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Abstract

The analysis of dynamic networks is central to understanding complex environmental
systems in nature, yet traditional methods often focus on describing changing states
rather than formalising the underlying processes of change. In this work, we intro-
duce a category-theoretical framework, Proc-to-Spec, that provides a principled, func-
torial method for analysing the transformations that govern network evolution. We model
resource-constrained systems, such as those commonly found in biology and ecology, within
a source category Proc, where morphisms represent dissipative physical processes. We then
construct a spectral functor, χ : Proc → Spec, that maps each process to a unique lin-
ear transformation between the eigenspaces of the network’s symmetrised Laplacian. This
framework allows us to establish a set of rigorous theorems. We prove that physical con-
servation laws in Proc correspond directly to spectral invariants in Spec, such as the con-
servation of the Laplacian’s trace. We derive a spectral sensitivity theorem that formally
links resource dissipation to network fragmentation via the Fiedler value. We also establish
a stability-spectrum equivalence theorem, proving that a system’s physical dynamics con-
verge to a stable state if and only if its spectral geometry converges. We validate our theory
with numerical experiments and demonstrate its utility as a tool for scientific discovery in
a case study of the Serengeti food web in northern Tanzania. Using a large collection of 1.2
million classified image sets of animal activity from 225 camera traps spread across 1,125
km2 of the Serengeti National Park from 2010 to 2013, we show that our framework can
detect the subtle, cyclical signature of seasonal change and identify the unique geometric
fingerprint of the 2011 East Africa drought. Our work provides a different way of think-
ing about dynamic systems, shifting the focus from describing states to understanding the
fundamental geometry of change. Code to reproduce all results in the paper is released at
https://anonymous.4open.science/r/tmlr_pts

1 Introduction

The analysis of dynamic networks is fundamental to science, providing the mathematical language to describe
systems of interacting components that evolve over time. In biology and ecology, this paradigm is essential for
understanding the stability of food webs (Pimm, 1984), the function of gene-regulatory pathways (Barabasi
& Oltvai, 2004), and the cascading failures that can lead to abrupt, system-wide critical transitions (Scheffer
et al., 2012). These systems are not static; they are governed by a complex interplay of processes—such as
predation, resource competition, and metabolic conversion—that continuously reshape their structure and
function. The ultimate goal of scientific discovery is to move beyond mere description of these changes and
toward a predictive understanding of the underlying principles that govern them.

Current methods for analysing dynamic networks, while powerful, are predominantly descriptive. The stan-
dard approach treats a dynamic network as a discrete time-series of static snapshots, G1, G2, . . . , Gt. Tech-
niques from spectral graph theory (Chung, 1997) and temporal network analysis (Masuda & Lambiotte,
2016) are then applied to compute metrics for each snapshot and track their evolution. This yields valuable
insights into changing properties like connectivity or community structure. However, this approach leaves
a critical theoretical gap: it analyses the states of the system but does not provide a formal language for
the processes that transform one state into the next. A principled mathematical framework that can map a
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Figure 1: Conceptual illustration of our Proc-to-Spec framework. Our work establishes a formal mapping,
the spectral functor (χ), from the category of physical processes (Proc) to the category of their spectral
representations (Spec). Left: A dynamic network evolves through a sequence of states (Gt, Gt+1, Gt+2).
Each transformation is a physical process (pt, pt+1), which can represent any resource-constrained change,
including perturbations to interaction strengths (edge weights) or topological modifications like the removal
or addition of edges. Right: Each network state corresponds to a vector space (Vt, Vt+1, Vt+2) representing
the eigenspace of the graph’s symmetrised Laplacian. The functor χ maps each physical process pt to a
unique linear transformation χ(pt) that describes the change of basis between the corresponding eigenspaces.
This framework allows us to analyse complex physical processes by studying their unique and well-behaved
geometric signatures in the spectral domain.

specific, causal mechanism of change to its unique, global structural consequence remains less explored. This
gap prevents us from moving from observing that a system’s structure changed to proving why it changed
in a particular way.

Our work closes this gap by introducing a different way of thinking, Proc-to-Spec, as depicted in Figure
1. We deliberately focus on the foundational case of dynamic processes on simple, weighted graphs, which
represent a vast class of real-world systems. We propose a conceptual shift from analysing system states to
formalising the processes of transformation themselves. The core idea is that the effect of a physical process
is most clearly understood not by tracking the state of individual nodes or edges, but by observing its
impact on the network’s holistic geometric structure. This structure is revealed by the network’s Laplacian
spectrum. We formalise this by building a direct, provable link between a process and its unique signature
as a transformation in the spectral domain. This is analogous to moving from describing the scenes in
a movie to analysing the script’s rules that govern how one scene can lead to the next. While many
methods for analysing dynamic networks focus on aggregating temporal information or identifying recurring
temporal motifs (Masuda & Lambiotte, 2016), our approach provides a different perspective by focusing on
the geometric nature of the transformations between discrete network states.

We formalise this idea by constructing a categorical framework. We begin by defining a source category, Proc
(for Process), where objects are weighted, directed graphs representing the state of a resource-constrained
system. Crucially, the morphisms of Proc are not arbitrary graph edits, but are defined as dissipative physical
processes that obey the fundamental constraint that resources cannot be created ex nihilo. This grounding
in physical law is a key feature of our model. We then define a target category, Spec (for Spectrum), as the
standard category of real vector spaces and linear transformations. The central contribution of this work is
the construction and analysis of a spectral functor1, χ : Proc → Spec, that serves as a structure-preserving
map between these two worlds. This approach is inspired by the abstract and powerful language of Applied
Category Theory (Spivak, 2014).

The functor χ maps a network state in Proc to the vector space spanned by the eigenvectors of its symmetrised
Laplacian, providing a “spectral signature” of its structure. More importantly, χ maps a dissipative process
to a unique linear transformation—a matrix—that describes the corresponding change of basis between the

1Our numerical validations show that functoriality holds up to a tiny, numerically tractable error in practice, while our proof
in §A.1 details the specific conditions under which it is exact.
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old and new eigenspaces. This formalism is not merely a bookkeeping device; it is a generative framework
that allows us to derive a set of theorems. We prove that physical conservation laws in Proc correspond
directly to spectral invariants in Spec, such as the conservation of the Laplacian’s trace. We establish a
spectral sensitivity theorem that formally links resource dissipation to network fragmentation via the Fiedler
value. We also establish a stability-spectrum equivalence theorem, proving that a system’s physical dynamics
converge to a stable state if and only if its spectral geometry converges.

We conduct a rigorous, two-part experimental validation of our framework. First, we use a suite of synthetic
experiments to systematically verify each lemma and theorem, confirming the mathematical correctness of
our claims with numerical precision. Second, we demonstrate the framework’s power as a tool for scientific
discovery in a real-world case study on the Serengeti food web (Baskerville et al., 2011). We show that our
theory can be applied to high-frequency, real-world data to generate quantitative insights into ecosystem
dynamics. Using the large-scale “Snapshot Serengeti” camera trap dataset of animal activity in northern
Tanzania (Swanson et al., 2015), we demonstrate that our framework is sensitive enough to detect the subtle,
cyclical spectral signature of seasonal change and to characterise the unique geometric signature of a major,
documented ecological shock—the 2011 East Africa drought. This validation confirms that our framework
provides a different, practical, and powerful lens for understanding complex systems.

Our contributions are as follows:

• We introduce a categorical framework, Proc-to-Spec, for analysing dynamic networks by formalising
the morphisms of change.

• We construct a spectral functor, χ : Proc → Spec, that maps dissipative physical processes to unique
linear transformations in the spectral domain.

• We establish a set of rigorous theorems that provide a direct, provable link between physical prop-
erties (conservation, dissipation, stability) and spectral signatures.

• We provide an experimental validation of the framework on both synthetic data and a real-world
ecological case study, demonstrating its scientific utility.

The remainder of this paper is structured as follows. In §2, we review related work. In §3, we formally define
our model. In §4, we present our theoretical analysis and prove our main theorems. In §5, we detail our
synthetic experimental validation. In §6, we apply our framework to the Serengeti case study. We discuss
implications and conclude in §7. Detailed proofs are provided in the §A.

2 Related Work

Our Proc-to-Spec framework represents a synthesis of ideas from several distinct but related fields. We
begin in §2.1 by reviewing the foundational principles of Spectral Graph Theory, the core mathematical
language we use for our structural representations. Next, in §2.2, we situate our model within the growing
field of dynamic and temporal network analysis. We then ground our work in its target scientific domain in
§2.3, discussing the rich history of network modelling in ecology and biology and the persistent challenge of
linking local mechanisms to global system dynamics. Our formal approach is heavily inspired by the paradigm
of Applied Category Theory, which we discuss in §2.4, clarifying how its principles of compositionality and
functorial mappings provide the blueprint for our framework. Finally, in §2.5, we connect our framework to
the contemporary landscape of machine learning on graphs.

2.1 Spectral Graph Theory and Its Applications

Spectral graph theory, which studies the properties of a graph via the eigenvalues and eigenvectors of its
associated matrices, is a cornerstone of modern data analysis (Chung, 1997). The graph Laplacian, in par-
ticular, has found widespread application, with different versions (e.g., unnormalised, symmetric normalised,
random walk) offering different perspectives on the graph’s structure (Von Luxburg, 2007). Its properties
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are used for graph partitioning (Pothen et al., 1990), graph drawing (Koren, 2003), and non-linear dimen-
sionality reduction through methods like Laplacian Eigenmaps and Diffusion Maps (Belkin & Niyogi, 2003).
The entire field of Graph Signal Processing (GSP) is built on the idea of using the Laplacian eigenbasis as
a Fourier basis for signals defined on graphs (Leus et al., 2023; Shuman et al., 2013). The most famous
application is spectral clustering (Von Luxburg, 2007; Shi & Malik, 2000), which uses the eigenvectors of
the Laplacian to identify community structure. The Fiedler value (the second-smallest eigenvalue) and its
corresponding eigenvector are of particular importance, as they provide a measure of a graph’s algebraic
connectivity and identify its primary structural bottlenecks (Fiedler, 1973; Mohar et al., 1991). The analysis
of how spectra change in response to dynamic processes is less formalised. Research has focused on spectral
perturbation theory (Bhatia, 1992), which provides bounds on eigenvalue changes for small perturbations,
and on tracking eigenvalue time-series to detect anomalies or regime shifts (Sandryhaila & Moura, 2014).
Our work builds on this by providing a functorial framework that maps the processes of change themselves
to explicit transformations in the spectral domain, a fundamentally different and more structured approach
that aims to formalise the link between the cause and the spectral consequence of a change.

2.2 Dynamic and Temporal Networks

The study of networks that evolve over time is a mature field (Masuda & Lambiotte, 2016; Casteigts et al.,
2012). Research has traditionally focused on developing metrics and models to characterise temporal interac-
tion patterns, often distinguishing between representations as sequences of static snapshots, continuous-time
contact sequences, or more recently, stream graphs that explicitly model interactions as they occur (Masuda
& Lambiotte, 2016; Latapy et al., 2018). Efforts to characterise these networks include identifying temporal
motifs (Kovanen et al., 2011), analysing time-respecting reachability and pathfinding (Kempe et al., 2000),
and developing temporal centrality measures to identify key nodes in dynamic processes (Lerman et al.,
2010). A significant body of work has focused on modelling information diffusion and influence maximisa-
tion (Kempe et al., 2003), often using cascade models or threshold dynamics. Models for network evolution
aim to capture the mechanisms driving change, such as preferential attachment for scale-free structures
(Barabási & Albert, 1999), triadic closure for social clustering (Bianconi & Barabási, 2001), and a wide
array of link prediction models that forecast future interactions (Liben-Nowell & Kleinberg, 2003; Hasan &
Zaki, 2011). More advanced models have considered continuous-time dynamics using point processes like
Hawkes processes (Nguyen et al., 2018), as well as the evolution of community structures over time (Palla
et al., 2007; Tantipathananandh et al., 2007; Liu et al., 2020). While this body of work provides a rich
vocabulary and powerful tools for describing and predicting network evolution, it generally lacks a formal,
compositional language for the processes themselves. The focus remains on the sequence of states or the
statistical properties of events, not on a formal algebra of the transformations that connect them, a gap our
framework addresses directly.

