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Abstract

Unsupervised sentence representation learning
is crucial in NLP, with contrastive learning
showing notable success. This study concen-
trates on sentence embeddings in the biomedi-
cal domain, employing Bert-base-uncased and
Chinese-bert-wwm-ext for English and Chinese
text, respectively. We assess our models us-
ing BIOSSES and ChineseBLUE benchmarks,
marking the first investigation into data aug-
mentation methods for enhancing contrastive
learning in biomedical NLP. Our findings re-
veal that general-purpose natural language pre-
trained Bert-base models excel in biomedical
tasks when fine-tuned with domain-specific
texts. By applying various data augmentation
techniques, we enhance the contrastive learning
of biomedical sentence embeddings. Results
show a 4.34% increase in BIOSSES’s unsup-
SimCSE average Spearman’s correlation, and
improvements in ChineseBLUE tasks, surpass-
ing state-of-the-art unsup-SimCSE scores. We
also establish that augmentation methods pre-
serving sentence constituents, like Punctua-
tion insertion and MixCSE-Instance weighting,
yield superior outcomes.

1 Introduction

Recently, the volume of biomedical literature has
grown rapidly, and reports containing valuable in-
formation on discoveries and new insights continue
to be added to an already large body of literature.
Therefore, there is increasingly more demand for
accurate biomedical text mining tools for extracting
information from the biomedical literature.

The advancements of deep learning techniques
in natural language processing (NLP) made it
possible to develop biomedical text mining mod-
els. For example, BERT (Devlin et al., 2019),
ERNIE (Sun et al., 2019), XLNet (Yang et al.,
2019) and RoBERTa (Liu et al., 2019) with training
language models have achieved remarkable success
in modeling contextualized word representations
using large amounts of training text.

However, like most deep learning architectures,
it requires a large amount of labeled data to train
whereas task-specific labels in most realistic sce-
narios are often of limited size (e.g., in the case of
medical imaging for example acquiring samples is
difficult and in order to create labels professionals
have to spend a lot of time and effort to manually
classify and segment the images.). Simultaneously,
several studies have found that the sentence repre-
sentations derived by Pretrain Language Models
(PLMs) are not uniformly distributed with respect
to directions, but instead occupy a narrow cone in
the vector space (Ethayarajh, 2019), which largely
limits their expressiveness.

To address this issue, researchers use contrastive
learning to learn better unsupervised sentence em-
bedding. It aims to learn effective sentence embed-
dings based on the assumption that effective sen-
tence embeddings should bring similar sentences
closer while pushing away dissimilar ones. But,
as contrastive learning word representation mod-
els such as ConSERT (Yan et al., 2021), Sim-
CLR (Chen et al., 2020) and SimCSE (Gao et al.,
2021) are trained and tested mainly on datasets con-
taining general domain texts or English datasets, it
is difficult to estimate their performance on datasets
containing biomedical texts, especially Chinese
medical texts. Also, in the learning process, both
positive and negative examples are involved in con-
trast with the original sentence. For positive ex-
amples, previous works apply data augmentation
strategies (Yan et al., 2021) on the original sentence
to generate highly similar variations. While, neg-
ative examples are commonly sampled from the
batch or training data (e.g., in-batch negatives (Gao
et al., 2021)) at random, due to the lack of ground-
truth annotations for negatives. It is likely to hurt
the semantics of the sentence representations by
simply pushing apart these sampled negatives.

Therefore, in this paper, we aim to tackle the
aforementioned challenges in the context of the



biomedical domain. Our goal is to improve unsu-
pervised sentence representation by infusing do-
main knowledge into the augmentation and con-
trast schemes. We propose to leverage biomedi-
cal domain corpora to assist contrastive learning
on biomedical sentence embedding. Simultane-
ously, we explore five data augmentation schemes
to assist contrastive learning, and We propose a
simple but effective data augmentation, MixCSE-
Instance weighting, which to help the model better
capture language knowledge and semantic infor-
mation, yield superior outcomes. In summary, the
main contributions of our paper are the following:

e Our approach is the first attempt to improve
contrastive learning of unsupervised sentence
representations using multiple data augmenta-
tion strategies in multiple tasks of biomedical
natural language processing.

