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Abstract
Unsupervised sentence representation learning001
is crucial in NLP, with contrastive learning002
showing notable success. This study concen-003
trates on sentence embeddings in the biomedi-004
cal domain, employing Bert-base-uncased and005
Chinese-bert-wwm-ext for English and Chinese006
text, respectively. We assess our models us-007
ing BIOSSES and ChineseBLUE benchmarks,008
marking the first investigation into data aug-009
mentation methods for enhancing contrastive010
learning in biomedical NLP. Our findings re-011
veal that general-purpose natural language pre-012
trained Bert-base models excel in biomedical013
tasks when fine-tuned with domain-specific014
texts. By applying various data augmentation015
techniques, we enhance the contrastive learning016
of biomedical sentence embeddings. Results017
show a 4.34% increase in BIOSSES’s unsup-018
SimCSE average Spearman’s correlation, and019
improvements in ChineseBLUE tasks, surpass-020
ing state-of-the-art unsup-SimCSE scores. We021
also establish that augmentation methods pre-022
serving sentence constituents, like Punctua-023
tion insertion and MixCSE-Instance weighting,024
yield superior outcomes.025

1 Introduction026

Recently, the volume of biomedical literature has027

grown rapidly, and reports containing valuable in-028

formation on discoveries and new insights continue029

to be added to an already large body of literature.030

Therefore, there is increasingly more demand for031

accurate biomedical text mining tools for extracting032

information from the biomedical literature.033

The advancements of deep learning techniques034

in natural language processing (NLP) made it035

possible to develop biomedical text mining mod-036

els. For example, BERT (Devlin et al., 2019),037

ERNIE (Sun et al., 2019), XLNet (Yang et al.,038

2019) and RoBERTa (Liu et al., 2019) with training039

language models have achieved remarkable success040

in modeling contextualized word representations041

using large amounts of training text.042

However, like most deep learning architectures, 043

it requires a large amount of labeled data to train 044

whereas task-specific labels in most realistic sce- 045

narios are often of limited size (e.g., in the case of 046

medical imaging for example acquiring samples is 047

difficult and in order to create labels professionals 048

have to spend a lot of time and effort to manually 049

classify and segment the images.). Simultaneously, 050

several studies have found that the sentence repre- 051

sentations derived by Pretrain Language Models 052

(PLMs) are not uniformly distributed with respect 053

to directions, but instead occupy a narrow cone in 054

the vector space (Ethayarajh, 2019), which largely 055

limits their expressiveness. 056

To address this issue, researchers use contrastive 057

learning to learn better unsupervised sentence em- 058

bedding. It aims to learn effective sentence embed- 059

dings based on the assumption that effective sen- 060

tence embeddings should bring similar sentences 061

closer while pushing away dissimilar ones. But, 062

as contrastive learning word representation mod- 063

els such as ConSERT (Yan et al., 2021), Sim- 064

CLR (Chen et al., 2020) and SimCSE (Gao et al., 065

2021) are trained and tested mainly on datasets con- 066

taining general domain texts or English datasets, it 067

is difficult to estimate their performance on datasets 068

containing biomedical texts, especially Chinese 069

medical texts. Also, in the learning process, both 070

positive and negative examples are involved in con- 071

trast with the original sentence. For positive ex- 072

amples, previous works apply data augmentation 073

strategies (Yan et al., 2021) on the original sentence 074

to generate highly similar variations. While, neg- 075

ative examples are commonly sampled from the 076

batch or training data (e.g., in-batch negatives (Gao 077

et al., 2021)) at random, due to the lack of ground- 078

truth annotations for negatives. It is likely to hurt 079

the semantics of the sentence representations by 080

simply pushing apart these sampled negatives. 081

Therefore, in this paper, we aim to tackle the 082

aforementioned challenges in the context of the 083

1



biomedical domain. Our goal is to improve unsu-084

pervised sentence representation by infusing do-085

main knowledge into the augmentation and con-086

trast schemes. We propose to leverage biomedi-087

