporating per-modality
encoders and a modality projector to extract features from non-tabular data. Newly developed com-
ponents are highlighted in color, while existing ones appear in gray. Layers marked as ‘frozen’
remain fixed during fine-tuning, whereas all others are trainable. Encoded target labels are part of
the training inputs but are omitted from the diagram for clarity.

and width are divisible by 14, and we take the [CLS] embedding as a global representation. For
text, we adopt ELECTRA based on empirical comparisons (e.g., outperforming DeBERTa). Text
is tokenized with sequences truncated to 512 tokens, and the [CLS] embedding is used as the text
representation.

Modality Projector The modality projector transforms image and text embeddings to tabular-
like representation, which share d-dimensional space compatible with the TabPFN backbone. As
shown in Section 3, it comprises two sublayers: a multi-head gated MLP (MGM) and a cross-
attention sampler (CAS). The MGM addresses the limitation of a single [CLS] embedding, which
can overly compress image/text information, by expanding it into N parallel d-dimensional projec-
tions. Specifically, the [CLS] embedding is fed into N lightweight MLP heads, and a Gated Linear
Unit (GLU) (Dauphin et al., 2017) modulates each head’s contribution, preserving diverse features
in the compact representations. The resulting set of projected tokens are then passed to the CAS.

The CAS balances tabular and non-tabular cues before fusion in the backbone. It applies cross-
attention with K learnable queries to summarize the non-tabular embeddings (image/text) into K
representative d-dimensional embeddings. An excessive number of non-tabular tokens can degrade
performance due to attention imbalance, where a modality with many tokens dominates the compu-
tation. CAS mitigates this by producing a compact, calibrated set of embeddings for the TabPFN
backbone. Section 4.3 will discuss the attention imbalance issue in MMPFN.

4.2 TRAINING

Since TabPFN is pre-trained on large corpora of synthetic tabular data, its representations can be
misaligned with image/text embeddings. We therefore freeze all modality encoders and train the
modality projector, the TabPFN backbone, and the decoder. Note that all components are pre-
trained, except for the modality projector. To leverage TabPFN’s in-context inference, we follow its
standard protocol: split the multimodal data into training and test sets, concatenate their embeddings
into a single table, and feed it to the backbone. The model then produces predictions for the test
samples to obtain supervisory signals for training.

4
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Table 1: Comparison with state-of-the-arts on image–tabular multimodal datasets. Performance is
reported as “accuracy (rank)”, where the rank represents the ordering of the methods according to
their accuracy within each dataset (lower rank indicates better performance). Results are averaged
over five random seeds. Best accuracy is shown in bold, second best in underline. “MASS” and
“Calc” denote the respective CBIS-DDSM tasks.

Method Modality PAD–UFES–20 MASS Calc Petfinder Avg. rank

TabPFN (Hollmann et al., 2022) T 82.17 (2) 71.27 (5) 73.31 (2) 36.33 (8) 4.25±2.87

Catboost (Dorogush et al., 2018) T+I 80.43 (4) 78.31 (1) 72.09 (4) 38.69 (4) 3.25±1.50

AutoGluon (Tang et al., 2024a) T+I 81.09 (3) 76.28 (2) 71.04 (6) 38.81 (3) 3.50±1.73

MMCL (Hager et al., 2023) T+I 76.61 (7) 57.62 (7) 60.12 (8) 36.61 (7) 7.25±0.5

TIP (Du et al., 2024) T+I 78.75 (6) 73.12 (4) 67.96 (7) 37.28 (5) 5.50±1.29

HEALNet (Hemker et al., 2024) T+I 74.65 (8) 68.10 (6) 71.83 (5) 37.03 (6) 6.25±1.26

TIME (Luo et al., 2025) T+I 80.35 (5) - 72.70 (3)1 39.25 (2) 3.33±1.53

MMPFN (Ours) T+I 84.87 (1) 75.10 (3) 76.07 (1) 40.74 (1) 1.50±1.00

4.3 ATTENTION IMBALANCE IN MMPFN

We study how the number of non-tabular tokens affects attention mechanism. Consider a query token
q attending to two sets of keys: non-tabular tokens k(I)1 , · · · , k(I)NI

and tabular tokens k(T )
1 , · · · , k(T )

NT
,

where NI and NT are their respective counts. The scaled dot-product attention scores are given by

s
(I)
i = q⊤k

(I)
i /
√
d, s

(T )
j = q⊤k

(T )
j /
√
d. (1)

Let w(I)
i = es

(I)
i and w

(T )
j = es

(T )
j be the unnormalized attention weights, and define the per-token

expectations cI = E[w(I)
i ] and cT = E[w(T )

j ], where the expectation is over token indices and any
randomness in (q, k). Also, let aI denote the total attention weight allocated to the non-tabular set,
defined by

aI =

NI∑
i=1

w
(I)
i∑NI

u=1 w
(I)
u +

∑NT

v=1 w
(T )
v

. (2)

Then its expectation is approximated by

E[aI ] ≈
NIcI

NIcI +NT cT
(3)