2.3 Networks in Biological and Environmental Sciences

Network theory has become an indispensable tool in the sciences, providing a language to manage the
immense complexity of biological and ecological systems. In ecology, food web analysis is used to study
ecosystem stability, resilience, and the role of keystone species (Pimm, 1984; Montoya et al., 2006; Dunne
et al., 2002; Williams & Martinez, 2000; Berlow et al., 2004). Network models are used to understand
mutualistic interactions, whose nested structure is thought to increase biodiversity (Bascompte et al., 2003),
as well as disease propagation (Newman, 2002) and the structure of metapopulations (Hanski, 1998). A
key challenge in this field is the identification of early-warning signals for critical transitions, a problem our
stability theorems directly address (Kéfi et al., 2014). In biology, networks are used to model protein-protein
interactions (PPIs) to uncover functional modules and identify potential drug targets (Jeong et al., 2001;
Barzel & Barabási, 2013), and gene-regulatory pathways that control cellular life (Davidson et al., 2002; Alon,
2007). Large-scale metabolic network reconstructions, such as the Recon project for human metabolism,
are used in constraint-based modelling to predict metabolic fluxes (Rual et al., 2005). In neuroscience,
analysing the brain’s structural and functional connectomes is a central goal, with projects like the Human
Connectome Project providing massive datasets (Sporns et al., 2005; Bullmore & Sporns, 2009; Honey et al.,
2007; Van Essen et al., 2012). These applications demonstrate a clear and urgent need for models that can
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handle dynamic processes and provide insight into system-level properties like stability and resilience. Our
work is directly motivated by this need, providing a formal language and a set of theoretical tools specifically
designed to analyse the resource-constrained dynamics that are characteristic of these natural systems.

2.4 Categorical and Geometric Approaches to Systems

Our framework is inspired by a growing movement to apply principled, abstract mathematics to machine
learning and systems modelling. Geometric Deep Learning seeks to unify graph-based models and beyond
by focusing on underlying symmetries and invariances, building models that respect the geometry of their
domain (Bronstein et al., 2017). Alongside spectral methods, tools from Topological Data Analysis (TDA)
are also used to study the higher-order structure of networks through persistent homology (Petri et al.,
2013). More abstractly, Applied Category Theory provides a formal language for compositionality, arguing
that systems are best understood by how their components compose (Fong & Spivak, 2018). This approach
has been used to model a wide range of systems, including databases (Guyot et al., 2022), electrical circuits
(Takahashi, 2023), dynamical systems (Behrisch et al., 2017), compositional game theory (Ghani et al.,
2018), and network protocols (Fong & Spivak, 2018). Other formalisms like operads are used to describe
more general systems of composition (Baez & Stay, 2010). This research program, pioneered by figures like
Baez & Stay (2010) and Spivak (2014), argues that the language of functors and morphisms is the natural
way to describe complex, interacting systems. Our work contributes to this paradigm by providing a concrete
instantiation of a functorial model. We use the categorical language not as an end in itself, but as the natural
grammar to build a specific, testable, and scientifically relevant theory that connects process to structure,
thus grounding the abstract formalism in concrete, provable spectral consequences.

2.5 Machine Learning on Graphs

In recent years, machine learning on graph-structured data has been dominated by the success of Graph
Neural Networks (GNNs), a broad class of models based on a neighbourhood aggregation or message-passing
scheme (Scarselli et al., 2008; Gori et al., 2005; Gilmer et al., 2017). Architectures like Graph Convolutional
Networks (GCNs) (Kipf, 2016), Graph Attention Networks (GATs) (Veličković et al., 2017), and GraphSAGE
(Hamilton et al., 2017) have achieved state-of-the-art performance on tasks like node classification and
link prediction. More recent developments include Graph Transformers, which aim to capture long-range
dependencies (Shi et al., 2020). To handle dynamic networks, researchers have developed various temporal
GNNs that integrate GNN principles with recurrent or attention-based sequence models (Seo et al., 2018;
Rossi et al., 2020; Kazemi et al., 2020; Manessi et al., 2020). Other approaches include graph kernels
(Shervashidze et al., 2011), and representation learning techniques like DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, 2016). A limitation of many of these powerful models is their heavy-
parameterisation nature. They provide high predictive accuracy but often lack scientific interpretability, and
the community has invested significant effort in developing post-hoc explanation methods like GNNExplainer
(Ying et al., 2019). Moreover, they do not come with the formal, provable guarantees of a theoretical
framework, and can suffer from issues like oversmoothing (Li et al., 2018). Our Proc-to-Spec framework
aims to alleviate this limitation, offering a more transparent approach where the link between process and
outcome is explicit, provable, and scientifically interpretable, aiming for understanding over raw prediction.

3 The Proc-to-Spec Framework

In this section, we provide the formal mathematical construction of our Proc-to-Spec framework. The
framework is built upon a single, central idea: the existence of a structure-preserving map—a functor—that
translates the dynamics of a physical system into the geometric language of linear algebra. The resulting
model is a logical consequence of defining this functor and its domain and codomain. We begin by defining
our key notations, summarised in Table 1.
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Table 1: Key symbols and notations used in the paper.

Symbol Description
G = (V, E, W ) A weighted, directed graph representing a network state.

V, E, W The set of vertices, edges, and the edge weight function, respectively.
R(G) The total resource in a network, defined as the sum of all edge weights.

p : G → G′ A process (morphism) that transforms one network state to another.
Proc The category of resource-constrained dynamic networks.
LW The weighted Laplacian of a graph with weight matrix W .

Lsym The symmetrised Laplacian, used for spectral analysis.
λi, vi The i-th eigenvalue and corresponding eigenvector of Lsym.

λ2 The Fiedler value, or algebraic connectivity of the graph.
Spec The category of finite-dimensional real vector spaces.

χ The spectral functor, mapping from Proc to Spec.
χ(p) A linear transformation representing the process p in the spectral domain.

3.1 The Source Category: Proc

The source category, Proc, is designed to represent the physical reality of resource-constrained dynamic
systems commonly found in biological and ecological sciences.

Objects. An object in Proc is a network state, formally defined as a weighted, directed graph G =
(V, E, W ), where:

• V is a finite set of n vertices, representing the components of the system (e.g., species in an ecosystem,
proteins in a cell).

• E ⊆ V × V is a set of directed edges, representing interactions between components.

• W : E → R+
0 is a weight function that assigns a non-negative real value to each edge, representing

the strength, capacity, or rate of flow of a resource (e.g., energy, biomass, information).

Morphisms. A morphism in Proc, denoted p : G → G′, is a dissipative process that transforms an
initial state G into a final state G′. The defining characteristic of these systems is that they operate under
resource limitation. We formalise this by defining the total resource of a network as the sum of all its edge
weights:

R(G) =
∑

(u,v)∈E

W (u, v) (1)

A process p is defined as dissipative if the total resource in the final state is less than or equal to the total
resource in the initial state:

R(G′) ≤ R(G) (2)
This single constraint is fundamental. It reflects the second law of thermodynamics, where energy is lost in
transfers between trophic levels (Odum, 1957), and the principle of resource competition that governs the
dynamics of all biological populations (Tilman, 1982). This constraint ensures that our model is physically
and biologically grounded for scientific discovery.

3.2 The Target Category: Spec

The target category, Spec, provides the abstract geometric space where the structural properties of our
networks are analysed. It is the standard category of finite-dimensional real vector spaces.

Objects. An object is a finite-dimensional vector space U over the field of real numbers, R.

Morphisms. A morphism is a linear transformation T : U → V between two vector spaces.
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3.3 The Spectral Functor χ : Proc → Spec

The spectral functor χ is the heart of our framework. It provides the formal, structure-preserving map from
the physical world of processes to the geometric world of spectra.

Action on Objects. The functor χ maps a network object G ∈ Proc to the n-dimensional vector space
spanned by the eigenvectors of its symmetrised Laplacian. This construction is essential for ensuring a
well-defined geometric representation. Given a graph G with n vertices and weight function W :

1. We first construct the n × n weighted adjacency matrix AW , where (AW )ij = W (i, j).

2. To guarantee a real spectrum and a complete orthonormal eigenbasis, we construct the symmetrised
adjacency matrix, Asym, where (Asym)ij = (W (i, j) + W (j, i))/2. This captures the underlying
“connectivity fabric” of the network, which is often the primary interest in resilience and stability
studies (Mohar et al., 1991).

3. From this, we construct the symmetrised Laplacian:

Lsym = Dsym − Asym (3)

where Dsym is the diagonal matrix of weighted degrees derived from Asym.

4. This ensures that Lsym is a real symmetric matrix and thus has a complete set of n orthonormal
eigenvectors {v1, . . . , vn}.

5. The functor maps the graph object to the vector space these eigenvectors span:

χ(G) = span(v1, . . . , vn) ∼= Rn (4)

Action on Morphisms. The functor χ maps a process p : G → G′ to the unique linear transformation
χ(p) : χ(G) → χ(G′) that describes the change of basis between the respective eigenspaces. If B = {vi} is
the eigenbasis of Lsym and B′ = {v′

i} is the eigenbasis of L′
sym, then χ(p) is the unique linear map that

represents this geometric transformation.

Physical Intuition of the Functor. Conceptually, the spectral functor χ can be understood as a mathe-
matical “lens” that allows us to view the physical process through the language of geometry. The eigenbasis
of a network’s Laplacian represents its fundamental modes of variation—its “structural harmonics”. A phys-
ical process, p, perturbs the network, creating a new set of structural harmonics. The transformation matrix
χ(p) precisely quantifies how each of the old harmonics is distributed or “scattered” among the new ones (see
Figure 10 for such scattering in a real-world ecological web). It is, in essence, a mathematical description of
the structural reorganisation induced by the process. A simple process might only slightly alter the harmon-
ics, resulting in a transformation close to the identity, while a complex process might completely scramble
them, resulting in a highly complex rotational transformation.

3.4 Model Scope and Assumptions

Our framework is designed to be a model for rigorous scientific inquiry in environmental sciences, with
carefully chosen scope and assumptions that we state explicitly here.

• Deterministic Processes. We model processes as deterministic, representing the expected out-
come of potentially stochastic interactions. This is a standard and powerful simplification in the
modelling of complex systems, providing a tractable first-order approximation of the system’s dy-
namics (May, 2001).

• Focus on Edge Weights. We assume that the primary dynamics of the system can be captured
by changes in the interaction strengths (edge weights). This is a well-justified focus in ecological
network modelling, where fluctuations in interaction strength are a primary driver of system stability
(Allesina & Tang, 2012). This naturally includes topological changes as a special case.
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• Symmetrised Laplacian. The core operator used by the spectral functor is the symmetrised
Laplacian, Lsym. We select this operator due to its desirable properties, namely a real spectrum and
a complete orthonormal eigenbasis, which are essential for defining a consistent spectral geometry
for our framework.

4 Theoretical Analysis

Having formally defined the Proc-to-Spec framework in §3, we now establish its key theoretical properties.
Our analysis is structured to build a complete framework from the ground up, moving from foundational
mathematical guarantees to the main scientific results. We begin in §4.1 by proving that our spectral map,
χ, is a valid functor, a foundational result that ensures the mathematical soundness and compositionality of
our entire framework. Next, in §4.2, we establish the core dictionary that translates the physical constraints
of the Proc category into the language of the Spec category; here, we prove our key theorems on the spectral
signatures of resource conservation and dissipation. Building on this, we present our main result in §4.3, the
Stability-Spectrum Equivalence theorem, which provides a formal and testable link between the long-term
dynamical stability of a system and the convergence of its spectral geometry. Finally, in §4.4, we derive
a toolkit of more specialised theorems that provide concrete, interpretable matrix signatures for specific,
common types of processes, such as local perturbations and node removals. Together, these results form a
complete theoretical basis for using our framework as a tool for scientific reasoning.

4.1 Functoriality of the Spectral Map χ

We begin by establishing the foundational mathematical property of our framework: that the map χ is a
valid functor. This result is crucial as it guarantees that our spectral representation is a true and consistent
reflection of the underlying system’s dynamics, respecting both identity and the composition of processes.
Lemma 1 (Functoriality of χ). The map χ : Proc → Spec is a functor. It preserves identity morphisms
and the composition of morphisms.