cal domain corpora to assist contrastive learning088

on biomedical sentence embedding. Simultane-089

ously, we explore five data augmentation schemes090

to assist contrastive learning, and We propose a091

simple but effective data augmentation, MixCSE-092

Instance weighting, which to help the model better093

capture language knowledge and semantic infor-094

mation, yield superior outcomes. In summary, the095

main contributions of our paper are the following:096

• Our approach is the first attempt to improve097

contrastive learning of unsupervised sentence098

representations using multiple data augmenta-099

tion strategies in multiple tasks of biomedical100

natural language processing.101

• We explore various effective data augmen-102

tation strategies to generate views for con-103

trastive learning and analyze their effects on104

unsupervised sentence representation. Specif-105

ically, we propose a simple but effective106

MixCSE-Instance weighting data augmenta-107

tion methods.108

• We conduct extensive experiments on109

the semantic text similarity (BIOSSES)110

(Soğancıoğlu et al., 2017) task and the111

Chinese Biomedical Language Under-112

standing Evaluation benchmark (Chinese-113

BLUE) (Zhang et al., 2020). Experimental114

results show that our approach achieves115

good results compared to the state-of-the-art116

unsup-SimCSE, respectively.117

2 Related Work118

2.1 Sentence Representation Learning119

Supervised Approaches. Several works are a120

well studied area with dozens of proposed meth-121

ods. Previous work (Conneau et al., 2017) finds122

the supervised Natural Language Inference (NLI)123

task is useful to train good sentence representation.124

Stanford NLI (SNLI) (Bowman et al., 2015) and125

Multi-Genre NLI (MNLI) (Williams et al., 2018)126

train a Siamese network with max-pooling over the127

output. SBERT (Reimers and Gurevych, 2019) pro-128

poses a siamese architecture with a shared BERT129

encoder and is also trained on SNLI and MNLI130

datasets.131

Unsupervised Approaches. RAE (Socher et al., 132

2011) proposes to learn sentence representations 133

based on the internal structure of each sen- 134

tence.Skip (Kiros et al., 2015) predicts the sur- 135

rounding sentences for a given sentence based on 136

the distributional assumptions. Sent2Vec (Pagliar- 137

dini et al., 2018) allows sentence embeddings to be 138

composed using word vectors and n-gram embed- 139

dings. BERT-flow (Li et al., 2020) improves the per- 140

formance of semantic textual similarity (STS) tasks 141

by converting anisotropic sentence embedding dis- 142

tributions into smooth and anisotropic Gaussian dis- 143

tributions. BERT-whitening (Su et al., 2021) uses 144

traditional whitening methods to obtain a smooth 145

distribution of sentence embeddings, and reduce 146

the dimensionality of sentence embeddings. 147

2.2 Contrastive Learning 148

Contrastive learning originates in the fields of com- 149

puter vision (Hadsell et al., 2006; He et al., 2020) 150

and has been widely applied in NLP tasks. For 151

example, the SimCSE (Gao et al., 2021). This 152

core idea aims to learn effective representation 153

by pulling semantically close neighbors (i.e., pos- 154

itive examples) together and pushing apart non- 155

neighbors (i.e., negative examples). One critical 156

question in contrastive learning is how to construct 157

positive example pairs. CERT (Fang et al., 2020) 158

employs back translation for data augmentation. 159

ConSERT (Yan et al., 2021) uses token shuffling to 160

augment positive examples. However, they use to 161

pre-train the language model, which trains in gen- 162

eral domain corpus and lack of biomedical domain 163

knowledge. Data augmentation methods reducing 164

sentence composition cause semantic changes. It 165

reduces the effects of contrastive learning. 166

3 Approach 167

3.1 General Framework 168

We use the SimCSE as our general framework. 169

Specifically, given a set of paired sentences 170{
xi, x

+
i

}m

i=1
, and using x+i = xi. The key element 171

is therefore to construct positive pairs by apply- 172

ing different dropout masks zi and z+i feeding the 173

same input xi to the encoder twice and outputting 174

two separate sentence embeddings: hi = fθ (xi, zi) 175

and h+i = fθ
(
xi, z

+
i

)
, using hi and h+i for each 176

sentence in a mini-batch with batch size N. The 177
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training objective for contrastive learning is:178