Hence, when per-token quality is comparable (cI ≈ cT ), token-count imbalance (NI > NT ) in-
duces attention imbalance, potentially degrading performance. Consequently, MMPFN’s perfor-
mance might vary with the modality token ratio. This suggests the importance of CAS. In Section 5,
we empirically validate this observation by varying K in the CAS.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluated MMPFN on classification tasks across multiple multimodal datasets combining either
image–tabular or text–tabular features, and compared its performance with prior models. Our goal
was twofold: (i) to verify that MMPFN achieves superior performance in multimodal input settings
compared to existing methods, and (ii) to examine whether the inclusion of unstructured inputs
leads to performance gains over the tabular-only baseline. To this end, we also compared MMPFN
with fine-tuned TabPFN models trained on the same datasets. MMPFN either surpasses strong
baselines or attains performance on par with them depending on dataset characteristics, thereby
ensuring consistent competitiveness on image–tabular datasets, and on text–tabular datasets. More
Detailed experimental settings are provided in the Appendix A.1
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Table 2: Comparison with state-of-the-arts on text–tabular multimodal datasets. Performance is
reported as “accuracy (rank)”, where the rank represents the ordering of the methods according to
their accuracy within each dataset (lower rank indicates better performance). Results are averaged
over five random seeds. Best accuracy is shown in bold, second best in underline. The results of
AllTextBERT, TFN, MulT, and TTT were cited from Bonnier (2024).

Method Modality Airbnb Salary Cloth Petfinder Avg. rank

TabPFN (Hollmann et al., 2022) T 46.96 (2) 44.96 (6) 55.07 (8) 36.33 (6) 5.5±2.52

Catboost (Dorogush et al., 2018) T+t 43.56 (4) 40.36 (8) 59.24 (7) 35.47 (7) 6.5±1.73

AutoGluon (Tang et al., 2024a) T+t 44.60 (3) 45.24 (5) 72.07(1) 37.96 (3) 3.0±1.63

AllTextBERT (Bonnier, 2024) T+t 30.9 (8) 44.0 (7) 68.0(2) 34.6 (8) 6.25±2.87

TFN (Zadeh et al., 2017) T+t 35.7 (7) 45.8 (3) 60.1 (6) 36.8 (5) 5.25±1.71

MulT (Tsai et al., 2019) T+t 36.3 (6) 45.4 (4) 63.6 (5) 37.6 (4) 4.75±0.96

TTT (Bonnier, 2024) T+t 38.3 (5) 47.2 (1) 65.5 (4) 38.9 (2) 3.0±1.83

MMPFN (Ours) T+t 47.78 (1) 45.87 (2) 66.26 (3) 39.04 (1) 1.75±0.96

5.2 MAIN RESULTS

Results on Tabular–Image Modality Datasets Table 1 summarizes the classification accuracy of
MMPFN and state-of-the-art baselines on four tabular–image datasets. Compared with fine-tuned
TabPFN (Hollmann et al., 2025), which use only tabular inputs, MMPFN consistently improves
performance by leveraging image features. In Table 1, MMCL (Hager et al., 2023), TIP (Du et al.,
2024), and HEALNet (Hemker et al., 2024) show inconsistent performance, due to small dataset
size and the low dimensionality of tabular features. In contrast, MMPFN attains the best results on
all datasets except MASS, where it is third-best. Compared with TIME (Luo et al., 2025), which
uses TabPFN as its tabular encoder, MMPFN delivers substantial gains, indicating that our modal-
ity projection strategies are more effective than simple fusion. AutoGluon (Tang et al., 2024a), an
AutoML framework for multimodal data, is competitive on several tabular benchmarks but consis-
tently underperforms MMPFN across all evaluated datasets. CatBoost (Dorogush et al., 2018) used
image embeddings as raw input features and achieved strong performance on MASS, but fell short
of MMPFN on other datasets.

Results on Tabular–Text Modality Datasets Table 2 reports results on tabular–text modality
datasets. As in the image setting, adding text features consistently outperforms the fine-tuned
TabPFN baseline. MMPFN is particularly strong on Airbnb. This dataset includes 50+ tabular
features and a single text field, allowing tabular-specialized models to capture most of the predictive
signal. Accordingly, MMPFN substantially outperforms language model–based methods, such as
TFN (Zadeh et al., 2017) and MulT (Tsai et al., 2019), which struggle to exploit the abundant tabular
features. By contrast, in Cloth, the tabular part has few, weakly informative features, while the re-
view text carries most of the signal. This is reflected in the poor performance of tabular-only models
and the strong results of AllTextBERT (Bonnier, 2024), indicating that text-specialized models excel
in such cases. Even so, among methods that explicitly preserve tabular structure, MMPFN achieves
the best overall performance, trailing the text-specialized baseline by only a small margin. This
contrasts with prior multimodal tabular studies, which emphasized tabular-dominant datasets(Hager
et al., 2023). Overall, MMPFN is not merely strong on tabular inputs. It also models unstructured
modalities effectively, establishing it as a truly multimodal approach.

1We cite all results of Luo et al. (2025) directly. Although TIME used the CBIS-DDSM dataset without
specifying subtype, the reported sample size matches the calcification subset, so we list it under CBIS-DDSM
calcification in Table 1. Since the code is unavailable, reproduction was infeasible.

