
Data Stream Classification Guided by Clustering on Nonstationary

Environments and Extreme Verification Latency

Vińıcius M. A. Souza∗ Diego F. Silva∗ João Gama† Gustavo E. A. P. A. Batista∗

Abstract

Data stream classification algorithms for nonstationary en-
vironments frequently assume the availability of class labels,
instantly or with some lag after the classification. How-
ever, certain applications, mainly those related to sensors
and robotics, involve high costs to obtain new labels during
the classification phase. Such a scenario in which the actual
labels of processed data are never available is called extreme
verification latency. Extreme verification latency requires
new classification methods capable of adapting to possible
changes over time without external supervision. This pa-
per presents a fast, simple, intuitive and accurate algorithm
to classify nonstationary data streams in an extreme verifi-
cation latency scenario, namely Stream Classification Algo-
rithm Guided by Clustering – SCARGC. Our method con-
sists of a clustering followed by a classification step applied
repeatedly in a closed loop fashion. We show in several clas-
sification tasks evaluated in synthetic and real data that our
method is faster and more accurate than the state-of-the-art.

Keywords: Data stream classification, concept drift, ex-

treme verification latency.

1 Introduction

Most of the research on data stream classification in
the presence of concept drifts assumes the availability
of class labels, instantly or with some lag after the
classification, for example [3] and [7]. In summary, these
methods verify if the current model is outdated based
on classification performance information obtained on
the most recent labeled data.

This assumption is perfectly feasible for a number
of applications. For instance, consider the task of
predicting if a stock market share price will increase
or decrease in the next hour. We can obtain the actual
labels with exactly one hour lag. Another example is
the prediction of energy consumption. In particular, it
seems that classification tasks derived from regression
problems easily fulfill the availability requirements of
actual labels after classification.

However, there exists an emerging class of applica-
tions mainly in sensors and robotics in which the labeled
data availability is not fulfilled. These applications typ-
ically involve high costs for labeling data, possibly man-

∗Institute of Mathematics and Computer Science, University

of São Paulo, Brazil – {vsouza, diegofsilva, gbatista}@icmc.usp.br
†Faculty of Economics, University of Porto, Portugal –

jgama@fep.up.pt

ually with the assistance of an expert. A recent work
[10] pointed these assumptions on the timing and avail-
ability of information as one of the main challenges on
the current data stream mining research.

The time between a classification and the availabil-
ity of correspondent actual label is denoted as verifica-
tion latency [11]. When this time approaches infinity,
we have an extreme verification latency scenario where
no labeled data are received after the initialization of
the classification model. This scenario differs from the
data stream clustering setting in two main ways:

• It is an intrinsically classification task in the sense
that the classes are known and we are interested in
discriminating the classes apart. In clustering, the
clusters are unknown a priori and the interpreta-
tion of each cluster is given a posteriori ;

• It assumes the availability of a small amount of
initial labeled data. These data are made available
before the classification starts. Differently from
clustering in which no labeled data are available.

The initial labeled data are necessary to define
the problem as classification, including the number of
classes and their initial disposition in the feature space.
Without such data it would be difficult, if not impossi-
ble, to automatically interpret the future occurrences of
the examples without human intervention. However, in
a short period of time these data are outdated and can
degrade the current model.

The semi-supervised stream learning is also differ-
ent from the scenario considered in this work. In semi-
supervised learning, the data stream is typically divided
into equal-sized chunks where only a small fraction (e.g.
5%) of data is labeled and the goal is to label the remain-
ing unlabeled data in the chunk. Thus, these algorithms
can use labeled and unlabeled data together to perform
the classification. However, we address here a problem
in which there is the need to immediately assign a la-
bel to each individual example that arrives. Finally, the
scenario of extreme verification latency differs from the
active learning setting, in which the algorithm selects
a small portion of data to be externally labeled by an
oracle and to build an accurate classifier.

873 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Thus, both semi-supervised and active learning
approaches can make use of partially labeled data
to monitor the drift rates and update the current
classification model whether convenient. In extreme
verification latency this is not possible due to the
complete lack of labeled data in the classification phase.

For a concrete application that requires extreme
verification latency in nonstationary environments, con-
sider a behavioral biometric application where users are
recognized by their typing profile as presented in [2]. In
this security system, all users type the same password
and should be recognized by their typing pace. Such
a characteristic evolves over time, so the system need
to constantly adapt to the new behavior of each user
without any supervision. This application is better ap-
proached later in this paper.

We can also find several applications in sensors and
robotics. For instance, an autonomous robot can be
trained in a specific environment and sent to explore
an unknown area without any external aid or human
supervision. This area may have different characteris-
tics from those known in the initial model and the robot
must adapt to changes without the availability of the ac-
tual labels. In sensor applications where the classifica-
tion task is dependent of environmental measurements,
the climate changes can easily degrade a static model
and the knowledge of actual label can be involve high
costs. An example is the laser sensor that recognizes
insect species, as described by [13].