ℓi = − log
esim(hi,h

+
i )/τ

N∑
j=1

esim(hi,h
+
j )/τ

(1)179

where τ is the temperature hyperparameter and180

sim (hi, h
′
i) is the similarity metric, which is typi-181

cally the cosine similarity function as follows:182

sim
(
hi, h

+
i

)
=

h⊤i h
+
i

∥hi∥ ·
∥∥h+i ∥∥ (2)183

3.2 MixCSE-Instance weighting184

We observe that SimCSE simply pushes apart these185

sampled negatives, which is likely to hurt the se-186

mantics of the sentence representations. Therefore,187

we propose a MixCSE-Instance weighting method188

to alleviate the problem. This method continuously189

injects artificial hard negative features into the train-190

ing process so as to maintain a strong gradient sig-191

nal throughout training. Simultaneously, we utilize192

a complementary model to produce the weights for193

each negative and we use the weights to punish the194

false negatives.195

Given a sentence feature hi, we construct a nega-196

tive feature h̃′i,j by mixing the positive feature h′i197

and a random negative feature h′j :198

h̃′i,j =
λh′i + (1− λ)h′j

∥λh′i + (1− λ)h′j∥2
(3)199

where λ is an hyperparameter to control the degree200

of mixing. Then, for a negative representation h′j201

from the representation of the original sentence hi,202

we utilize the complementary model to produce the203

weight as:204

αh′
j
=

{
0 simC(hi,h

′
j) ≥ ϕ

1 simC(hi,h
′
j) < ϕ

(4)205

where ϕ is a hyper-parameter of the instance206

weighting threshold, and simC(hi, h
′
j) is the cosine207

similarity score evaluated by the complementary208

model. In this way, the negative that has a higher209

semantic similarity with the representation of the210

original sentence will be regarded as a false nega-211

tive and will be punished by assigning the weight212

0. Based on the weights, we optimize the sentence213

representations with a debiased cross-entropy con-214

trastive learning loss function as215

L = − log
esim(hi,h

′
i)/τ

C +
∑

h′
j∈h′

j
αh′

j
esim(hi,SG(h̃′

i,j))/τ

(5)216

Corpus Words/Dialogs Domain
PubMed abstract > 4,000M Biomedical

CMCQA 1294753 45 Departments
MedDialog-CN 3407494 29 Departments

Baikemy-Medicine 90785 Medicine

Table 1: Statistics of training corpus.

Method Text
None During the 1970s, initial clinical ex-

perience with bioprostheses deter-
mined their worldwide use.

RC During the 1970s, initial clinical ex-
perience[ ] [ ] [ ] [ ] worldwise use.

WD During the 1970s, [ ] clinical
with bioprostheses determined their
worldwide [ ].

RS During with 1970s, initial biopros-
theses with experience the clinical
determined their worldwide use.

SI During the 1970s, initial the clinical
experience at with bioprostheses de-
termined their worldwide use in.

PI During : the 1970s, initial clinical
! experience with ? bioprostheses
determined their worldwide use.