Proof Sketch. To prove that χ is a functor, we must verify two conditions.

1. Preservation of Identity: The identity morphism in Proc is the process idG : G → G, which leaves
the network unchanged. This means the initial and final weight matrices are identical (W ′ = W ),
leading to identical symmetrised Laplacians (L′

sym = Lsym) and thus identical eigenbases. The
linear transformation that maps an orthonormal basis to itself is the identity transformation, idχ(G).
Thus, χ(idG) = idχ(G).

2. Preservation of Composition: Consider two composable processes, p1 : G1 → G2 and p2 : G2 →
G3. The map χ(p1) is the change of basis matrix from the eigenbasis of G1 to that of G2, and χ(p2)
is the change of basis from G2 to G3. The composition of linear transformations, χ(p2) ◦ χ(p1),
corresponds to the matrix product of these change of basis matrices. By the chain rule for change
of basis, this product is precisely the matrix that transforms the basis of G1 directly to the basis of
G3, which is by definition χ(p2 ◦ p1). Thus, χ(p2 ◦ p1) = χ(p2) ◦ χ(p1).

The full proof is provided in §A.1.

Interpretation. This lemma provides the guarantee of our framework’s logical consistency. It ensures that
our spectral “lens” does not distort the structure of the system’s dynamics. From a scientific perspective,
this has two critical implications. First, the preservation of identity means that a system in a stable,
unchanging state will have a stable, unchanging spectral representation; our method does not introduce
artificial dynamics. Second, the preservation of composition means that our framework respects causality.
For example, the overall structural impact of a drought followed by the introduction of an invasive species
is precisely the composition of their individual spectral transformations. This allows scientists to model
complex, multi-stage scenarios with the confidence that the resulting analysis is a faithful representation of
the composite process, making our “spectral accounting” of change both rigorous and reliable.
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4.2 The Physics-to-Spectra Dictionary

Having established the mathematical soundness of our framework, we now derive the core dictionary that
translates the physical laws governing the Proc category into the geometric language of Spec. The fol-
lowing theorems show that fundamental physical constraints—namely, the conservation and dissipation of
resources—induce specific, non-trivial, and observable signatures in the spectral domain.
Theorem 1 (The Spectral Trace Conservation Law). Let p : G → G′ be a conservative process, where the
total resource is unchanged (R(G) = R(G′)). The trace of the symmetrised Laplacian is conserved, i.e.,
Tr(L′

sym) = Tr(Lsym). Consequently, the sum of the Laplacian eigenvalues is an invariant of the process.

Proof Sketch. The key insight is to first establish a direct identity between the total resource of a network
and the trace of its symmetrised Laplacian. The trace of Lsym is the sum of its diagonal elements, which
are the weighted degrees of the symmetrised graph. This sum is equivalent to the sum of all entries in the
symmetrised adjacency matrix, Asym. By substituting the definition of Asym, we show that this sum is
precisely equal to the total resource, R(G). Therefore, the identity Tr(Lsym) = R(G) holds for any graph.
For a conservative process, since R(G) = R(G′), it follows directly that Tr(L′

sym) = Tr(Lsym). Because the
trace of a matrix is equal to the sum of its eigenvalues, the sum of the eigenvalues is also conserved. The
full proof is provided in §A.2.

Interpretation. This theorem provides our first concrete link between a physical law and a geometric
invariant. It demonstrates that if a system is closed and only redistributes its internal resources (e.g., biomass
transfer within a food web without external inputs or losses), the sum of its spectral eigenvalues remains
constant. This spectral sum can be interpreted as a measure of the total “structural energy” or “information
capacity” of the network. This result provides an integrity check for models of closed ecosystems, ensuring
that the simulated dynamics correctly preserve this global spectral quantity.
Theorem 2 (The Spectral Sensitivity of Algebraic Connectivity). Let p : G → G′ be a process that induces a
sufficiently small change in the symmetrised Laplacian, ∆Lsym = L′

sym −Lsym. If the process is structurally
fragmenting, defined as satisfying the condition vT

2 (∆Lsym)v2 < 0, where v2 is the Fiedler eigenvector of
the initial graph G, then the Fiedler value will decrease (λ′

2 < λ2).

Proof Sketch. The proof relies on first-order matrix perturbation theory, which states that the change in
an eigenvalue, ∆λk, can be approximated by the quadratic form vT

k (∆Lsym)vk. By applying this principle
to the Fiedler value (k = 2), we find that λ′

2 − λ2 ≈ vT
2 (∆Lsym)v2. The theorem’s premise is precisely

that the term on the right-hand side is negative. Therefore, it follows directly that for small perturbations,
λ′

2 − λ2 < 0. The full proof is provided in §A.3.

Interpretation. This theorem provides a nuanced quantitative insight about resource loss in physical
systems. It formalises the critical scientific idea that the location of a disturbance is as important as
its magnitude. The Fiedler eigenvector, v2, identifies the network’s primary structural vulnerability or
“fault line”. This theorem proves that a process, even a dissipative one, only harms the network’s algebraic
connectivity if it is “aligned” with this vulnerability—that is, if it preferentially weakens the crucial links that
bridge the network’s main communities. For example, a disease affecting a keystone predator that connects
two sub-webs would be structurally fragmenting, causing a sharp drop in algebraic connectivity. In contrast,
the loss of a peripheral species might have a negligible effect. This provides a valuable diagnostic tool for
assessing the resilience of an ecosystem, allowing scientists to distinguish between benign and potentially
catastrophic systemic changes.

4.3 The Stability-Spectrum Equivalence

Building upon the foundational link between physical processes and their spectral signatures, we now estab-
lish our main result. The following theorem provides a formal equivalence between the long-term dynamical
stability of a network in the Proc category and the convergence of its geometric representation in the Spec
category. This result allows our framework to function as a predictive tool, allowing the assessment of a
system’s stability through its observable algebraic properties.

9
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Theorem 3 (The Stability-Spectrum Equivalence). A dynamic network sequence (Gt)∞
t=1 governed by dis-

sipative processes converges to a stable state G∞ if and only if its corresponding sequence of spectral data
(eigenvalues and eigenvectors of Lsym,t) converges to a stable limit.

Proof Sketch. As this is an “if and only if” statement, we sketch the proof in two directions.

1. Stability =⇒ Spectral Convergence: We first assume the system converges to a stable state,
which means the sequence of weight matrices converges to a limit, Wt → W∞. The map from
a weight matrix W to its symmetrised Laplacian Lsym is continuous. Furthermore, the spectral
decomposition of a symmetric matrix (its eigenvalues and eigenvectors) is a continuous function of
the matrix entries. By the property of continuous functions, the convergence of the weight matrices
(Wt → W∞) implies the convergence of the Laplacians (Lsym,t → Lsym,∞), which in turn implies
the convergence of their spectral data.

2. Spectral Convergence =⇒ Stability: We now assume the full set of spectral data (all eigen-
values and eigenvectors) converges. A symmetric matrix is uniquely determined by its spectral
decomposition. Therefore, the convergence of the spectral data implies the convergence of the se-
quence of symmetrised Laplacians, Lsym,t → Lsym,∞. The mapping from a weight matrix W to
Lsym is injective for a given graph topology. Thus, the convergence of the Laplacians implies the
convergence of the underlying weight matrices, Wt → W∞, which is the definition of a stable state.

The full proof is provided in §A.4.

Interpretation. This theorem establishes a rigorous and testable equivalence between a system’s physical
behaviour and its abstract structural properties. In practical terms, it means that the stability of a complex
ecosystem or biological network can be definitively assessed by monitoring its “spectral signature”. If the
eigenvalues and eigenvectors of the system’s Laplacian stop changing, the system has reached an equilibrium.
This moves beyond correlation to a formal equivalence, providing a diagnostic tool. For example, ecologists
can use time-series data to determine if a recovering ecosystem has truly stabilised or if it is still in a transient
state, simply by observing whether its spectral representation has converged. This provides a non-invasive
method for understanding the long-term trajectory and health of complex systems.

4.4 A Toolkit for Process Interpretation

The preceding theorems establish the foundational properties of our framework. We now derive a toolkit of
more specialised results that provide concrete, interpretable matrix signatures for common types of processes.
These theorems allow a scientist to move from observing a spectral transformation back to inferring the
specific nature of the underlying physical process that caused it, providing a powerful method for causal
inference and system diagnostics.
Lemma 2 (The Change of Basis Formula). Let p : G → G′ be a process, with {vi} and {v′

j} being
the orthonormal eigenbases of the initial and final Laplacians, respectively. The entry (i, j) of the matrix
representation of the linear transformation χ(p) is given by the inner product of the respective basis vectors:
(χ(p))ij = ⟨v′

i, vj⟩.

Proof Sketch. The matrix for the linear transformation χ(p) represents the change of coordinates from the
initial basis B = {vi} to the final basis B′ = {v′

j}. The j-th column of this matrix is the vector vj

expressed in the coordinates of the new basis. Since B′ is an orthonormal basis, the i-th coordinate is simply
the projection of vj onto v′

i, which is given by their inner product. The full proof is provided in §A.5.

Interpretation. This lemma provides the direct algebraic formula for computing the transformation ma-
trix. It gives a precise meaning to each entry: the magnitude of (χ(p))ij quantifies the alignment or projection
of the j-th original structural mode onto the i-th final structural mode. A large diagonal entry (χ(p))ii signi-
fies that a structural mode has been preserved, while a large off-diagonal entry (χ(p))ij signifies a significant
structural “rewiring” where the roles of two modes have become mixed.

10
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Theorem 4 (The Rank-One Update Signature). Let p be a simple process that only perturbs the weight of a
single edge between nodes a and b. The resulting change in the symmetrised Laplacian, ∆Lsym, is a rank-one
matrix. Consequently, the transformation matrix χ(p) is a low-rank perturbation of the identity matrix.

Proof Sketch. A change in the weight of a single edge (a, b) results in a change matrix ∆Lsym with non-
zero entries only at positions (a, a), (b, b), (a, b), and (b, a). As shown in the full proof, this matrix can be
expressed as a scalar multiple of a single outer product, δ(ea − eb)(ea − eb)T , making it a rank-one matrix.
By matrix perturbation theory, a low-rank update to a matrix results in a correspondingly simple, low-rank
perturbation to its spectral decomposition. Therefore, the change of basis matrix χ(p) will be close to the
identity, differing only by a low-rank update related to the eigenvector components at the perturbed nodes.
The full proof is provided in §A.6.

Interpretation. This theorem proves that a local cause has a local signature. It formalises the intuitive
idea that a small, isolated event in an ecosystem (e.g., the weakening of a single predator-prey relationship)
should not cause a catastrophic, chaotic rewiring of the entire system’s structure. It provides a diagnostic
tool: if an observed transformation matrix χ(p) is well-approximated by a low-rank perturbation of the
identity, one can infer that the underlying physical cause was a simple, localised process.
Theorem 5 (The Structural Inertia Theorem). Let p be a process that induces a small perturbation ∆Lsym.
The resulting transformation matrix χ(p) is diagonally dominant. The magnitude of its off-diagonal entries
is bounded by the norm of the perturbation and the spectral gaps of the original graph.

Proof Sketch. The proof relies on the Davis-Kahan theorem from matrix perturbation theory. The entries of
χ(p) are the inner products ⟨v′

i, vj⟩. For i = j, this value is close to 1. For i ̸= j, the Davis-Kahan theorem
provides a bound on the sine of the angle between the old eigenvector vj and the new one v′

i, showing that
this angle remains close to orthogonal. This deviation from orthogonality, which determines the magnitude of
the off-diagonal entries, is bounded by ∥∆Lsym∥2/|λi − λj |. Thus, for a small perturbation, the off-diagonal
entries are small, and the matrix is diagonally dominant. The full proof is provided in §A.7.

Interpretation. This theorem formalises the concept of structural robustness. It proves that complex
systems possess a form of inertia; their fundamental organisational modes (the eigenvectors) are resistant
to small, arbitrary changes. A small process cannot cause a catastrophic re-shuffling of all the primary
structural modes. A transformation matrix χ(p) with large off-diagonal entries is therefore a clear signature
of a major, non-perturbative structural reorganisation of the network, rather than a simple fluctuation.