* We explore various effective data augmen-
tation strategies to generate views for con-
trastive learning and analyze their effects on
unsupervised sentence representation. Specif-
ically, we propose a simple but effective
MixCSE-Instance weighting data augmenta-
tion methods.

* We conduct extensive experiments on
the semantic text similarity (BIOSSES)
(Sogancioglu et al., 2017) task and the
Chinese Biomedical Language Under-
standing Evaluation benchmark (Chinese-
BLUE) (Zhang et al., 2020). Experimental
results show that our approach achieves
good results compared to the state-of-the-art
unsup-SimCSE, respectively.

2 Related Work

2.1 Sentence Representation Learning

Supervised Approaches. Several works are a
well studied area with dozens of proposed meth-
ods. Previous work (Conneau et al., 2017) finds
the supervised Natural Language Inference (NLI)
task is useful to train good sentence representation.
Stanford NLI (SNLI) (Bowman et al., 2015) and
Multi-Genre NLI (MNLI) (Williams et al., 2018)
train a Siamese network with max-pooling over the
output. SBERT (Reimers and Gurevych, 2019) pro-
poses a siamese architecture with a shared BERT
encoder and is also trained on SNLI and MNLI
datasets.

Unsupervised Approaches. RAE (Socher et al.,
2011) proposes to learn sentence representations
based on the internal structure of each sen-
tence.Skip (Kiros et al., 2015) predicts the sur-
rounding sentences for a given sentence based on
the distributional assumptions. Sent2Vec (Pagliar-
dini et al., 2018) allows sentence embeddings to be
composed using word vectors and n-gram embed-
dings. BERT-flow (Li et al., 2020) improves the per-
formance of semantic textual similarity (STS) tasks
by converting anisotropic sentence embedding dis-
tributions into smooth and anisotropic Gaussian dis-
tributions. BERT-whitening (Su et al., 2021) uses
traditional whitening methods to obtain a smooth
distribution of sentence embeddings, and reduce
the dimensionality of sentence embeddings.

2.2 Contrastive Learning

Contrastive learning originates in the fields of com-
puter vision (Hadsell et al., 2006; He et al., 2020)
and has been widely applied in NLP tasks. For
example, the SimCSE (Gao et al., 2021). This
core idea aims to learn effective representation
by pulling semantically close neighbors (i.e., pos-
itive examples) together and pushing apart non-
neighbors (i.e., negative examples). One critical
question in contrastive learning is how to construct
positive example pairs. CERT (Fang et al., 2020)
employs back translation for data augmentation.
ConSERT (Yan et al., 2021) uses token shuffling to
augment positive examples. However, they use to
pre-train the language model, which trains in gen-
eral domain corpus and lack of biomedical domain
knowledge. Data augmentation methods reducing
sentence composition cause semantic changes. It
reduces the effects of contrastive learning.

3 Approach

3.1 General Framework

We use the SimCSE as our general framework.
Specifically, given a set of paired sentences
{xi, x;r}?il, and using x;r = z;. The key element
is therefore to construct positive pairs by apply-
ing different dropout masks z; and zj feeding the
same input z; to the encoder twice and outputting
two separate sentence embeddings: h; = fp (z;, 2;)
and by = fy (i, ), using h; and h; for each
sentence in a mini-batch with batch size N. The



training objective for contrastive learning is:
€sirn(hi,hj)/T
li=-log—— (D)
Z esim(hi,h;r)/T
j=1
where 7 is the temperature hyperparameter and
sim (h;, h}) is the similarity metric, which is typi-
cally the cosine similarity function as follows:
T+
hi hy
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3.2 MixCSE-Instance weighting

We observe that SimCSE simply pushes apart these
sampled negatives, which is likely to hurt the se-
mantics of the sentence representations. Therefore,
we propose a MixCSE-Instance weighting method
to alleviate the problem. This method continuously
injects artificial hard negative features into the train-
ing process so as to maintain a strong gradient sig-
nal throughout training. Simultaneously, we utilize
a complementary model to produce the weights for
each negative and we use the weights to punish the
false negatives.

