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Abstract

The analysis of dynamic networks is central to understanding complex environmental
systems in nature, yet traditional methods often focus on describing changing states
rather than formalising the underlying processes of change. In this work, we intro-
duce a category-theoretical framework, Proc-to-Spec, that provides a principled, func-
torial method for analysing the transformations that govern network evolution. We model
resource-constrained systems, such as those commonly found in biology and ecology, within
a source category Proc, where morphisms represent dissipative physical processes. We then
construct a spectral functor, x : Proc — Spec, that maps each process to a unique lin-
ear transformation between the eigenspaces of the network’s symmetrised Laplacian. This
framework allows us to establish a set of rigorous theorems. We prove that physical con-
servation laws in Proc correspond directly to spectral invariants in Spec, such as the con-
servation of the Laplacian’s trace. We derive a spectral sensitivity theorem that formally
links resource dissipation to network fragmentation via the Fiedler value. We also estab-
lish a stability-spectrum equivalence theorem, proving that a system’s physical dynamics
converge to a stable state if and only if its spectral geometry converges. We also derive
an optimal Spec-to-Func projection to compress these transformations into interpretable,
low-dimensional functional fingerprints. We validate our theory with numerical experiments
and demonstrate its generality as a tool for scientific discovery across two comprehensive,
contrasting case studies. (1) In a high-signal, high-noise, macro-timescale ecological case
study of the Serengeti food web in northern Tanzania, we use a large collection of 1.2 million
classified image sets of animal activity from 225 camera traps spread across 1,125 km? of
the Serengeti National Park from 2010 to 2013 to show that our framework can detect the
subtle, cyclical signature of seasonal change and identify the unique geometric fingerprint
of the 2011 East Africa drought. (2) In a low-signal, high-noise, micro-timescale neuro-
science case study, we show that our framework’s functional fingerprints can detect and
characterise subtle cognitive processes from human brain fMRI data, classifying 8 distinct
task states with high, generalisable accuracy. Our work provides a different way of think-
ing about dynamic systems, shifting the focus from describing states to understanding the
fundamental geometry of change. Code to reproduce all results in the paper is released at
https://github.com/shanfenghu/pts

1 Introduction

The analysis of dynamic networks is fundamental to science, providing the mathematical language to describe
systems of interacting components that evolve over time. In biology and ecology, this paradigm is essential for
understanding the stability of food webs (Pimml [1984)), the function of gene-regulatory pathways (Barabasi
& Oltvai, 2004]), and the cascading failures that can lead to abrupt, system-wide critical transitions (Scheffer
et al.l 2012)). These systems are not static; they are governed by a complex interplay of processes—such as
predation, resource competition, and metabolic conversion—that continuously reshape their structure and
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function. The ultimate goal of scientific discovery is to move beyond mere description of these changes and
toward a predictive understanding of the underlying principles that govern them.

Current methods for analysing dynamic networks, while powerful, are predominantly descriptive. The stan-
dard approach treats a dynamic network as a discrete time-series of static snapshots, G1, G, ..., G;. Tech-
niques from spectral graph theory (Chung, |1997) and temporal network analysis (Masuda & Lambiotte,
2016)) are then applied to compute metrics for each snapshot and track their evolution. This yields valuable
insights into changing properties like connectivity or community structure. However, this approach leaves a
critical theoretical gap: it analyses the states of the system but does not provide a formal language for the
processes that transform one state into the next. This limitation is not only conceptual; it extends to modern
machine learning models for dynamic graphs. While models like temporal Graph Neural Networks (GNNs)
can be powerful predictors for practical applications, they often function as heavily-parameterised ‘black
boxes’ (Ying et al. [2019). More critically, as we will formally prove in their core architectures are often
non-functorial, meaning their representations can violate the basic compositional and stability guarantees
required for rigorous scientific analysis (Seo et all 2018; [Rossi et al., |2020; [Spivak, [2014). A principled
mathematical framework that can map a specific, causal mechanism of change to its unique, global struc-
tural consequence remains less explored. This gap prevents us from moving from observing that a system’s
structure changed to proving why it changed in a particular way.
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Figure 1: Conceptual illustration of our Proc-to-Spec framework. Our work establishes a formal mapping,
the spectral functor (x), from the category of physical processes (Proc) to the category of their spectral
representations (Spec). Left: A dynamic network evolves through a sequence of states (Gi, Gi11,Git2).
Each transformation is a physical process (p¢, pi4+1), which can represent any resource-constrained change,
including perturbations to interaction strengths (edge weights) or topological modifications like the removal
or addition of edges. Right: Each network state corresponds to a vector space (V;, Viy1, Viy2) representing
the eigenspace of the graph’s symmetrised Laplacian. The functor y maps each physical process p; to a
unique linear transformation x(p;) that describes the change of basis between the corresponding eigenspaces.
This framework allows us to analyse complex physical processes by studying their unique and well-behaved
geometric signatures in the spectral domain.

Our work closes this gap by introducing a different way of thinking, Proc-to-Spec, as depicted in Figure
[[ We deliberately focus on the foundational case of dynamic processes on simple, weighted graphs, which
represent a vast class of real-world systems. We propose a conceptual shift from analysing system states to
formalising the processes of transformation themselves. The core idea is that the effect of a physical process
is most clearly understood not by tracking the state of individual nodes or edges, but by observing its
impact on the network’s holistic geometric structure. This structure is revealed by the network’s Laplacian
spectrum. We formalise this by building a direct, provable link between a process and its unique signature
as a transformation in the spectral domain. This ‘glass-box’ approach provides a provably sound alternative
to common predictive models (Seo et al.l [2018} [Rossi et al.| 2020), grounding the analysis in a compositional
framework rather than a ‘black-box’ architecture (Ying et al., [2019). This is analogous to moving from
describing the scenes in a movie to analysing the script’s rules that govern how one scene can lead to the
next. While many methods for analysing dynamic networks focus on aggregating temporal information
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or identifying recurring temporal motifs (Masuda & Lambiotte, [2016)), our approach provides a different
perspective by focusing on the geometric nature of the transformations between discrete network states.

We formalise this idea by constructing a categorical framework. We begin by defining a source category, Proc
(for Process), where objects are weighted, directed graphs representing the state of a resource-constrained
system. Crucially, the morphisms of Proc are not arbitrary graph edits, but are defined as dissipative physical
processes that obey the fundamental constraint that resources cannot be created ex nihilo. This grounding
in physical law is a key feature of our model. We then define a target category, Spec (for Spectrum), as the
standard category of real vector spaces and linear transformations. The central contribution of this work is
the construction and analysis of a spectral functmﬂ X : Proc — Spec, that serves as a structure-preserving
map between these two worlds. This approach is inspired by the abstract and powerful language of Applied
Category Theory (Spivakl [2014)).

The functor y maps a network state in Proc to the vector space spanned by the eigenvectors of its symmetrised
Laplacian, providing a “spectral signature” of its structure. More importantly, x maps a dissipative process
to a unique linear transformation—a matrix—that describes the corresponding change of basis between the
old and new eigenspaces. This formalism is not merely a bookkeeping device; it is a generative framework
that allows us to derive a set of theorems. We prove that physical conservation laws in Proc correspond
directly to spectral invariants in Spec, such as the conservation of the Laplacian’s trace. We establish a
spectral sensitivity theorem that formally links resource dissipation to network fragmentation via the Fiedler
value. We also establish a stability-spectrum equivalence theorem, proving that a system’s physical dynamics
converge to a stable state if and only if its spectral geometry converges. Finally, to make the high-dimensional
n x n functor map scientifically interpretable, we further derive an optimal, k X k Spec-to-Func projection
that compresses the transformation into a low-dimensional, functional subspace (e.g., functional networks in
brain network analysis).