Table 2: Sentences generated using different data aug-
mentation methods. RC: random crop. WD: words
deletion. RS: random swap. SI: stopwords insertion. PI:
punctuations insertion.

where τ is a temperature hyper-parameter. SG(·) 217

denotes a ’stop gradient’ operator (Paszke et al., 218

2019) which ensures that back-propagation does 219

not go through the mixed negative h̃′i,j 220

4 Experimental Settings 221

4.1 Training Data 222

We use three Chinese datasets: CMCQA (Xia 223

et al., 2022), MedDialog-CN (Zeng et al., 2020), 224

and Baikemy-Medicine1 and a English dataset: 225

PubMed abstracts (Fiorini et al., 2018), which we 226

randomly select 1 million sentences. The details of 227

the training corpus are shown in Table 1. 228

4.2 Data Augmentation Strategies 229

We explore five different data augmentation strate- 230

gies to construct positive examples for contrastive 231

learning, whose examples are shown in Table 2: 232

1See https://https://www.baikemy.com.
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Dataset Train Dev Test Task Metrics Domain
cMedIC 1683 123 84 Intent Classification F1 Medical
cMedQQ 16071 1793 1935 Paraphrase Identification F1 Medical
cMedQA 49719 5475 6149 Question Answering F1 Medical

cMedQNLI 80950 9065 9969 Question Answering F1 Medical
BIOSSES 64 16 20 Sentence Similarity Spearman corr. Biomedical

Table 3: Statistics of BIOSSES and ChineseBLUE.