1AllTextBert converts all tabular features into strings, concatenates them, and inputs the resulting sequence
into DistilBERT-base-uncased for modeling, as described in (Bonnier, 2024).
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(a) (b)

Figure 2: Performance on PAD–UFES–20 with varying image feature count and fixed tabular inputs.
(a) Image-only experiments with DINOv2 + MLP as the baseline. (b) Image–tabular experiments
with fine-tuned TabPFN as the baseline. In both settings, CAS compress n image features into 8;
the x-axis denotes the number of image features and the y-axis indicates accuracy.

Table 3: Ablation study: Accuracy across datasets under different feature extraction mechanisms.
Best accuracy is shown in bold.

Single-head MGM w/o gating Mixture-of-Experts MGM

Calc 73.48 73.10 71.35 76.07
Cloth 58.28 62.37 60.49 66.26

5.3 MMPFN AS AN IMAGE CLASSIFICATION MODEL

Figure 2a evaluates MMPFN with non-tabular–only inputs. Specifically, we compare MMPFN
against DINOv2 (Oquab et al., 2023), a popular image foundation model, using images from
PAD–UFES–20. For the baseline, we extract the pre-trained DINOv2 [CLS] embedding and attach
an MLP head for classification—an approach that is widely adopted and often near-optimal (Sun
et al., 2019).

With image embeddings as the sole inputs, MMPFN is within ∼1% of DINOv2 (69.30% vs.
69.89%). Accuracy increases consistently as the number of image feature tokens grows, indicating
that additional tokens capture complementary, higher-resolution information. Thus, despite being
trained with a tabular synthetic data, MMPFN functions effectively as a classifier over image embed-
dings cast into tabular-like features, highlighting seamless integration of non-tabular modalities with
tabular data. We also note that the presence of CAS yields a modest additional gain for MMPFN.

5.4 ANALYSIS

Attention Imbalance We empirically study the attention imbalance in multimodal processing.
Figure 2b reports MMPFN accuracy on PAD–UFES–20 (image+tabular) as the number of image
features varies, comparing MGM (no CAS) and MGM+CAS. For reference, Figure 2b also includes
the accuracy of the fine-tuned TabPFN (tabular-only) as a unimodal baseline.

In Figure 2b, we see that naively increasing the number of image tokens can hurt performance.
MGM outperforms the TabPFN baseline by exploiting image context, but its accuracy peaks around
n=8 image tokens and declines as n grows. This contrasts with Figure 2a, where MGM operates in
the image-only setting and does not exhibit the same drop. This non-monotonic trend is consistent
with attention imbalance: when more image tokens are introduced, noise receives nonzero attention
and the modality with more tokens captures a disproportionate share of the attention budget, diluting
useful tabular signal.

The proposed CAS mitigates this effect by consolidating many image embeddings into a compact
set (8 tokens in Figure 2b), preserving salient information while capping token count. As a result,
MGM+CAS improves steadily with larger candidate sets and outperforms MGM across n, confirm-
ing that merging before attention yields more informative, balanced cross-modal representations.
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Figure 3: Cosine similarity between multimodal feature embeddings. Left: tabular vs. text features
in the Airbnb dataset. Right: tabular vs. image features in the PAD–UFES–20 dataset. Axes denote
all tabular and text/image features

Table 4: Performance in Low-data Regime. Reported as mean accuracy over five random seeds,
with parentheses showing percentage change relative to full-data training. The ‘average’ column
denotes the mean of all percentage changes. Best accuracy is shown in bold.

PAD–UFES–20 MASS Calc PetFinder(image) average

TIP 10% 70.44(-10.6) 68.31(-6.58) 62.27(-8.37) 34.86(-6.49) -8.00

MMPFN 10% 72.87(-14.14) 76.13(+0.75) 72.09(-5.23) 35.73(-12.30) -10.27

Modality Projector Table 3 compares Calc and Cloth accuracy across projector variants. (1)
Single-head: a single linear layer projects the non-tabular [CLS] token. (2) MGM w/o gating: GLU
in MGM is replaced with GELU, removing the multiplicative linear gate. (3) Mixture-of-Experts
(MoE): a learned gate routes inputs so only a subset of experts is active per example. Experimental
details are in Appendix A.4.

First, MMPFN substantially outperforms the single-head baseline, highlighting the benefit of multi-
head projection. Although the single-head variant surpasses fine-tuned TabPFN (tabular-only) in Ta-
ble 1, indicating complementary non-tabular signal, it relies on an overcompressed [CLS] represen-
tation leads to suboptimal multimodal learning. Second, MMPFN consistently exceeds MGM w/o
gating baseline, suggesting that GLU’s element-wise gating increases feature diversity and strength-
ens representation learning. Appendix A.5 will provide detailed discussion about it. Finally, MGM
significantly excels MoE across datasets, validating our projector design that first extracts multiple
embeddings and then selectively merges them via CAS.

Correlation Analysis of Cross-Modal Embeddings Figure 3 visualizes cosine similarities
among TabPFN–backbone embeddings on Airbnb (tabular–text) and PAD–UFES–20 (tabu-
lar–image). These similarities illustrates the predictive relationships between features learned by
MMPFN. As expected, within-modality blocks exhibit high similarity. However, several tabu-
lar–image/text pairs are also strongly aligned, indicating that MMPFN models cross-modal inter-
actions rather than only within-modality structure. Details of the cosine similarity computation are
provided in Appendix A.6.