This paper presents a fast, simple, intuitive
and accurate algorithm to classify nonstationary data
streams in extreme verification latency scenario, namely
Stream Classification Algorithm Guided by Clustering

– SCARGC. Our method consists of a clustering fol-
lowed by a classification step applied repeatedly in a
closed loop fashion. The algorithm uses the current and
past cluster positions obtained by clustering the unla-
beled data to track the drifting classes over time. We
show in 16 synthetic and 2 real classification tasks that
our method is faster and more accurate than the state-
of-the-art. Due to the importance of evaluating these
methods in a concept drift environment with controlled
characteristics, this paper also proposes a set of non-
stationary synthetic benchmark datasets, and make it
publicly available for the data stream community.

2 Related Work

According to the best of our knowledge, the literature
has two algorithms that deal with data stream classi-
fication in extreme verification latency in nonstation-
ary environments: Arbitrary Sub-Populations Tracker
– APT [9] and Compacted Object Sample Extraction –
COMPOSE [6].

The APT algorithm considers that each class can
be represented as a mixture of arbitrarily distributed
sub-populations. Briefly, the algorithm works in a two-
stage learning strategy. First, it uses expectation max-
imization to determine the optimal one-to-one assign-
ment between the unlabeled and labeled data. Next, it
updates the classifier to reflect the population param-
eters of newly received data and the drift parameters,
relating the previous time step to the current one. This
algorithm has some drawbacks. For instance, it has the
assumption that the number of instances of each sub-
population is constant along the time. This limitation
is hard to be fulfilled and may degrade the method after
some iterations. Furthermore, the tests performed in [6]
indicate a considerable high computational cost.

The COMPOSE framework follows three steps: i)
it combines initial labels with new unlabeled data to
train a semi-supervised classifier and label the current
unlabeled data; ii) for each class, it constructs α-shapes
(a generalization of convex hull), providing a tight
envelope around the data that represent the current
class conditional distribution; and iii) it compacts the
α-shape and extracts representative instances (called
core supports) from the compacted α-shape, which now
represent the geometric center of each class distribution.
The process is repeated iteratively when new unlabeled
data arrive, where the core supports from the previous
iterations are now considered labeled instances for the
current iteration.

The main weakness of COMPOSE is the α-shape
construction method that is a computationally expen-
sive process on high dimensional data. Furthermore,
the algorithm has two important parameters: α and
CP . The α parameter is related to the level of detail
to model shapes of classes using the convex hull algo-
rithm. For a large value of α the resultant shape is
the convex hull of the points and for a small value of α
the resultant shape may become concave or even con-
tain disconnected regions. The CP parameter is related
to the level of compaction applied to the α-shapes. As
pointed by the authors, both parameters affect the per-
formance of COMPOSE, mainly the choice of values for
the CP parameter. If α-shapes are too compact, rel-
evant instances of the future distribution are lost. In
contrast, if the α-shapes are little compacted, instances
of rival classes may overlap.

3 Proposed Method

In this paper, we propose an algorithm to classify data
streams in nonstationary environments with extreme
verification latency. We consider the scenario where the
actual labels of unlabeled data are never available as a
guidance to update the classification model over time.

874 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

We named our method Stream Classification Algorithm

Guided by Clustering – SCARGC. The SCARGC
is intuitive and has a low implementation complexity.
Its simplicity has a direct impact on computational
complexity without affecting the accuracy performance
as discussed in Section 4.

We begin by stating and justifying the main as-
sumptions of our approach:

1. An initial reduced set of labeled data is available.
Such data are necessary to define the problem as
classification, including the number of classes and
the disposition of the classes in the feature space;

2. The concepts drift incrementally. Incremental drift
is a necessary condition to allow the classes to be
tracked without labels. Many application domains
lead naturally to incremental drift. One example
are drifts caused by environment changes (e.g. tem-
perature) that occur continuously over time. This
type of drift is often considered more challenging
to detect than abrupt, given the significant overlap
between concepts in a short period of time [6];

3. The number of classes is known and constant over
time. Although some applications have a variable
or unknown number of classes, frequently we are
primarily interested in one of these classes, thus
the problem can be transformed into a binary
classification problem.

Assumptions 1 and 2 are inherent to the problem
and are present in all other approaches proposed in the
literature. Assumption 3 is inherent to our solution and
will be the focus of future work. Although these as-
sumptions may appear restrictive in a first glance, we
believe the standard assumption of immediate availabil-
ity of actual class labels is even more restrictive, and
even impossible to fulfill in many application domains.