• Random Crop (RC) aims to introduce vari-233

ability and perturbations into the training data,234

encouraging the model to learn more robust235

and generalized representations by processing236

partially masked or altered inputs. Random237

crop randomly selects and removes sections238

of text from sentences or paragraphs and re-239

places them with a placeholder or mask token.240

• Words Deletion (WD) aims to simulate sce-241

narios where words are missing or omitted,242

thereby encouraging the model to learn more243

robust representations and improve its ability244

to handle incomplete or altered text inputs.245

Words within sentences or text are randomly246

removed or deleted.247

• Random Swap (RS) aims to help models un-248

derstand various styles and contexts by differ-249

ent word orderings and sentence structures. In250

this way, two words within a sentence are ran-251

domly selected and swapped with each other.252

The sentence structure is altered slightly, in-253

troducing variability into the dataset.254

• Stopwords Insertion (SI) aims to diversify255

the language patterns and structures in the256

data for training NLP models, enhancing their257

robustness and ability to handle different lan-258

guage styles and contexts. In this way, stop-259

words are strategically added to the text. For260

example, and, the, of, etc. are inserted into261

sentences to create variations in the dataset.262

• Punctuations Insertion (PI) is the strategic263

addition of punctuation marks ( e.g., !, ?, etc.)264

within the text to generate variations and ex-265

pand the training dataset. This method aims to266

enhance the robustness of NLP models by in-267

troducing diverse sentence structures and pat-268

terns, thereby improving their ability to com-269

prehend and process different writing styles270

and contexts.271

4.3 Evaluation Task 272

To verify the effectiveness of our proposed ap- 273

proach, we use one Chinese dataset Chinese- 274

BLUE (Zhang et al., 2020), where the Chi- 275

neseBLUE experiments four subtasks (cMedIC, 276

cMedQQ, cMedQA, and cMedQNLI) and one En- 277

glish dataset: BIOSSES (Soğancıoğlu et al., 2017). 278

The detailed statistics are shown in Table 3: 279

• cMedIC (Clinical Medical Information Cor- 280

pus) contains textual clinical medical informa- 281

tion covering diseases, symptoms, diagnoses, 282

treatment plans, and other medical content. 283

It’s designed to train models to understand 284

and process clinical medical text. 285

• cMedQQ (Clinical Medical Question and 286

Question) comprises medical-related ques- 287

tions and their corresponding answers, involv- 288

ing medical knowledge, diagnoses, treatments, 289

and more. Through this dataset, models can 290

learn to answer medical questions and inter- 291

pret medical information. 292

• cMedQA (Clinical Medical Question An- 293

swering) dataset is also focused on medical 294

domain question answering but might encom- 295

pass a wider range of medical topics and ques- 296

tion types. 297

• cMedQNLI (Clinical Medical Question 298

Natural Language Inference) primarily fo- 299

cuses on natural language inference, contain- 300

ing pairs of medical domain questions and sen- 301

tences that require the model to infer logical 302

relationships between these question-sentence 303

pairs, such as entailment or contradiction. 304

• BIOSSES is a semantic text similarity task. 305

This provides a collection of 100 similar sen- 306

tence pairs manually annotated in the biomed- 307

ical domain. We use the training-testing split 308

of BLURB (Gu et al., 2021), where 64 pairs 309

are used for training, 16 pairs for validation, 310

and the remaining 20 pairs for testing. 311
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Model cMedIC cMedQQ cMedQA cMedQNLI Avg.
Chinese-bert-wwm-ext 87.26±0.80 77.44±0.99 84.44±0.35 88.52±0.32 84.42±0.28
SimCSE 92.25±1.34 80.22±1.11 84.87±0.42 91.66±0.08 87.25±0.41

+Words deletion 10% 89.86±0.63 81.08±0.43 84.84±0.53 91.88±0.20 86.92±0.28
+Words deletion 20% 90.79±0.90 81.39±0.57 84.84±0.38 91.81±0.37 87.21±0.28
+Words deletion 30% 89.54±1.28 81.18±0.42 85.12±0.25 91.36±0.43 86.80±0.32
+Random crop 10% 90.42±0.80 81.52±0.91 85.01±0.33 91.50±0.34 87.11±0.31
+Random crop 20% 91.02±0.60 81.31±0.52 84.68±0.79 91.68±0.22 87.17±0.33
+Random crop 30% 89.86±0.51 80.70±0.48 85.14±0.26 91.73±0.31 86.86±0.26
+Stopwords insertion 89.01±1.52 81.69±0.29 84.21±0.34 91.62±0.09 86.63±0.57
+Random swap 88.80±0.57 81.08±0.45 84.28±0.59 91.44±0.39 86.40±0.39
+Punctuations insertion 91.57±1.16 81.73±0.60 84.59±0.52 92.20±0.53 87.52±0.19
+MixCSE-Instance weighting 93.26±0.58 80.62±0.94 85.21±0.24 93.08±0.08 88.04±0.13

Table 4: Results on cMedIC, cMedQQ, cMedQA and cMedQNLI test sets. Metric, weighted-averaged F1 for
cMedIC and cMedQA and F1 for cMedQQ and cMedQNLI.

Data augmentation BIOSSES
SimCSE 81.02±3.02

+Words deletion 10% 80.39±3.74
+Words deletion 20% 79.13±2.63
+Words deletion 30% 74.62±3.40

+Random crop 10% 85.36±3.27
+Random crop 20% 82.36±2.48
+Random crop 30% 74.13±2.41

+Punctuations insertion 84.72±1.36
+Stopwords insertion 84.93±0.97
+Random swap 85.29±3.05
+MixCSE-Instance weighting 82.43±2.20

Table 5: Comparison results of different data augmen-
tation methods on the BIOSSES dataset (Spearman’s
correlation). All results use 5 random seeds to train the
model, and report the mean and standard deviation.

4.4 Evaluation Protocols312

When evaluating the trained model, We use two313

methods to evaluate the model:314

• Spearman correlation We use Spearman cor-315

relation to measure the correlation between316

the ranks of predicted similarities and the317

ground truth. For a set of size n, the n raw318

scores Xi, Yi are converted to the correspond-319

ing ranks rgXi
, rgYi

, then the Spearman cor-320

relation is defined as follows:321

rs =
cov (rgX , rgY )