Robustness in Low-Data Regimes Tabular datasets often require expert annotation, resulting in
limited sample sizes and sparse labels (Du et al., 2024; 2025). Consequently, models that remain
robust under data scarcity are highly desirable. In such low-data regimes, MMPFN demonstrates
strong performance. Table 4 compares the results of MMPFN and TIP when trained on only 10% of
randomly selected samples from each dataset. While TIP employs self-supervised pretraining using
all unlabeled data, our evaluation focuses on supervised finetuning under limited labeled data.

The analysis shows that, although the relative performance drop was larger for MMPFN, it consis-
tently outperformed TIP across all datasets, even when trained with only 10% of the data. Interest-
ingly, on the CBIS-DDSM MASS dataset, performance improved under subsampling. This behavior
suggests that the PFN, pretrained on synthetic priors, can better capture discriminative characteris-
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Figure 4: Accuracy of AutoGluon vs. MMPFN on
PetFinder under different modality combinations (tab-
ular, +text, +image, +image+text).

Figure 5: Training time (sec.) on Calc.
For MMCL and TIP, pretraining and
fine-tuning times are reported separately.

tics when finetuned on a smaller set of labeled examples. Additional details on the behavior of
MMPFN in low-data settings are provided in Appendix A.7.

Scaling with Added Modalities We assess MMPFN as multiple non-tabular modalities are added.
On Petfinder, we compare against AutoGluon, a multimodal AutoML system supporting image and
text modalities. As shown in Figure 4, MMPFN’s accuracy increases monotonically from tabular
→ tabular+text→ tabular+image→ tabular+image+text (39%→ 40%→ 41%), indicating com-
plementary signal from both image and text. These results have particular significance for tabular
modeling, where performance improvements from architectural changes alone are often saturated.
Adding complementary modalities offers a practical route to further gains. Moreover, MMPFN
outperforms AutoGluon under every combination. Unlike AutoGluon’s large ensembles, MMPFN
achieves higher accuracy with a lightweight and specialized architecture.

Efficiency Next, we evaluate the training efficiency of MMPFN by comparing training time with
exiting methods: MMCL and TIP. Although these models are built with the goal of performing well
under limited training data, their contrastive learning strategies still depend on large pre-training
corpora and lengthy optimization schedules. MMPFN avoids this overhead by reusing a pretrained
tabular foundation backbone (TabPFN) and fine-tuning only the multimodal layers (MGM, CAS)
with the backbone—no extra pretraining.

As shown in Figure 5, MMPFN delivers large speedups on Calc dataset while maintaining strong
accuracy: it trains in 91.3 s with zero pretraining, versus MMCL at 2950.5 + 125.8 s and TIP at
2773.1 + 40.2 s—i.e., 3.0% and 3.2% of their total time. These gains stem from using TabPFN as a
tabular foundation model. However, very large datasets can stress TabPFN’s scalability, and gener-
ating many MGM tokens or fine-tuning upstream image/text encoders would increase cost. Despite
these limitations, MMPFN consistently achieves competitive or superior accuracy with substantially
shorter training times than contrastive baselines.

6 CONCLUSION

We introduced MMPFN, a multimodal extension of TabPFN that unifies tabular, image, and text
inputs with per-modality encoders, a modality projector, and the TabPFN backbone. We devel-
oped MGM and CAS, which map non-tabular embeddings to the tabular space and mitigate token-
count–induced attention imbalance. By leveraging pretrained foundation models and fine-tuning
lightweight components, MMPFN achieved strong accuracy with substantially lower training costs.
Across medical and general-purpose benchmarks, it consistently outperformed competitive state-of-
the-art methods, scaled positively as modalities were added, and maintained robust performance in
low-data regimes.

9
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Table 5: Implementation details

dataset features per group mgm heads CAS heads task type

PAD–UFES–20 2 128 12 multiclass

cbis ddsm(Mass) 1 128 8 binary

cbis ddsm(Calc) 2 16 8 binary

Airbnb 2 128 24 multiclass

Salary 1 64 4 multiclass

Cloth 2 64 32 multiclass

Petfinder Adoption (T+I) 1 128 16 multiclass

Petfinder Adoption (T+t) 2 32 8 multiclass

Petfinder Adoption (T+I+t) 1 64 16 multiclass

All experiments were fine-tuned with the following default settings: learning rate of 1×10−5, batch
size of 1, maximum training steps of 100, and validation metric of log loss. The mixer type was
fixed to MGM+CAS, and random seeds {0, 1, 2, 3, 4} were used throughout.

Task-specific parameters such as mgm heads, CAS heads, task type, and
features per groupwere adjusted as summarized in Table X. While features per group
must be modified directly in the initialization of the PerFeatureTransformer, the remaining parame-
ters can be provided as arguments to the fine tune mmpfn function.

For dataset handling, categorical feature indices were not explicitly set in the MMPFN configura-
tion. Since specifying them generally improves performance, this should be enabled in practical
applications. For datasets without predefined splits, such as CBIS–DDSM, 20% of the training data
was reserved as a test set. In the DINOv2 baseline with an MLP classification head, data were split
8:2 into training and test sets, with 10% of the training set further used for validation.