We now consider processes that alter the network’s topology by removing a node. While such processes fall
outside our primary functorial definition, which maps between spaces of the same dimension, our geometric
approach still provides a unique and powerful characterisation. As we prove in §A.8, node removal is
uniquely identifiable as a projection, whose kernel corresponds directly to the removed node, providing a
distinct signature for this class of major topological changes.
Theorem 6 (The Node Removal Signature). Let p be a process that removes a node k from a network G
with n nodes. The resulting transformation χ(p) maps the original n-dimensional eigenspace to the new
(n − 1)-dimensional eigenspace and is a projection operator.

Proof Sketch. The process of node removal transforms the original vector space χ(G) ∼= Rn to a lower-
dimensional space χ(G′) ∼= Rn−1. Such a transformation is a projection. The kernel of this projection (the
part of the space mapped to zero) is the one-dimensional subspace corresponding to the removed node. The
Cauchy Interlacing Theorem guarantees a predictable relationship between the old and new eigenvalues,
ensuring the transformation is well-behaved. The full proof is provided in §A.8.

Interpretation. This theorem provides a unique, identifiable signature for a major topological event: the
complete failure or removal of a system component. Unlike the subtle changes from weight perturbations, a
node removal causes a change in the very dimension of the state space. If an observed transformation matrix
is found to be a projection of rank n − 1, one can infer with high confidence that the underlying physical
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Figure 2: Numerical validation of the functoriality of χ (Lemma 1). This figure provides visual
and quantitative proof that our framework respects the composition of processes for both simple, local
changes (top row) and complex, global changes (bottom row). (a) A sequence of three network states in
Proc connected by two simple processes, p1 and p2, each a single edge perturbation. The modified edge in
each step is highlighted (red for decreased weight, green for increased). (b) The resulting transformation
matrix for the composition of the two processes, computed as the matrix product χ(p2) ◦ χ(p1). (c) The
transformation matrix for the single composite process, χ(p2 ◦ p1). This matrix is visually and numerically
identical to the one in (b). (d) A sequence of network states connected by two complex, global processes:
a dissipative process (p1) that modifies all edges, followed by a conservative one (p2). (e) The matrix for
the composition of the complex processes, showing a non-trivial, global transformation. (f) The matrix for
the single composite complex process, which is again identical to its compositional counterpart in (e). The
numerical difference between the composed and composite matrices is negligible in both cases (Frobenius
norm for the simple case: 3.3 × 10−15; for the complex case: 4.2 × 10−15).

process was the removal of a single node. This is a simple tool for diagnosing critical failures in a system,
such as the extinction of a species from an ecosystem.
Theorem 7 (The Signal Transport Theorem). Let f be a vector representing a signal on the nodes of a
network G (e.g., population densities). After a process p, the signal f ′ that maintains the same coordinates
with respect to the new eigenbasis of G′ is given by the transformation f ′ = Ttransportf , where the transport
matrix is Ttransport = (χ(p)T )−1.

Proof Sketch. We define the signal’s spectral coordinates on G as a = V T f , where V is the matrix of
eigenvectors. The transported signal on G′ is defined as f ′ = V ′a. Substituting the expression for a
gives f ′ = (V ′V T )f , so Ttransport = V ′V T . From our definition of χ(p) = (V ′)T V , we can show that
((χ(p))T )−1 = (V T V ′)−1 = (V ′)−1(V T )−1 = V ′V = Ttransport (since V is orthonormal, V −1 = V T ). The
full proof is provided in §A.9.

Interpretation. This theorem provides a concrete, practical tool for prediction. It answers the question:
“If the network structure changes from G to G′, how would a data pattern defined on the original structure
be expressed on the new structure?” For instance, it allows scientists to predict how a specific pattern of
gene expression would be re-distributed across a cell if the underlying gene-regulatory network is rewired by
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Figure 3: Numerical validation of the physics-to-spectra dictionary (Theorems 1 and 2). This
figure demonstrates that the physical constraints defined in Proc have direct, predictable consequences in
Spec. Top Row: A network was subjected to a purely conservative process for 100 steps. (a) The total
resource R(Gt) and the spectral trace Tr(Lsym,t) are plotted over time. The lines are perfectly flat and
coincident, numerically verifying the identity Tr(Lsym) = R(G) and proving that the spectral trace is a
conserved quantity under conservative dynamics. (b) Histograms of the initial and final edge weights show
that while the process has significantly redistributed the individual resource values, the total resource is un-
changed. (c) The trajectories of all eigenvalues are shown. While individual structural modes fluctuate, their
sum is perfectly constant, as proven in (a). Bottom Row: A barbell graph was subjected to a structurally
fragmenting process for 100 steps. (d) The Fiedler value (λ2), a measure of algebraic connectivity, shows
a clear and monotonic decline, confirming that the process successfully fragments the network. (e) Visu-
alisation of the initial network with its critical bridge edge highlighted (left) and the final network (right),
where the weakening of the bridge has caused the two communities to drift apart. (f) The trajectories of
all eigenvalues, with the Fiedler value highlighted. The plot shows λ2 “peeling away” from the rest of the
spectrum and dropping towards zero, a classic signature of network fragmentation.

a mutation. This moves the framework beyond structural analysis to a tool for predicting the evolution of
functional patterns on the network.

5 Numerical Validation

In this section, we present a suite of controlled experiments on synthetic data to provide a rigorous validation
of our theoretical claims from §4. We begin by numerically verifying the functoriality of our spectral map,
confirming that it respects the composition of processes (§5.1). We then validate the core physics-to-spectra
dictionary, providing evidence for both the Spectral Trace Conservation Law and the Spectral Sensitivity of
connectivity (§5.2). Building on this, we provide a multi-faceted validation of our main result, the Stability-
Spectrum Equivalence theorem (§5.3). Further, we demonstrate the diagnostic power of our framework by
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(b) Eigenvalue Convergence (c) Network Simplification
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Final (t=200): 79 edges

Figure 4: Numerical validation of the Stability-Spectrum Equivalence (Theorem 3). This figure
provides a multi-faceted demonstration of the equivalence between a system’s physical convergence to equi-
librium and the stabilisation of its spectral representation. A randomly generated network was subjected
to a dissipative process with edge pruning for 200 time steps. (a) The convergence rates of the physical
and spectral representations. The log-linear plot shows that both the physical distance from equilibrium
(blue, solid) and the spectral distance (red, dashed) decay to zero, confirming that the system stabilises
as its spectral representation does. The differing decay profiles reveal a non-trivial insight: the spectral
representation is less sensitive to initial fluctuations but provides a sharper signal of the final convergence
to a stable state. (b) The convergence of the full Laplacian spectrum. The plot shows the trajectories of all
eigenvalues over time. The initially chaotic dynamics smoothly resolve into a set of stable, horizontal lines,
providing a holistic visualisation of the system’s entire geometric structure settling into its final, equilibrium
configuration. (c) The physical process of network simplification. The visualisation shows the initial, dense
network state at t = 0 (left) and the final, sparse equilibrium state at t = 200 (right). The dissipative and
pruning processes have driven the system to shed non-essential connections, converging from 192 edges to a
stable “backbone” of 79 edges.

verifying the unique spectral signatures predicted by our process interpretation toolkit (§5.4). Finally, we
validate the predictive power of our framework using signal transport (§5.5).

5.1 Verification of Functoriality

The cornerstone of our entire framework is the claim that the spectral map χ is a valid functor (Lemma 1).
To verify this, we must show that it respects the composition of processes. We test this property in two
scenarios: one with simple, local processes and one with complex, global processes. As shown in Figure 2,
in both the simple case (Panel a-c) and the complex case (Panel d-f), the transformation matrix computed
for the single composite process is numerically (almost) identical to the matrix product of the individual
transformations. This provides clear, strong evidence that our framework is mathematically sound and that
our “spectral accounting” of change is consistent and reliable.

5.2 The Spectral Signatures of Physical Constraints

Next, we validate our “physics-to-spectra dictionary”, which links the physical constraints of the Proc cat-
egory to specific signatures in the Spec category. Figure 3 shows the results of two simulations designed to
test these links.

The top row validates our Trace Conservation Law (Theorem 1). We subject a network to a purely conser-
vative process that redistributes resources internally. As predicted, the total resource and the spectral trace
remain perfectly constant and coincident throughout the simulation (Panel a), even as the individual edge
weights are shuffled (Panel b) and the individual eigenvalues fluctuate (Panel c).
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Figure 5: Numerical validation of the process interpretation toolkit (Theorems 4, 5, and 6).
This figure demonstrates that different elementary processes have unique, identifiable spectral signatures,
confirming the diagnostic power of our framework. Top Row: Signature of a Local Perturbation. (a)
The physical process: a single edge (highlighted in red) on a network is perturbed. (b) The resulting
transformation matrix χ(ppert). The matrix is strongly diagonally dominant, visually confirming the principle
of Structural Inertia (Theorem 5). The faint off-diagonal entries correctly show that even a local change
has subtle, non-local effects on the global geometry. (c) The perturbation matrix, χ(ppert) − I. The sparse,
structured nature of this matrix is the visual signature of a simple, local change, providing visual proof of the
Rank-One Update signature (Theorem 4). Bottom Row: Signature of Node Removal. (d) The physical
process: a single node (highlighted in red) is removed from the network. (e) The matrix of the resulting
projection operator. Its signature—an identity matrix with a single zero on the diagonal—is visually distinct
from the perturbation signature in (b). (f) The eigenvalues of the projection matrix. The bar plot provides
a quantitative validation of the Node Removal Signature (Theorem 6), showing exactly one eigenvalue at 0
(for the removed dimension) and all others at 1.

The bottom row validates our Spectral Sensitivity theorem (Theorem 2). We subject a barbell graph, which
has a clear structural bottleneck, to a structurally fragmenting process. As predicted, the Fiedler value (λ2),
a measure of algebraic connectivity, shows a clear and monotonic decline (Panel d). The physical meaning
of this is made clear in Panel (e), which shows the network visually breaking apart. The full spectrum
dynamics in Panel (f) provide a deeper insight, showing the Fiedler value “peeling away” from the rest of
the spectrum, a classic signature of fragmentation.

5.3 Equivalence of Physical and Spectral Stability

Another theoretical result of our framework is the equivalence between the physical stability of a system
and the stability of its spectral representation. To validate this, we simulate a network’s long-term evolution
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Figure 6: Demonstration of Signal Transport as a Spectral Filter (Theorem 7). This experiment
reveals that a major structural change acts as a low-pass filter on network patterns, preserving smooth,
low-frequency signals while destroying noisy, high-frequency ones. The process in both scenarios is the
severing of all bridge edges between the two communities of a Stochastic Block Model graph. Top Row:
Preservation of a Low-Frequency Signal. (a) The initial signal is a smooth, low-frequency pattern (the
Fiedler eigenvector of the initial graph), creating a clear gradient between the two communities. (b) After
transport to the new, disconnected graph, the smooth pattern is closely preserved within each community.
(c) The transformation matrix χ(p) provides the mechanism. The highlighted top-left (low-frequency) block
is strongly diagonal, proving that low-frequency modes of the initial graph map cleanly to the low-frequency
modes of the final graph, ensuring pattern preservation. Bottom Row: Filtering of a High-Frequency
Signal. (d) The initial signal is a noisy, high-frequency pattern (the last eigenvector of the initial graph).
(e) After transport, the noisy pattern is destroyed and filtered into a closely uniform, low-energy state. The
fine-grained structure needed to support the pattern is removed. (f) The transformation matrix χ(p) again
reveals the mechanism. The highlighted bottom-right (high-frequency) block is scattered and non-diagonal.
This visually demonstrates that high-frequency modes of the initial graph do not map to high-frequency
modes of the final graph; their energy is scattered, destroying the original pattern.

under a dissipative process with edge pruning, allowing it to converge to a stable equilibrium. The results,
shown in Figure 4, provide a multi-faceted confirmation of the theorem.