We conduct a rigorous, multi-part experimental validation of our framework. First, we use a suite of synthetic
experiments to systematically verify each lemma and theorem, confirming the mathematical correctness
of our claims with numerical precision. Second, we demonstrate the framework’s analytical power and
generality across two comprehensive, real-world case studies from distinct scientific domains. (1) In a
high-signal, high-noise, macro-timescale, ecological setting, we apply our framework to the Serengeti
food web (Baskerville et all |2011)). We show that our theory can be applied to high-frequency, real-world
data to generate both quantitative and qualitative insights into ecosystem dynamics. Using the large-scale
“Snapshot Serengeti” camera trap dataset of animal activity in northern Tanzania (Swanson et al.| [2015]), we
demonstrate that our framework is sensitive enough to detect the subtle, cyclical spectral signature of seasonal
change and to characterise the unique geometric signature of a major, documented ecological shock—the
2011 East Africa drought. (2) In a low-signal, high-noise, micro-timescale, neuroscience setting, we
analyse dynamic brain connectomes from the Human Connectome Project (HCP) (Van Essen et al. 2012).
We show that the framework is sensitive enough to detect subtle geometric signatures of cognitive state
change, revealing a ‘lock-in’ effect during tasks (He, |2013) and separating cognitive processes into distinct
families based on their spectral and geometric properties. We then demonstrate that our Spec-to-Func
projection compresses these signatures into unique, interpretable fingerprints that successfully classify subtle
task states from brain fMRI data with high, generalisable accuracy. This validation confirms that our
framework provides a different, practical, and powerful lens for understanding complex systems.

Our contributions are as follows:
e We introduce a categorical framework, Proc-to-Spec, for analysing dynamic networks by formalising
the morphisms of change.

o We construct a spectral functor, x : Proc — Spec, that maps dissipative physical processes to unique
linear transformations in the spectral domain.

e We provide a formal critique of common temporal machine learning models, proving that they are
non-functorial for rigorous scientific discovery.

1Our numerical validations show that functoriality holds up to a tiny, numerically tractable error in practice, while our proof
in @ details the specific conditions under which it is exact.
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o We establish a set of rigorous theorems that provide a direct, provable link between physical prop-
erties (conservation, dissipation, stability) and spectral signatures.

o We derive a principled, optimal Spec-to-Func projection that compresses high-dimensional spectral
transformations into interpretable, low-dimensional functional subspaces.

e We provide an experimental validation on synthetic data and demonstrate the framework’s generality
on two distinct real-world case studies: a high-signal, high-noise, macro-timescale ecological analysis
of the Serengeti food web and a low-signal, high-noise, micro-timescale neuroscience analysis of
cognitive processes in the human brain based on the Human Connectome Project.

The remainder of this paper is structured as follows. In §2] we review related work. In §3] we formally
define our model. In §4] we present our theoretical analysis and prove our main theorems. In §5] we detail
our synthetic experimental validation. In §6] we apply our framework to the Serengeti case study. In §7] we
demonstrate its generality in a neuroscience case study of brain connectomics. We discuss implications and
conclude in Detailed proofs are provided in the §A]

2 Related Work

Our Proc-to-Spec framework represents a synthesis of ideas from several distinct but related fields. We
begin in by reviewing the foundational principles of Spectral Graph Theory, the core mathematical
language we use for our structural representations. Next, in §2.2] we situate our model within the growing
field of dynamic and temporal network analysis. We then ground our work in its target scientific domain in
§2-3] discussing the rich history of network modelling in ecology and biology and the persistent challenge of
linking local mechanisms to global system dynamics. Our formal approach is heavily inspired by the paradigm
of Applied Category Theory, which we discuss in clarifying how its principles of compositionality and
functorial mappings provide the blueprint for our framework. Finally, in we connect our framework to
the contemporary landscape of machine learning on graphs.

2.1 Spectral Graph Theory and Its Applications

Spectral graph theory, which studies the properties of a graph via the eigenvalues and eigenvectors of its
associated matrices, is a cornerstone of modern data analysis (Chung, |1997)). The graph Laplacian, in par-
ticular, has found widespread application, with different versions (e.g., unnormalised, symmetric normalised,
random walk) offering different perspectives on the graph’s structure (Von Luxburg) |2007). Its properties
are used for graph partitioning (Pothen et al.; |1990)), graph drawing (Koren, 2003), and non-linear dimen-
sionality reduction through methods like Laplacian Eigenmaps and Diffusion Maps (Belkin & Niyogi, |2003)).
The entire field of Graph Signal Processing (GSP) is built on the idea of using the Laplacian eigenbasis as
a Fourier basis for signals defined on graphs (Leus et al., [2023; [Shuman et al., |2013|). The most famous
application is spectral clustering (Von Luxburg), [2007; [Shi & Malikl [2000]), which uses the eigenvectors of
the Laplacian to identify community structure. The Fiedler value (the second-smallest eigenvalue) and its
corresponding eigenvector are of particular importance, as they provide a measure of a graph’s algebraic
connectivity and identify its primary structural bottlenecks (Fiedler} [1973; Mohar et al.l[1991). The analysis
of how spectra change in response to dynamic processes is less formalised. Research has focused on spectral
perturbation theory (Bhatia), [1992), which provides bounds on eigenvalue changes for small perturbations,
and on tracking eigenvalue time-series to detect anomalies or regime shifts (Sandryhaila & Moura) 2014).
Our work builds on this by providing a functorial framework that maps the processes of change themselves
to explicit transformations in the spectral domain, a fundamentally different and more structured approach
that aims to formalise the link between the cause and the spectral consequence of a change.

2.2 Dynamic and Temporal Networks

The study of networks that evolve over time is a mature field (Masuda & Lambiotte, [2016; |Casteigts et al.,
2012). Research has traditionally focused on developing metrics and models to characterise temporal interac-
tion patterns, often distinguishing between representations as sequences of static snapshots, continuous-time
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contact sequences, or more recently, stream graphs that explicitly model interactions as they occur
[& Lambiotte, 2016} Latapy et al., [2018). Efforts to characterise these networks include identifying temporal
motifs (Kovanen et all 2011]), analysing time-respecting reachability and pathfinding (Kempe et al.l 2000]),
and developing temporal centrality measures to identify key nodes in dynamic processes (Lerman et al.,
. A significant body of work has focused on modelling information diffusion and influence maximisa-
tion (Kempe et al. [2003), often using cascade models or threshold dynamics. Models for network evolution
aim to capture the mechanisms driving change, such as preferential attachment for scale-free structures
(Barabasi & Albert| 1999), triadic closure for social clustering (Bianconi & Barabasi, 2001)), and a wide
array of link prediction models that forecast future interactions (Liben-Nowell & Kleinberg, 2003} [Hasan &]
. More advanced models have considered continuous-time dynamics using point processes like
Hawkes processes (Nguyen et all 2018), as well as the evolution of community structures over time (Palla;
let al) 2007} |Tantipathananandh et all [2007; Liu et al., 2020). While this body of work provides a rich
vocabulary and powerful tools for describing and predicting network evolution, it generally lacks a formal,
compositional language for the processes themselves. The focus remains on the sequence of states or the
statistical properties of events, not on a formal algebra of the transformations that connect them, a gap our
framework addresses directly.

2.3 Networks in Biological and Environmental Sciences

Network theory has become an indispensable tool in the sciences, providing a language to manage the
immense complexity of biological and ecological systems. In ecology, food web analysis is used to study
ecosystem stability, resilience, and the role of keystone species (Pimm, |1984; Montoya et al., [2006; Dunne|
let al., 2002; Williams & Martinez, 2000; Berlow et all |2004). Network models are used to understand
mutualistic interactions, whose nested structure is thought to increase biodiversity (Bascompte et al., 2003]),
as well as disease propagation and the structure of metapopulations (Hanski, 1998)). A
key challenge in this field is the identification of early-warning signals for critical transitions, a problem our
stability theorems directly address . In biology, networks are used to model protein-protein
interactions (PPIs) to uncover functional modules and identify potential drug targets (Jeong et al. 2001
Barzel & Barabasi, 2013), and gene-regulatory pathways that control cellular life (Davidson et al., |2002; |Alon
2007). Large-scale metabolic network reconstructions, such as the Recon project for human metabolism,
are used in constraint-based modelling to predict metabolic fluxes (Rual et all [2005). In neuroscience,
analysing the brain’s structural and functional connectomes is a central goal, with projects like the Human
Connectome Project providing massive datasets (Sporns et al., |2005; [Bullmore & Sporns, [2009; Honey et al.,
[2007; [Van Essen et all [2012)). These applications demonstrate a clear and urgent need for models that can
handle dynamic processes and provide insight into system-level properties like stability and resilience. Our
work is directly motivated by this need, providing a formal language and a set of theoretical tools specifically
designed to analyse the resource-constrained dynamics that are characteristic of these natural systems.