No specialized weight initialization methods (e.g., Xavier) were applied, though such techniques are
expected to improve performance. For comparative models based on contrastive pretraining (Hager
et al., 2023; Du et al., 2024; 2025), training was conducted for 500 epochs using a cosine annealing
scheduler with a 10-epoch warmup. In contrast, MMPFN was fine-tuned for only 100 steps with a
fixed learning rate of 1×10−5, employing ScheduleFree (Defazio et al., 2024) for adaptive learning
rate scheduling.

Text Data Preprocessing All preprocessing procedures followed the implementations provided
in the TTT codebase. For the Salary dataset, the original source URL referenced in Bonnier (2024)
is no longer accessible; thus, we used a Kaggle-hosted copy. However, applying the official TTT
preprocessing scripts to this version did not yield the dataset size reported in their paper, indicating
possible discrepancies. Consequently, we re-evaluated the TTT baseline on this dataset using the
new version. The resulting accuracy (46.5) was comparable to the originally reported performance,
confirming that the revised dataset can be reliably used for evaluating our model.

Since both Electra and DeBERTa text encoders are restricted to 512 input tokens, sequences longer
than this limit were truncated. For datasets containing multiple text attributes, we extracted em-
beddings for each attribute separately and incorporated them as additional text features. In contrast,
TTT concatenates all text columns into a single sequence. Our approach yielded small but consistent
accuracy improvements. However, since the gains were within the error margin, we did not include
these results in the main comparison table.

The Airbnb and PetFinder datasets contain Chinese characters in their text columns. Because the
ELECTRA encoder variant we used was not pretrained on Chinese, these tokens were replaced with
empty strings prior to encoding. For CatBoost and AutoGluon, we employed the library’s built-in
text handling functionality.
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Figure 6: Fine-tuning loss curve of the MMPFN model trained on the PAD-UFES-20 dataset

A.2 FINE-TUNING PROCEDURE AND RESULTS

Since TabPFN is pretrained with synthetic priors, it can be fine-tuned on downstream tasks using
available training data. For fine-tuning, we adopted the official GitHub library2 and modified it
to support MMPFN. Specifically, we extended the MMPFNClassifier and MMPFNRegressor
classes by introducing initialization parameters (mgm heads, CAS heads, and mixer type) and
enabling the models to accept multimodal embeddings as input.

Fine-tuning was conducted by splitting the training data into train and validation sets, and updating
model parameters based on the validation loss. We employed a small learning rate (1× 10−5) with
a fixed maximum of 100 training steps. For learning rate scheduling, we used the schedulefree
library. The fine-tuning loss curve for the PAD–UFES–20 dataset is illustrated in Figure 6.

A.3 DATASETS

We employed a set of well-established benchmark datasets that have been extensively validated in
prior research (Mráz et al., 2025; Tang et al., 2024b;a; Bonnier, 2024; Jiang et al., 2024). Leverag-
ing such widely recognized datasets not only ensures reproducibility and comparability with existing
methods but also provides a robust foundation for evaluating the effectiveness of our proposed ap-
proach under standardized experimental conditions. All datasets were randomly split into train and
test sets, except for CBIS-DDSM, where the predefined train–test split was used.

PAD–UFES–20 The PAD–UFES–20(Pacheco et al., 2020) dataset contains 2,298 samples of
six skin lesion types, each paired with a clinical image and up to 26 metadata features such as
age, lesion location, and diameter. Three lesion types correspond to cancers (Basal Cell Carci-
noma, Squamous Cell Carcinoma including Bowen’s disease, and Melanoma), while the remain-
ing three are noncancerous (Actinic Keratosis, Nevus, and Seborrheic Keratosis), with approxi-
mately 58% of samples biopsy-proven. The images are provided in .png format and were collected
using different smartphones, thereby resulting in varying image sizes that require preprocessing.
https://data.mendeley.com/datasets/zr7vgbcyr2/1

2https://github.com/LennartPurucker/finetune_tabpfn_v2
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Table 6: Dataset details

PAD–UFES–20 CBIS DDSM(MASS) CBIS DDSM(Calc) Petfinder Adoption Airbnb Salary Cloth