Given our assumptions, we are now in position to
describe our approach. We start building an initial
classification model using the available labeled data
with c classes. We also divide the initial labeled data
into k ≥ c clusters. If k = c, we simply use the c

classes as initial clusters. If k > c, we run a clustering
algorithm, and associate each cluster to one class, as we
describe later. In both cases, we denote the initial set

of k clusters by C(0) = {C
(0)
1 , C

(0)
2 , . . . , C

(0)
k }.

As the classification phase begins and the algorithm
starts receiving new unlabeled data, two actions are
immediately taken: each example is stored in a pool and
has its label predicted by the initial classification model.
After a minimal amount of examples of each class is
stored in the pool, the pool of examples is clustered

into k clusters. We denote the new set of clusters as
C(1) = {C

(1)
1 , C

(1)
2 , . . . , C

(1)
k }. At this point, we associate

each cluster C
(1)
i ∈ C(1) with one cluster C

(0)
j ∈ C(0).

Consequently, each cluster C
(1)
i is assigned to one class.

Such association allows us to label each example in the
pool. The objective is to map the previous concept to
the new concept found in the clustering phase.

The recently labeled examples are used to create
an updated classification model that replaces the initial
one. The algorithm goes in a closed loop, alternating
clustering and classification. The classification model is
build over the past labeled data, with labels given by
the clustering algorithm. The labels are given by the
association of the clusters in the current iteration Ct

with the labels in the previous iteration Ct−1.
In this general framework we omitted some details

that are parameters or implementation decisions. In our
implementation, we favored simplicity and efficiency,
since stream mining may require very fast response
times. In the experiments performed in this paper, we
chose the k-means algorithm as clustering method. The
k-means is a simple and computationally efficient algo-
rithm. In addition, the algorithm has many extensions
such as X-means [12] and Fuzzy c-means [5] that can
be adapted to be used in our framework.

We store the centroids of the past clustering itera-
tion and use it in two ways. First, we use them as seeds
for the current clustering step. Such procedure avoids
the instability of k-means due to its stochastic nature.
Second, we use the centroids as summary statistic about
the clusters. We use a simple centroid similarity calcu-
lation between the current and previous algorithm iter-
ation using Euclidean distance to perform the mapping
between the clusters. Thus, given the current centroids
(q1, q2, . . . , qk) from the most recent unlabeled clusters
Ct and the past centroids (p1, p2, . . . , pk) from the pre-
viously labeled clusters Ct−1, where qi and pi are n-
dimensional data, each centroid pi have a label yi and
each centroid qi needs a label ŷi. This label is obtained
by the simple nearest neighbor algorithm. For this, each
new centroid qi is associated to its closest past centroid,
according to the Euclidean distance. In other words, af-
ter calculating the distance of a centroid qi to each past
centroid, the label ŷi given to qi is the same of the label
yi of the nearest past centroid.

In our experiments with synthetic data, we start
a new clustering step whenever the pool achieves 300
examples and a minimal amount of data points are
associated for each class by the classifier (e.g. 10
data points). The pool size is directly related to
how often the algorithm can adapt to concept drifts.
Although small pool sizes allow fast adaptation, it also

875 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

increases computational costs due to the exhaustive
verifications of drifts. Small sample sizes may also lead
to unrepresentative clusters due to lack of data. On the
other hand, a large sample size may contain more than
one concept. The influence of variation of pool size is
discussed in Section 4.5.

In order to reduce computational costs we do not
update the classification model every iteration. Instead,
we test whether there is significant difference between
the labels given by the current classifier and the clus-
tering algorithm. A significant difference is considered
as an indicative of concept drift and a new classifica-
tion model is built. We reinforce that the purpose of
the test is not be an explicit drift detector, but only
an indicator that aims to reduce the cost of constant
updates. We suggest the use of Kappa coefficient [4] as
a significance test. However, our framework allows the
use of other statistical tests to compare the labels or
the data distributions given by the clustering and the
current classifier.

Our framework also supports any classification al-
gorithm. In our experiments, we evaluate the behavior
of SCARGC with two well known algorithms: 1-Nearest
Neighbor (1NN) and Support Vector Machine (SVM).

A more formal description is shown in Algorithm 1,
which requires as input an initial set of labeled training
examples T and an unlabeled data stream DS. The
algorithm has two parameters: the number of clusters
k and the pool size θ.

