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ABSTRACT

We consider the problem of learning a set of probability distributions from the
Bellman dynamics in distributional reinforcement learning (RL) that learns the
whole return distribution compared with only its expectation in classical RL. De-
spite its success to obtain superior performance, we still have a poor understanding
of how the value distribution in distributional RL works. In this study, we analyze
the optimization benefits of distributional RL by leveraging its additional value
distribution information over classical RL in the Neural Fitted Z-Iteration (Neu-
ral FZI) framework. To begin with, we demonstrate that the distribution loss of
distributional RL has desirable smoothness characteristics and hence enjoys stable
gradients, which is in line with its tendency to promote optimization stability. Fur-
thermore, the acceleration effect of distributional RL is revealed by decomposing
the return distribution. It turns out that distributional RL can perform favorably
if the value distribution approximation is appropriate, measured by the variance
of gradient estimates in each environment for any specific distributional RL algo-
rithm. Rigorous experiments validate the stable optimization behaviors of distri-
butional RL, contributing to its acceleration effects compared to classical RL. The
findings of our research illuminate how the value distribution in distributional RL
algorithms helps the optimization.

1 INTRODUCTION

Distributional reinforcement learning (Bellemare et al., 2017a; Dabney et al., 2018b;a; Yang et al.,
2019; Zhou et al., 2020; Nguyen et al., 2020; Luo et al., 2021; Sun et al., 2022) characterizes the
intrinsic randomness of returns within the framework of Reinforcement Learning (RL). When the
agent interacts with the environment, the intrinsic uncertainty of the environment seeps in the the
stochasticity of rewards the agent receives and the inherently chaotic state and action dynamics of
physical interaction, increasing the difficulty of the RL algorithm design. Distributional RL is aimed
at representing the entire distribution of returns in order to capture more intrinsic uncertainty of the
environment, and therefore to use these value distributions to evaluate and optimize the policy. This
is in stark contrast to the classical RL that only focuses on the expectation of the return distribu-
tions, such as temporal-difference (TD) learning (Sutton & Barto, 2018) and Q-learning (Watkins &
Dayan, 1992).

As a promising branch of RL algorithms, distributional RL has demonstrated the state-of-the-art
performance in a wide range of environments, e.g., Atari games, in which the representation of re-
turn distributions and the distribution divergence between the current and target return distributions
within each Bellman update are pivotal to its empirical success (Dabney et al., 2018a; Sun et al.,
2021b; 2022). Specifically, categorical distributional RL, e.g., C51 (Bellemare et al., 2017a; Row-
land et al., 2018), integrates a categorical distribution by approximating the density probabilities in
pre-specified bins with a bounded range and Kullback-Leibler (KL) divergence, serving as the first
successful distributional RL family in recent years. Quantile Regression (QR) distributional RL,
e.g., QR-DQN (Dabney et al., 2018b), approximates Wasserstein distance by the quantile regression
loss and leverages quantiles to represent the whole return distribution. Other variants of QR-DQN,
including Implicit Quantile Networks (IQN) (Dabney et al., 2018a) and Fully parameterized Quan-
tile Function (FQF) (Yang et al., 2019), can even achieve significantly better performance across

1



Under review as a conference paper at ICLR 2023

plenty of Atari games. Moment Matching distributional RL (Nguyen et al., 2020) learns determin-
istic samples to evaluate the distribution distance based on Maximum Mean Discrepancy, while a
more recent work called Sinkhorn distributional RL (Sun et al., 2022) interpolates Maximum Mean
Discrepancy and Wasserstein distance via Sinkhorn divergence (Sinkhorn, 1967). Meanwhile, dis-
tributional RL also inherits other benefits in risk-sensitive control (Dabney et al., 2018a), policy
exploration settings (Mavrin et al., 2019; Rowland et al., 2019) and robustness (Sun et al., 2021a).

Despite the remarkable empirical success of distributional RL, the illumination on its theoretical
advantages is still less studied. A distributional regularization effect (Sun et al., 2021b) stemming
from the additional value distribution knowledge has been characterized to explain the superiority of
distributional RL over classical RL, but the benefit of the proposed regularization on the optimization
of algorithms has not been investigated as the optimization plays a key role in RL algorithms. In the
literature of strategies that can help the learning in RL, recent progresses mainly focus on the policy
gradient methods (Sutton & Barto, 2018). Mei et al. (2020) show that the policy gradient with
a softmax parameterization converges at a O(1/t) rate, with constants depending on the problem
and initialization, which significantly expands the existing asymptotic convergence results. Entropy
regularization (Haarnoja et al., 2017; 2018) has gained increasing attention as it can significantly
speed up the policy optimization with a faster linear convergence rate (Mei et al., 2020). Ahmed
et al. (2019) provide a fine-grained understanding on the impact of entropy on policy optimization,
and emphasize that any strategy, such as entropy regularization, can only affect learning in one of two
ways: either it reduces the noise in the gradient estimates or it changes the optimization landscape.
These commonly-used strategies that accelerate RL learning inspire us to further investigate the
optimization impact of distributional RL arising from the exploitation of return distributions.

In this paper, we study the theoretical superiority of distributional RL over classical RL from the op-
timization standpoint. We begin by analyzing the optimization impact of different strategies within
the Neural Fitted Z-Iteration (Neural FZI) framework and point out two crucial factors that contribute
to the optimization of distributional RL, including the distribution divergence and the distribution
parameterization error. The smoothness property of distributional RL loss function has also been
revealed leveraging the categorical parameterization, yielding its stable optimization behavior. The
uniform stability in the optimization process can thus be more easily achieved for distributional RL
in contrast to classical RL. In addition to the optimization stability, we also elaborate the accelera-
tion effect of distributional RL algorithms based on the value distribution decomposition technique
proposed recently. It turns out that distributional RL can be shown to speed up the convergence
and perform favorably if the value distribution is approximated appropriately, which is measured
by the variance of gradient estimates. Empirical results corroborate that distributional RL indeed
enjoys a stable gradient behavior by observing smaller gradient norms in terms of the observations
the agent encounters in the learning process. Besides, the variance reduction of gradient estimates
for distributional RL algorithms with respect to network parameters also provides strong evidence to
demonstrate the smoothness property and acceleration effects of distributional RL. Our study opens
up many exciting research pathways in this domain through the lens of optimization, paving the way
for future investigations to reveal more advantages of distributional RL.

2 PRELIMINARY KNOWLEDGE

Classical RL. In a standard RL setting, the interaction between an agent and the environment is
modeled as a Markov Decision Process (MDP) (S,A, R, P, γ), where S and A denote state and
action spaces. P is the transition kernel dynamics, R is the reward measure and γ ∈ (0, 1) is the
discount factor. For a fixed policy π, the return, Zπ =

∑∞
t=0 γ

tRt, is a random variable representing
the sum of discounted rewards observed along one trajectory of states while following the policy π.
Classical RL focuses on the value function and action-value function, the expectation of returns Zπ .
The action-value function Qπ(s, a) is defined as Qπ(s, a) = E [Zπ(s, a)] = E [

∑∞
t=0 γ

tR (st, at)],
where s0 = s, a0 = a, st+1 ∼ P (·|st, at), and at ∼ π(·|st).