n train samples 1838 1318 1546 11721 5465 3837 18102

n test samples 460 378 326 2931 1367 960 4526

n feats 21 8 8 19 50 4 5

n num feats 3 3 3 5 27 1 2

n cat feats 18 5 5 14 23 3 3

n images 1 3 3 1 0 0 0

n texts 0 0 0 1 1 3 3

n classes 6 2 2 5 10 6 5

CBIS–DDSM The CBIS–DDSM(Sawyer-Lee et al., 2016) dataset is a curated subset of the
Digital Database for Screening Mammography (DDSM), designed to support computer-aided
detection and diagnosis of breast cancer. It consists of digitized film mammography images
with annotated regions of interest for two primary lesion types: calcifications and masses.
Each case is associated with pathologic diagnosis labels (benign or malignant) and includes de-
tailed metadata such as lesion type, subtlety, and assessment category, with all malignant cases
biopsy-proven. The original target labels in CBIS–DDSM consist of three categories: MA-
LIGNANT, BENIGN, and BENIGN WITHOUT CALLBACK. For this study, we merged BE-
NIGN WITHOUT CALLBACK and BENIGN into a single class, thereby formulating a binary
classification task. Since the labels are well balanced, we report accuracy rather than ROC AUC for
binary classification. Prior work on CBIS–DDSM typically reports high accuracy by augment-
ing the dataset with additional external sources. In contrast, studies that rely solely on CBIS–
DDSM often employ strategies such as resampling the training and test splits to balance class
distributions before performing classification. In our experiments, however, we used the dataset
in its original form without any modifications.https://www.cancerimagingarchive.
net/collection/cbis-ddsm/, https://www.kaggle.com/datasets/awsaf49/
cbis-ddsm-breast-cancer-image-dataset (The Kaggle dataset contains the same im-
ages, but stored in resized JPEG format with smaller dimensions to reduce the overall dataset size.)

PetFinder Adoption The PetFinder Adoption(Kaggle, 2019) dataset, released as part of the Kag-
gle PetFinder.my adoption prediction challenge, contains data for over 15,000 pet profiles aimed
at predicting adoption speed. Each sample includes a photo of the pet, descriptive text, and struc-
tured tabular attributes such as age, breed, gender, vaccination status, and sterilization status. The
adoption outcome is categorized into five classes indicating the time until adoption, with the data
exhibiting significant class imbalance. The images are provided in JPEG format and collected
from various user submissions, thereby resulting in different image sizes that require preprocessing.
https://www.kaggle.com/competitions/petfinder-adoption-prediction

Salary The Salary dataset consists of job postings in India with the task of predicting salaries.
It includes 19,802 training and 6,601 test samples. Each entry contains company (encoded),
years of experience, job description, designation, job type, key skills, and location, with salary
range as the prediction target. https://www.kaggle.com/datasets/ankitkalauni/
predict-the-data-scientists-salary-in-india

Women’s Clothing E-Commerce The Cloth dataset consists of 23,486 customer reviews with
10 feature variables. Each sample contains textual attributes (title, review body) and structured
metadata (Clothing ID, age, rating, recommendation indicator, positive feedback count, division,
department, class). Brand references were anonymized by replacing company names with “retailer.”
The dataset offers a multimodal setting for tasks such as sentiment analysis, recommendation pre-
diction, and text–metadata interaction modeling. https://www.kaggle.com/datasets/
nicapotato/womens-ecommerce-clothing-reviews
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A.4 EXPERIMENTS ABOUT ACTIVATION ALGORITHM IN FEATURE GENERATION LAYER

Since GLU reduces the dimensionality by half after activation, the first and second affine layers
differ in size. To ensure a fair comparison independent of parameter count—as performance often
improves with an increased number of parameters—we maintained the first layer’s dimension un-
changed under GELU and projected to the PFT input dimension (192) only in the second layer. This
configuration results in a GELU-based network with a larger parameter budget.

Table 7: Comparison of accuracy and mean output-vector orthogonality when using GELU versus
GLU as the activation function in MGM.

CBIS–DDSM(MASS) Salary

Activation Performance Orthogonality Performance Orthogonality

GELU 72.09 0.0565 45.04 0.04876

GELU(w/ Ortho loss) 72.23 0.0874 45.28 0.06237

GLU 75.10 0.0913 45.87 0.05831

GLU(w/ Ortho loss) 73.12 0.1247 44.95 0.06728

A.5 ENCOURAGING DIVERSITY IN FEATURE EMBEDDINGS

We further examined whether MGM can generate diverse and independent features from unstruc-
tured data through its gating mechanism, and how this diversity influences downstream performance.
As a proxy for independence, we measured the orthogonality of embedding vectors. Table 7 reports
results on the CBIS–DDSM (MASS) dataset and the Salary dataset. We compared a baseline multi-
head MLP encoder with GELU activation against MGM, which uses a GLU-based multi-head MLP.
Across both datasets, MGM consistently produced embeddings with higher orthogonality than the
baseline. To assess the role of orthogonality more directly, we augmented the baseline encoder
with an auxiliary loss term defined as the inverse of pairwise orthogonality, encouraging more di-
verse embeddings. This modification yielded only a small, within-error-margin improvement over
the baseline and did not enhance MGM’s performance. These findings suggest that while explicit
orthogonality regularization can promote diversity, it may also introduce noise that undermines rep-
resentational quality. Overall, adaptive gating in MGM provides a more effective and robust mech-
anism for achieving useful feature diversity than direct orthogonality constraints.

A.6 DETAILS OF COSINE SIMILARITY COMPUTATION FOR MULTIMODAL FEATURE
EMBEDDINGS

We present the detailed implementation of the cosine similarity–based correlation analysis described
in Figure 3 and Subsection 5.4. The TabPFN encoder for tabular data groups multiple features into
a single embedding to reduce memory usage. However, when comparing cosine similarity between
tabular and image (or text) embeddings, such grouping may introduce noise. To obtain more accurate
relationships, we set the group size of tabular features to 1, generating individual embeddings for
each feature and then comparing them with image embeddings.