Algorithm 1: Stream Classification Algorithm
Guided by Clustering - SCARGC

Input: Initial training data T ; Data Stream DS; Max pool
size θ; Number of clusters k

Output: Updated classifier Φ; Label y for each x ∈ DS

Φ← buildClassifier(T)
if k = c then
C ← actual classes(T)

else
C ← clustering(T , k)

pool← ∅

labels← ∅

while DS has events do
x← next event(DS)
y ← Φ(x)
pool← pool

⋃
{x}

labels← labels
⋃
{y}

if |pool| = θ then
if countExamplesPerClass(labels, c) > 10 then
C ← clustering(pool, k)
M ← matching(C, labels)
if concordance(M) 6= 1 then
T ′ ← label data(pool, C)
Φ← buildClassifier(T ′)
pool← ∅

labels← ∅

4 Experimental Evaluation

We evaluate SCARGC with synthetic and real data.
Synthetic data are important to understand and eval-
uate the behavior of the algorithm under certain drift
conditions that are likely to occur in real data.

In order to promote the reproducibility of our
results, we created a website [1] in which we made
available all data, source code and some supplemental
material was not included in the paper due to space
restrictions.

We would like to compare our method with COM-
POSE and APT for all synthetic and real datasets.
However, the source code for these methods is unavail-
able and our attempts to reproduce them with our own
implementation were unsuccessful. Therefore, we di-
rectly compare our method to the other only for the
datasets that the authors published detailed experimen-
tal results. Such datasets are UG-2C-2D, UG-2C-3D,
MG-2C-2D and NOAA. The results from other methods
we reproduce here were obtained by estimating the ac-
curacy in plots by eye. Although, we were extremely
cautious performing such procedure, we note it has lim-
ited accuracy.

4.1 Synthetic Data This paper provides to the
stream mining community a set of nonstationary bench-
mark datasets. More specifically, we provide 16 datasets
with incremental changes over time. Table 1 presents a
brief description of the datasets1. The column Drift

indicates the interval in number of examples between
consecutive changes. The length of datasets varies from
16,000 to 200,000, and amount of classes from 2 to 5.

Table 1: Synthetic datasets description.
Dataset #Classes #Feat. Drift Length

1CDT 2 2 400 16,000
2CDT 2 2 400 16,000
1CHT 2 2 400 16,000
2CHT 2 2 400 16,000
4CR 4 2 400 144,400
4CRE-V1 4 2 1,000 125,000
4CRE-V2 4 2 1,000 183,000
5CVT 5 2 1,000 40,000
1CSurr 2 2 ≈600 55,283
4CE1CF 5 2 750 173,250
FG-2C-2D 2 2 2,000 200,000
UG-2C-2D 2 2 1,000 100,000
UG-2C-3D 2 3 2,000 200,000
UG-2C-5D 2 5 2,000 200,000
MG-2C-2D 2 2 2,000 200,000
GEARS-2C-2D 2 2 2,000 200,000

The datasets UG-2C-2D, UG-2C-3D, and MG-2C-
2D were originally proposed in [6]. The datasets UG-

1More details about the names, movements performed by the

classes over time (in video descriptions) or other characteristics
of the data can be seen in the paper website [1].

876 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2C-5D and GEARS-2C-2D were kindly provided by the
authors of the same paper, although they do not use
them in their evaluations.

4.2 Analysis of Average Accuracy We compare
our method against three bounds that simulate the tra-
ditional static supervised learning classifier and classi-
fiers that are constantly updated by an oracle:

1. Static. The classifier is trained with the first
examples from the stream and it is not updated
over time;

2. Sliding. The classifier is constantly updated when-
ever a test example is processed. Then, the oldest
example is dropped off from the window and the
most recent processed example is added with its
actual label. This setting represents a zero verifi-
cation latency scenario;

3. Landmark. The classifier uses an incremental
window that grows with each new test example
and their actual label. The window starts with
N examples and grows until accumulate 2 ∗ N

examples. When the limit is reached, the N oldest
examples are dropped off from the window. This
process is repeated during all test phase. The
Landmark setting also represents a zero verification
latency. However, it provides longer lifetime for the
training examples compared to the Sliding setting.

We included a comparison to Sliding and Landmark,
because they have access to all actual class labels
available on each dataset. In term of performance,
we can expect that these methods subsume all other
methods that have access to partial information such as
in semi-supervised or active learning approaches.

Table 2 presents the average accuracy over the
entire stream achieved by SCARGC with 1NN and SVM
as base classifiers. Due to the variation in the scores,
an additional ranking average (Friedman Test) is also
provided. The competitor methods Static, Sliding and
Landmark use a 1NN classifier. However, we emphasize
that the results with SVM are similar. SCARGC
was initially trained with just 50 labeled examples,
considerably less than the other approaches that started
with 300 examples. We chose such a reduced amount
of initial labeled data to stress that our approach can
provide competitive results even with a small number
of initial instances, which can be expensive to obtain in
some application domains. An analysis of variation of
amount of initial labeled data is presented in Section 4.5.
The pool size of SCARGC is fixed in 300 examples.