Distributional RL. Distributional RL, on the other hand, focuses on the action-value distribution,
the full distribution of Zπ(s, a) rather than only its expectation, i.e., Qπ(s, a). Leveraging knowl-
edge on the entire value distribution can better capture the uncertainty of returns and thus can be
advantageous to explore the intrinsic uncertainty of the environment (Dabney et al., 2018a; Mavrin
et al., 2019). The scalar-based classical Bellman updated is therefore extended to distributional
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Bellman update, which allows a flurry of distributional RL algorithms, mainly including Categori-
cal distributional RL (Bellemare et al., 2017a) and Quantie Regression Distributional RL (Dabney
et al., 2018b;a).

Categorical Distributional RL. As the first successful distributional RL family, Categorical dis-
tributional RL (Bellemare et al., 2017a) approximates the action-value distribution η by a categorical
distribution η̂ =

∑k
i=1 fiδli where l1, l2, ..., lk is a set of fixed supports and {fi}ki=1 are learnable

probabilities, normally parameterized by a neural network. A projection is also introduced to have
the joint support with a newly distributed target probabilities, equipped by a KL divergence to com-
pute the distribution distance between the current and target value distribution within each Bellman
update. In practice, C51 (Bellemare et al., 2017a), an instance of Categorical Distributional RL with
k = 51, performs favorably on a wide range of environments.

Quantile Regression (QR) Distributional RL. QR Distributional RL (Dabney et al., 2018b;a) ap-
proximates the value distribution η by a mixture of Dirac η̂ = 1

N

∑N
i=1 δτi , where τi = F−1η ( 2i−1

2N )

are the learnable quantile values at the fixed quantiles { 2i−12N } and F−1 is the inverse cumulative
distribution function of η. Since the quantile regression loss proposed in QR distributional RL can
be used to approximate the Wasserstein distance, it gains favorable performance on Atari games.
Moreover, the performance has been further improved by a series of variants based on quantile re-
gression loss (Dabney et al., 2018a; Yang et al., 2019; Zhou et al., 2020). For example, Implicit
Quantile Network (IQN) (Dabney et al., 2018a) utilizes a continuous mapping for the quantile func-
tion F−1η ( 2i−1

2N ) rather than a fixed set of quantiles, which expands the expressiveness power of
function approximators to represent the value distribution.

3 OPTIMIZATION EFFECT OF DISTRIBUTIONAL RL

We consider the function approximation setting to analyze the optimization benefit of distributional
RL. In Section 3.1, we begin by showing the different roles of components in distributional RL on the
entire optimization of RL algorithms within the Neural FZI framework. Further, in Section 3.2 we
reveal the desirable smoothness properties of distributional RL loss function as opposed to classical
RL, contributing to the stable optimization. Finally, the acceleration effect of distributional RL
stemming from the additional value distribution is analyzed in Section 3.3, which is characterized
by the variance of gradient estimates.

3.1 HOW TO OPTIMIZE NEURAL FITTED Z-ITERATION FOR DISTRIBUTIONAL RL?

In classical RL, Neural Fitted Q-Iteration (Neural FQI) (Fan et al., 2020; Riedmiller, 2005) provides
a statistical interpretation of DQN (Mnih et al., 2015) while capturing its two key features, i.e., the
leverage of target network and the experience replay:

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[
yi −Qkθ (si, ai)

]2
, (1)

where the target yi = r(si, ai) + γmaxa∈AQ
k
θ∗ (s′i, a) is fixed within every Ttarget steps to up-

date target network Qθ∗ by letting θ∗ = θ. The experience buffer induces independent samples
{(si, ai, ri, s′i)}i∈[n] and ideally without the optimization and TD approximation errors, Neural FQI
is exactly the update under Bellman optimality operator (Fan et al., 2020). Similarly, in distribu-
tional RL, Sun et al. (2021b); Ma et al. (2021) proposed Neural Fitted Z-Iteration (Neural FZI), a
distributional version of Neural FQI based on the parameterization of Zθ:

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Z
k
θ (si, ai)), (2)

where the target Yi = R(si, ai) + γZkθ∗ (s′i, πZ(s′i)) is a random variable, whose distribution is
also fixed within every Ttarget steps. The target follows a greedy policy rule, where πZ(s′i) =

argmaxa′ E
[
Zkθ∗(s

′
i, a
′)
]

and dp is the choice of distribution distance. Within the Neural FZI
process, we can easily perceive that there are mainly two crucial components that determine the
comprehensive optimization of distributional RL algorithms.
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• The choice of dp. dp in fact has two-fold impacts on the optimization of the whole Neu-
ral FZI. Firstly, dp determines the convergence rate of distributional Bellman update. For
instance, distributional Bellman operator under Crámer distance is γ

1
2 -contractive (Belle-

mare et al., 2017b), and is a γ-contraction when dp is Wasserstein distance (Bellemare
et al., 2017a). Apart from the impact on the distributional Bellman update speed, dp also
largely affects the continuous optimization problem to estimate parameter θ in Zθ within
each iteration of Neural FZI, including the convergence speed and the bad or good local
minima issues.
• The parameterization manner of Zθ. The distribution representation way of dp plays

an integral part of the optimization for deep RL algorithms. For example, with more ex-
pressiveness power on quantile functions, IQN outperforms QR-DQN on a wider range of
Atari games, which is intuitive as a more informative representation way can approximate
the true value distribution more reasonably. A smaller value distribution parameteriation
error is also potential to help the optimization albeit in an indirect avenue.

Owing to the fact that convergence rates of distributional Bellman update under typical dp are basi-
cally known, our optimization analysis mainly focuses on the impact of dp and the paramterization
error of Zθ on the continuous optimization within Neural FZI of distributional RL by comparing
Neural FQI of classical RL. In Sections 3.2 and 3.3, we attribute the optimization benefits of distri-
butional RL to its distribution objective function, consisting of the aforementioned two factors, as
opposed to the vanilla least squared loss in classical RL.

3.2 STABLE OPTIMIZATION ANALYSIS BASED ON CATEGORICAL PARAMETERIZATION

To allow for a theoretical analysis, we resort to the categorical parameterization equipped with KL
divergence in categorical distributional RL (Bellemare et al., 2017a), e.g., C51, in order to investigate
the stable optimization properties within each iteration in Neural FZI. Concretely, we assume Zθ is
absolutely continuous and the current and target value distributions under KL divergence within a
bounded range have joint supports (Arjovsky & Bottou, 2017), under which the KL divergence is
well-defined. Note that this analysis strategy is slightly different from vanilla Categorical distribu-
tional RL, which also introduces a projection to redistribute probabilities of target value distribution
by the neighboring smoothing without the joint support assumption. We slightly simplify Categori-
cal distributional RL by assuming that the target distribution is still within the pre-specified support,
which is still easy to satisfy in practice given a relative large bounded range [l0, lk] in advance.