Cosine similarity between input features was computed at the instance level and then averaged across
instances. While averaging over the entire dataset before computing similarity vectors reduces com-
putational cost, it can underrepresent the influence of individual samples. On the other hand, com-
puting similarity for every token embedding is computationally expensive and makes it difficult to
visualize overall relationships. Therefore, we adopted an intermediate compromise, as described in
Algorithm X below.

The relatively low cosine similarity among tabular features in Figure 3 can be attributed to the high-
frequency variation inherent in tabular data(Beyazit et al., 2023). Such rapid fluctuations across
samples prevent the feature vectors from clustering around a single dominant direction in the em-
bedding space. Instead, they disperse over a broader angular range. Since cosine similarity primarily
measures directional alignment rather than magnitude, this dispersion naturally yields lower average
similarity values, reflecting the reduced coherence in feature orientations.
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A.7 ROBUSTNESS OF PFN IN THE LOW-DATA REGIME

The robustness of our MMPFN model under small training sets stems from the strong priors learned
during large-scale meta-training on synthetic datasets(Hollmann et al., 2022; 2025). These priors
capture a wide range of plausible tabular distributions, enabling effective generalization even when
only limited real samples are available. Fine-tuning adapts the pretrained PFN to task-specific pat-
terns, but the Bayesian inference–like formulation continues to regularize learning by integrating
over plausible predictors. Because the model requires only light adaptation rather than full param-
eter optimization, it avoids overfitting and remains stable in low-sample settings. Together with
the inductive bias of the Per-Feature Transformer, this explains the superior performance of our
fine-tuned PFN across low-data experiments.

A.8 REGRESSION TASKS WITH MMPFN

Table 8: Regression experiments were run with five random seeds; results are reported as mean (std).
CD18 is evaluated with R2, and Pawpularity with RMSE.

modality CD18 Petfinder-Pawpularity

BogOfTricks T 0.737 -

CHARMS T - 18.431

TabPFN T 0.764(0.016) 21.490(0.747)

MMPFN T+I 0.769(0.014) 20.121(0.294)

TabPFN, starting from version 2, introduced support for regression tasks. Since MMPFN is built on
TabPFN v2, it can also be applied to regression problems. To evaluate its performance, we conducted
experiments on two datasets: CD18 and Petfinder Pawpularity.

The CD18 dataset was originally used in Tang et al. (2024b). The results are summarized in Table 8,
where the reported scores are: Bag of Tricks (0.737), TabPFN (0.764), fine-tuned TabPFN (0.764),
and MMPFN (0.769). These results indicate an improvement, although most of the gain can be
attributed to the strong baseline performance of TabPFN. The additional contribution of image fea-
tures was marginal. However, this does not imply that MMPFN inherently struggles with regression
tasks. As illustrated in Figure X, the degree of improvement depends on whether each modality
contributes sufficiently independent information. While the improvement in this case was minor,
the observable gain from incorporating image features suggests that MMPFN retains potential for
broader regression tasks.

The second dataset, Petfinder Pawpularity, was evaluated differently. In Jiang et al. (2024), results
were reported in RMSE, with a score of 18.431. Our MMPFN experiments yielded an RMSE
of 20.121, which appears worse by this metric. However, when evaluated in terms of R2, both
models achieved values below 0.1, indicating very weak predictive power. This suggests that simply
optimizing for lower RMSE does not necessarily reflect a meaningful model fit. Therefore, we
exclude the Pawpularity dataset results from our final evaluation.

A.9 POTENTIAL EXTENSIONS FOR IMPROVING MMPFN PERFORMANCE

Table 9: Performance of MMPFN when replacing the image encoder from DINOv2 to DINOv3.
Results are reported as mean (std) over five random seeds.

image encoder PAD–UFES–20 CBIS-DDSM(MASS) CBIS-DDSM(CALC) PETFINDER

DINOv2 84.87(1.72) 75.56(1.29) 76.07(0.85) 40.74(1.36)

DINOv3 85.61(0.78) 75.48(0.93) 76.75(1.20) 40.57(1.44)

Replacing Foundation Models MMPFN is designed by integrating two pretrained foundation
models, which makes it naturally extensible as newer and stronger foundation models become avail-
able. This modularity enables straightforward replacement of components such as TabPFN or DINO
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with more recent architectures. By leveraging improved encoders, one can expect higher-quality
feature representations, thereby enhancing downstream performance. For instance, substituting DI-
NOv2 with DINOv3, which was released very recently, yielded measurable gains, as reported in
Table 9. On the PAD–UFES–20 dataset, accuracy increased by approximately 0.74 percentage
points, demonstrating the benefit of adopting more advanced pretrained encoders. Likewise, using
TabPFNv2(Hollmann et al., 2025) consistently outperformed TabPFNv1(Hollmann et al., 2022), and
MMPFN adopts TabPFNv2 as the default encoder in all experiments.

Fine-tuning Encoders Many prior studies adopt frozen foundation models, fine-tuning only the
task-specific head, especially in small-scale or resource-constrained settings. Nonetheless, full or
partial fine-tuning is also widely employed, depending on dataset size, computational budget, and
research objectives (Kumar et al., 2022; Lin et al., 2022). In our experiments, given the relatively
limited scale of datasets, we followed the frozen-encoder setting and fine-tuned only the subsequent
layers. However, in larger-scale or higher-resource scenarios, fine-tuning the foundation model itself
could further improve performance, offering an additional avenue for extending MMPFN.