Among the proposed bounds, we can note that the
Sliding setting presents the best performance. Although

Table 2: Average accuracy over the entire stream for
synthetic benchmark datasets. The best result for each
dataset is in bold.
Dataset Static Sliding Land SCARGC SCARGC

mark (1NN) (SVM)

1CDT 99.07 99.87 99.87 99.75 99.51
2CDT 55.09 93.47 92.29 90.92 90.72
1CHT 94.53 99.23 99.20 99.25 99.00
2CHT 54.57 85.43 84.92 86.02 85.82
4CR 25.26 99.98 99.98 99.95 98.48
4CRE-V1 25.22 97.64 97.43 97.39 97.48
4CRE-V2 26.26 89.37 89.38 91.90 91.95
5CVT 48.12 89.17 86.27 90.15 90.32
1CSurr 65.55 98.51 98.46 94.35 94.97
4CE1CF 94.70 97.14 97.21 94.08 90.29
FG-2C-2D 81.29 93.84 93.89 95.16 95.23
UG-2C-2D 45.87 94.26 94.26 95.56 95.53
UG-2C-3D 64.09 92.86 92.92 94.77 94.79
UG-2C-5D 69.20 89.90 90.08 90.98 88.24
MG-2C-2D 51.58 90.40 90.45 92.71 92.75
GEARS-2C-2D 94.96 99.86 99.85 95.89 95.26

Overall avg. 62.21 94.43 94.15 94.30 93.77

Rank avg. 4.875 2.469 2.594 2.375 2.688

its performance is very similar to the Landmark setting,
the Sliding has the advantage of using a smaller amount
of memory. Thus, throughout the text we will refer only
to the Sliding setting for comparisons.

SCARGC performs very similarly to the Sliding for
all datasets even without the knowledge of actual labels
over time. For more than half of datasets the results
are slightly better, as in the case of 1CHT, 2CHT,
4CRE-V2, 5CVT, FG-2C-2D, UG-2C-2D, UG-2C-3D,
UG-2C-5D, and MG-2C-2D. These results may sound
counter-intuitive in a first sight, since Sliding setting
have access to the actual labels during the stream.
However, such performance differences are due to the
effect of overfitting in Sliding classifier. The differences
are more evident when the classes get closer together
and there is a significant performance loss. In these
moments, the classifiers that have access to the actual
labels are more prone to overfitting due to the large class
overlapping. In contrast, the clustering tends to create
a smoother class separation borders that are less likely
to lead to overfitting.

In some datasets such as 1CDT, 1CHT, 4CE1CF,
and GEARS-2C-2D, the separating margin of classes
stays static over time. For this reason, the Static is
able to present very good results even in the presence
of feature drifts.

The proposed algorithm achieves its performance
using much less labeled data than Static, Landmark and
Sliding approaches. Just for comparison purposes, for
the largest datasets with 200,000 examples, the initial
labeled data represents only 0.02% of all data. Even
for smaller datasets, with 16,000 examples, the initial
labeled data represents less than 0.5% of all data.

877 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

4.3 Unimodal Gaussian Data This section pro-
vides detailed experimental results for the unimodal
Gaussian dataset UG-2C-2D. In this dataset two bidi-
mensional Gaussian clusters rotate around a common
axis. As they rotate, the distance between the Gaus-
sian components varies, making the classes overlap to
change with time. Fig. 1 illustrates this dataset in four
different moments and Fig. 2 shows the classification
performance results over time.

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

(a) Time step 1

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

(b) Time step 2

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

(c) Time step 3

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

(d) Time step 4

Figure 1: Snapshots over time of UG-2C-2D dataset.

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

Step

Acc
ura

cy
(%
)

Static
Sliding
SCARGC SVM
SCARGC 1NN
COMPOSE
APT

* *
*

* ***

*

*
* oo o ooo o

o

o

Figure 2: Mean accuracy over time for bidimensional
unimodal dataset UG-2C-2D. SCARGC with k = 2 and
COMPOSE with CP = 0.70 and α = 0.4.

In order to standardize the presentation of the
results, independently of the amount of examples in each
dataset, we divided the data in 100 equal batches (when
possible) and calculated the mean accuracy achieved
in each batch. Although the results are presented as
if they were processed into 100 steps, we emphasize
that the classifier returns online predictions for each

unlabeled example from the stream. In Fig. 2 we can
see that SCARGC outperforms APT by a large margin
and shows the same performance as COMPOSE during
the entire stream. However, SCARGC requires much
less computational effort.

4.4 Multimodal Gaussian Data For the multi-
modal experiment, we show detailed performance re-
sults on MG-2C-2D dataset. In Fig. 3, we present
4 snapshots to illustrate the evolving behavior of this
data. In Fig. 4 we can see that SCARGC outperforms
the Sliding classifier, as well as APT and COMPOSE.

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

(a) Time step 1

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

(b) Time step 2

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

(c) Time step 3

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

(d) Time step 4

Figure 3: Snapshots over time of MG-2C-2D dataset.