To approximate the categorical distribution, we leverage the histogram function fs,a with k uni-
form partitions on the support to parameterize the approximated probability density function of
Z(s, a). With KL divergence as dp, we can eventually derive the distribution objective function to
be optimized within each update in Neural FZI, which is similar to the histogram distributional loss
proposed in (Imani & White, 2018).

In particular, we denote x(s) as the state feature on each state s, and we let the support of Z(s, a) be
uniformly partitioned into k bins. The output dimension of fs,· can be |A|×k, where we use the in-
dex a to focus on the function fs,a. Hence, the function fs,a : X → [0, 1]k provides a k-dimensional
vector fs,a(x(s)) of the coefficients, indicating the probability that the target is in this bin given the
state feature x(s) and action a. Next, we use softmax based on the linear approximation x(s)>θi
to express fs,a, i.e., fs,a,θi (x(s)) = exp

(
x(s)>θi

)
/
∑k
j=1 exp

(
x(s)>θj

)
. For simplicity, we use

fθi (x(s)) to replace fs,a,θi (x(s)). Note that the form of fs,a is similar to that in Softmax policy gra-
dient optimization (Mei et al., 2020; Sutton & Barto, 2018), but here we focus on the value-based
RL rather than the policy gradient RL. Our prediction probability fs,ai is redefined as the probability
in the i-th bin over the support of Z(s, a), thus eventually serving as a density function. While the
linear approximator is clearly limited, this is the setting where so far the cleanest results have been
achieved and understanding this setting is a necessary first step towards the bigger problem of under-
standing distributional RL algorithms. Under this categorical parameterization equipped with KL
divergence, the resulting distributional objective function Lθ(s, a) for the continuous optimization
for each s, a pair in each iteration of Neural FZI (Eq. 2) can be expressed as:

Lθ(s, a) = −
k∑
i=1

∫ li+wi

li

ps,a(y) log
fθi (x(s))

wi
dy ∝ −

k∑
i=1

ps,ai log fθi (x(s)), (3)
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where θ = {θ1, ..., θk} and ps,ai is the probability in the i-th bin of the true density function ps,a(x)
forZ(s, a) defined in Eq. 6. wi is the width for the i-th bin (li, li+1]. The derivation of the categorical
distributional loss under the categorical parameterization is given in Appendix A. To attain the stable
optimization property of distributional RL, we firstly derive the appealing properties of the new
categorical distributional loss in Eq. 3, as shown in Proposition 1.
Proposition 1. (Properties of Categorical Distributional Loss) Assume the state features ‖x(s)‖ ≤ l
for each state s, then Lθ is kl-Lipschitz continuous, kl2-smooth and convex w.r.t. the parameter θ.

Please refer to Appendix B for the proof. The derived smoothness properties of dp under the categor-
ical distributional loss plays an integral role in the stable optimization for distributional RL. In stark
contrast, classical RL optimizes a least squared loss function (Sutton & Barto, 2018) in Neural FQI.
It is known that the least squared estimator has no bounded Lipschitz constant in general and is only
λmax-smooth, where λmax is the largest singular value of the design or data matrix. More specifically,
for the categorical distributional loss in distributional RL, we have ‖∇θLθ‖ ≤ kl, while the gradient
norm in classical RL is |yi−Qkθ(s, a)|‖x(s)‖, whereQkθ(s, a) =

∑k
i=1(li+ li+1)fθi (x(s))/2wi un-

der the same categorical parameterization for a fair comparison. Clearly,Qkθ(s, a) can be sufficiently
large if the support [l0, lk] is specified to be large, which is common in environments where the agent
is able to attain a high level of expected returns (Bellemare et al., 2017a). As such, |yi −Qkθ(s, a)|
can vary significantly more than k and therefore classical RL with the potentially larger upper bound
of gradient norms is prone to the instability optimization issue.

After providing the intuitive comparison in terms of gradient norms above, we next show that distri-
butional RL loss can induce an uniform stability property under the desirable smoothness properties
analyzed in Proposition 1. We recap the definition of uniform stability for an algorithm while run-
ning Stochastic Gradient Descent (SGD) in Definition 1.
Definition 1. (Uniform Stability) (Hardt et al., 2016) Consider a loss function gw(z) parameterized
by w encountered on the example z, a randomized algorithmM is uniformly stable if for all data
sets D,D′ such that D,D′ differ in at most one example, we have

sup
z

EM
[
gM(D)(z)− gM(D′) (z)

]
≤ εstab . (4)

In Theorem 1, we show that while running SGD to solve the categorical distributional loss within
each Neural FZI, the continuous optimization process in each iteration is εstab-uniformly stable.
Theorem 1. (Stable Optimization for Distributional RL) Suppose that we run SGD under Lθ in
Eq. 3 with step sizes λt ≤ 2/kl2 for T steps. Assume ‖x(s)‖ ≤ l for each state s and action a, then
we have Lθ satisfies the uniform stability in Definition 1 with εstab ≤ 4kT

n , i.e.,

E
∣∣LθT (s, a)− Lθ′T (s, a)

∣∣ ≤ 4kT

n
, (5)

where θT and θ′T are the minimizers after T steps under the dataset D and D′, respectively.

Please refer to the proof of Theorem 1 in Appendix C. The stable optimization has multiple advan-
tages. In deep learning optimization literature (Hardt et al., 2016), an uniform stability can guarantee
εstab -bounded generalization gap. In reinforcement learning, algorithms with more stability tend to
achieve a better final performance (Bjorck et al., 2021; Li & Pathak, 2021; Ahmed et al., 2019).

In summary, under the categorical parameterization equipped with KL divergence, the continu-
ous optimization objective function within each update of Neural FZI for distributional RL is uni-
formly stable with the stability errors shrinking at the rate of O(n−1), and the immediately obtained
bounded generalization gap also guarantees a desirable local minima. This advantage can be owing
to the desirable smoothness property of categorical distributional loss with a potentially smaller up-
per bound of gradient norms compared with classical RL. Empirically, in Section 4, we validate the
stable gradient behaviors of categorical distributional RL, and similar results are also observed in
Quantile Regression distributional RL. By contrast, without these smooth properties, classical RL
may not yield the stable optimization property directly. For example, λmax-smooth may be of less
help for the optimization given a bad conditional number of the design matrix where λmax could
be sufficiently large. The potential optimization instability for classical RL can be used to explain
its inferiority to distributional RL in most environments, although it may not explain why distri-
butional RL could not perform favorably in certain games (Ceron & Castro, 2021). We leave the
comprehensive explanation as future works.
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Remark on Non-linear Categorical Parameterization. Although the aforementioned stability
optimization conclusions are established on the linear categorical parameterization on the value
distribution of Zπ . Similar conclusions can be extended in the non-convex optimization case with
a non-linear categorical parameterization by techniques proposed in (Hardt et al., 2016). We also
empirically validate our theoretical conclusions in the experiments by directly applying practical
neural network parameterized distributional RL algorithms.