Given a sentence feature h;, we construct a nega-
tive feature 7’ ;,; by mixing the positive feature h';
and a random negative feature h';:
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where A is an hyperparameter to control the degree
of mixing. Then, for a negative representation h’;
from the representation of the original sentence h;,
we utilize the complementary model to produce the
weight as:
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where ¢ is a hyper-parameter of the instance
weighting threshold, and simc (h;, 1) is the cosine
similarity score evaluated by the complementary
model. In this way, the negative that has a higher
semantic similarity with the representation of the
original sentence will be regarded as a false nega-
tive and will be punished by assigning the weight
0. Based on the weights, we optimize the sentence
representations with a debiased cross-entropy con-
trastive learning loss function as

esim(hi,h’i)/‘r
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Corpus Words/Dialogs Domain
PubMed abstract > 4,000M Biomedical
CMCQA 1294753 45 Departments
MedDialog-CN 3407494 29 Departments
Baikemy-Medicine 90785 Medicine

Table 1: Statistics of training corpus.

Method | Text

None During the 1970s, initial clinical ex-
perience with bioprostheses deter-
mined their worldwide use.

RC During the 1970s, initial clinical ex-
perience[ | [ | [ | [ | worldwise use.

WD During the 1970s, [ ] clinical
with bioprostheses determined their
worldwide | |.

RS During with 1970s, initial biopros-

theses with experience the clinical
determined their worldwide use.
SI During the 1970s, initial the clinical
experience at with bioprostheses de-
termined their worldwide use in.
PI During : the 1970s, initial clinical
! experience with 7 bioprostheses
determined their worldwide use.

Table 2: Sentences generated using different data aug-
mentation methods. RC: random crop. WD: words
deletion. RS: random swap. SI: stopwords insertion. PI:
punctuations insertion.

where 7 is a temperature hyper-parameter. SG(-)
denotes a ’stop gradient’ operator (Paszke et al.,
2019) which ensures that back-propagation does
not go through the mixed negative 1/; ;

4 Experimental Settings

4.1 Training Data

We use three Chinese datasets: CMCQA (Xia
et al., 2022), MedDialog-CN (Zeng et al., 2020),
and Baikemy-Medicine! and a English dataset:
PubMed abstracts (Fiorini et al., 2018), which we
randomly select 1 million sentences. The details of
the training corpus are shown in Table 1.

4.2 Data Augmentation Strategies

We explore five different data augmentation strate-
gies to construct positive examples for contrastive
learning, whose examples are shown in Table 2:

ISee https://https://www.baikemy.com.


https://https://www.baikemy.com

Dataset Train Dev  Test Task Metrics Domain
cMedIC 1683 123 84 Intent Classification F1 Medical
cMedQQ 16071 1793 1935 Paraphrase Identification F1 Medical
cMedQA 49719 5475 6149 Question Answering F1 Medical
cMedQNLI 80950 9065 9969 Question Answering F1 Medical
BIOSSES 64 16 20 Sentence Similarity Spearman corr. Biomedical

Table 3: Statistics of BIOSSES and ChineseBLUE.

¢ Random Crop (RC) aims to introduce vari-
ability and perturbations into the training data,
encouraging the model to learn more robust
and generalized representations by processing
partially masked or altered inputs. Random
crop randomly selects and removes sections
of text from sentences or paragraphs and re-
places them with a placeholder or mask token.

¢ Words Deletion (WD) aims to simulate sce-
narios where words are missing or omitted,
thereby encouraging the model to learn more
robust representations and improve its ability
to handle incomplete or altered text inputs.
Words within sentences or text are randomly
removed or deleted.

* Random Swap (RS) aims to help models un-
derstand various styles and contexts by differ-
ent word orderings and sentence structures. In
this way, two words within a sentence are ran-
domly selected and swapped with each other.
The sentence structure is altered slightly, in-
troducing variability into the dataset.

* Stopwords Insertion (SI) aims to diversify
the language patterns and structures in the
data for training NLP models, enhancing their
robustness and ability to handle different lan-
guage styles and contexts. In this way, stop-
words are strategically added to the text. For
example, and, the, of, etc. are inserted into
sentences to create variations in the dataset.