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

Step

Acc
ura
cy
(%
)

Static
Sliding
SCARGC SVM
SCARGC 1NN
COMPOSE
APT

*

*

*

*

*

*
*

*

*

*

o

o

o
oo o o

oo

Figure 4: Mean accuracy over time for multimodal
dataset MG-2C-2D. SCARGC with k = 4. COMPOSE
with CP = 0.70 and α = 0.43.

To achieve good results in MG-2C-2D dataset, it
was necessary to use more than one cluster for each class
as input for the algorithm. Thus, the results presented
here were obtained with the use of four clusters.

878 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

4.5 Parameter Sensitivity Analysis SCARGC
has three input parameters: i) initial labeled data (T);
ii) pool size (θ); and iii) number of clusters (k).

We present here the analysis for initial labeled
data size and pool size for 4CRE-V2 and MG-2C-2D
datasets. We selected these datasets because they have
different characteristics and drift behaviors.

Table 3 and 4 present the average accuracy over
the entire stream for the datasets 4CRE-V2 and MG-
2C-2D for values of θ from 200 to 1000 and |T | from 50
to 1200. For each dataset, the results that outperformed
Sliding setting are in bold. All other values present an
intermediate result between Static and Sliding.

Table 3: Average accuracy for 4CRE-V2 dataset varying
the parameters θ – max pool size and |T | – amount of
initial labeled data.
θ

1000 91.38 91.40 91.39 91.30 91.31 91.40 91.40 91.35
800 91.76 91.71 91.72 91.68 91.71 91.71 91.68 91.65
600 91.89 91.88 91.90 91.91 91.87 91.87 91.88 91.85
500 91.95 91.92 91.94 91.99 91.90 91.93 91.89 91.90
400 91.97 91.95 91.95 91.96 91.93 91.94 91.92 91.93
300 91.91 91.88 91.94 91.87 91.88 91.92 91.85 91.86
200 91.65 91.70 91.73 91.72 91.72 91.71 91.70 91.69

|T | 50 100 200 400 600 800 1000 1200

Table 4: Average accuracy for MG-2C-2D dataset
varying the parameters θ and |T |.
θ

1000 92.86 92.86 92.87 92.93 92.90 92.99 92.87 92.87
800 92.89 92.94 92.87 92.91 92.91 92.88 92.84 92.88
600 92.91 92.85 92.91 92.85 92.86 92.86 92.85 92.84
500 92.85 92.84 92.85 92.87 92.82 92.84 92.88 92.80
400 92.81 92.87 92.78 92.85 92.75 92.84 92.75 92.82
300 92.72 92.74 92.79 92.73 92.71 92.73 92.71 92.65
200 92.29 79.66 80.19 80.17 80.15 80.13 80.11 80.09

|T | 50 100 200 400 600 800 1000 1200

In Tables 3 and 4 we can note in most cases
that SCARGC outperforms Sliding independently of the
parameters values. In general, a choice of a small value
for the pool size is safer. However, we note that this
size must be sufficiently large to enable enough data to
represent the clusters. The amount of initial labeled
data, |T |, do not have a significant influence on the
results.

Regarding the parameter k, a simple heuristic is to
use k = c, where c is the number of classes. However,
it is not always possible to track certain classes using a
single cluster. An example is the MG-2C-2D (Fig. 3),
where it was necessary to use 2 clusters for each class.

In the benchmark datasets used in this study, one or
two clusters are usually sufficient to track the changes.
However, the use of a larger amount of clusters per class
can approximate less conventional shapes and track
changes in these classes. We evaluated the behavior of

SCARGC (for brevity, only with SVM as base classifier)
with different values for k in 1CSurr dataset. Fig. 5
gives an intuition of the classes evolution for this data.
In this dataset, the classes are generated from Gaussian
distributions. The ◦ class has a smaller standard
deviation than the △ class. The mean of the ◦ class
moves according to the dotted lines. Some examples
from the △ class are removed to reduce the overlap
between classes. One of the purposes of this dataset
is to simulate a problem with several classes that was
transformed into a binary problem. We can consider
that the △ class consists of the union of several classes.

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14

16

T1:T2

T2:T3

T3:T4

T4:T5

T5:T6

Figure 5: Behavior of 1CSurr dataset. Path performed
by the class ◦ over time in 5 steps.

The results achieved by SCARGC for 1CSurr con-
sidering k = {2, 4, 6, 8, 10} can be seen in Fig. 6.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Step

A
c
c
u

ra
c
y

(%
)

k = 4, 94.98%
k = 6, 92.32%
k = 8, 89.35%
k = 10, 82.23%

k = 2, 81.14%

Figure 6: Results varying k for 1CSurr dataset.