3.3 ACCELERATION EFFECT OF DISTRIBUTIONAL RL

To characterize the acceleration effect of distributional RL, we additionally leverage the recently
proposed value distribution decomposition (Sun et al., 2021b) to decompose the target ps,a.

Value Distribution Decomposition. In order to decompose the optimization impact of value dis-
tribution into its expectation and the remaining distribution part, we adopt the wisdom from robust
statistics via a variant of gross error model (Huber, 2004). Value distribution decomposition (Sun
et al., 2021b) was successfully applied to derive the distributional regularization effect of distri-
butional RL. We utilize F s,a to express the distribution function of Zπ(s, a) and we consider the
function class of F s,a that satisfies the following expectation decomposition:

F s,a(x) = (1− ε)1{x≥E[Zπ(s,a)]}(x) + εF s,aµ (x), (6)

where the distribution function F s,aµ is determined by F s,a and ε to measure the impact of remaining
distribution independent of its expectation E [Zπ(s, a)]. ε controls the proportion of F s,aµ (x) and the
indicator function 1{x≥E[Zπ(s,a)]} = 1 if x ≥ E [Zπ(s, a)], otherwise 0. Although the function class
of F s,a is restricted to satisfy this decomposition equality, it is still rich with the rationale rigorously
demonstrated in (Sun et al., 2021b). To reveal the speeding up effect of distributional RL loss, we
consider the density function form of Eq. 6, i.e., ps,a(x) = (1 − ε)δ{x=E[Zπ(s,a)]}(x) + εµs,a(x),
where δ{x=E[Zπ(s,a)]} is a Dirac function centered at E [Zπ(s, a)] to characterize the expectation im-
pact and µs,a is the density function of F s,aµ to measure the addition value distribution information.

Within Neural FZI, our goal is to minimize 1
n

∑n
i=1 Lθ(si, ai). We rewrite Lθ(s, a) as

Lθ(gs,a, fs,aθ ), where the target density function gs,a can be ps,a, µs,a or δ{x=E[Zπ(s,a)]}, and fs,a,θ

is rewritten as fs,aθ for conciseness. We denoteGk(θ) = E
[
Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ )

]
and useG(θ)

for Gk(θ) for simplicity. Based on the categorical parameterization in Section 3.2, the convex and
smooth properties with respect to the parameter θ in fθ as shown in Proposition 1 still hold forG(θ).
As the KL divergence enjoys the property of unbiased gradient estimates, we let the variance of its
stochastic gradient over the expectation δ{x=E[Zπ(s,a)]} be bounded, i.e.,

E(s,a)∼ρπ
[
‖∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ ))−∇G(θ)‖2

]
= σ2. (7)

Next, following the similar label smoothing analysis in (Xu et al., 2020), we further characterize the
approximation degree of fs,aθ to the target value distribution µs,a by measuring its variance as κσ2:

E(s,a)∼ρπ
[
‖∇Lθ(µs,a, fs,aθ ))−∇G(θ)‖2

]
= σ̂2 := κσ2. (8)

Notably, κ can be used to measure the approximation error between fs,aθ and µs,a and we do not
assume σ̂2 to be bounded as κ can be arbitrarily large. This expression κσ2 for σ̂2 allows us to utilize
κ to characterize different acceleration effects for distributional RL given different κ. Concretely, a
favorable approximation of fs,aθ to µs,a would lead to a small κ that contributes to the acceleration
effect of distributional RL as shown in Theorem 2.
Proposition 2. Based on the value distribution decomposition in Eq. 6, and Eq. 8, we have:

E(s,a)∼ρπ
[
‖∇Lθ(ps,a, fs,aθ ))−∇G(θ)‖2

]
≤ (1− ε)2σ2 + ε2κσ2. (9)

Based on Eq. 8, we immediately have Proposition 2 with proof in Appendix D for the proof. Before
comparing the sample complexity in the optimization process of both classical and distributional RL,
we provide the definition of the first-order τ -stationary point, which is preferred in the optimization
of deep learning rather than the a simple stationary point in order to guarantee the generalization.
Definition 2. (First-order τ -Stationary Point) While solving minθ G(θ), the updated parameters θT
after T steps is a first-order τ -stationary point if ‖∇G(θT )‖ ≤ τ , where the small τ is in (0, 1).
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Based on Definition 2, we formally characterize the acceleration effects for distributional RL in
Theorem 2 that depends upon approximation errors between µs,a and fs,aθ measured by κ.
Theorem 2. (Sample Complexity and Acceleration Effects of Distributional RL) While running SGD
to minimize Lθ in Eq. 6 within Neural FZI, we assume the step size λ = 1/kl2, ε = 1/(1+κ) across
(2) and (3), and the sample is uniformly drawn from T samples, then:

(1) (Classical RL) When minimizing Lθ(δ{x=E[Zπ(s,a)]}, f
s,a
θ ), T = O( 1

τ4 ) such that Lθ converges
to a τ -stationary point in expectation.

(2) (Distributional RL with κ ≤ τ
2σ ) When minimizing Lθ(ps,a, fs,aθ ), let T = 4G(θ0)

λτ2 = O( 1
τ2 ), Lθ

converges to a τ -stationary point in expectation.

(3) (Distributional RL with κ > τ
2σ ) When minimizing Lθ(ps,a, fs,aθ ), let T = G(θ0)

λκ2σ2 = O( 1
τ2 ), Lθ

does not converge to a τ -stationary point, but can guarantee a O(κ2)-stationary point.

The proof is provided in Appendix E. Theorem 2 is inspired by the intuitive connection between the
value distribution in distributional RL and the label distribution in label smoothing technique (Xu
et al., 2020). Importantly, Theorem 2 demonstrates that solving categorical distributional loss of
distributional RL can speed up the convergence if a distribution approximation error is favorable.
Otherwise, the convergence point, albeit stationary, may not guarantee a desirable performance un-
der an agnostic κ, which may be very large on certain environments.

In Classical RL scenario, we provide an equivalence between Lθ(δ{x=E[Zπ(s,a)]}, f
s,a
θ ) and mean

squared error loss (Eq. 1) in Neural FQI in Appendix H. In the first scenario ((2) in Theorem 2),
there is only a small approximation or paramterization error between fs,aθ and ps,a (or µs,a), corre-
sponding to a small κ with κ ≤ τ

2σ . In this case, solving Lθ based on the categorical parameteriza-
tion can reduce the sample complexity from O( 1

τ4 ) to O( 1
τ2 ) compared with classical RL in (1) of

Theorem 2, and meanwhile guarantees a τ -stationary point. In the second scenario ((3) in Theo-
rem 2) especially for some challenging environments with much intrinsic uncertainty, we can also
attain a relatively large approximation error or parameterization error of Zθ with a large κ > τ

2σ as
the distributional TD approximation error could be potentially large in practice. Under this circum-
stance, distributional RL algorithms may fail to speed up the convergence or achieve the superior
performance compared with classical RL as O(κ2) could be potentially large on some complex en-
vironments. If O(κ2) is proper, distributional RL can still potentially perform reasonably due the to
O(κ2)-stationary point guarantee.