Panel (a) is the core quantitative proof. It shows that the physical distance from equilibrium (blue, solid)
and the spectral distance (red, dashed) both decay to zero, confirming that the system stabilises if and
only if its spectral representation does. The differing decay profiles reveal a non-trivial insight: the spectral
representation is a more sensitive indicator of the final convergence. Panel (b) provides a holistic view,
showing the entire spectrum of the system converging to stable, horizontal lines. Finally, Panel (c) provides
the intuitive physical implication, showing the network simplifying from a dense, chaotic initial state to a
sparse, stable “backbone” structure.
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Figure 7: The Serengeti Case Study Area. This figure provides an overview of the two primary datasets
used in our real-world case study. (a) A map of the Serengeti National Park showing the geographic
distribution of the 225 camera traps from the Snapshot Serengeti project (Swanson et al., 2015). The
camera grid covers an area of 1,125 km2, and each point represents a unique camera site, plotted using its
UTM coordinates. The basemap provides topographical context for the study area. (b) The full topological
structure of the Serengeti food web, based on the data from Baskerville et al. (2011). The network consists
of 161 species (nodes) and 592 directed feeding links (edges). Nodes are colour-coded by their functional
group to illustrate the ecosystem’s trophic structure: carnivores are shown in reds, herbivores in greens, and
the broad plant base in grey. The high proportion of plant nodes reflects the high taxonomic resolution of
the primary producer data, a key feature of this food web.

5.4 Diagnostic Power of the Toolkit

A key claim of our work is that elementary processes have unique, identifiable spectral signatures. Figure 5
validates this diagnostic power. The top row shows that a simple, local edge perturbation results in a
transformation matrix that is strongly diagonally dominant (Panel b) and represents a sparse, low-rank
perturbation of the identity matrix (Panel c). This confirms that local changes have a simple, structured
spectral signature. In contrast, the bottom row shows that a major topological change—a node removal—
produces a completely different signature. The transformation is a projection operator (Panel e), which is
confirmed by its eigenvalue spectrum of only 0s and 1s (Panel f). This demonstrates that our framework can
unambiguously distinguish between different classes of physical events.

5.5 Signal Transport as a Spectral Filter

Our final synthetic experiment demonstrates that our framework can predict the fate of patterns on a chang-
ing network. The results in Figure 6 show that a major structural change acts as a spectral low-pass filter.
The top row shows the result of pattern preservation. A smooth, low-frequency signal (Panel a) is success-
fully transported to the new network with its structure closely preserved (Panel b). The transformation
matrix χ(p) (Panel c) reveals the mechanism: its top-left, low-frequency block is strongly diagonal, showing
that the geometric language for smooth patterns is robust to the change.

The bottom row visualises pattern destruction. A noisy, high-frequency signal (Panel d) is almost completely
destroyed by the transport, collapsing to a closely uniform, low-energy state (Panel e). The transformation
matrix (Panel f) again reveals why: its bottom-right, high-frequency block is scattered and non-diagonal,
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proving that the geometric language for noisy patterns has been fundamentally broken by the process. This
experiment confirms that our framework provides a tool for predicting not just that a pattern will change,
but how it will change, based on its alignment with the network’s underlying spectral geometry.

6 Real-World Case Study

Having established the theoretical foundations of our Proc-to-Spec framework in §4 and validated its
core properties with numerical experiments in §5, we now apply it to a complex, real-world system. The
objective of this case study is to move from mathematical verification to scientific discovery, demonstrating
our framework’s power as a tool for generating mechanistic and predictive insights from high-resolution,
inherently noisy ecological data.

Table 2: Summary of the Serengeti ‘Snapshot’ and Food Web Datasets.

Metric Value Source
Snapshot Serengeti Camera Trap Data
Study Area 1,125 km2 Swanson et al. (2015)
Number of Camera Traps 225 Swanson et al. (2015)
Time Period 2010–2013 Swanson et al. (2015)
Total Image Sets Classified 1.2 million Swanson et al. (2015)

Food Web Topology Data
Total Species (Nodes) 161 Baskerville et al. (2011)
Feeding Links (Edges) 592 Baskerville et al. (2011)

Functional Groups
Carnivores 9 Baskerville et al. (2011)
Herbivores 23 Baskerville et al. (2011)
Plants 129 Baskerville et al. (2011)

6.1 The Serengeti Food Web Ecosystem

We have chosen the Serengeti ecosystem in northern Tanzania to be the testbed for our framework. It
is a well-studied, resource-constrained system characterised by strong seasonal dynamics and occasional
environmental shocks. Its complex food web and the availability of rich, modern datasets provide an valuable
opportunity to test our framework’s ability to analyse real-world network dynamics.

Our analysis is built upon two public datasets. The first is the “Snapshot Serengeti” dataset, a large collection
of 1.2 million classified camera trap image sets from 225 camera traps spread across 1,125 km2 of the Serengeti
National Park from 2010 to 2013 (Swanson et al., 2015). This dataset provides a high-frequency, event-level
record of animal activity. The second is a high-resolution food web topology, which details 592 predator-prey
interactions among 161 species, notable for its high taxonomic resolution at the plant level (Baskerville et al.,
2011). An overview of these datasets is provided in Figure 7 and Table 2.

6.2 From Camera Traps to Dynamic Networks

To apply our framework, we developed a pipeline to transform the raw, event-level camera trap data (Swanson
et al., 2015) into a time-series of dynamic networks in the Proc category.

1. Dynamic Aggregation: We first parsed and aggregated the raw camera trap events from the
consensus dataset to produce a monthly time-series of total observed counts for each species.

2. Network Construction: For each recorded month from 2010 to 2013, we then constructed a
dynamic network. The nodes and static edge topology were taken from the food web data (Baskerville
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et al., 2011). We calculated the dynamic edge weights W (u, v) for each predator-prey interaction
using a well-established mass-action model (Murray, 2007), where the weight is proportional to the
product of the predator and prey counts for that month: W (u, v) = C · count(u) · count(v).

3. Handling Disconnectedness: Real-world ecological data is inherently sparse and noisy. In our
monthly networks, species with no observed activity are effectively disconnected from the system. For
such disconnected graphs, it is a standard and well-established practice in network science to focus
the analysis on the largest connected component (LCC), which contains the core of the network’s
structure and dynamics (Newman, 2018). Therefore, we performed all subsequent spectral analyses
on the LCC of the active subgraph for each month. This standard approach (Newman, 2018)
allows us to robustly analyse the dynamics of the core, active portion of the ecosystem in any given
month, focusing on the central arena of species interactions while being resilient to the transient
disappearance of peripheral species from the camera trap dataset.

6.3 Experimental Results

Using the constructed monthly networks, here we conducted a series of experiments with each designed to
validate a different core theorem of our framework.

Detecting the Ecosystem’s Pulse and a Major Ecological Shock. Our first experiment tests the
framework’s sensitivity to environmental change. As shown in Figure 8, the analysis reveals a clear, cyclical
pattern in the ecosystem’s structure corresponding to the wet and dry seasons. The size of the active core
(Panel a) and the network’s algebraic connectivity (Panel b, Fiedler value) both consistently contract during
the resource-scarce dry seasons. The framework also proves highly sensitive to extreme events, detecting a
major anomaly in July 2011 that corresponds to a severe, well-documented regional drought. The framework
provides a multi-faceted signature of this crisis: a collapse of the active core (Panel a), preceded by the most
significant structural fragmentation event in the time-series (Panel c), which resulted in a small, hyper-
connected remnant network (Panel b).

Verifying Physical Conservation Laws in the Spectral Domain. To validate the framework’s phys-
ical grounding, we tested the Spectral Trace Conservation Law. Figure 9 plots the change in total observed
animal activity (our proxy for the system’s total resource, ∆R) against the change in the trace of the sym-
metrised Laplacian (∆Tr(Lsym)) for each month-to-month transition. As predicted by Theorem 1, the two
quantities exhibit a near-perfect linear relationship (r = 0.9553, p < 0.0001). It is important to note that this
strong correlation is not a noisy, empirical biological finding, but rather a direct validation of the mathemat-
ical consistency of our framework. The result confirms that the abstract spectral quantity we defined (the
Laplacian trace) behaves exactly as predicted by the physical quantity it is designed to represent (the total
system resource, here modelled by camera-recorded animal activity). This grounds our functorial framework
in the physical reality of the system.

The Geometric Signature of a Crisis. We then leveraged the Process Interpretation Toolkit to move
beyond detecting change to characterising its fundamental nature. Figure 10 compares the geometric sig-
nature (χ(p) matrix) of the 2011 drought collapse to that of a typical seasonal transition. The results are
visually striking. A typical seasonal change (Panel c) is a minor perturbation, with a signature close to the
identity matrix, and its core community structure is preserved (Panel f). In contrast, the drought collapse
(Panel a) has a complex, highly off-diagonal signature, corresponding to a topologically complex shattering
of the Fiedler vector (Panel d).

The species-level analysis (Row 3) provides a concrete ecological interpretation. The pre-drought Fiedler
vector (Panel g) is defined by the classic partition between migratory herds (e.g., Connochaetes taurinus)
and their resident predators (e.g., Crocuta crocuta). The shattering of this vector is the geometric signature
of a well-documented ecological phenomenon: severe droughts force migratory herds to break their normal
patterns, temporarily destroying the predictable spatial predator-prey dynamics that define the ecosystem’s
structure (Sinclair et al., 2007).
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Figure 8: Spectral Dynamics of the Serengeti Food Web (2010-2013). The figure presents three
metrics derived from the monthly network time-series, revealing a roughly consistent seasonal cycle and a
major anomalous event. (a) Active Core Size: The number of species in the Largest Connected Com-
ponent (LCC) shows a seasonal “pulse”, vibrating between dry (shaded) and wet seasons. (b) Network’s
Algebraic Connectivity: The Fiedler value (λ2) of the LCC is approximately anti-correlated with the dry
seasons. The inset shows the full range, capturing a massive connectivity spike of the shrunken core during
the July 2011 drought. (c) Process Signature: The fragmentation term reveals fragmenting processes
(red bars) at the onset of dry seasons and consolidating processes (green bars) during recovery. The inset
highlights the extreme nature of the 2011 event. Collectively, these results show that the framework is sen-
sitive enough to detect both the subtle, recurring seasonal cycle and the multi-faceted signature of a major,
documented drought event.
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Figure 9: Real-world Validation of the Spectral Trace Conservation Law (Theorem 1) on the
Serengeti Food Web (2010-2013). This figure provides a direct, quantitative test of the predicted
relationship between physical resource dynamics and their spectral counterparts. Each point represents a
month-to-month transition in the Serengeti ecosystem. The x-axis shows the change in the total observed
animal count, our proxy for the total system resource (∆R). The y-axis shows the corresponding change
in the trace of the symmetrised Laplacian (∆Tr(Lsym)). The data reveals a strong, positive, and linear
correlation between the physical and spectral quantities, as predicted by our framework. This relationship is
quantified by a Pearson correlation coefficient of r = 0.9553 (p < 0.0001), providing compelling, real-world
evidence that the physical conservation of resources within the system is directly reflected by this spectral
invariant.

Predicting Ecological Winners and Losers. Our final experiment demonstrates the framework’s pre-
dictive power. We defined a signal of species’ “importance” (eigenvector centrality) on the stable, pre-drought
network. We then used the transport matrix (Ttransport) derived from the drought process to generate a fal-
sifiable prediction for the new importance of each species in the drought-stricken state. Figure 11 visualises
these predictions. The framework predicts that large grazers (e.g., Eudorcas thomsonii) and their specialist
predators (Panthera leo) will be the primary “losers”, while more adaptable, opportunistic carnivores (e.g.,
Crocuta crocuta) will maintain their central role. These predictions are supported by the ecological liter-
ature. Severe droughts are known to disrupt the primary food source for large grazers and, consequently,
the specialist predators that depend on them. For instance, drought conditions in the Serengeti are known
to fundamentally alter the dynamics of the wildebeest-predator system, affecting migration, foraging, and
predation patterns (Sinclair et al., 2007). In contrast, adaptable scavengers and predators are well-positioned
to capitalise on the increased number of carcasses and weakened prey during such events.