2.4 Categorical and Geometric Approaches to Systems

Our framework is inspired by a growing movement to apply principled, abstract mathematics to machine
learning and systems modelling. Geometric Deep Learning seeks to unify graph-based models and beyond
by focusing on underlying symmetries and invariances, building models that respect the geometry of their
domain (Bronstein et al. [2017)). Alongside spectral methods, tools from Topological Data Analysis (TDA)
are also used to study the higher-order structure of networks through persistent homology
. More abstractly, Applied Category Theory provides a formal language for compositionality, arguing
that systems are best understood by how their components compose (Fong & Spivak, 2018)). This approach
has been used to model a wide range of systems, including databases (Guyot et al, 2022)), electrical circuits
(Takahashi, 2023), dynamical systems (Behrisch et all, [2017)), compositional game theory
2018), and network protocols (Fong & Spivak, 2018). Other formalisms like operads are used to describe
more general systems of composition (Baez & Stay}, [2010). This research program, pioneered by figures like
[Baez & Stay| (2010) and |Spivak| (2014), argues that the language of functors and morphisms is the natural
way to describe complex, interacting systems. Our work contributes to this paradigm by providing a concrete
instantiation of a functorial model. We use the categorical language not as an end in itself, but as the natural
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grammar to build a specific, testable, and scientifically relevant theory that connects process to structure,
thus grounding the abstract formalism in concrete, provable spectral consequences.

2.5 Machine Learning on Graphs

In recent years, machine learning on graph-structured data has been dominated by the success of Graph
Neural Networks (GNNs), a broad class of models based on a neighbourhood aggregation or message-passing
scheme (Scarselli et al., [2008; |Gori et al., 2005; |Gilmer et al.,2017)). Architectures like Graph Convolutional
Networks (GCNs) (Kipf}, 2016, Graph Attention Networks (GATSs) (Velickovic et al.| [2017), and GraphSAGE
(Hamilton et al., 2017)) have achieved state-of-the-art performance on tasks like node classification and
link prediction. More recent developments include Graph Transformers, which aim to capture long-range
dependencies (Shi et al. 2020). To handle dynamic networks, researchers have developed various temporal
GNNs that integrate GNN principles with recurrent or attention-based sequence models (Seo et al., [2018;
Rossi et al., 2020; [Kazemi et all [2020; Manessi et al., |2020). Other approaches include graph kernels
(Shervashidze et al.| 2011), and representation learning techniques like DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, |2016). A limitation of many of these powerful models, particularly
for applications in science, is the trade-off between predictive accuracy and interpretability. While they
provide high predictive accuracy, their heavily-parameterised, ‘black-box’ nature often lacks the desired
level of scientific interpretability, and the community has invested significant effort in developing post-hoc
explanation methods like GNNExplainer (Ying et al| 2019). More fundamentally, many temporal GNNs
(e.g.,[Seo et al., [2018; [Rossi et al., [2020) are what we formalise in as Entangled State-Update Models. By
their design, these models entangle the representation of a state with the representation of a process, often
via a recurrent update function. As we prove in Theorems [I] and [2] this architectural choice makes them
non-functorial: they are not guaranteed to preserve identity (i.e., they introduce artificial dynamics) and,
more critically, they do not preserve the composition of morphisms. This makes their representations an
artifact of the data’s sampling rate, which is a critical flaw for rigorous, path-independent scientific analysis.
Our Proc-to-Spec framework aims to provide a ‘glass-box’ alternative specifically designed to solve this
limitation, offering a provably sound and path-independent approach where the link between process and
outcome is explicit, provable, and scientifically interpretable, aiming for understanding over raw prediction.

3 The Proc-to-Spec Framework

In this section, we provide the formal mathematical construction of our Proc-to-Spec framework. The
framework is built upon a single, central idea: the existence of a structure-preserving map—a functor—that
translates the dynamics of a physical system into the geometric language of linear algebra. The resulting
model is a logical consequence of defining this functor and its domain and codomain. We begin by defining
our key notations, summarised in Table

Table 1: Key symbols and notations used in the paper.

Symbol Description
G=(V,E, W) A weighted, directed graph representing a network state.

V,E,W The set of vertices, edges, and the edge weight function, respectively.
R(G) The total resource in a network, defined as the sum of all edge weights.
p:G—G A process (morphism) that transforms one network state to another.
Proc The category of resource-constrained dynamic networks.
Lw The weighted Laplacian of a graph with weight matrix W.
Lgsym The symmetrised Laplacian, used for spectral analysis.
Ai, Vi The i-th eigenvalue and corresponding eigenvector of Ly, .
A2 The Fiedler value, or algebraic connectivity of the graph.
Spec The category of finite-dimensional real vector spaces.
X The spectral functor, mapping from Proc to Spec.
x(p) A linear transformation representing the process p in the spectral domain.
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3.1 The Source Category: Proc

The source category, Proc, is designed to represent the physical reality of resource-constrained dynamic
systems commonly found in biological and ecological sciences.

Objects. An object in Proc is a network state, formally defined as a weighted, directed graph G =
(V, E, W), where:

o Visa finite set of n vertices, representing the components of the system (e.g., species in an ecosystem,
proteins in a cell).

e FCV xV isaset of directed edges, representing interactions between components.

e W:FE— Rar is a weight function that assigns a non-negative real value to each edge, representing
the strength, capacity, or rate of flow of a resource (e.g., energy, biomass, information).

Morphisms. A morphism in Proc, denoted p : G — G’, is a dissipative process that transforms an
initial state G into a final state G’. The defining characteristic of these systems is that they operate under
resource limitation. We formalise this by defining the total resource of a network as the sum of all its edge
weights:

R(G)= > W(u,v) (1)

(u,v)EE

A process p is defined as dissipative if the total resource in the final state is less than or equal to the total
resource in the initial state:
R(G') < R(G) (2)

This single constraint is fundamental. It reflects the second law of thermodynamics, where energy is lost in
transfers between trophic levels (Odum), |1957)), and the principle of resource competition that governs the
dynamics of all biological populations (Tilman) [1982)). This constraint ensures that our model is physically
and biologically grounded for scientific discovery.

3.2 The Target Category: Spec

The target category, Spec, provides the abstract geometric space where the structural properties of our
networks are analysed. It is the standard category of finite-dimensional real vector spaces.

Objects. An object is a finite-dimensional vector space U over the field of real numbers, R.
Morphisms. A morphism is a linear transformation T': U — V between two vector spaces.

3.3 The Spectral Functor x : Proc — Spec

The spectral functor x is the heart of our framework. It provides the formal, structure-preserving map from
the physical world of processes to the geometric world of spectra.

Action on Objects. The functor xy maps a network object G € Proc to the n-dimensional vector space
spanned by the eigenvectors of its symmetrised Laplacian. This construction is essential for ensuring a
well-defined geometric representation. Given a graph G with n vertices and weight function W:

1. We first construct the n x n weighted adjacency matrix Ay, where (Aw)i; = W (4, j).

2. To guarantee a real spectrum and a complete orthonormal eigenbasis, we construct the symmetrised
adjacency matrix, Agym, where (Asym)i; = (W(i,j) + W(j,4))/2. This captures the underlying
“connectivity fabric” of the network, which is often the primary interest in resilience and stability
studies (Mohar et al., [1991]).
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3. From this, we construct the symmetrised Laplacian:

Lsym = Dsym - Asym (3)
where Dy, is the diagonal matrix of weighted degrees derived from Agyy,.

4. This ensures that Ly, is a real symmetric matrix and thus has a complete set of n orthonormal
eigenvectors {vy,...,v,}.

5. The functor maps the graph object to the vector space these eigenvectors span:

X(G) = span(vy,...,v,) £ R" (4)

Action on Morphisms. The functor x maps a process p : G — G’ to the unique linear transformation
X(P) : x(G) = x(G’) that describes the change of basis between the respective eigenspaces. If B = {v;} is
the eigenbasis of Lg,m and B’ = {v’;} is the eigenbasis of L{,,,, then x(p) is the unique linear map that
represents this geometric transformation.

Physical Intuition of the Functor. Conceptually, the spectral functor y can be understood as a mathe-
matical “lens” that allows us to view the physical process through the language of geometry. The eigenbasis
of a network’s Laplacian represents its fundamental modes of variation—its “structural harmonics”. A phys-
ical process, p, perturbs the network, creating a new set of structural harmonics. The transformation matrix
X(p) precisely quantifies how each of the old harmonics is distributed or “scattered” among the new ones (see
Figure [12| for such scattering in a real-world ecological web). It is, in essence, a mathematical description of
the structural reorganisation induced by the process. A simple process might only slightly alter the harmon-
ics, resulting in a transformation close to the identity, while a complex process might completely scramble
them, resulting in a highly complex rotational transformation.