Theses theoretical results also coincide with past empirical observations (Dabney et al., 2018b;
Ceron & Castro, 2021), where distributional RL algorithms outperform classical RL in most cases,
but are inferior in certain environments. Based on our results in Theorem 2, we contend that these
certain environments have much intrinsic uncertainty, the distribution parameterization error be-
tween Zθ and the true value distribution under the distributional TD approximation is still too
large (κ > τ

2σ ) to guarantee a favorable convergence point for distributional RL algorithms with
different dp, which is intuitive.

4 EXPERIMENTS

We perform extensive experiments on eight continuous control MuJoCo games to validate the the-
oretical optimization advantage of distributional RL algorithms analyzed in Section 3, including
the stable gradient behaviors of distributional RL to achieve the uniform stability as well as the
acceleration effects determined by the distribution parameterization error.

Implementation. Our implementation is based Soft Actor Critic (SAC) (Haarnoja et al., 2018)
and distributional Soft Actor Critic (Ma et al., 2020). We eliminate the optimization impact of
entropy regularization in these algorithm implementations, and thus we denote the resulting algo-
rithms as Actor Critic (AC) and Distributional Actor Critic (DAC) for the conciseness. For DAC,
we firstly perform the C51 algorithm to the critic to extend the classical critic loss to the distribu-
tional version denoted by DAC (C51) as our theoretical analysis in Sections 3.2 and 3.3 are mainly
based on categorical parameterization. We further apply our empirical demonstration on Quantile
Regression distributional RL heuristically, i.e., Implicit Quantile Network (IQN), which is denoted
as DAC (IQN). Hyper-parameters and more implementation details are provided in Appendix F.
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Figure 1: Performance. Learning curve of AC, DAC (C51) and DAC (IQN) over 5 seeds with
smooth size 5 across eight MuJoCo games.

4.1 PERFORMANCE AND UNIFORM STABILITY IN DISTRIBUTIONAL RL OPTIMIZATION

Figure 1 suggests that DAC (IQN) in orange lines outperforms its classical version AC (black lines)
across all environments, while DAC (C51) in red lines is inferior to AC on humanoid, walker2d and
reacher. This could be explained by a more flexible parameterization of IQN over C51.

We then demonstrate the advantage of uniform optimization stability for distributional RL over
classical RL. According to Theorem 1, the stable optimization of distribution loss with Neural FZI
is described as a bounded loss difference for a neighboring dataset in terms of each state s and
action a. In other words, the error bound holds by taking the supreme over each state the agent
encounters. To measure this algorithm stability, while far from perfect, we consider to leverage the
average gradient norms with respect to the state feature x(s) in the whole optimization process as
the proxy due to the fact that the gradient could measure the sensitivity of loss function regarding
each state the agent observes. From Figure 2, it turns out that both DAC (C51) and DAC (IQN)
entail a much smaller gradient norm magnitude as opposed to their classical version AC (black
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Figure 2: Stable Optimization. The critic gradient norms in the logarithmic scale regarding the state
during the training of AC, DAC (C51), DAC (IQN) over 5 seeds on eight MuJoCo environments.
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Figure 3: Acceleration Effect. The critic gradient norms in the logarithmic scale regarding network
parameters in the training of AC, DAC (C51), DAC (IQN) over 5 seeds on MuJoCo environments.

lines) across all eight MuJoCo environments, which corroborates the theoretical advantage of the
uniform optimization stability for distributional RL analyzed in Theorem 1.

4.2 SMOOTHNESS PROPERTY AND ACCELERATION EFFECT OF DISTRIBUTIONAL RL

Theorem 2 demonstrates that distributional RL can speed up the convergence if the distribution
parameterization is appropriate, characterized by the variance of the gradient estimates with a small
κ (case (2) in Theorem 2). To demonstrate it, we use the proxy by evaluating the `2-norms of
gradients with respect to network parameters of the critic for AC and DAC. We mainly focus on
a direct comparison between vanilla AC and DAC algorithm, although their network architectures
are slightly different. Similar results under the same architecture and via the value distribution
decomposition of Eq. 6 are provided in Appendix G.

Figure 3 showcases that both DAC (C51) and DAC (IQN) have smaller gradient norms in terms of
network parameters θ compared with AC in the whole optimization process, which directly validates
that distributional RL loss is more likely to enjoy smoothness properties in Proposition 1. In terms
of acceleration effects, the property of stationary points, albeit being different, in cases (2) and (3)
of Theorem 2 guarantees bounded gradient norms, but the precise evaluation of κ is tricky in order
to discriminate either case (2) or (3) for each algorithm in a specific environment. Nevertheless, by
considering the fact that DAC (IQN) outperforms DAC (C51) in most environments in Figure 1, we
hypothesize that the inferiority of DAC (C51) on humanoid, walker2d and reacher could be owing to
its larger parameterization errors κ in these environments. This results in the worse performance of
DAC (C51) compared with DAC (IQN) that is more likely to accord with the case (3) in Theorem 2
due to its richer distribution expressiveness power than C51.

5 DISCUSSIONS AND CONCLUSION

Our optimization analysis of distributional RL is based on the categorical parameterization, and the
alternative analysis on Wasserstein distance can be an integral complementary for our conclusions.
Acceleration effects could be further investigated to explain whether a typical distributional RL
algorithm can perform favorably in a specific environment. We leave them as future works.

In our paper, we answer the question: how does value distribution in distributional RL help the opti-
mization from two perspectives, including the stable optimization analysis based on the smoothness
property of categorical distributional loss, as well as the acceleration effects determined by the vari-
ance of gradient estimates. We theoretically and empirically show that distributional RL embraces
stable gradient behaviors and could speed up the convergence if the distribution approximation is
desirable or the parameterization error is sufficiently small.
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Ethics Statement. Due to the fact that our study is about the theoretical properties of distributional
RL algorithms, we do not think our research is involved with any ethics issues.

Reproducibility Statement. As stated in Section 4, our implementation is based on the public
code of SAC (Haarnoja et al., 2018) and Distributional SAC (Ma et al., 2020). We also provide
implementation details in Appendix F for reproducibility. For the theoretical results, rigorous proof
is also given in Appendix from A to E.
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A DERIVATION OF CATEGORICAL DISTRIBUTIONAL LOSS

We show the derivation details of the Categorical distribution loss starting from KL divergence
between p and qθ. pi is the cumulative probability increment of target distribution {Yi}i∈[n] within

the i-th bin, and qθ corresponds to a (normalized) histogram, and has density values fθi (x(s))
wi

per bin.
Thus, we have:

DKL (ps,a, qs,aθ ) =

∫ b

a

ps,a(y) log ps,a(y)dy −
∫ b

a

ps,a(y) log qs,aθ (y)dy

∝ −
∫ b

a

ps,a(y) log qs,aθ (y)dy

= −
k∑
i=1

∫ li+wi

li

ps,a(y) log
fθi (x(s))

wi
dy

= −
k∑
i=1

log
fθi (x(s))

wi
(F s,a (li + wi)− F s,a (li))︸ ︷︷ ︸

ps,ai

∝ −
k∑
i=1

ps,ai log fθi (x(s))

(10)

where the first∝ results from the fixed target ps,a in the Neural FZI framework. The second equality
is based on the categorical parameterization for the density function qs,aθ . The last ∝ holds because
the width parameter wi can be ignored for this minimization problem.