Figure 7: Under the same experimental conditions as Figure 2, we additionally report the perfor-
mance of models incorporating Orthogonality and MMD as regularization constraints.

A.10 EVALUATING DISTRIBUTION ALIGNMENT ACROSS MODALITIES

We investigated whether applying embedding space alignment techniques—commonly used in
multimodal learning—could improve the performance of MMPFN. Specifically, we incorporated
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), which measures distributional differ-
ences(Zhu, 2024), into our modeling framework. Since MMD can quantify discrepancies between
embedding distributions, we applied it to embeddings generated by each feature. For tabular data,
where feature distributions vary substantially, we employed Joint MMD (JMMD) (Long et al., 2017)
to measure distributional differences across the joint distribution of features.

We trained the multi-head MLP module that generates unstructured feature embeddings by including
the computed discrepancy between tabular embeddings and image/text embeddings as an additional
loss term. However, as shown in Figure 7, this approach consistently underperformed compared to
MGM. Incorporating this alignment loss into MGM also failed to improve performance.

Cosine similarity analysis and these negative results suggest that feature embeddings extracted by
MGM from image and text modalities are already sufficiently mapped into a semantically compati-
ble space with tabular embeddings, enabling effective interaction in the attention module. Moreover,
while methods such as MMD can reduce distributional gaps, they may inadvertently remove discrim-
inative information, leading to performance degradation. We therefore infer that when embeddings
from MGM and CAS are already aligned into a sufficiently similar space, enforcing explicit distri-
butional alignment does not necessarily yield further gains.

A.11 ADJUSTMENT OF THE FEATURES PER GROUP PARAMETER.

MMPFN embeds tabular features in the same way as TabPFN, allowing them to be grouped. Each
group can contain either one or two features, with the default set to two. Setting the number of
features per group to 1 increases memory consumption, which limits the number of tabular
features that can be used as input. However, this configuration can yield improved performance,
especially when there is a small number of tabular features. We attribute this effect to two main
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factors. First, since each tabular feature is embedded individually, the model can capture feature-
specific variations more directly, leading to richer representations. Second, increasing the number
of tabular feature tokens allows us to proportionally increase the number of multimodal input to-
kens, maintaining a better token balance across modalities. This, in turn, enhances the amount of
information extractable from different modalities.

For example, in the Salary dataset, only four tabular features (categorical and numerical, excluding
text attributes) are available. With the default setting of TabPFN, these four features are divided
into two groups, resulting in only two tabular embeddings. Although it is reasonable for text em-
beddings to outnumber tabular embeddings given the richer information in text, excessive token im-
balance risks underrepresenting the tabular modality. By setting features per group = 1, we
increase the number of tabular embeddings to four, thereby allowing us to also increase the number
of text embeddings without introducing severe imbalance. This configuration yields higher perfor-
mance compared to features per group = 2. Nonetheless, one must note that this approach is
constrained by memory usage.

A.12 TRANSFORMER TOKEN OUTPUTS FOR FEATURE GENERATION

Transformer-based language encoders (Clark et al., 2020) and image encoders based on Vision
Transformers (ViTs) (Oquab et al., 2023) provide output embeddings for each individual token.
While one could consider using all token outputs instead of the aggregated [CLS] token for fea-
ture generation, this approach significantly increases memory overhead. For instance, when resizing
PAD–UFES–20 images to 336 = 14 × 24 pixels and encoding them with the DINOv2 ViT-B/14
backbone, the model produces 576 token embeddings—more than four times the number of MGM
heads (128) used in our experiments. In terms of storage, the [CLS] embedding requires only 7.1
MB, whereas the full token outputs occupy 4.1 GB, leading to a substantial increase in memory
usage. A similar issue arises with text data: in the Cloth dataset, most text attributes approach
the maximum input length of 512 tokens, which likewise results in prohibitive memory consump-
tion when retaining all token embeddings. Moreover, our experiments demonstrate that models
leveraging token outputs perform worse than those relying on the [CLS] embedding, with accuracy
decreasing by 0.85 percentage points (84.02% vs. 84.87%). We attribute this to the fact that the
[CLS] representation of a well-trained foundation model encodes task-relevant global information,
whereas raw token outputs often contain redundant or noisy features. Consequently, they are less
suitable for transformation into tabular-like feature representations.

A.13 MULTI-HEAD GATED MLP

Algorithm 1: Multihead GLU Image Projector
Input: Input x, n heads, in dim, h dim, out dim
Output: Projected tensor
projs← [];
for i = 1 to n heads do

Define proji as:;
LayerNorm(in dim);
Linear(in dim, 2h dim);
GLU;
Dropout(0.1);
Linear(h dim, out dim);

Append proji to projs;
end
outs← [proj(x) for proj in projs];
return Concatenate(outs, dim= −2)

A.14 LLM USAGE

In this study, we employed LLM(ChatGPT5) for two purposes. First, ChatGPT5 is used to im-
prove the fluency of English text by evaluating and correcting grammar and word choice. Second,
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ChatGPT5 was used to summarize cited papers for quick content review or to retrieve specific infor-
mation. LLMs did not intervene in the ideation process or in model development.
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