3.4 Model Scope and Assumptions

Our framework is designed to be a model for rigorous scientific inquiry in environmental sciences, with
carefully chosen scope and assumptions that we state explicitly here.

e Deterministic Processes. We model processes as deterministic, representing the expected out-
come of potentially stochastic interactions. This is a standard and powerful simplification in the
modelling of complex systems, providing a tractable first-order approximation of the system’s dy-
namics (Mayl, 2001)).

e Focus on Edge Weights. We assume that the primary dynamics of the system can be captured
by changes in the interaction strengths (edge weights). This is a well-justified focus in ecological
network modelling, where fluctuations in interaction strength are a primary driver of system stability
(Allesina & Tang) 2012)). This naturally includes topological changes as a special case.

e Symmetrised Laplacian. The core operator used by the spectral functor is the symmetrised
Laplacian, Lgym,. We select this operator due to its desirable properties, namely a real spectrum and
a complete orthonormal eigenbasis, which are essential for defining a consistent spectral geometry
for our framework.

4 Theoretical Analysis

Having formally defined the Proc-to-Spec framework in §3 we now establish its key theoretical properties.
Our analysis is structured to build a complete framework from the ground up, moving from foundational
mathematical guarantees to the main scientific results. We begin in by proving that our spectral map, ¥,
is a valid functor, a foundational result that ensures the mathematical soundness and compositionality of our
entire framework. With this foundational guarantee established, in §4.2] we provide a formal justification for
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our categorical approach by contrasting it with common machine learning architectures. We define a broad
class of temporal graph models as Entangled State-Update Models and prove that they are non-functorial
and thus fundamentally ill-suited for rigorous, path-independent scientific analysis. Following this critique,
in §4.3] we establish the core dictionary that translates the physical constraints of the Proc category into
the language of the Spec category; here, we prove our key theorems on the spectral signatures of resource
conservation and dissipation. Building on this, we present our main result in §4.4] the Stability-Spectrum
Equivalence theorem, which provides a formal and testable link between the long-term dynamical stability
of a system and the convergence of its spectral geometry. In §4.5| we derive a toolkit of more specialised
theorems that provide concrete, interpretable matrix signatures for specific, common types of processes,
such as local perturbations and node removals. While this toolkit is powerful for diagnosing simple events,
interpreting the full nx n transformation matrix x(p) of a complex, system-wide process remains a significant
challenge. Therefore, in we solve this problem by deriving an optimal projection that compresses the
high-dimensional spectral transformation into a low-dimensional k& x k functional matrix. Together, these
results form a theoretical basis for using our framework as a tool for scientific reasoning.

4.1 Functoriality of the Spectral Map

We begin by establishing the foundational mathematical property of our framework: that the map x is a
valid functor. This result is crucial as it guarantees that our spectral representation is a true and consistent
reflection of the underlying system’s dynamics, respecting both identity and the composition of processes.

Lemma 1 (Functoriality of x). The map x : Proc — Spec is a functor. It preserves identity morphisms
and the composition of morphisms.

Proof Sketch. To prove that y is a functor, we must verify two conditions.

1. Preservation of Identity: The identity morphism in Proc is the process idg : G — G, which leaves
the network unchanged. This means the initial and final weight matrices are identical (W’ = W),
leading to identical symmetrised Laplacians (L{,,, = Lsym) and thus identical eigenbases. The
linear transformation that maps an orthonormal basis to itself is the identity transformation, id,(g-
Thus, X(idg) = idx(G)-

2. Preservation of Composition: Consider two composable processes, p1 : Gy — G2 and ps : Go —
G3. The map x(p1) is the change of basis matrix from the eigenbasis of G to that of G, and x(p2)
is the change of basis from G2 to G3. The composition of linear transformations, x(p2) o x(p1),
corresponds to the matrix product of these change of basis matrices. By the chain rule for change
of basis, this product is precisely the matrix that transforms the basis of Gy directly to the basis of
G3, which is by definition x(p2 o p1). Thus, x(p2 o p1) = x(p2) © x(p1)-

The full proof is provided in O

Interpretation. This lemma provides the guarantee of our framework’s logical consistency. It ensures that
our spectral “lens” does not distort the structure of the system’s dynamics. From a scientific perspective,
this has two critical implications. First, the preservation of identity means that a system in a stable,
unchanging state will have a stable, unchanging spectral representation; our method does not introduce
artificial dynamics. Second, the preservation of composition means that our framework respects causality.
For example, the overall structural impact of a drought followed by the introduction of an invasive species
is precisely the composition of their individual spectral transformations. This allows scientists to model
complex, multi-stage scenarios with the confidence that the resulting analysis is a faithful representation of
the composite process, making our “spectral accounting” of change both rigorous and reliable.

4.2 Non-Functoriality of Entangled State-Update Models

The functorial property (Lemma [1]) is not merely a mathematical convenience; it establishes a minimal and
fundamental criterion for any model that claims to represent the process of change itself. It guarantees that
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the model’s representations are consistent, compositional, and path-independent. To illustrate the necessity
of this property for the machine learning community, we now formalise a broad class of common temporal
machine learning models (Seo et al., [2018; [Rossi et all [2020). We will show that these models, by their
design, are non-functorial because they entangle the representation of a process with the representation of a
state, leading to critical failures in preserving composition and identity.

First, we define this class of machine learning models, which we term Entangled State-Update Models.

Definition 1 (Entangled State-Update Model). Let G be the space of graphs (network states) and V be a
latent vector space (the embedding space). A common class of temporal graph models (e.g., GNN-RNNs
(Seo et all 2018)) are Entangled State-Update Models, defined by a pair of maps:

1. A state encoder, ® : G — Vyate (e.g., a GNN that embeds a graph snapshot).

2. A stateful update function, F' : Vsiate X Vhistory = Vhistory (€.8., an RNN cell).

The system’s latent representation at time ¢ + 1 is computed as:
Ziy1 = F(®(Gq1), 2e) (5)

where z; is the history vector encoding the sequence (Gy, ..., G¢). The update operation is a function of the
new state Gyy1 and the previous history z;.

This class of models are powerful and predictive for machine learning applications. However, they have an
explicit map for states (®(G)) but no explicit map for processes (p;). The process is implicit in the call to
the update function F. We can now prove that this architectural choice makes it impossible for such a model
to be a valid process model in our categorical sense.

These entangled models fail the most basic tests of a faithful representation. The first critical failure is
the inability to preserve identity (Lemma [} part 1). A model that cannot represent “no change” without
introducing its own artificial dynamics cannot be trusted as a representation of the physical system.

Theorem 1 (The Identity Failure of Entangled Models). An Entangled State-Update Model (as defined in
Deﬁm’tz’on is non-functorial as it fails to preserve the identity morphism. The model’s representation of
an identity process p;q : Gy — Gy is not the identity transformation on the latent history space.

Proof Sketch. The functoriality axiom for identity states x(idg) = idy(g). In an Entangled State-Update
Model, the transformation corresponding to a process p : Gy — Gy is the update operation fi(-) =
F(®(G¢41),-). This map acts on the history space, fi : Vhistory — Vhistory-

Consider the identity process p;q : Gy — Gy, where the system state is unchanged. The model’s update
operation for this process is fiq4() = F(®(Gt),-). We apply this map to the current history vector z;:

Zi41 = fid(zt> = F(<I>(Gt), Zt) (6)

For the model to preserve identity, the resulting history vector z;41 must be identical to the input history
vector z;. The map f;q must be the identity map idy,,,,,,. This requires that:

zy = F(®(Gy),2¢) for all z; € Vhistory Q

This condition is generally not met by the non-linear recurrent functions (e.g., LSTMs, GRUs) commonly
used in these machine learning models. The update function F' is parameterised by trained weights and is
designed to transform its input history vector z; based on the new state embedding ®(G;). For a non-trivial
RNN, F(x,h) # h in the general case. The model has no mechanism to guarantee that “re-processing” the
same state G will result in a null operation. Thus, z;y1 # 2z;. The model fails to preserve identity. The full

proof is provided in O

10
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Interpretation. This theorem proves that an Entangled State-Update Model introduces artificial latent
dynamics. Even when the physical system is perfectly stable (the p;q process), the model’s internal repre-
sentation z; will continue to evolve. This makes it impossible to use the model’s latent space to, for example,
test for equilibrium (as in our Theorem . A non-functorial model’s stability is a property of the model
itself, not of the system it purports to represent.