B PROOF OF PROPOSITION 1

Proof. For the Categorical distributional loss below,

Lθ(s, a) = −
k∑
i=1

ps,ai log fθi (x(s)), where fθi (x(s)) =
exp

(
x(s)>θi

)∑k
j=1 exp (x(s)>θj)

(1) Convexity. Note that − log
exp(x(s)>θi)∑k
j=1 exp(x(s)>θj)

= log
∑k
j=1 exp

(
x(s)>θj

)
− x(s)>θi, the first

term is Log-sum-exp, which is convex (see Convex optimization by Boyd and Vandenberghe), and
the second term is affine function. Thus, Lθ(s, a) is convex.

(2) Lθ(s, a) is kl-Lipschitz continuous. We compute the gradient of the Histogram distributional
loss regarding θi:

∂

∂θi

k∑
j=1

ps,aj log fθj (x(s))

=

k∑
j=1

ps,aj
1

fθj (x(s))
∇θifθj (x(s))

=

k∑
j=1

ps,aj
1

fθj (x(s))
fθi (x(s))(δij − fθj (x(s)))x(s)

=

ps,ai (1− fθi (x(s)))−
k∑
j 6=i

ps,aj fθi (x(s))

x(s)

=
(
ps,ai − p

s,a
i fθi (x(s))− (1− ps,ai )fθi (x(s))

)
x(s)

=
(
ps,ai − f

θ
i (x(s))

)
x(s)

(11)
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where δij = 1 if i = j, otherwise 0. Then, as we have ‖x(s)‖ ≤ l, we bound the norm of its gradient

‖ ∂
∂θ

k∑
j=1

pj log fθj (x(s))‖

≤
k∑
i=1

‖ ∂
∂θi

k∑
j=1

pj log fθj (x(s))‖

=

k∑
i=1

‖
(
ps,ai − f

θ
i (x(s))

)
x(s)‖

≤
k∑
i=1

|ps,ai − f
θ
i (x(s))|‖x(s)‖

≤ kl

(12)

The last equality satisfies because |pi − fθi (x(s))| is less than 1 and even smaller. Therefore, we
obtain that Lθ is kl-Lipschitz.

(3) Lθ is kl2-Lipschitz smooth. A lemma is that log(1 + exp(x)) is 1
4 -smooth as its second-

order gradient is bounded by 1
4 , and if g(w) is β-smooth w.r.t. w, then g(〈x,w〉) is β‖x‖2-smooth.

Based on this knowledge, we firstly focus on the 1-dimensional case of function log fθj (z), where
fθj (z) =

exp zj∑k
i=1 exp zi

. As we have derived, we know that ∂
∂θi

log fθj (zj) = δij − fθi (zi). Then

the second-order gradient is
∂2 log fθj (z)

∂θi∂θk
= −fθi (z)(δik − fθk (z)) = fθi (z)(fθk (z) − 1) if i = k,

otherwise fθi (z)fθk (z). Clearly, |∂
2 log fθj (z)

∂θi∂θk
| ≤ 1, which implies that log fθj (z) is 1-smooth. Thus,

log fθj (〈x, θi〉) is ‖x‖2-smooth, or l2-smooth. Further,
∑k
j=1 p

s,a
j log fθj (x(s)) is also l2-smooth as

we have

‖∇θi
k∑
j=1

ps,aj log fµj (x(s))−∇θi
k∑
j=1

ps,aj log fνj (x(s))‖

≤
k∑
j=1

ps,aj ‖∇θi log fµj (x(s))−∇θi log fνj (x(s))‖

≤
k∑
j=1

ps,aj · l
2‖µ− ν‖

= l2‖µ− ν‖

(13)

for each parameter µ and ν. Therefore, we further have

‖∇θ
k∑
j=1

ps,aj log fµj (x(s))−∇θ
k∑
j=1

ps,aj log fνj (x(s))‖

≤
k∑
i=1

‖∇θi
k∑
j=1

ps,aj log fµj (x(s))−∇θi
k∑
j=1

ps,aj log fνj (x(s))‖

≤
k∑
i=1

l2‖µ− ν‖

= kl2‖µ− ν‖

(14)

Finally, we conclude that Lθ(s, a) is kl2-smooth.
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C PROOF OF THEOREM 1

Proof. Consider the stochastic gradient descent rule as Gλ,L(θ) = θ − λ∇θLθ. Firstly, we provide
two definitions about Lθ for the following proof.

Definition 3. (σ-bounded) An update rule is σ-bounded if supθ ‖θ − λ∇θLθ‖ ≤ σ.

Definition 4. (η-expansive) An update rule is η-expansive if supv,w
‖Gλ,L(v)−Gλ,L(w)‖

‖u−w‖ ≤ η.

Lemma 1. (Grow Recursion, Lemma 2.5 (Hardt et al., 2016)) Fix an arbitrary sequence of updates
G1, ..., GT and another sequence G′1, ..., G

′
T . Let θ0 = θ′0 be the starting point and define δt =

‖θ′i − θt‖, where θt and θ′t are defined recursively through

θt+1 = Gλ,L(θt), θ
′
t+1 = G′λ,L(θ′t)

Then we have the recurrence relation:

δt+1 ≤
{
ηδt Gt = G′t is η-expansive
min(η, 1)δt + 2σt Gt and G′t are σ-bounded , Gt is η expansive

Lemma 2. (Lipschitz Continuity) Assume Lθ is L-Lipschitz, the gradient update Gλ,L is (λL)-
bounded.

Proof. ‖θ −Gλ,L(θ)‖ = ‖λ∇θLθ‖ ≤ λL

Lemma 3. (Lipschitz Smoothness) Assume Lθ is β-smooth, then for any λ ≤ 2
β , the gradient update

Gλ,L is 1-expansive.

Proof. Please refer to Lemma 3.7 in (Hardt et al., 2016) for the proof.