* Punctuations Insertion (PI) is the strategic
addition of punctuation marks ( e.g., /, ?, etc.)
within the text to generate variations and ex-
pand the training dataset. This method aims to
enhance the robustness of NLP models by in-
troducing diverse sentence structures and pat-
terns, thereby improving their ability to com-
prehend and process different writing styles
and contexts.

4.3 Evaluation Task

To verify the effectiveness of our proposed ap-
proach, we use one Chinese dataset Chinese-
BLUE (Zhang et al., 2020), where the Chi-
neseBLUE experiments four subtasks (cMedIC,
cMedQQ, cMedQA, and cMedQNLI) and one En-
glish dataset: BIOSSES (Sogancioglu et al., 2017).
The detailed statistics are shown in Table 3:

¢ cMedIC (Clinical Medical Information Cor-
pus) contains textual clinical medical informa-
tion covering diseases, symptoms, diagnoses,
treatment plans, and other medical content.
It’s designed to train models to understand
and process clinical medical text.

* ¢cMedQQ (Clinical Medical Question and
Question) comprises medical-related ques-
tions and their corresponding answers, involv-
ing medical knowledge, diagnoses, treatments,
and more. Through this dataset, models can
learn to answer medical questions and inter-
pret medical information.

¢ cMedQA (Clinical Medical Question An-
swering) dataset is also focused on medical
domain question answering but might encom-
pass a wider range of medical topics and ques-
tion types.

* cMedQNLI (Clinical Medical Question
Natural Language Inference) primarily fo-
cuses on natural language inference, contain-
ing pairs of medical domain questions and sen-
tences that require the model to infer logical
relationships between these question-sentence
pairs, such as entailment or contradiction.

* BIOSSES is a semantic text similarity task.
This provides a collection of 100 similar sen-
tence pairs manually annotated in the biomed-
ical domain. We use the training-testing split
of BLURB (Gu et al., 2021), where 64 pairs
are used for training, 16 pairs for validation,
and the remaining 20 pairs for testing.



Model cMedIC cMedQQ cMedQA cMedQNLI Avg.

Chinese-bert-wwm-ext 87.264080 774441099 84.441 (35 88.521032 84.42 1008

SimCSE 92251134 80.224111 84.871042 91.661008 87.251041
+Words deletion 10% 89.86:|:0.63 81.08:|:().43 84.84:‘:0.53 91.88:|:().20 86.92:|:().23
+Words deletion 20% 90-79:|:0.90 81.39:&0.57 84.84i0_38 91.8110.37 87.21:&0.28
+Words deletion 30% 89.54:|:1 28 81.1 8:|:0.42 85.1 2:‘:0.25 91 .36:‘:0.43 86.80:|:0‘32
+Random Crop 10% 90-42i0.80 81.52i0.91 85.01i0_33 91.5010.34 87.1 1i0.31
+Random crop 20% 91 '02:|:0.60 81.31:|:0,52 84.68:‘:0.79 91.68:‘:0.22 87.17:|:0‘33
+Random Crop 30% 89.86i0.51 80.70i0‘4g 85. 1410.26 91.7310‘31 86.86i0‘26
+Stopwords insertion 89.01415 81.694029 84.2141034 91.6219.09 86.6310 57
+Random swap 88.80+057 81.081045 84281059 91441039 86.401039
+Punctuations insertion 91571116 81731060 84.591052 92.2040.53 87.5240.19
+MixCSE-Instance Weighting 93-26i0.58 80.62i0.94 85.21i0.24 93.0810.08 88.04i0.13

Table 4: Results on cMedIC, cMedQQ, cMedQA and cMedQNLI test sets. Metric, weighted-averaged F1 for
cMedIC and cMedQA and F1 for cMedQQ and cMedQNLI.

Data augmentation BIOSSES
SimCSE 81 '02i3.02
+Words deletion 10% 80.394374
+Words deletion 20% 79.13 1563
+Words deletion 30% 74.6243 40
+Random crop 10% 85.364327
+Random crop 20% 82.3647 48
+Random crop 30% 74134041
+Punctuations insertion 84.7211 36
+Stopwords insertion 84.931 097
+Random swap 85.2943 05

+MixCSE-Instance weighting 82.43_, 5,

Table 5: Comparison results of different data augmen-
tation methods on the BIOSSES dataset (Spearman’s
correlation). All results use 5 random seeds to train the
model, and report the mean and standard deviation.