The best result is achieved with k = 4 with
94.98% of mean accuracy. The algorithm has a certain
instability with values different of 4, mainly at the end
of dataset, when the class ◦ is placed in the center of
feature space and the class △ is distributed around
it. However, even with this instability the results
outperforms the Static setting (65.55%).

4.6 Efficiency Analysis In stream processing, the
time efficiency is a requirement for many applications.

879 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

SCARGC is simple and has low computational cost
compared to rival methods. Table 5 shows the wall clock
time in seconds averaged over 10 runs for each synthetic
dataset used in our experiments. We performed the
tests in a 2.4 GHz desktop computer with 8 GB RAM.
Our algorithm was implemented in MATLAB.

Table 5: Computation time of SCARGC (in seconds).
Base classifier Base classifier

Dataset 1NN SVM Dataset 1NN SVM
1CDT 9.51 1.83 1CSurr 32.51 8.78
2CDT 9.63 2.01 4CE1CF 106.95 38.79
1CHT 9.48 1.72 UG-2C-2D 59.76 10.11
2CHT 9.58 1.71 UG-2C-3D 118.41 20.78
4CR 86.77 27.52 UG-2C-5D 120.21 31.18
4CRE-V1 75.69 11.61 FG-2C-2D 119.70 20.25
4CRE-V2 111.42 22.22 MG-2C-2D 117.67 21.37
5CVT 24.48 5.49 GEARS-2C-2D 116.20 15.33

The 1NN classifier has a lazy approach and there-
fore has no computational cost for updating the classi-
fication model, while the SVM classifier requires some
time to induce a new model at each update. In contrast,
during the classification phase, SVM is usually faster
than the 1NN. The final running times of SCARGC us-
ing SVM as the base classifier are lower than using 1NN.

A direct comparison of our results with rivals algo-
rithms is not possible for all datasets. However, in [6] is
shown the running times for COMPOSE and APT for
the datasets UG-2C-2D, UG-2C-3D, and MG-2C-2D.
Their experimental setup employs a computational set-
ting very similar to ours. For these datasets, the running
times for COMPOSE were respectively 249.6 seconds,
1599.6 seconds and 499.8 seconds. APT spent 3,600
minutes, 22,776 minutes and 20,303 minutes. Thus, the
proposed algorithm requires significantly less computa-
tional resources than rival methods. For these data,
SCARGC spent only 10.11 seconds, 20.78 seconds and
21.37 seconds, respectively, using SVM as base classifier.

4.7 Real World Data We also evaluated the per-
formance of SCARGC in two real world applications
related to weather prediction and keystroke dynamics.

The first real data evaluated was compiled by the
U.S. National Oceanic and Atmospheric Administra-
tion. The NOAA dataset consists of weather measure-
ments collected over 50 years at Bellevue, Nebraska.
This dataset has also been used to evaluate COM-
POSE and APT in [6]. The NOAA dataset contains
eight features: temperature, dew point, sea-level pres-
sure, visibility, average wind speed, max sustained wind
speed, minimum temperature, and maximum tempera-
ture. The classification task in this dataset is to deter-
mine whether it will rain or not. The dataset contains
18,159 daily readings of which 5,698 are rain and the
remaining 12,461 are no rain.

Although in this application is possible to obtain
the actual labels of classified examples after a 24 hour
lag, we use only labeled examples from first month to
predict the weather of the next 50 years.

The results achieved by the Static, Sliding, COM-
POSE, APT and SCARGC classifiers are shown in
Fig. 7. The Static setting uses only the first 30 ex-
amples. The Sliding classifier has knowledge of the ac-
tual labels and we keep a window of the last 30 days.
SCARGC uses only 10 initial labeled examples and ver-
ifies whether it needs an update every month (i.e., the
max size of pool data is 30).

0 5 10 15 20 25 30 35 40 45 500

10

20

30

40

50

60

70

80

90

100

Year

Acc
ura

cy
(%
)

Static
Sliding
SCARGC
COMPOSE
APT

Figure 7: Behavior of SCARGC in the NOAA dataset
with k = 2. COMPOSE with CP = 0.65 and α = 14.

SCARGC outperformed the Static classifier and
it was outperformed by the Sliding classifier. The
mean accuracy for the entire evaluation was 66.19%
for Static, 68.61% for SCARGC and 72.01% for Sliding.
Against rival methods, it is possible to observe that the
SCARGC outperformed the APT and showed a very
similar behavior to the COMPOSE.

Our second real world problem is based on the
use of keystroke dynamics to recognize users by their
typing rhythm instead the simple login and password
verification. The analysis of this pattern can be used as
a second security layer for user authentication without
any additional hardware costs. However, the system
needs regularly updating the user profile because they
evolve incrementally over time as suggested by [2].