Based on all the results above, we start to prove Theorem 1. Our proof is largely based on (Hardt
et al., 2016), but it is applicable in distributional RL setting as well as considering desirable prop-
erties of histogram distributional loss. According to Proposition 1, we attain that Lθ is kl-Lipschitz
as well as kl2-smooth, and thus based on Lemma 2 and Lemma 3, we have Gλ,L is (λkl)-bounded,
and 1-expansive if λ ≤ 2

kl2 . In the step t, SGD selects samples that are both inD andD′, with prob-
ability 1 − 1

n . In this case, Gt = G′t, and thus δt+1 ≤ δt as Gt is 1-expansive based on Lemma 1.
The other case is that samples selected are different with probability 1

n , where δt+1 ≤ δt + 2λtkl

based on Lemma 1. Thus, if λt ≤ 2
kl2 , for each state s and action a, we have:

E
∣∣LθT (s, a)− Lθ′T (s, a)

∣∣ ≤ klE [δT ] , where δT = ‖θT − θ′T ‖

≤ kl
(

(1− 1

n
)E [δT−1] +

1

n
E [δT−1] +

2λT−1kl

n

)
= kl

(
E [δT−1] +

2λT−1kl

n

)
= kl

(
E [δ0] +

T−1∑
t=0

2λtkl

n

)

≤ 2k2l2

n

T−1∑
t=0

2

kl2

=
4kT

n

(15)

Since this bounds hold for all D, D′ and s, a, we attain the uniform stability in Definition 1 for our
categorical distributional loss applied in distributional RL.

Define the population risk as:
R [θ] = ExLθ(s, a)
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and the empirical risk as:

RS [θ] =
1

n

n∑
i=1

Lθ(si, ai)

According to Theorem 2.2 in (Hardt et al., 2016), if an algorithmM is εstab-uniformly stable, then
the generalization gap is εstab-bounded, i.e.,

|ES,A [RS [M(D)]−R[M(D′)]]| ≤ εstab

D PROOF OF PROPOSITION 2

E(s,a)∼ρπ
[
‖∇Lθ(ps,a, fs,aθ ))−∇G(θ)‖2

]
≤ (1− ε)2σ2 + ε2κσ2. (16)

Proof. As we know that ps,a(x) = (1− ε)δ{x=E[Zπ(s,a)]}(x) + εµs,a(x) and we use KL divergence
in Lθ, then we have:

∇Lθ(ps,a, fs,aθ ) = (1− ε)∇Lθ(δ{x=E[Zπ(s,a)]}, f
s,a
θ ) + ε∇Lθ(µs,a, fs,aθ )

Therefore,

E(s,a)∼ρπ
[
‖∇Lθ(ps,a, fs,aθ ))−∇G(θ)‖2

]
≤ E(s,a)∼ρπ

[
(1− ε)2‖∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ ))−∇G(θ)‖2 + ε2‖∇Lθ(µs,a, fs,aθ ))−∇G(θ)‖2

]
= (1− ε)2σ2 + ε2κσ2,

(17)
where the first inequality uses the triangle inequality of norm, i.e., ‖(1−ε)a+εb‖2 ≤ (1−ε)2‖a‖2+
ε2‖b‖2, and the last equality uses the definition of the variance of Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ ) and

Lθ(µs,a, fs,aθ ).

E PROOF OF THEOREM 2

Proof. (1) If we only consider the expectation of Zπ(s, a), we use the information δ{x=E[Zπ(s,a)]}
to construct the loss function. As Lθ(δ{x=E[Zπ(s,a)]}, q

s,a
θ ) is kl2-smooth, we have

G(θt+1)−G(θt)

≤ 〈∇G(θt), θt+1 − θt〉+
kl2

2
‖θt+1 − θt‖2

= −λ
〈
∇G(θt),∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ )

〉
+
kl2λ2

2
‖∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ )‖2

(18)

where the last first equation is according to the definition of Lipschitz-smoothness, and the last
second one is based on the updating rule of θ. Next, we take the expectation on both sides,

E [G(θt+1)−G(θt)]

≤ −λE
[
‖∇G(θt)‖2

]
+
kl2λ2

2
E
[
‖∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ )−∇G(θt) +∇G(θt)‖2

]
≤ −λE

[
‖∇G(θt)‖2

]
+
kl2λ2

2
E
[
‖∇Lθ(δ{x=E[Zπ(s,a)]}, f

s,a
θ )−∇G(θt)‖2

]
+
kl2λ2

2
E
[
‖∇G(θt)‖2

]
=
λ(kl2λ− 2)

2
E
[
‖∇G(θt)‖2

]
+
kl2λ2

2
σ2

≤ −λ
2
E
[
‖∇G(θt)‖2

]
+
kl2λ2

2
σ2

(19)
where the first two equation hold because ∇G(θ) = E [∇Lθ] and the last inequality comes from
λ ≤ 1

kl2 . Through the summation, we obtain that

E [G(θT )−G(θ0)] ≤ −λ
2

T−1∑
t=0

E
[
‖∇G(θt)‖2

]
+
kl2λ2T

2
σ2
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We let E [G(θT )] = 0, we have

1

T

T−1∑
t=0

E
[
‖∇G(θt)‖2

]
≤ 2G(θ0)

λT
+ kl2λσ2

By setting λ ≤ τ2

2kl2σ2 and T = 4G(θ0)
λτ2 , we can have 1

T

∑T−1
t=0 E

[
‖∇G(θt)‖2

]
≤ τ2, implying

that the degenerated loss function based on the expectation δ{x=E[Zπ(s,a)]} can achieve τ -stationary
point if the sample complexity T = O( 1

τ4 ).

(2) and (3) We are still based on the kl2-smoothness of L(ps,a, fs,aθ ).

G(θt+1)−G(θt)

≤ 〈∇G(θt), θt+1 − θt〉+
kl2

2
‖θt+1 − θt‖2

= −λ 〈∇G(θt),∇Lθ(ps,a, fs,aθ )〉+
kl2λ2

2
‖∇Lθ(ps,a, fs,aθ )‖2

= −λ
2
‖∇G(θt)‖2 +

λ

2
‖∇G(θt)−∇Lθ(ps,a, fs,aθ )‖2 +

λ(kl2λ− 1)

2
‖∇Lθ(ps,a, fs,aθ )‖2

≤ −λ
2
‖∇G(θt)‖2 +

λ

2
‖∇G(θt)−∇Lθ(ps,a, fs,aθ )‖2

(20)

where the second equation is based on 〈a,−b〉 = 1
2

(
‖a− b‖2 − ‖a‖2 − ‖b‖2

)
, and the last in-

equality is according to λ ≤ 1
kl2 . After taking the expectation, we have

E [G(θt+1)−G(θt)]

≤ −λ
2
E
[
‖∇G(θt)‖2

]
+
λ

2
E
[
‖∇G(θt)−∇Lθ(ps,a, fs,aθ )‖2

]
≤ −λ

2
E
[
‖∇G(θt)‖2

]
+
λ

2

(
(1− ε)2σ2 + ε2κσ2

) (21)

where the last inequality is based on Proposition 2. We take the summation, and therefore,

E [G(θT )−G(θ0)] ≤ −λ
2

T−1∑
t=0

E
[
‖∇G(θt)‖2

]
+
Tλ

2

(
(1− ε)2σ2 + ε2κσ2

)
We let E [G(θT )] = 0 and ε = 1

1+κ , then,

1

T

T−1∑
t=0

E
[
‖∇G(θt)‖2

]
≤ 2G(θ0)

λT
+ (1− ε)2σ2 + ε2κσ2

=
2G(θ0)

λT
+

2κ2

(1 + κ)2
σ2

≤ 2G(θ0)

λT
+ 2κ2σ2

(22)

If κ ≤ τ
2σ and let T = 4G(θ0)

λτ2 , this leads to 1
T

∑T−1
t=0 E

[
‖∇G(θt)‖2

]
≤ τ2, i.e., τ -stationary point,

with the sample complexity as O( 1
τ2 ). Thus, (2) has been proved. On the other hand, if κ > τ

2σ ,
we set T = G(θ0)

λκ2σ2 . This implies that 1
T

∑T−1
t=0 E

[
‖∇G(θt)‖2

]
≤ 4κ2σ2 = O(κ2). Therefore, the

degree of stationary point is determined the degree of distribution approximation measured by κ.
Thus, we obtain (3).