7 Discussion and Conclusion

The analysis of dynamic networks has traditionally focused on characterising sequences of states, often leaving
the transformations that drive the evolution between them as unformalised, black-box processes. In this
work, we introduced Proc-to-Spec, a new, category-theoretical framework that provides a principled and
interpretable language for the processes of change themselves. Our central contribution is the construction of
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Figure 10: The Geometric-Spectral Signature and Species-Level Impact of Ecological Processes
of the Serengeti Food Web (2010-2013). This figure provides a multi-layered validation of our frame-
work’s diagnostic power by comparing the geometric signature (χ(p) matrix) and structural impact of three
distinct ecological processes. Top Row (Panels a-c): The heatmaps show the overall geometric signature
of each process. A “typical” seasonal transition from wet to dry in 2012 (c) has a signature that is strongly
diagonal, indicating a minor perturbation that preserves the system’s core structure. In contrast, the 2011
drought collapse (a) and subsequent recovery (b) are highly off-diagonal, the signatures of catastrophic
structural reorganisations. Middle Row (Panels d-f): These panels reveal the mechanism behind the sig-
natures by showing the transformation of the Fiedler vector (v2), which represents the ecosystem’s primary
community structure. During the typical transition (f), the Fiedler vector is preserved, mapping almost
entirely onto the new Fiedler vector (red bar). During the drought collapse (d), this vector is shattered, its
energy scattered across many new structural modes. Bottom Row (Panels g-i): This provides a concrete,
species-level interpretation. The Fiedler vector of the pre-drought network (g) and the typical network (i)
is defined by the classic ecological partition of the Serengeti: the large migratory herds (e.g., Connochaetes
taurinus, Equus quagga) on one side, and their primary resident predators (e.g., Crocuta crocuta, Panthera
leo) on the other. The shattering of this vector during the drought is the geometric signature of a well-
documented ecological phenomenon: severe droughts force migratory herds to break their normal patterns
in search of scarce resources, thus temporarily destroying the predictable spatial predator-prey dynamics
that define the ecosystem’s structure (Sinclair et al., 2007). The framework has detected and characterised
this real-world crisis at the species level.
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Figure 11: A Falsifiable Prediction of Ecological “Winners” and “Losers” of the 2011 Drought
using Signal Transport (Theorem 7). This figure demonstrates the framework’s predictive power. The
signal is a species’ importance, defined by its eigenvector centrality in the stable, pre-drought network of
June 2011. This signal is then projected through the drought process using the transport matrix Ttransport =
(χ(p)T )−1 to predict the new centrality of each species in the drought-stricken state of July 2011. The slope
chart visualises the predicted change in rank for the top 10 most central species. The framework predicts
that large grazers, such as Thomson’s Gazelle (Eudorcas) and Hartebeest (Alcelaphus), and their specialist
apex predator, the Lion (Panthera), will be the primary “losers”, suffering a significant drop in their relative
importance. Conversely, it predicts that more adaptable, opportunistic carnivores like the Spotted Hyena
(Crocuta) will be the primary “winners”, maintaining or improving their central role. These predictions are
supported by ecological literature. Severe droughts are known to disrupt the primary food source for large
grazers and, consequently, the specialist predators that depend on them (Sinclair et al., 2007). In contrast,
adaptable scavengers and predators like hyenas are well-positioned to capitalise on the increased number of
carcasses and weakened prey during such events. The results validate that the Signal Transport Theorem
can function as a quantitative scientific tool for anticipating how ecological roles are reshuffled under major
perturbations such as drought.

a spectral functor, χ, that maps physical processes in a source category Proc to unique linear transformations
between spectral eigenspaces in a target category Spec.

7.1 Summary of Key Findings

Our theoretical claims were validated through a two-pronged approach. First, a suite of numerical experi-
ments provided a rigorous, controlled validation of each of our core theorems (§5), confirming the mathemati-
cal soundness of the framework. Second, a comprehensive case study of the Serengeti ecosystem demonstrated
the framework’s power and sensitivity on a complex, noisy, real-world dataset (§6).

Through the Serengeti case study, we demonstrated that:

• (Theorem 1) An abstract spectral invariant—the Laplacian trace—is rigorously and directly cou-
pled to a physical quantity in the system, the total observed animal activity, validating the frame-
work’s physical grounding.

• (Theorem 2) The framework is sensitive enough to detect both the subtle, cyclical pulse of seasonal
change and the unique signature of a catastrophic, real-world drought event.

• (Process Interpretation Toolkit) The geometric signature (χ(p) matrix) provides a powerful
diagnostic tool, revealing that a major drought has a complex, off-diagonal signature corresponding
to a shattering of the ecosystem’s core predator-prey structure, fundamentally different from the
near-identity signature of a typical seasonal change.
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• (Theorem 7) The framework has predictive power. The Signal Transport theorem was used to make
a set of ecologically meaningful predictions about which species would become functional “winners”
and “losers” during the drought.

7.2 Broader Implications: The Geometry of Change

The Proc-to-Spec framework offers more than a new set of analytical tools; it offers a new lens through
which to view the dynamics of complex systems. By focusing on the geometry of the transformations, we
move beyond simply describing that a system has changed to providing a mechanistic, interpretable signature
for how it has changed.

This provides a “glass box” alternative to many contemporary machine learning models. While a graph
neural network might predict a future network state with high accuracy, our framework is designed to
provide causal insight into the underlying process, characterising its nature (e.g., a local perturbation vs.
a global reorganisation). This process-centric viewpoint has broad potential applicability in other domains
where dynamic networks are central, such as systems biology (gene regulatory networks), neuroscience (brain
connectivity), or economics (financial networks).

7.3 Limitations and Future Work

Here, we discuss the theoretical and practical limitations of our work as well as suggest future research
directions to overcome those.

Theoretical Limitations. The category-theoretical foundations of Proc-to-Spec, while rigorous, are
built upon specific assumptions that define the scope of the current framework. Future work should aim to
generalise these foundations.

• Preservation of the Node Set: The functorial mapping χ is formally defined for morphisms in
Proc that represent processes preserving the set of nodes. Our current analysis of node removal
(Theorem 6), while providing a clear geometric interpretation as a projection, exists outside this
primary functorial definition. A key avenue for future work is to extend the framework to a richer
category that can formally accommodate morphisms that change the dimension of the underlying
vector space, perhaps by employing concepts from persistence homology or sheaf theory to track
topological features across changing dimensions (Perea & Harer, 2015).

• Choice of Spectral Representation: Our framework is built upon the symmetrised Laplacian.
While this operator has many desirable properties—including a real spectrum and an orthonormal
eigenbasis—other matrix representations, such as the random walk Laplacian, the adjacency matrix,
or higher-order Laplacian (Nurisso et al., 2025), capture different aspects of network dynamics.
Future theoretical work could explore the construction of parallel functors for these different spectral
representations.

Practical Limitations. The application of our framework to the Serengeti case study highlighted several
practical challenges that offer opportunities for future refinement and application.

• Modelling of Edge Weights: The insights generated are contingent on our choice of a mass-
action model for dynamic edge weights. While this is a standard and justified model (Murray,
2007), it is a simplification of complex ecological interactions. Future work could explore more
sophisticated, domain-specific models for interaction strength, potentially incorporating the non-
linear dependencies and external environmental variables that are known to modulate the strength
of species interactions (Tylianakis et al., 2008).

• Data Sparsity and the LCC: The case study demonstrated that real-world ecological data is
often sparse, leading to monthly network snapshots that are disconnected. Our robust method of
analysing the largest connected component (LCC) was effective and scientifically sound. However,
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this points to a broader need for spectral theories that can gracefully handle and perhaps even draw
insight from the natural fragmentation and disconnectedness of real-world systems, rather than
treating it as a feature to be isolated (Banerjee, 2021).

7.4 Conclusion

In this paper, we introduced Proc-to-Spec, a functorial framework for the analysis of dynamic networks.
Our work is motivated by a fundamental limitation in the traditional study of such systems, which has
largely focused on characterising sequences of static states, often leaving the transformations that drive the
evolution between them as unformalised, black-box processes. By shifting the analytical focus from states to
the processes themselves, we have developed a principled and powerful toolkit for understanding how complex
systems evolve. Through a suite of rigorous numerical experiments, we first validated the mathematical
soundness of our core theorems in controlled settings. We then demonstrated the framework’s real-world
applicability in a comprehensive case study of the Serengeti ecosystem, using high-resolution camera trap
data. This work opens new avenues for a more mechanistic, interpretable, and geometric understanding
of the dynamic networks that pervade both the natural and social sciences. By providing a “glass box”
that reveals the geometry of change, our framework represents a step towards a deeper and more predictive
science of complex, interconnected systems.
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A Detailed Proofs of Results in §4

Here, we give the full mathematical proofs for the lemmas and theorems presented in our theoretical analysis
in §4. We present the proofs in the same order as they appear in the main text, beginning with the
foundational guarantee of functoriality and proceeding to the main scientific and interpretive results. The
proofs for Lemma 1 and Lemma 2 are provided in §A.1 and §A.5, respectively. The proofs for our main
theorems are provided in the subsequent sections: Theorem 1 (Trace Conservation) in §A.2, Theorem 2
(Spectral Sensitivity) in §A.3, Theorem 3 (Stability-Spectrum Equivalence) in §A.4, Theorem 4 (Rank-One
Update) in §A.6, Theorem 5 (Structural Inertia) in §A.7, Theorem 6 (Node Removal) in §A.8, and Theorem 7
(Signal Transport) in §A.9.
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A.1 Proof of Lemma 1: Functoriality of χ

Lemma 1 (Functoriality of χ). The map χ : Proc → Spec is a functor. It preserves identity morphisms
and the composition of morphisms.

Proof. To formally prove that χ is a functor, we must verify that it satisfies the two defining axioms of a
functor: (1) it maps identity morphisms in the source category Proc to identity morphisms in the target
category Spec, and (2) it preserves the structure of composition.

1. Preservation of Identity Morphisms. We must show that for any object G ∈ Proc, χ(idG) = idχ(G).

Let G = (V, E, W ) be an object in Proc. The identity morphism on this object, idG : G → G, is the process
that results in no change to the network state. This means the resulting weight function W ′ is identical to
the initial weight function W .

The functor χ maps an object G to the vector space χ(G) spanned by the orthonormal eigenvectors {vi}n
i=1

of its symmetrised Laplacian, Lsym. The action of the functor on the morphism, χ(idG), is the linear
transformation that maps the eigenbasis of the initial state to the eigenbasis of the final state.

Since W ′ = W , the Laplacians are identical (L′
sym = Lsym), and therefore their eigenspaces are identical.

The transformation χ(idG) maps the vector space χ(G) to itself, and it maps the chosen orthonormal basis
{vi} to the identical basis {v′

i = vi}. A linear transformation that maps every vector in a basis to itself is,
by definition, the identity transformation on that vector space.

Therefore, χ(idG) = idχ(G). This part of the proof is now self-contained.

2. Preservation of Composition. We must show that for any two composable morphisms p1 : G1 → G2
and p2 : G2 → G3, the following holds: χ(p2 ◦ p1) = χ(p2) ◦ χ(p1).

Let B1 = {vi}, B2 = {ui}, and B3 = {wi} be the orthonormal eigenbases for the Laplacians of G1, G2, and
G3, respectively.

The functor maps these processes to linear transformations in Spec, which are change of basis operations:

• χ(p1) : χ(G1) → χ(G2) maps basis B1 to B2.

• χ(p2) : χ(G2) → χ(G3) maps basis B2 to B3.

The composition of these linear transformations in Spec, χ(p2) ◦ χ(p1), is the map from χ(G1) → χ(G3)
obtained by first applying χ(p1) and then χ(p2).

Now consider the composition in Proc. The process p2 ◦ p1 is a single morphism that maps G1 directly to
G3. The functor maps this composite process to the linear transformation χ(p2 ◦p1) : χ(G1) → χ(G3), which
is the single operation that maps basis B1 to B3.

In linear algebra, the transformation matrix for a change of basis from a basis B1 to a basis B3, via an
intermediate basis B2, is given by the product of the individual change of basis matrices. Let M1 be the
matrix for χ(p1) and M2 be the matrix for χ(p2). The composition χ(p2) ◦ χ(p1) corresponds to the matrix
product M2M1. This resulting matrix is precisely the change of basis matrix from B1 to B3, which is the
matrix representation of χ(p2 ◦ p1).

Therefore, the linear transformations are the same: χ(p2 ◦ p1) = χ(p2) ◦ χ(p1).

Since χ preserves both identity morphisms and composition, it is a valid functor.