4.4 Evaluation Protocols

When evaluating the trained model, We use two
methods to evaluate the model:

* Spearman correlation We use Spearman cor-
relation to measure the correlation between
the ranks of predicted similarities and the
ground truth. For a set of size n, the n raw
scores X;, Y; are converted to the correspond-
ing ranks rgx , 18y, , then the Spearman cor-
relation is defined as follows:

rs — cov (rgX7 rgY) (6)

Orgx Orgy
where cov(rgy,rgy ) is the covariance of the
rank variable, and g, and oy, are the stan-
dard deviation of the rank variable.

* SentEval We use SentEval (Conneau and
Kiela, 2018) to evaluate the quality of sen-
tence embeddings. This uses its generated
sentence representations to train a classifier
on the downstream task and verifies the qual-
ity of the sentence representations by means
of F1 scores.

4.5 Implementation Details

We start with the pre-training checkpoints of BERT-
base or BERT-wwm, and add the MLP layer at the
top of the [CLS] representation to obtain sentence
embeddings. The MLP layer is discarded during
testing and only the [CLS] output is used, like in
the unsup-SimCSE setup. During training, we use
the Adam optimizer (Kingma and Ba, 2014). Train-
ing our model at temperature 7 = 0.05 for one
epoch. For Bert-base-uncased and Chinese-bert-
wwm-ext, the batch size is 128, and the learning
rate is 3e-5 and le-5. In using the negative sample
optimization strategy, we set the instance weight
threshold to 0.9 for both models. For all exper-
iments, we take five different random seeds and
average the results with standard deviation. Our
code is implemented in Python 3.7, using Pytorch
1.13, and the experiments are conducted on a single
24G NVIDIA 3090 GPU.

5 Experiments Results

5.1

Table 4 presents the evaluation results on the Chi-
neseBLUE dataset. We observe that the generic
model has a much lower performance compared to
a biomedical corpus for contrastive learning. On

Main Results



Methods cMedIC cMedQQ cMedQA cMedQNLI Avg.
SimCSE 92254134 80.224111 84.874042 91.6640903 87.254041
MixCSE-Instance weighting  93.26_9s53 80.621094 85211924 93.08.00s 88.04.¢13
-MixCSE 92.854087 80.294033 84.951040 92264010 87.5940.16
—Instance weighting 88.524050 80.124015 84.294027 91.264033 86.05410.10
Punctuations insertion 91.57+1.16 81731960 84.59+10520 92204053 87.5240.19
P+M 91.054057 81.184029 84.254038 92514036 87.2540.10

Table 6: Results of the Ablation Study. P+M: Punctuations insertion and MixCSE-Instance weighting.

the cMedQQ data, the model effects of applying
different data augmentation methods are all well
improved, when using the Punctuations insertion
method gains the most for unsup-SimCSE (Gao
etal., 2021), the F1 score improves from 80.22% to
81.73%. MixCSE-Instance weighting method im-
proves on all four test sets by an average of 0.79%,
based on the weighted-averaged F1 scores, which
improve by 1.01% and 0.34% over unsup-SimCSE
on the cMedIC and cMedQA test sets, while on the
cMedQQ and cMedQNLI test sets the F1 scores
improve by 0.40% and 1.42% over unsup-SimCSE,
respectively. It has a relatively low standard devi-
ation, which indicates the validity and stability of
our method.

Table 5 presents the evaluation results on the
BIOSSES dataset. We find that the results of the
models improved greatly after changing to differ-
ent data augmentation methods. Among the five
methods we propose, when the Random crop 10%
method is used as the data augmentation strategy,
it improves the most for the current state-of-the-art
SimCSE results, and the Spearman’s correlation co-
efficient improved from 81.02% to 85.36%. How-
ever, the model performance gradually decreases
as the cropping ratio increases. By observing the
effects of each data augmentation method, we find
that for both the Words deletion and Random crop
methods increasing the proportion of deletion or
cropping resulted in poorer contrastive learning,
which may be attributed to the fact that too much
reduction of sentence components can cause the
original semantics to be drastically altered.