F IMPLEMENTATION DETAILS

Our implementation is directly adapted from the source code in (Ma et al., 2020). For DAC (IQN),
we consider the quantile regression for the distribution estimation on the critic loss. Instead of us-
ing fixed quantiles in QR-DQN (Dabney et al., 2018b), we leverage the quantile fraction generation

16



Under review as a conference paper at ICLR 2023

Table 1: Hyper-parameters Sheet.

Hyperparameter Value
Shared

Policy network learning rate 3e-4
(Quantile / Categorical) Value network learning rate 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4

DAC (IQN)
Number of quantile fractions (N ) 32
Quantile fraction embedding size 64
Huber regression threshold 1

DAC (C51)
Number of Atoms (k) 51

Hyperparameter lk for C51 Max episode lenght
Walker2d-v2 500 1000
Swimmer-v2 160 1000
Reacher-v2 500 1000
Ant-v2 500 1000
HalfCheetah-v2 10,000 1000
Humanoid-v2 5,000 1000
HumanoidStandup-v2 15,000 1000
BipedalWalkerHardcore-v2 50 2000

based on IQN (Dabney et al., 2018a) that uniformly samples quantile fractions in order to approxi-
mate the full quantile function. In particular, we fix the number of quantile fractions as N and keep
them in an ascending order. Besides, we adapt the sampling as τ0 = 0, τi = εi/

∑N−1
i=0 , where

εi ∈ U [0, 1], i = 1, ..., N .

F.1 HYPER-PARAMETERS AND NETWORK STRUCTURE

We adopt the same hyper-parameters, which is listed in Table 1 and network structure as in the
original distributional SAC paper (Ma et al., 2020).

F.2 BEST lk FOR DAC (C51)

As suggested in Table 1, after a line search for the hyperparameter tuning, we select lk as 500,
10,000, 15,000, 160, 50, 5,000, 500, 500 for ant, halfcheetah, humanoidstand, swimmer, bipedal-
walkerhardcore, humanoid, walker2d and reacher, respectively.

G EXPERIMENTAL RESULTS ON ACCELERATION EFFECTS OF
DISTRIBUTIONAL RL

Same Architecture. For a fair comparison, we keep the same DAC network architecture and eval-
uate the gradient norms of DAC (C51) and a variant of AC, which is optimized based on the ex-
pectation of the represented value distribution within the DAC implementation framework. Figure 4
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suggests DAC (C51) still enjoys smaller gradient norms compared with AC in this fair comparison
setting.
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Figure 4: The critic gradient norms in the logarithmic scale during the training of AC and DAC (C51)
over 5 seeds on three MuJoCo games. We keep the same DAC network architecture and evaluate
based on the expectation of the represented value distribution.

Results under Value Distribution Decomposition We also provide gradient norms of both ex-
pectation and distribution based on the value distribution decomposition in Eq. 6. Similar results
can be still observed in Figure 5.
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Figure 5: The critic gradient norms in the logarithmic scale during the training of AC and DAC (C51)
over 5 seeds on three MuJoCo games. Results of AC is the expectation part calculated via the
Value Distribution Decomposition.

H EQUIVALENCE BETWEEN THE LOSS FUNCTION IN THEOREM 2 AND MEAN
SQUARED LOSS IN NEURAL FQI

Proposition 3. (Connection between Theorem 2 and Mean Squared Loss in Neural FQI) In Eq. 2
of Neural FZI, if the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the
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target {Yi}ni=1, where Yi = R(si, ai) + γZkθ∗ (s′i, πZ(s′i)). Minimizing Lθ(δ{x=E[Zπ(s,a)]}, f
s,a
θ ) in

Theorem 2(1), as maxi wi → 0 implies

P (Ẑθ(s, a) = T optQθ∗(s, a)) = 1. (23)

Proof. Bellman Optimality Operator is T optQ(s, a) = E[R(s, a)] + γmaxa′ Es′∼p [Q (s′, a′)]. We
also define the distributional Bellman optimality operator Topt as follows:

ToptZ(s, a)
D
= R(s, a) + γZ (S′, a∗)

S′ ∼ P (· | s, a), a∗ = argmax
a′

E [Z (S′, a′)]
(24)

For the uniform notation, we ignore k in Neural FZI. If {Zθ : θ ∈ Θ} is sufficiently large enough
such that it contains ToptZθ∗ , then optimizing Neural FZI in Eq. 2 leads to Ẑθ = ToptZθ∗ . Similarly,
optimizing Neural FQI yields Q̂θ = ToptQθ∗ ideally.

We denote wE as the interval that E
[
Z target(s,a)

]
and Z target = ToptZθ∗ in expectation as shown in

Neural FZI. fs,a → qs,a as wmax = maxi wi → 0, where qs,a is the continuous target probability
density function. Then we have:

Lθ(δ{x=E[Zπ(s,a)]}, f
s,a
θ )

= −
∫
x∈wE

δ{x=E[Z target(s,a)]} log fs,aθ (wE)dx

→ − log qs,aθ (E
[
Z target(s, a)

]
) as wE → 0

(25)

where we know
∫
δ(x)dx = 1. Since {Zθ : θ ∈ Θ} is sufficiently large enough, the KL min-

imizer would be q̂s,aθ = δE[Z target(s,a)], where δE[Z target(s,a)] is a Dirac Delta function centered at
E [Z target(s, a)] and can be viewed as a generalized probability density function. According to the
definition of Dirac Delta function, as wmax → 0, we attain

P (Ẑθ(s, a) = E
[
Z target(s, a)

]
= E

[
ToptZθ∗(s, a)

]
)

= 1

(26)

Due to the linearity of expectation analyzed in Lemma 4 of (Bellemare et al., 2017a), we have

E
[
ToptZθ∗(s, a)

]
= ToptE [Zθ∗(s, a)]

= T optQθ∗(s, a)
(27)

Finally, for each iteration in Neural FZI, the following equation always holds:

P (Ẑθ(s, a) = T optQθ∗(s, a)) = 1 as max
i
wi → 0 (28)

This indicates that the optimal value distribution Ẑθ may take other values instead of the expectation,
but the probabilities of these events happen are 0. This implies that minimizing the KL divergence in
terms of the dirac Delta function is “almost” equivalent to the minimizer of mean squared loss.
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