A.2 Proof of Theorem 1: The Spectral Trace Conservation Law

Theorem 1 (The Spectral Trace Conservation Law). Let p : G → G′ be a conservative process, where the
total resource is unchanged (R(G) = R(G′)). The trace of the symmetrised Laplacian is conserved, i.e.,
Tr(L′

sym) = Tr(Lsym). Consequently, the sum of the Laplacian eigenvalues is an invariant of the process.
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Proof. The proof proceeds by first establishing a direct identity between the total resource of a network,
R(G), and the trace of its symmetrised Laplacian, Tr(Lsym).

Let G = (V, E, W ) be a network object in Proc with |V | = n. The symmetrised Laplacian is defined as
Lsym = Dsym − Asym.

1. Trace of the Laplacian. The trace of a matrix is the sum of its diagonal elements. For the
Laplacian, since Asym has zeros on its diagonal (assuming no self-loops, or they can be handled
separately without loss of generality), the trace is the sum of the diagonal elements of the degree
matrix Dsym:

Tr(Lsym) =
n∑

i=1
(Lsym)ii =

n∑
i=1

(Dsym)ii

2. Relating Trace to Adjacency Matrix. The i-th diagonal entry of the degree matrix, (Dsym)ii,
is defined as the sum of weights of all edges incident to node i in the symmetrised graph. This is
the sum of the i-th row of the symmetrised adjacency matrix Asym:

(Dsym)ii =
n∑

j=1
(Asym)ij

Therefore, the trace of the Laplacian is the sum of all entries in the degree matrix, which is equivalent
to the sum of all entries in the symmetrised adjacency matrix:

Tr(Lsym) =
n∑

i=1

n∑
j=1

(Asym)ij

3. Relating Adjacency Matrix to Total Resource. We now substitute the definition of Asym,
where (Asym)ij = W (i,j)+W (j,i)

2 :

Tr(Lsym) =
n∑

i=1

n∑
j=1

W (i, j) + W (j, i)
2

= 1
2

 n∑
i=1

n∑
j=1

W (i, j) +
n∑

i=1

n∑
j=1

W (j, i)


The term

∑
i,j W (i, j) is the sum of all edge weights in the original directed graph, which is by

definition the total resource R(G). The second term,
∑

i,j W (j, i), is also the sum over all edge
weights and is therefore also equal to R(G). This gives us the direct identity:

Tr(Lsym) = 1
2(R(G) + R(G)) = R(G)

4. Applying the Conservative Constraint. The process p : G → G′ is defined as conser-
vative, meaning R(G) = R(G′). From the identity established in the previous step, we have
Tr(Lsym) = R(G) and Tr(L′

sym) = R(G′). The conservation of resources therefore directly im-
plies the conservation of the trace:

Tr(Lsym) = Tr(L′
sym)

5. Relating Trace to Eigenvalues. A fundamental theorem of linear algebra states that the trace
of any matrix is equal to the sum of its eigenvalues. Let {λi}n

i=1 be the eigenvalues of Lsym and
{λ′

i}n
i=1 be the eigenvalues of L′

sym. We have:
n∑

i=1
λi = Tr(Lsym) and

n∑
i=1

λ′
i = Tr(L′

sym)
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Combining this with the result from the previous step, we conclude that the sum of the eigenvalues
is conserved:

n∑
i=1

λi =
n∑

i=1
λ′

i

This completes the proof.

A.3 Proof of Theorem 2: The Spectral Sensitivity of Algebraic Connectivity

Theorem 2 (The Spectral Sensitivity of Algebraic Connectivity). Let p : G → G′ be a process that induces a
sufficiently small change in the symmetrised Laplacian, ∆Lsym = L′

sym −Lsym. If the process is structurally
fragmenting, defined as satisfying the condition vT

2 (∆Lsym)v2 < 0, where v2 is the Fiedler eigenvector of
the initial graph G, then the Fiedler value will decrease (λ′

2 < λ2).

Proof. The proof for this theorem relies on a standard result from matrix perturbation theory, which describes
how the eigenvalues of a symmetric matrix change in response to a small perturbation.

Let Lsym be the symmetrised Laplacian of the initial graph G, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

and a corresponding complete orthonormal set of eigenvectors {vi}n
i=1. Let the process p induce a small

perturbation, resulting in a new Laplacian L′
sym = Lsym +∆Lsym with new eigenvalues {λ′

i}n
i=1. We assume

the perturbation ∆Lsym is small enough such that first-order effects dominate.

1. First-Order Eigenvalue Perturbation. A fundamental result from matrix analysis (see, e.g.,
Bhatia (1992)) states that for a small symmetric perturbation ∆Lsym, the first-order change in a
simple eigenvalue λk is given by the Rayleigh quotient of the perturbation matrix with respect to
the corresponding eigenvector vk:

λ′
k = λk + vT

k (∆Lsym)vk + O(∥∆Lsym∥2)

For a sufficiently small perturbation, we can analyse the first-order term to determine the direction
of the change. The change in the eigenvalue is thus approximated by:

∆λk = λ′
k − λk ≈ vT

k (∆Lsym)vk

2. Applying to the Fiedler Value. The Fiedler value is the second smallest eigenvalue, λ2. For this
theorem, we assume λ2 is a simple (non-repeated) eigenvalue, which is the generic case for connected
graphs. Applying the perturbation formula to λ2, we get:

λ′
2 − λ2 ≈ vT

2 (∆Lsym)v2

where v2 is the Fiedler eigenvector of the original Laplacian Lsym.

3. Applying the “Structurally Fragmenting” Condition. The theorem’s premise defines a pro-
cess as “structurally fragmenting” if it satisfies the following condition:

vT
2 (∆Lsym)v2 < 0

This condition gives a precise mathematical meaning to the idea that the process is “aligned” with
the network’s primary structural vulnerability, as identified by the Fiedler eigenvector.

4. Conclusion. By substituting the condition from Step 3 into the first-order approximation from
Step 2, we directly obtain the result:

λ′
2 − λ2 < 0

which implies:
λ′

2 < λ2

Therefore, for any sufficiently small process that is structurally fragmenting, the Fiedler value of the network
is guaranteed to decrease. This completes the proof.
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A.4 Proof of Theorem 3: The Stability-Spectrum Equivalence

Theorem 3 (The Stability-Spectrum Equivalence). A dynamic network sequence (Gt)∞
t=1 governed by dis-

sipative processes converges to a stable state G∞ if and only if its corresponding sequence of spectral data
(eigenvalues and eigenvectors of Lsym,t) converges to a stable limit.

Proof. This is an equivalence proof, which requires proving two implications. The core of the proof rests on
the continuity of the maps between the spaces of weight matrices, Laplacians, and their spectral decompo-
sitions.

Part 1: Stability =⇒ Spectral Convergence. In this direction, we prove that if the physical state of
the network converges, its spectral representation must also converge.

1. Assumption of Stability. We assume that the system converges to a stable state G∞. By
definition, this means the sequence of weight functions converges to a limit function, Wt → W∞ as
t → ∞. This convergence is typically defined in terms of a matrix norm, e.g., ∥Wt − W∞∥ → 0.

2. Continuity of the Laplacian Map. The mapping from a weight matrix W to its corresponding
symmetrised Laplacian Lsym is a continuous function. The entries of Lsym are simple linear com-
binations of the entries of W . Specifically, (Lsym)ij is a function of W (i, j), W (j, i), and sums of
weights connected to nodes i and j. As a finite sum of continuous functions, this mapping is con-
tinuous. Therefore, the convergence of the weight matrices implies the convergence of the Laplacian
matrices:

Wt → W∞ =⇒ Lsym,t → Lsym,∞

3. Continuity of Spectral Decomposition. The eigenvalues and eigenvectors of a real symmetric
matrix are continuous functions of its entries (see, e.g., Bhatia (1992)). This means that for a
converging sequence of matrices, their spectra also converge.

4. Conclusion of Part 1. Since the sequence of Laplacians Lsym,t converges to a limit Lsym,∞, it
follows from the continuity of the spectral map that the corresponding sequences of their eigenvalues
and eigenvectors must also converge to a stable limit. This proves the first implication.

Part 2: Spectral Convergence =⇒ Stability. In this direction, we prove that if the spectral repre-
sentation of the network converges, the physical state must also have converged.

1. Assumption of Spectral Convergence. We assume that the full set of spectral data converges.
This means the sequence of eigenvalues {λi,t} converges to a limit spectrum {λi,∞}, and the sequence
of eigenvector matrices Vt (whose columns are the eigenvectors) converges to a limit matrix V∞.

2. Convergence of the Laplacian. A real symmetric matrix is uniquely determined by its spectral
decomposition via the formula Lsym = V ΛV T , where Λ is the diagonal matrix of eigenvalues. Since
matrix multiplication and transposition are continuous operations, the convergence of both Vt and
Λt implies the convergence of the sequence of symmetrised Laplacian matrices:

(Vt → V∞ and Λt → Λ∞) =⇒ Lsym,t → Lsym,∞

3. From Laplacian Convergence to System Stability. The convergence of Lsym,t means that for
any small ϵ > 0, there exists a time T such that for all t > T , ∥Lsym,t+1 − Lsym,t∥ < ϵ. This implies
that the change in the trace, |Tr(Lsym,t+1) − Tr(Lsym,t)|, must also approach zero.
From Theorem 1, we know that Tr(Lsym) = R(G). Therefore, the total resource change per step,
|R(Gt+1) − R(Gt)|, must also approach zero.
The processes in our Proc category are fundamentally dissipative (R(Gt+1) ≤ R(Gt)). A dissipative
system can only stop dissipating resources when it has reached a stable fixed point or equilibrium
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state. Since the change in total resource is approaching zero, the system must be approaching a
state where the processes acting upon it are no longer dissipative but have become conservative. In a
system without external energy inputs, the only state where this can happen is a stable equilibrium.
Any further change would either require dissipation (which would change the trace, contradicting
spectral convergence) or an external input (which is outside our current model).
Therefore, the convergence of the spectral data implies the convergence of the underlying physical
state to a stable equilibrium, Gt → G∞.

Since both implications hold, the equivalence is established. This completes the proof.

A.5 Proof of Lemma 2: The Change of Basis Formula

Lemma 2 (The Change of Basis Formula). Let p : G → G′ be a process, with {vi} and {v′
j} being

the orthonormal eigenbases of the initial and final Laplacians, respectively. The entry (i, j) of the matrix
representation of the linear transformation χ(p) is given by the inner product of the respective basis vectors:
(χ(p))ij = ⟨v′

i, vj⟩.

Proof. Let the source vector space be U = χ(G) and the target vector space be U ′ = χ(G′). Let B =
{v1, . . . , vn} be the orthonormal eigenbasis for U , and let B′ = {v′

1, . . . , v′
n} be the orthonormal eigenbasis

for U ′.

The linear transformation χ(p) : U → U ′ is the map that governs the change of basis. By definition, the
matrix representation of a linear transformation is constructed column by column. The j-th column of the
matrix for χ(p) is the coordinate vector of the transformed basis vector, χ(p)(vj), expressed in the target
basis B′.

In our framework, the functor χ maps the abstract process p to the specific linear transformation that
describes the change in the geometric frame of the network. This means the transformation maps the old
basis vectors directly onto themselves, but now they exist within the new space. Formally, we can consider
the action of the transformation on an old basis vector vj to be the vector vj itself, which we now must
represent in the new basis B′.

Let M be the matrix representation of χ(p) with respect to the bases B and B′. The j-th column of M is
the vector [vj ]B′ , the coordinate representation of vj in the basis B′.

To find the i-th component of this coordinate vector, we need to find the scalar coefficient ci in the linear
combination:

vj =
n∑

k=1
ckv′

k

Since the basis B′ is orthonormal, we can find the coefficient ci by taking the inner product (dot product)
of both sides with the basis vector v′

i:

⟨v′
i, vj⟩ =

〈
v′

i,

n∑
k=1

ckv′
k

〉

By the linearity of the inner product, we can move the summation and scalar coefficients out:

⟨v′
i, vj⟩ =

n∑
k=1

ck⟨v′
i, v′

k⟩

Because B′ is an orthonormal basis, the inner product ⟨v′
i, v′

k⟩ is equal to the Kronecker delta, δik, which
is 1 if i = k and 0 otherwise. The summation therefore collapses, leaving only the term where k = i:

⟨v′
i, vj⟩ = ci · 1 = ci
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This shows that the i-th coordinate of the vector vj in the basis B′ is precisely the inner product ⟨v′
i, vj⟩.