The second critical failure of these models is the inability to preserve composition (Lemma |1} part 2). This
failure manifests as a critical, practical problem: path-dependence.

Theorem 2 (The Composition Failure of Entangled Models). An Entangled State-Update Model (as defined
in Deﬁnition s mon-functorial as it fails to preserve the composition of morphisms.

Proof Sketch. The functoriality axiom for composition states x(p2 op1) = x(p2) o x(p1). We can test this by
comparing the model’s output for a “direct” process versus a “stepped” process. Let the system be in an
initial state G; with a history vector z;. Consider a composite process p;_,3 = p2 o p1, which proceeds in
two steps: G EANVeNE-NYe

1. The Stepped Path (Model’s ¥(p2) o ¥(p;)): An Entangled Model observes the full path. It first
computes the effect of p;, updating the history vector:

zy = F(®(G2),21) (8)
It then computes the effect of ps, updating from the new history:
z3 = F(®(Gs), 22) = F(2(Gs), F(®(G2), 21)) (9)
This final vector, z3, represents the model’s understanding of the full, two-step process.

2. The Direct Path (Model’s ¥(p;_,3)): Now consider an analyst who only has snapshots G; and
(3. They model the direct process p;—,3. The Entangled Model, lacking the intermediate state G,
computes the update in a single step based on the definition of its transformation:

zy = F(®(G3),21) (10)

3. The Failure: The model fails the composition test because the two resulting representations are
not equal:

25 # 7 (1)

F(®(Gs), F(®(G2),21)) # F(®(Gs),21) (12)

(This inequality holds for any non-trivial recurrent function F', as the inner term F(®(G2),z1) is
generally not equal to z7).

As a result, the model’s representation of the change from G to G3 is fundamentally different depending on
whether it observed the intermediate path through Gs. Its representation is path-dependent. In contrast,
our Proc-to-Spec framework is path-independent. The map x(p1—3) (the direct change of basis from
G1 — G3) is by definition mathematically identical to the matrix product x(p2) o x(p1). The full proof is
provided in O

Interpretation. This theorem essentially proves that a standard GNN-RNN’s analysis of a system’s change
over a month is generally not the composition of its analyses of the 30 daily changes within that month. This
failure is precisely what makes such models inadequate tools for scientific discovery, where data is often sparse
or irregularly sampled. A model whose results are an artifact of the sampling rate (i.e., path-dependent)
may not be able to reveal the underlying, invariant geometry of change. The functorial property, which our
framework respects, is the formal guarantee of this crucial path-independence to ensure the consistency of
scientific discovery.

11
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Category Theory for Model Soundness. This sequence of theorems provides a formal justification for
our Proc-to-Spec framework. We first defined a broad and common class of temporal machine learning
architectures as Entangled State-Update Models (Definition , such as the GNN-RNN models common in
the literature (Seo et al., [2018; Rossi et al., |2020). We then proved that this ubiquitous architecture is
non-functorial, which is not a minor theoretical flaw but the source of a pair of critical, practical failures:
they are incapable of representing stability (Theorem and path-dependent (Theorem . This
formalisation demonstrates that the language of category theory is not an abstract descriptor but a pre-
scriptive benchmark for model soundness (Spivak, 2014; [Fong & Spivak, 2018). While one could attempt to
formalise these properties ad hoc, it is the language of functors that provides the established, minimal, and
universally understood axioms—namely, the preservation of identity and composition—to test for them.
Any alternative formalism that successfully captures these properties would, in essence, be a re-invention of
these core categorical concepts.

The implication is of central relevance to machine learning, as it delineates a critical trade-off. While the
non-functorial models we defined can be powerful predictors, their widespread adoption, often without con-
sideration for these axiomatic failures, highlights a key gap in the pursuit of interpretable and robust Al (Ying
et al., 2019)). Our work proves that for the distinct and increasingly important goal of rigorous mechanistic
analysis in machine learning applications, these architectures are fundamentally ill-suited. The fact that a
model achieves high predictive accuracy does not automatically make it a sound and faithful representation
of an underlying physical process. This makes it difficult to conduct the analysis we demonstrate in our case
studies (§§| and —such as distinguishing catastrophic critical transitions from seasonal changes (Scheffer
et al.l [2012), or formally assessing system stability (Pimm) 1984} |Allesina & Tang), |2012)—especially on the
sparse, real-world data common in science (Swanson et al., [2015]).

4.3 The Physics-to-Spectra Dictionary

Having established the necessity, robustness, and canonical nature of our functorial approach, we now derive
the core dictionary that translates the physical laws governing the Proc category into the geometric language
of Spec. The following theorems show that fundamental physical constraints—namely, the conservation and
dissipation of resources—induce specific, non-trivial, and observable signatures in the spectral domain.

Theorem 3 (The Spectral Trace Conservation Law). Let p : G — G’ be a conservative process, where the
total resource is unchanged (R(G) = R(G’)). The trace of the symmetrised Laplacian is conserved, i.e.,
Tr(Lgy,,) = Tr(Lsym). Consequently, the sum of the Laplacian eigenvalues is an invariant of the process.

Proof Sketch. The key insight is to first establish a direct identity between the total resource of a network
and the trace of its symmetrised Laplacian. The trace of Lgyy, is the sum of its diagonal elements, which
are the weighted degrees of the symmetrised graph. This sum is equivalent to the sum of all entries in the
symmetrised adjacency matrix, Agym,. By substituting the definition of Agy,,, we show that this sum is
precisely equal to the total resource, R(G). Therefore, the identity Tr(Lsym) = R(G) holds for any graph.
For a conservative process, since R(G) = R(G"), it follows directly that Tr(L{,,,) = Tr(Lsym). Because the
trace of a matrix is equal to the sum of its eigenvalues, the sum of the eigenvalues is also conserved. The
full proof is provided in §A.4] O

Interpretation. This theorem provides our first concrete link between a physical law and a geometric
invariant. It demonstrates that if a system is closed and only redistributes its internal resources (e.g., biomass
transfer within a food web without external inputs or losses), the sum of its spectral eigenvalues remains
constant. This spectral sum can be interpreted as a measure of the total “structural energy” or “information
capacity” of the network. This result provides an integrity check for models of closed ecosystems, ensuring
that the simulated dynamics correctly preserve this global spectral quantity.

Theorem 4 (The Spectral Sensitivity of Algebraic Connectivity). Let p : G — G’ be a process that induces a
sufficiently small change in the symmetrised Laplacian, ALy, = L;ym — Lgym. If the process is structurally
fragmenting, defined as satisfying the condition v3(ALgym)ve < 0, where vy is the Fiedler eigenvector of

the initial graph G, then the Fiedler value will decrease (N, < Ag).

12
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Proof Sketch. The proof relies on first-order matrix perturbation theory, which states that the change in
an eigenvalue, A\, can be approximated by the quadratic form vf(ALSym)vk. By applying this principle
to the Fiedler value (k = 2), we find that \j — A\g = vg(ALsym)VQ. The theorem’s premise is precisely
that the term on the right-hand side is negative. Therefore, it follows directly that for small perturbations,
Ay — A2 < 0. The full proof is provided in O

Interpretation. This theorem provides a nuanced quantitative insight about resource loss in physical
systems. It formalises the critical scientific idea that the location of a disturbance is as important as
its magnitude. The Fiedler eigenvector, v, identifies the network’s primary structural vulnerability or
“fault line”. This theorem proves that a process, even a dissipative one, only harms the network’s algebraic
connectivity if it is “aligned” with this vulnerability—that is, if it preferentially weakens the crucial links that
bridge the network’s main communities. For example, a disease affecting a keystone predator that connects
two sub-webs would be structurally fragmenting, causing a sharp drop in algebraic connectivity. In contrast,
the loss of a peripheral species might have a negligible effect. This provides a valuable diagnostic tool for
assessing the resilience of an ecosystem, allowing scientists to distinguish between benign and potentially
catastrophic systemic changes.