σrgXσrgY
(6)322

where cov(rgX , rgY ) is the covariance of the323

rank variable, and σrgX and σrgY are the stan-324

dard deviation of the rank variable.325

• SentEval We use SentEval (Conneau and 326

Kiela, 2018) to evaluate the quality of sen- 327

tence embeddings. This uses its generated 328

sentence representations to train a classifier 329

on the downstream task and verifies the qual- 330

ity of the sentence representations by means 331

of F1 scores. 332

4.5 Implementation Details 333

We start with the pre-training checkpoints of BERT- 334

base or BERT-wwm, and add the MLP layer at the 335

top of the [CLS] representation to obtain sentence 336

embeddings. The MLP layer is discarded during 337

testing and only the [CLS] output is used, like in 338

the unsup-SimCSE setup. During training, we use 339

the Adam optimizer (Kingma and Ba, 2014). Train- 340

ing our model at temperature τ = 0.05 for one 341

epoch. For Bert-base-uncased and Chinese-bert- 342

wwm-ext, the batch size is 128, and the learning 343

rate is 3e-5 and 1e-5. In using the negative sample 344

optimization strategy, we set the instance weight 345

threshold to 0.9 for both models. For all exper- 346

iments, we take five different random seeds and 347

average the results with standard deviation. Our 348

code is implemented in Python 3.7, using Pytorch 349

1.13, and the experiments are conducted on a single 350

24G NVIDIA 3090 GPU. 351

5 Experiments Results 352

5.1 Main Results 353

Table 4 presents the evaluation results on the Chi- 354

neseBLUE dataset. We observe that the generic 355

model has a much lower performance compared to 356

a biomedical corpus for contrastive learning. On 357
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Methods cMedIC cMedQQ cMedQA cMedQNLI Avg.
SimCSE 92.25±1.34 80.22±1.11 84.87±0.42 91.66±0.08 87.25±0.41
MixCSE-Instance weighting 93.26±0.58 80.62±0.94 85.21±0.24 93.08±0.08 88.04±0.13

–MixCSE 92.85±0.87 80.29±0.33 84.95±0.40 92.26±0.10 87.59±0.16
–Instance weighting 88.52±0.50 80.12±0.15 84.29±0.27 91.26±0.33 86.05±0.10

Punctuations insertion 91.57±1.16 81.73±0.60 84.59±0.52 92.20±0.53 87.52±0.19
P+M 91.05±0.57 81.18±0.29 84.25±0.38 92.51±0.36 87.25±0.10

Table 6: Results of the Ablation Study. P+M: Punctuations insertion and MixCSE-Instance weighting.