6 Ablation Study

We investigate the impact of MixCSE and Instance
on the SImCSE in the Chinese datasets. The abla-
tion results are shown in Table 6, where removing
each component leads to performance degradation.
This suggests that both MixCSE mixing positive
and negative samples as a hard-negative example

method and instance weighting are important in im-
proving the contrastive learning results. In addition,
eliminating the instance weighting method leads to
larger performance degradation. The reason may
be that false negatives have a greater impact on
sentence representation learning.

We also study both the positive and negative
samples separately for the data augmentation strate-
gies. In order to further compare the effects of dif-
ferent data augmentation methods on improving
contrastive learning, we select the two methods
with the best average performance in the Chinese
downstream task for evaluation: Punctuations inser-
tion and MixCSE-Instance weighting, where both
positive sample augmentation and negative sample
optimization are applied simultaneously for train-
ing. As can be seen in Table 6, this method is
only slightly better than the Punctuations insertion
method in the cMedQNLI task and the other re-
sults are not as good as separating the positive and
negative sample augmentation independently.

7 Analysis
7.1 Effect of Training Set Sizes

To validate the reliability and the robustness of
the MixCSE-Instance weighting methods under the
data scarcity scenarios, we conduct the few-shot ex-
periments. We limit the number of unlabeled texts
to 1%, 10%, 20%, 40%, 60%, 80%, and compare
their performance with the full dataset.

Figure 1 presents the results. We optimize the
model for the same number of training steps as for
the full set of settings. In all five tasks, our data aug-
mentation approach achieves good gains compared
to baseline SImCSE. In particular, it shows good
performance on the two datasets BIOSSES and
cMedQQ, which judge semantic similarity. The re-
sults reveal the robustness and effectiveness of our
approach under the data scarcity scenarios, which
are common in reality. With only a small amount of
unlabeled texts drawn from the target data distribu-
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Figure 1: Performance of different training data scales. All scores are the average of 5 experiments.

SimCSE

MixCSE-Instance weighting

Query: T 22§ R H & w/E?
(What is renal parenchymal hypertension?)

#1 | REZE LM ARG ZHhE?

(Is the adrenal gland causing high blood pressure?)

#2 | AT A RAE IR KR
(What is diabetic nephropathy?)

| B & E R E AP £
(How does renal hypertension occur?)
| B &R A& EY

(What does renal hypertension mean?)

Query: HIVAUIR A& R 7 ik A p 22
(What are the HIV antibody testing methods?)

#1 | CHERKRBRLEEZZFR .
(Hepatitis B antigen test precautions.)
#2 | X#megteERRA .

(HIV testing and costs.)

| iR A & 7y kR e
(What are the methods of HIV testing?)
| A Khivit R 6g & 19 .

(Consultation about hiv antibody testing.)

Table 7: Retrieved examples from cMedQQ test set.

tion, our approach can also tune the representation
space and benefit the downstream tasks.

7.2 Sentence Retrieval

As shown in Table 7, we sampled predictions from
the model to see the effect of our approach on down-
stream tasks. Given an input sentence, the nearest
neighbor will be retrieved based on cosine similar-
ity. Sentences retrieved using the MixCSE-Instance
weighting data augmentation method have a higher
quality compared to those retrieved by SimCSE.

8 Conclusion and Future Work

In this paper, we propose MixCSE-Instance weight-
ing, a data augmentation strategy for contrastive
learning framework in biomedical natural language
processing domain tasks. Furthermore, few-shot
experiments suggest that our method is robust in
data scarcity scenarios. We also compare multi-
ple combinations of data augmentation strategies
and provide fine-grained analysis for interpreting
how our approach works. Experiments show that
our approach improves the performance of down-



stream tasks. In the future, we will explore how to
improve the generalization ability of data augmen-
tation techniques in biomedical contrastive learn-
ing tasks and validate their effectiveness on more
contrastive learning methods.
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