We built a stream dataset of keystroke dynamics
based on CMU data [8]. In CMU data, 51 users type
the password “.tie5Roanl” plus the Enter key 400 times
captured in 8 sessions performed in different days. To
perform the user classification task, we used 10 features
extracted from the flight time for each pressed key. The
flight time is the time difference between the instants
when a key is released and the next key is pressed.
In our stream dataset, we randomly chose 4 users and
merged them respecting the chronological order in a

880 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

total of 1,600 examples. Fig. 8 presents an example
that illustrates the dataset.

T L.

flight time
User 3

Time

N

flight time

...

T L.

flight time
User 1

N

flight time

...

T L.

flight time
User 2

N

flight time

... ...

Figure 8: Illustration of the keystroke dynamics dataset.

Considering the task of classifying each one of four
possible users over time according to their typing profile,
we present in Fig. 9 the results achieved by SCARGC
against the lower and upper bounds settings Static and
Sliding. As each user types 50 times per session, we
initially train the classifiers with part of data from
the first session (first 150 instances) and evaluate the
performance of classifiers in the remaining 7 sessions.

0 1 2 3 4 5 6 7
50

55

60

65

70

75

80

85

90

95

100

Session

A
c
c
u
ra
c
y
(%
)

Static

Sliding

SCARGC

Figure 9: Results of SCARGC (|T | = 150, θ = 150,
k = 12) against Static and Sliding (both classifiers with
|T | = 150) on the keystroke dynamics dataset.

We can note in Figure 9 that Static classifier clearly
degrades their performance over time due to changes
in the users profiles. SCARGC is able to adapt to
changes without the knowledge of actual labels over
time. In summary, the Static classifier achieves 68.69%
of accuracy, Sliding achieves 90.14% and SCARGC
performs very well with 87.72% of accuracy.

5 Conclusions

This paper presents an efficient and accurate classifica-
tion method for data streams with incremental drifts
in extreme verification latency scenario. We performed
a wide experimental evaluation over sixteen synthetic
and two real world datasets. In all datasets, SCARGC
produces accurate classifiers using a small amount of
initial labeled data. We also showed that SCARGC is
significantly faster than the state-of-the-art methods.

Our future efforts will target the removal of the pa-
rameter k by estimating the number of clusters auto-
matically, the use of additional statistics to compare the

clusters over time, and deal with emerging classes and
disappearance or fusion of classes during the stream.

Acknowledgment

This work was funded by São Paulo Research Foun-
dation (FAPESP) under grant numbers 2011/17698-5,
2012/50714-7, 2013/26151-5, and by European Com-
mission through the project MAESTRA under grant
number ICT-2013-612944.

References

[1] Paper website.
https://sites.google.com/site/nonstationaryarchive.

[2] L. C. Araújo, L. H. Sucupira Jr, M. G. Lizarraga,
L. L. Ling, and J. B. T. Yabu-Uti. User authentica-
tion through typing biometrics features. IEEE TSP,
53(2):851–855, 2005.

[3] A. Bifet and R. Gavalda. Learning from time-changing
data with adaptive windowing. In SDM, volume 7,
pages 443–448, 2007.

[4] J. Cohen. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1):37–
46, 1960.

[5] J. C. Dunn. A fuzzy relative of the ISODATA process
and its use in detecting compact well-separated clus-
ters. J. Cybernet, 3:32–57, 1973.

[6] K. B. Dyer, R. Capo, and R. Polikar. Compose:
A semisupervised learning framework for initially la-
beled nonstationary streaming data. IEEE TNNLS,
25(1):12–26, 2014.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. In SBIA, pages 286–295,
2004.

[8] K. Killourhy and R. Maxion. Why did my detector
do that?! In Recent Advances in Intrusion Detection,
pages 256–276, 2010.

[9] G. Krempl. The algorithm APT to classify in concur-
rence of latency and drift. In Advances in Intelligent
Data Analysis X, pages 222–233. 2011.

[10] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier,
M. Last, V. Lemaire, T. Noack, A. Shaker, S. Sievi,
M. Spiliopoulou, and J. Stefanowsky. Open challenges
for data stream mining research. ACM SIGKDD
Explorations Newsletter, 16(1):1–10, 2014.

[11] G. R. Marrs, R. J. Hickey, and M. M. Black. The
impact of latency on online classification learning with
concept drift. In Knowledge Science, Engineering and
Management, pages 459–469. 2010.

[12] D. Pelleg, A. W. Moore, et al. X-means: Extending
k-means with efficient estimation of the number of
clusters. In ICML, pages 727–734, 2000.

[13] V. M. A. Souza, D. F. Silva, and G. E. A. P. A.
Batista. Classification of data streams applied to insect
recognition: Initial results. In BRACIS, pages 76–81,
2013.

881 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 4

5.
16

1.
30

.9
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