4.4 The Stability-Spectrum Equivalence

Building upon the foundational link between physical processes and their spectral signatures, we now estab-
lish our main result. The following theorem provides a formal equivalence between the long-term dynamical
stability of a network in the Proc category and the convergence of its geometric representation in the Spec
category. This result allows our framework to function as a predictive tool, allowing the assessment of a
system’s stability through its observable algebraic properties.

Theorem 5 (The Stability-Spectrum Equivalence). A dynamic network sequence (G¢)$2, governed by dis-
sipative processes converges to a stable state Goo if and only if its corresponding sequence of spectral data
(eigenvalues and eigenvectors of Lsym. +) converges to a stable limit.

Proof Sketch. As this is an “if and only if” statement, we sketch the proof in two directions.

1. Stability — Spectral Convergence: We first assume the system converges to a stable state,
which means the sequence of weight matrices converges to a limit, W; — W,,.. The map from
a weight matrix W to its symmetrised Laplacian Ly, is continuous. Furthermore, the spectral
decomposition of a symmetric matrix (its eigenvalues and eigenvectors) is a continuous function of
the matrix entries. By the property of continuous functions, the convergence of the weight matrices
(W; = Ws) implies the convergence of the Laplacians (Lsym,: — Lsym,00), Which in turn implies
the convergence of their spectral data.

2. Spectral Convergence = Stability: We now assume the full set of spectral data (all eigen-
values and eigenvectors) converges. A symmetric matrix is uniquely determined by its spectral
decomposition. Therefore, the convergence of the spectral data implies the convergence of the se-
quence of symmetrised Laplacians, Lsym.+ — Lsym,oo- The mapping from a weight matrix W to
Lgym is injective for a given graph topology. Thus, the convergence of the Laplacians implies the
convergence of the underlying weight matrices, Wy — W, which is the definition of a stable state.

The full proof is provided in O

Interpretation. This theorem establishes a rigorous and testable equivalence between a system’s physical
behaviour and its abstract structural properties. In practical terms, it means that the stability of a complex
ecosystem or biological network can be definitively assessed by monitoring its “spectral signature”. If the
eigenvalues and eigenvectors of the system’s Laplacian stop changing, the system has reached an equilibrium.
This moves beyond correlation to a formal equivalence, providing a diagnostic tool. For example, ecologists
can use time-series data to determine if a recovering ecosystem has truly stabilised or if it is still in a transient
state, simply by observing whether its spectral representation has converged. This provides a non-invasive
method for understanding the long-term trajectory and health of complex systems.

13
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4.5 A Toolkit for Process Interpretation

The preceding theorems establish the foundational properties of our framework. We now derive a toolkit of
more specialised results that provide concrete, interpretable matrix signatures for common types of processes.
These theorems allow a scientist to move from observing a spectral transformation back to inferring the
specific nature of the underlying physical process that caused it, providing a powerful method for causal
inference and system diagnostics.

Lemma 2 (The Change of Basis Formula). Let p : G — G’ be a process, with {v;} and {v';} being
the orthonormal eigenbases of the initial and final Laplacians, respectively. The entry (i,j) of the matriz
representation of the linear transformation x(p) is given by the inner product of the respective basis vectors:

(X(p)>ij = <V/i7vj>'

Proof Sketch. The matrix for the linear transformation x(p) represents the change of coordinates from the
initial basis B = {v;} to the final basis B’ = {v’;}. The j-th column of this matrix is the vector v;
expressed in the coordinates of the new basis. Since B’ is an orthonormal basis, the i-th coordinate is simply
the projection of v; onto v’;, which is given by their inner product. The full proof is provided in O

Interpretation. This lemma provides the direct algebraic formula for computing the transformation ma-
trix. It gives a precise meaning to each entry: the magnitude of (x(p)):; quantifies the alignment or projection
of the j-th original structural mode onto the i-th final structural mode. A large diagonal entry (x(p)):; signi-
fies that a structural mode has been preserved, while a large off-diagonal entry (x(p)).; signifies a significant
structural “rewiring” where the roles of two modes have become mixed.

Theorem 6 (The Rank-One Update Signature). Let p be a simple process that only perturbs the weight of a
single edge between nodes a and b. The resulting change in the symmetrised Laplacian, ALgym, s a rank-one
matriz. Consequently, the transformation matriz x(p) is a low-rank perturbation of the identity matriz.

Proof Sketch. A change in the weight of a single edge (a,b) results in a change matrix ALy, with non-
zero entries only at positions (a,a), (b,b), (a,b), and (b,a). As shown in the full proof, this matrix can be
expressed as a scalar multiple of a single outer product, d(e, — ey)(e, — e,)”, making it a rank-one matrix.
By matrix perturbation theory, a low-rank update to a matrix results in a correspondingly simple, low-rank
perturbation to its spectral decomposition. Therefore, the change of basis matrix x(p) will be close to the
identity, differing only by a low-rank update related to the eigenvector components at the perturbed nodes.
The full proof is provided in O

Interpretation. This theorem proves that a local cause has a local signature. It formalises the intuitive
idea that a small, isolated event in an ecosystem (e.g., the weakening of a single predator-prey relationship)
should not cause a catastrophic, chaotic rewiring of the entire system’s structure. It provides a diagnostic
tool: if an observed transformation matrix x(p) is well-approximated by a low-rank perturbation of the
identity, one can infer that the underlying physical cause was a simple, localised process.

Theorem 7 (The Structural Inertia Theorem). Let p be a process that induces a small perturbation AL gy, .
The resulting transformation matriz x(p) is diagonally dominant. The magnitude of its off-diagonal entries
is bounded by the norm of the perturbation and the spectral gaps of the original graph.

Proof Sketch. The proof relies on the Davis-Kahan theorem from matrix perturbation theory. The entries of
X(p) are the inner products (v';, v;). For ¢ = j, this value is close to 1. For i # j, the Davis-Kahan theorem
provides a bound on the sine of the angle between the old eigenvector v; and the new one v’;, showing that
this angle remains close to orthogonal. This deviation from orthogonality, which determines the magnitude of
the off-diagonal entries, is bounded by ||ALsym|2/| i — Aj|. Thus, for a small perturbation, the off-diagonal
entries are small, and the matrix is diagonally dominant. The full proof is provided in §A-9] 0O
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Interpretation. This theorem formalises the concept of structural robustness. It proves that complex
systems possess a form of inertia; their fundamental organisational modes (the eigenvectors) are resistant
to small, arbitrary changes. A small process cannot cause a catastrophic re-shuffling of all the primary
structural modes. A transformation matrix x(p) with large off-diagonal entries is therefore a clear signature
of a major, non-perturbative structural reorganisation of the network, rather than a simple fluctuation.

We now consider processes that alter the network’s topology by removing a node. While such processes fall
outside our primary functorial definition, which maps between spaces of the same dimension, our geometric
approach still provides a unique and powerful characterisation. As we prove in §A.10] node removal is
uniquely identifiable as a projection, whose kernel corresponds directly to the removed node, providing a

distinct signature for this class of major topological changes.

Theorem 8 (The Node Removal Signature). Let p be a process that removes a node k from a network G
with n nodes. The resulting transformation x(p) maps the original n-dimensional eigenspace to the new
(n — 1)-dimensional eigenspace and is a projection operator.

Proof Sketch. The process of node removal transforms the original vector space x(G) = R™ to a lower-
dimensional space x(G’) =2 R"~!. Such a transformation is a projection. The kernel of this projection (the
part of the space mapped to zero) is the one-dimensional subspace corresponding to the removed node. The
Cauchy Interlacing Theorem guarantees a predictable relationship between the old and new eigenvalues,
ensuring the transformation is well-behaved. The full proof is provided in §ATT0] O

Interpretation. This theorem provides a unique, identifiable signature for a major topological event: the
complete failure or removal of a system component. Unlike the subtle changes from weight perturbations, a
node removal causes a change in the very dimension of the state space. If an observed transformation matrix
is found to be a projection of rank n — 1, one can infer with high confidence that the underlying physical
process was the removal of a single node. This is a simple tool for diagnosing critical failures in a system,
such as the extinction of a species from an ecosystem.

Theorem 9 (The Signal Transport Theorem). Let f be a vector representing a “signal” on the nodes of a
network G. After a process p, the signal £’ on the new network G’ that maintains the same coordinates with
respect to the new eigenbasis is given by the transformation £ = Tiansportf, where the transport matriz is
Tiransport = V'VT, with V and V' being the matrices of eigenvectors for G and G', respectively.