Since the entry (i, j) of the transformation matrix M is the i-th component of the j-th column vector, we
have:

Mij = (χ(p))ij = ci = ⟨v′
i, vj⟩

This completes the proof.

A.6 Proof of Theorem 4: The Rank-One Update Signature

Theorem 4 (The Rank-One Update Signature). Let p be a simple process that only perturbs the weight of a
single edge between nodes a and b. The resulting change in the symmetrised Laplacian, ∆Lsym, is a rank-one
matrix. Consequently, the transformation matrix χ(p) is a low-rank perturbation of the identity matrix.

Proof. The proof consists of two parts. First, we show that a single edge perturbation results in a rank-
one update to the symmetrised Laplacian. Second, we state how this low-rank update affects the resulting
transformation matrix χ(p).

1. The Rank of the Laplacian Perturbation. Let the process p change the weight of the directed edge
(a, b) by a value δ1 and the weight of the edge (b, a) by a value δ2. In the simplest case, one of these is zero.
The change in the weight function is non-zero only for these two edges.

The change in the symmetrised adjacency matrix, ∆Asym, is given by:

(∆Asym)ij = ∆W (i, j) + ∆W (j, i)
2

This results in a matrix that is zero everywhere except at entries (a, b) and (b, a), where the value is (δ1+δ2)/2.
Let δ = (δ1 + δ2)/2.

The change in the symmetrised degree matrix, ∆Dsym, is a diagonal matrix where (∆Dsym)ii =∑
j(∆Asym)ij . The only non-zero entries will be on the diagonal at positions (a, a) and (b, b):

• (∆Dsym)aa = (∆Asym)ab = δ

• (∆Dsym)bb = (∆Asym)ba = δ

The total change in the symmetrised Laplacian is ∆Lsym = ∆Dsym − ∆Asym. This matrix has only four
non-zero entries:

• (∆Lsym)aa = δ

• (∆Lsym)bb = δ

• (∆Lsym)ab = −δ

• (∆Lsym)ba = −δ

Let ek be the standard basis vector with a 1 in the k-th position. The vector u = ea − eb is a vector with
1 at position a, −1 at position b, and 0 elsewhere. The outer product of this vector with itself is a matrix
(uuT ). Its entries match the structure of our perturbation matrix. We can therefore write our perturbation
matrix as a scalar multiple of this outer product:

∆Lsym = δ(ea − eb)(ea − eb)T

A matrix that can be expressed as the outer product of a single non-zero column vector and a single non-zero
row vector is, by definition, a rank-one matrix.
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2. Consequence for the Transformation Matrix. The new Laplacian is L′
sym = Lsym + ∆Lsym. We

have shown that the perturbation ∆Lsym is a simple, rank-one matrix.

According to matrix perturbation theory (specifically, results related to low-rank updates), the eigenvectors
of a matrix that has been perturbed by a low-rank matrix are themselves a low-rank perturbation of the
original eigenvectors. This means the new eigenbasis {v′

i} is “close” to the original eigenbasis {vi}.

The transformation matrix χ(p) has entries (χ(p))ij = ⟨v′
i, vj⟩. Since the new basis is a small perturbation

of the old orthonormal basis, the new basis vectors are nearly aligned with the old ones. This means:

• Diagonal entries (χ(p))ii = ⟨v′
i, vi⟩ will be close to 1.

• Off-diagonal entries (χ(p))ij = ⟨v′
i, vj⟩ for i ̸= j will be close to 0.

Therefore, the transformation matrix χ(p) will be a low-rank perturbation of the identity matrix, I. The
structure of this perturbation is not arbitrary but is determined by the components of the original eigenvectors
at the perturbed nodes, a and b.

This completes the proof.

A.7 Proof of Theorem 5: The Structural Inertia Theorem

Theorem 5 (The Structural Inertia Theorem). Let p be a process that induces a small perturbation ∆Lsym.
The resulting transformation matrix χ(p) is diagonally dominant. The magnitude of its off-diagonal entries
is bounded by the norm of the perturbation and the spectral gaps of the original graph.

Proof. The proof relies on the Davis-Kahan theorem, a cornerstone of matrix perturbation theory, which
provides a bound on the rotation of eigenspaces under a symmetric perturbation.

Let Lsym and L′
sym = Lsym + ∆Lsym be the initial and final symmetrised Laplacians, respectively. Let their

eigenvalues be {λi} and {λ′
i}, and their corresponding orthonormal eigenvector matrices be V = [v1| . . . |vn]

and V ′ = [v′
1| . . . |v′

n]. We assume the perturbation, as measured by its spectral norm ∥∆Lsym∥2, is small.

1. Matrix Entries as Inner Products. From Lemma 2, the entries of the transformation matrix
χ(p) are given by the inner products of the old and new eigenvectors:

(χ(p))ij = ⟨v′
i, vj⟩

2. Diagonal Entries. The diagonal entries are (χ(p))ii = ⟨v′
i, vi⟩ = cos(θi), where θi is the angle

between the new and old i-th eigenvectors. For a small perturbation, the eigenvectors do not change
much, so θi is small and cos(θi) is close to 1.

3. Off-Diagonal Entries and the Davis-Kahan Theorem. The off-diagonal entries, (χ(p))ij for
i ̸= j, represent the projection of an old eigenvector vj onto a new eigenvector v′

i. The Davis-Kahan
Sine Theta Theorem provides a bound on the angle between the old and new eigenspaces. A direct
consequence of the theorem gives a bound on the magnitude of these individual inner products.
Let’s assume the eigenvalues of Lsym are simple. The magnitude of the inner product between a
new eigenvector v′

i and an old eigenvector vj for i ̸= j is bounded by:

|⟨v′
i, vj⟩| ≤ ∥∆Lsym∥2

|λi − λj |

The term |λi − λj | is the spectral gap between the i-th and j-th eigenvalues.

4. Conclusion: Diagonal Dominance. The result from Step 3 shows that the magnitude of the off-
diagonal entries, |(χ(p))ij |, is small, provided the perturbation ∥∆Lsym∥2 is small and the spectral
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gap |λi − λj | is not pathologically close to zero. The diagonal entries, as shown in Step 2, are close
to 1.
A matrix is diagonally dominant if, for every row, the magnitude of the diagonal entry is greater
than the sum of the magnitudes of all other (off-diagonal) entries in that row. For a sufficiently
small perturbation, the diagonal entries will be approximately 1, while the off-diagonal entries will
be close to 0. Thus, the matrix χ(p) is guaranteed to be diagonally dominant.

This proves that a small physical perturbation cannot cause a large, arbitrary re-shuffling of the fundamental
structural modes of the network. This completes the proof.

A.8 Proof of Theorem 6: The Node Removal Signature

Theorem 6 (The Node Removal Signature). Let p be a process that removes a node k from a network
G with n nodes. The resulting transformation χ(p) maps the original n-dimensional eigenspace to the new
(n − 1)-dimensional eigenspace and is a projection operator.

Proof. The proof involves analysing the structural change in the Laplacian matrix that results from deleting
a vertex and then characterising the nature of the map between the corresponding eigenspaces.

Let the original graph be G with n vertices, and let its symmetrised Laplacian be Lsym, an n × n matrix.
Let the resulting graph after removing node k be G′, with n − 1 vertices. The new Laplacian, L′

sym, is the
(n − 1) × (n − 1) principal submatrix of Lsym obtained by deleting the k-th row and k-th column.

1. Change in Dimension. The original eigenspace is χ(G) ∼= Rn, spanned by the eigenvectors {vi}n
i=1

of Lsym. The final eigenspace is χ(G′) ∼= Rn−1, spanned by the eigenvectors {uj}n−1
j=1 of L′

sym. The
transformation χ(p) is a map from an n-dimensional space to an (n − 1)-dimensional space. Such
a map cannot be an isomorphism (like a simple change of basis) but must involve a reduction in
dimension.

2. Constructing the Projection Operator. We can model the overall transformation in two concep-
tual steps. First, we define a projection operator Pk : Rn → Rn−1 that removes the k-th component
from any vector in the original space. This operator effectively projects the original n-dimensional
space onto the subspace that corresponds to the remaining nodes.
The eigenvectors of the new Laplacian, {uj}, form a basis for this target Rn−1 space. The trans-
formation χ(p) can be understood as the composition of this projection with a subsequent change
of basis within the lower-dimensional space. However, the dominant characteristic of the map from
Rn to Rn−1 is the projection itself.

3. The Kernel of the Transformation. A projection from a higher-dimensional space to a lower-
dimensional space has a non-trivial kernel (or null space)—the set of vectors that are mapped to the
zero vector. In this case, the kernel of the projection Pk is the one-dimensional subspace spanned
by the standard basis vector ek (the vector with a 1 in the k-th position and zeros elsewhere).
Any structural mode of the original network that was entirely localised to node k (i.e., any vector
proportional to ek) is annihilated by the transformation. This directly corresponds to the physical
removal of the node.

4. Relationship Between Spectra (Cauchy Interlacing Theorem). The relationship between
the spectra of Lsym and its principal submatrix L′

sym is not arbitrary but is tightly constrained
by the Cauchy Interlacing Theorem. This theorem states that the eigenvalues of the new matrix
interlace the eigenvalues of the original matrix:

λ1 ≤ λ′
1 ≤ λ2 ≤ λ′

2 ≤ · · · ≤ λ′
n−1 ≤ λn

This ensures that the spectral properties of the subgraph G′ are a predictable and well-behaved
consequence of the properties of the original graph G.
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In summary, the removal of a node induces a transformation from an n-dimensional space to an (n − 1)-
dimensional space, which is fundamentally a projection. The kernel of this projection corresponds directly
to the removed node, providing a unique and identifiable signature for this type of major topological change.
This completes the proof.

A.9 Proof of Theorem 7: The Signal Transport Theorem

Theorem 7 (The Signal Transport Theorem). Let f be a vector representing a “signal” on the nodes of a
network G. After a process p, the signal f ′ on the new network G′ that maintains the same coordinates with
respect to the new eigenbasis is given by the transformation f ′ = Ttransportf , where the transport matrix is
Ttransport = V ′V T , with V and V ′ being the matrices of eigenvectors for G and G′, respectively.

Proof. The proof consists of deriving the explicit matrix form for the transport operator by defining the
signal in the spectral domain and then mapping it back to the node domain.

1. Signal Representation in the Spectral Domain. Let G be the initial network with its corre-
sponding symmetrised Laplacian Lsym. Let V be the n × n matrix whose columns are the complete
orthonormal set of eigenvectors of Lsym, B = {v1, . . . , vn}.
A signal f ∈ Rn on the nodes of the graph can be expressed as a linear combination of these basis
vectors. The vector of coefficients, a ∈ Rn, which we call the spectral coordinates of the signal, is
given by:

f = V a

Since V is an orthonormal matrix, its inverse is its transpose (V −1 = V T ). We can therefore find
the spectral coordinates from the signal via:

a = V −1f = V T f

2. Defining the Transported Signal. Let the process p transform the network from G to G′.
The new network G′ has a new symmetrised Laplacian L′

sym and a new matrix of orthonormal
eigenvectors, V ′.
The core idea of signal transport is to define a new signal, f ′, on the nodes of G′ that has the exact
same spectral coordinates a as the original signal, but expressed in the new basis V ′. The new signal
is therefore synthesised from the original spectral coordinates and the new basis:

f ′ = V ′a

3. Deriving the Transport Operator. Our goal is to find the matrix Ttransport that maps the
original signal vector f directly to the new signal vector f ′, such that f ′ = Ttransportf .
We can derive this by substituting the expression for the spectral coordinates a from Step 1 into the
synthesis equation from Step 2:

f ′ = V ′(V T f)

By the associativity of matrix multiplication, this can be written as:

f ′ = (V ′V T )f

By comparing this result with the desired form f ′ = Ttransportf , we can directly identify the transport
operator matrix:

Ttransport = V ′V T

This provides the explicit formula for the transport matrix, which depends only on the eigenvectors of the
initial and final network states. This completes the proof.
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