the cMedQQ data, the model effects of applying358

different data augmentation methods are all well359

improved, when using the Punctuations insertion360

method gains the most for unsup-SimCSE (Gao361

et al., 2021), the F1 score improves from 80.22% to362

81.73%. MixCSE-Instance weighting method im-363

proves on all four test sets by an average of 0.79%,364

based on the weighted-averaged F1 scores, which365

improve by 1.01% and 0.34% over unsup-SimCSE366

on the cMedIC and cMedQA test sets, while on the367

cMedQQ and cMedQNLI test sets the F1 scores368

improve by 0.40% and 1.42% over unsup-SimCSE,369

respectively. It has a relatively low standard devi-370

ation, which indicates the validity and stability of371

our method.372

Table 5 presents the evaluation results on the373

BIOSSES dataset. We find that the results of the374

models improved greatly after changing to differ-375

ent data augmentation methods. Among the five376

methods we propose, when the Random crop 10%377

method is used as the data augmentation strategy,378

it improves the most for the current state-of-the-art379

SimCSE results, and the Spearman’s correlation co-380

efficient improved from 81.02% to 85.36%. How-381

ever, the model performance gradually decreases382

as the cropping ratio increases. By observing the383

effects of each data augmentation method, we find384

that for both the Words deletion and Random crop385

methods increasing the proportion of deletion or386

cropping resulted in poorer contrastive learning,387

which may be attributed to the fact that too much388

reduction of sentence components can cause the389

original semantics to be drastically altered.390

6 Ablation Study391

We investigate the impact of MixCSE and Instance392

on the SimCSE in the Chinese datasets. The abla-393

tion results are shown in Table 6, where removing394

each component leads to performance degradation.395

This suggests that both MixCSE mixing positive396

and negative samples as a hard-negative example397

method and instance weighting are important in im- 398

proving the contrastive learning results. In addition, 399

eliminating the instance weighting method leads to 400

larger performance degradation. The reason may 401

be that false negatives have a greater impact on 402

sentence representation learning. 403

We also study both the positive and negative 404

samples separately for the data augmentation strate- 405

gies. In order to further compare the effects of dif- 406

ferent data augmentation methods on improving 407

contrastive learning, we select the two methods 408

with the best average performance in the Chinese 409

downstream task for evaluation: Punctuations inser- 410

tion and MixCSE-Instance weighting, where both 411

positive sample augmentation and negative sample 412

optimization are applied simultaneously for train- 413

ing. As can be seen in Table 6, this method is 414

only slightly better than the Punctuations insertion 415

method in the cMedQNLI task and the other re- 416

sults are not as good as separating the positive and 417

negative sample augmentation independently. 418

7 Analysis 419

7.1 Effect of Training Set Sizes 420

To validate the reliability and the robustness of 421

the MixCSE-Instance weighting methods under the 422

data scarcity scenarios, we conduct the few-shot ex- 423

periments. We limit the number of unlabeled texts 424

to 1%, 10%, 20%, 40%, 60%, 80%, and compare 425

their performance with the full dataset. 426

Figure 1 presents the results. We optimize the 427

model for the same number of training steps as for 428

the full set of settings. In all five tasks, our data aug- 429

mentation approach achieves good gains compared 430

to baseline SimCSE. In particular, it shows good 431

performance on the two datasets BIOSSES and 432

cMedQQ, which judge semantic similarity. The re- 433

sults reveal the robustness and effectiveness of our 434

approach under the data scarcity scenarios, which 435

are common in reality. With only a small amount of 436

unlabeled texts drawn from the target data distribu- 437
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Figure 1: Performance of different training data scales. All scores are the average of 5 experiments.

SimCSE MixCSE-Instance weighting
Query: 什么是肾实质性高血压？
(What is renal parenchymal hypertension?)
#1 |是否是肾上腺引起的高血压？ |肾性高血压是怎么产生的？

(Is the adrenal gland causing high blood pressure?) (How does renal hypertension occur?)
#2 |什么是糖尿病肾病？ |肾性高血压是什么意思？

(What is diabetic nephropathy?) (What does renal hypertension mean?)
Query: HIV抗体检测方法有哪些？
(What are the HIV antibody testing methods?)
#1 |乙型肝炎抗原检查注意事项。 |艾滋病检查方法有哪些？

(Hepatitis B antigen test precautions.) (What are the methods of HIV testing?)
#2 |艾滋病的检查及费用。 |有关hiv抗体检测的咨询。
(HIV testing and costs.) (Consultation about hiv antibody testing.)

Table 7: Retrieved examples from cMedQQ test set.

tion, our approach can also tune the representation438

space and benefit the downstream tasks.439

7.2 Sentence Retrieval440

As shown in Table 7, we sampled predictions from441

the model to see the effect of our approach on down-442

stream tasks. Given an input sentence, the nearest443

neighbor will be retrieved based on cosine similar-444

ity. Sentences retrieved using the MixCSE-Instance445

weighting data augmentation method have a higher446

quality compared to those retrieved by SimCSE.447

8 Conclusion and Future Work 448

In this paper, we propose MixCSE-Instance weight- 449

ing, a data augmentation strategy for contrastive 450

learning framework in biomedical natural language 451

processing domain tasks. Furthermore, few-shot 452

experiments suggest that our method is robust in 453

data scarcity scenarios. We also compare multi- 454

ple combinations of data augmentation strategies 455

and provide fine-grained analysis for interpreting 456

how our approach works. Experiments show that 457

our approach improves the performance of down- 458

7



stream tasks. In the future, we will explore how to459

improve the generalization ability of data augmen-460

tation techniques in biomedical contrastive learn-461

ing tasks and validate their effectiveness on more462

contrastive learning methods.463
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