Proof Sketch. We define the signal’s spectral coordinates on G as a = VTf, where V is the matrix of
eigenvectors. The transported signal on G’ is defined as f’ = V'a. Substituting the expression for a gives
' = (V'VI)E, 50 Tyransport = V'VT. The full proof is provided in §A.11} O

Interpretation. This theorem provides a concrete, practical tool for prediction. It answers the question:
“If the network structure changes from G to G’, how would a data pattern defined on the original structure
be expressed on the new structure?” For instance, it allows scientists to predict how a specific pattern of
gene expression would be re-distributed across a cell if the underlying gene-regulatory network is rewired by
a mutation. This moves the framework beyond structural analysis to a tool for predicting the evolution of
functional patterns on the network.

4.6 From Spec to Func: Projecting the Spectral Transformation to a Functional Subspace

The theoretical toolkit developed in provides rigorous, interpretable signatures for elementary processes.
Nevertheless, the primary object of our analysis, the spectral transformation y(p) itself, remains a high-
dimensional n x n matrix. For complex, real-world systems where n is large (e.g., n = 161 in our ecological
study in §§| or n = 379 in our neuroscience study , this spectral-to-spectral map is mathematically
complete but can be scientifically difficult to interpret. A scientist is typically not concerned with the raw n?
interactions between abstract spectral modes, but with the dynamics between a much smaller number, k, of
pre-defined, physically-meaningful partitions (e.g., a small number of functional networks in a human brain
or a few trophic levels in an ecosystem). To bridge this interpretation gap, we introduce a principled method
to compress the n x n spectral transformation x(p) into an interpretable, k x k functional transformation
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matrix, M (p). This M (p) provides a “functional fingerprint” of the process, revealing the average spectral
transformation between the pre-defined groups.

This projection is built by relating the n-dimensional node space (of brain regions or species) to the k-
dimensional functional space (of network partitions).

o The Partition Matrix (P): We first define the known functional structure using a static partition
matrix P € R"** where P;, = 1 if node i (e.g., a brain region) belongs to functional group k (e.g.,
the Default Mode Network), and 0 otherwise. This matrix P acts as an “embedding” map from the
k-dimensional functional space to the n-dimensional node space.

o The Functional Projector (p): We define the corresponding projection map p € R¥*™ that per-
forms the reverse operation: mapping from the n-dimensional node space down to the k-dimensional
functional space. For this, we use the pseudo-inverse of P:

p=Pl=@PTp)~tpPT (13)

The term (PTP) is a simple k x k diagonal matrix whose entries NV}, are the number of nodes in
each group, making its inverse trivial to compute. The resulting projector p effectively performs a
“group averaging” operation.

While our transformation x(p) operates in the n-dimensional spectral space, we can use the node-space
projectors P and p to construct its k-dimensional functional-space equivalent. We do this by assuming a
meaningful correspondence between the n-dimensional node basis and the n-dimensional spectral basis. We
then apply a Galerkin Projection, a standard and optimal method for model reduction, to compute the
k x k matrix M(p) that best represents the action of the n x n operator x(p) relative to this functional
subspace.

Theorem 10 (Direct Spectral-to-Functional Projection). Let x(p) € R™*"™ be the spectral transformation
matriz. Let P € R™ ¥ be the partition matriz mapping k functional groups to the n nodes, and let p € RF*"
be its pseudo-inverse projector. The k x k functional transformation matriz M (p) is the unique solution that
minimises the Frobenius norm of the approzimation error ||x(p) — PM(p)p||%, and is given by the Galerkin
projection:

M(p) = px(p)P (14)

Proof Sketch. The proof is a constructive application of the Galerkin projection method. The matrix P
defines the “input” basis vectors for the k-dimensional functional subspace (embedding & functional groups
into the n-dimensional space of input modes), and p defines the “output” basis vectors (projecting the
n-dimensional space of output modes back to k functional groups). The formula M(p) = px(p)P is the
standard computation for finding the k x k linear operator M that best approximates the n x n operator y
with respect to these input and output bases. It effectively compresses the n x n operator by viewing it only
through the k-dimensional lens of the functional groups. The full derivation is provided in O

Interpretation. This theorem provides a principled and computationally efficient ‘glass-box’ tool for model
reduction and interpretation. It proves that the functional transformation matrix, M (p), is not an ad-hoc
visualisation but is the optimal k x k representation of the full n x n spectral transformation x(p), as viewed
from the perspective of a pre-defined physical partition. This has broad implications. Interpreting an n x n
X(p) matrix is often intractable. This theorem provides a formal method to compress it into a much smaller
k x k matrix M (p) that is both quantitatively optimal and scientifically interpretable. The entry M (p)as
has a clear, physical meaning: it is the average spectral influence that the original structural modes
associated with functional group b (e.g., Visual Network) exert on the new structural modes associated with
functional group a (e.g., Dorsal Attention Network). This provides a rigorous foundation for systems-level
analysis, allowing for the creation of low-dimensional fingerprints of complex processes, as we demonstrate
in our neuroscience case study (§7] Figure [L8).
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Figure 2: Numerical validation of the functoriality of x (Lemma [1). This figure provides visual
and quantitative proof that our framework respects the composition of processes for both simple, local
changes (top row) and complex, global changes (bottom row). (a) A sequence of three network states in
Proc connected by two simple processes, p; and ps, each a single edge perturbation. The modified edge in
each step is highlighted (red for decreased weight, green for increased). (b) The resulting transformation
matrix for the composition of the two processes, computed as the matrix product x(p2) o x(p1). (c¢) The
transformation matrix for the single composite process, x(p2 o p1). This matrix is visually and numerically
identical to the one in (b). (d) A sequence of network states connected by two complex, global processes:
a dissipative process (p;) that modifies all edges, followed by a conservative one (pz). (€) The matrix for
the composition of the complex processes, showing a non-trivial, global transformation. (f) The matrix for
the single composite complex process, which is again identical to its compositional counterpart in (e). The
numerical difference between the composed and composite matrices is negligible in both cases (Frobenius
norm for the simple case: 3.3 x 1071?; for the complex case: 4.2 x 10719).
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Figure 3: Numerical validation of the physics-to-spectra dictionary (Theorems |3| and . This
figure demonstrates that the physical constraints defined in Proc have direct, predictable consequences in
Spec. Top Row: A network was subjected to a purely conservative process for 100 steps. (a) The total
resource R(G;) and the spectral trace Tr(Lgym,) are plotted over time. The lines are perfectly flat and
coincident, numerically verifying the identity Tr(Lsy.,) = R(G) and proving that the spectral trace is a
conserved quantity under conservative dynamics. (b) Histograms of the initial and final edge weights show
that while the process has significantly redistributed the individual resource values, the total resource is un-
changed. (c) The trajectories of all eigenvalues are shown. While individual structural modes fluctuate, their
sum is perfectly constant, as proven in (a). Bottom Row: A barbell graph was subjected to a structurally
fragmenting process for 100 steps. (d) The Fiedler value (A2), a measure of algebraic connectivity, shows
a clear and monotonic decline, confirming that the process successfully fragments the network. (e) Visu-
alisation of the initial network with its critical bridge edge highlighted (left) and the final network (right),
where the weakening of the bridge has caused the two communities to drift apart. (f) The trajectories of
all eigenvalues, with the Fiedler value highlighted. The plot shows Ao “peeling away” from the rest of the
spectrum and dropping towards zero, a classic signature of network fragmentation.
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5 Numerical Validation

In this section, we present a suite of controlled experiments on synthetic data to provide a rigorous validation
of our theoretical claims from §4 We begin by numerically verifying the functoriality of our spectral map,
confirming that it respects the composition of processes ( We then validate the core physics-to-spectra
dictionary, providing evidence for both the Spectral Trace Conservation Law and the Spectral Sensitivity of
connectivity (§5.2). Building on this, we provide a multi-faceted validation of our main result, the Stability-
Spectrum Equivalence theorem (§5.3). Further, we demonstrate the diagnostic power of our framework by
verifying the unique spectral signatures predicted by our process interpretation toolkit (§5.4). Finally, we
validate the predictive power of our framework using signal transport (§5.5]).

5.1 Verification of Functoriality

The cornerstone of our entire framework is the claim that the spectral map x is a valid functor (Lemma [1)).
To verify this, we must show that it respects the composition of processes. We test this property in two
scenarios: one with simple, local processes and one with complex, global processes. As shown in Figure 2]
in both the simple case (Panel a-c) and the complex case (Panel d-f), the transformation matrix computed
for the single composite process is numerically (almost) identical to the matrix product of the individual
transformations. This provides clear, strong evidence that our framework is mathematically sound and that
our “spectral accounting” of change is consistent and reliable.

(a) Convergence Rates (b) Eigenvalue Convergence (c) Network Simplification
Initial (t=0): 192 edges

100

2

Eigenvalue Magnitude

Normalized Distance from Equilibrium

~— Physical Distance

= = Spectral Distance

0 25 50 75 100 125 150 175 200 0 25 50 75 100 25 150 175 200
Time Step Time Step

Figure 4: Numerical validation of the Stability-Spectrum Equivalence (Theorem . This figure
provides a multi-faceted demonstration of the equivalence between a system’s physical convergence to equi-
librium and the stabilisation of its spectral representation. A randomly generated network was subjected
to a dissipative process with edge pruning for 200 time steps. (a) The convergence rates of the physical
and spectral representations. The log-linear plot shows that both the physical distance from equilibrium
(blue, solid) and the spectral distance (red, dashed) decay to zero, confirming that the system stabilises
as its spectral representation does. The differing decay profiles reveal a non-trivial insight: the spectral
representation is less sensitive to initial fluctuations but provides a sharper signal of the final convergence
to a stable state. (b) The convergence of the full Laplacian spectrum. The plot shows the trajectories of all
eigenvalues over time. The initially chaotic dynamics smoothly resolve into a set of stable, horizontal lines,
providing a holistic visualisation of the system’s entire geometric structure settling into its final, equilibrium
configuration. (c) The physical process of network simplification. The visualisation shows the initial, dense
network state at ¢ = 0 (left) and the final, sparse equilibrium state at ¢ = 200 (right). The dissipative and
pruning processes have driven the system to shed non-essential connections, converging from 192 edges to a
stable “backbone” of 79 edges.
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5.2 The Spectral Signatures of Physical Constraints

Next, we validate our “physics-to-spectra dictionary”, which links the physical constraints of the Proc cat-
egory to specific signatures in the Spec category. Figure [3]shows the results of two simulations designed to
test these links.

The top row validates our Trace Conservation Law (Theorem . We subject a network to a purely conser-
vative process that redistributes resources internally. As predicted, the total resource and the spectral trace
remain perfectly constant and coincident throughout the simulation (Panel a), even as the individual edge
weights are shuffled (Panel b) and the individual eigenvalues fluctuate (Panel c).

The bottom row validates our Spectral Sensitivity theorem (Theorem . We subject a barbell graph, which
has a clear structural bottleneck, to a structurally fragmenting process. As predicted, the Fiedler value (A2),
a measure of algebraic connectivity, shows a clear and monotonic decline (Panel d). The physical meaning
of this is made clear in Panel (e), which shows the network visually breaking apart. The full spectrum
dynamics in Panel (f) provide a deeper insight, showing the Fiedler value “peeling away” from the rest of
the spectrum, a classic signature of fragmentation.

5.3 Equivalence of Physical and Spectral Stability

Another theoretical result of our framework is the equivalence between the physical stability of a system
and the stability of its spectral representation. To validate this, we simulate a network’s long-term evolution
under a dissipative process with edge pruning, allowing it to converge to a stable equilibrium. The results,
shown in Figure [d] provide a multi-faceted confirmation of the theorem.

Panel (a) is the core quantitative proof. It shows that the physical distance from equilibrium (blue, solid)
and the spectral distance (red, dashed) both decay to zero, confirming that the system stabilises if and
only if its spectral representation does. The differing decay profiles reveal a non-trivial insight: the spectral
representation is a more sensitive indicator of the final convergence. Panel (b) provides a holistic view,
showing the entire spectrum of the system converging to stable, horizontal lines. Finally, Panel (c¢) provides
the intuitive physical implication, showing the network simplifying from a dense, chaotic initial state to a
sparse, stable “backbone” structure.

5.4 Diagnostic Power of the Toolkit

A key claim of our work is that elementary processes have unique, identifiable spectral signatures. Figure
validates this diagnostic power. The top row shows that a simple, local edge perturbation results in a
transformation matrix that is strongly diagonally dominant (Panel b) , supporting Theorem m We quantify
this using the Diagonal Dominance Ratio, defined as the sum of the absolute values of the diagonal entries
divided by the sum of the absolute values of all entries:

_ 2 [ Ml

i,j 114

(15)

For the matrix x(ppert) in Panel (b), this ratio is 0.9641, indicating that over 96% of the matrix’s “mass”
is concentrated on the diagonal. The matrix also represents a sparse perturbation of the identity matrix
(Panel ¢). While the underlying Laplacian change (ALgym, ) is rank-1 (Theorem [)), the spectral perturbation
matrix X(ppert) — I shown in Panel (c) has a numerical rank of 5. Its top singular values are [2.0000,
2.0000, 2.0000, 1.9957, 1.9957, 0.0000], indicating the change is concentrated in a low-dimensional subspace,
consistent with a localised physical process. This confirms that local changes have a simple, structured
spectral signature. In contrast, the bottom row shows that a major topological change—a node removal—
produces a completely different signature. The transformation is a projection operator (Panel e), which is
confirmed by its eigenvalue spectrum of only Os and 1s (Panel f). This demonstrates that our framework can
unambiguously distinguish between different classes of physical events.
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(a) Process: Perturb Single Edge (b) Transformation Matrix X(Ppert) (c) Perturbation: X(ppert) —/
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I

Figure 5: Numerical validation of the process interpretation toolkit (Theorems @, and .
This figure demonstrates that different elementary processes have unique, identifiable spectral signatures,
confirming the diagnostic power of our framework. Top Row: Signature of a Local Perturbation. (a)
The physical process: a single edge (highlighted in red) on a network is perturbed. (b) The resulting
transformation matrix x(ppert). The matrix is strongly diagonally dominant, quantified by a Diagonal
Dominance Ratio of 0.9641, visually confirming the principle of Structural Inertia (Theorem [7)). (c) The
perturbation matrix, x(ppert) —I. While the underlying Laplacian change ALgy,, is rank-1 (Theorem@, the
spectral perturbation shown here has a numerical rank of 5. Its top singular values are [2.0000, 2.0000, 2.0000,
1.9957, 1.9957, 0.0000], indicating the change is concentrated in a low-dimensional subspace, consistent with
a localised physical process. Bottom Row: Signature of Node Removal. (d) The physical process: a
single node (highlighted in red) is removed from the network. (e) The matrix of the resulting projection
operator. Its signature—an identity matrix with a single zero on the diagonal—is visually distinct from
the perturbation signature in (b). (f) The eigenvalues of the projection matrix. The bar plot provides a
quantitative validation of the Node Removal Signature (Theorem , showing exactly one eigenvalue at 0
(for the removed dimension) and all others at 1.
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Figure 6: Demonstration of Signal Transport as a Spectral Filter (Theorem E[) This experiment
reveals that a major structural change acts as a low-pass filter on network patterns, preserving smooth,
low-frequency signals while destroying noisy, high-frequency ones. The process in both scenarios is the
severing of all bridge edges between the two communities of a Stochastic Block Model graph. Top Row:
Preservation of a Low-Frequency Signal. (a) The initial signal is a smooth, low-frequency pattern (the Fiedler
eigenvector of the initial graph), creating a clear gradient between the two communities. (b) After transport
to the new, disconnected graph, the smooth pattern is closely preserved within each community (Pearson
correlation between initial and transported signal: 7 = 0.9846, p < 10722). (c¢) The transformation matrix
X(p) provides the mechanism. The highlighted top-left (low-frequency) block is strongly diagonal (Block
Diagonal Dominance Ratio = 0.5251), proving that low-frequency modes of the initial graph map cleanly
to the low-frequency modes of the final graph, ensuring pattern preservation. Bottom Row: Filtering of a
High-Frequency Signal. (d) The initial signal is a noisy, high-frequency pattern (the last eigenvector of the
initial graph). (e) After transport, the noisy pattern is destroyed and radically altered (Pearson correlation
between initial and transported signal: » = —0.8724, p < 107?). (f) The transformation matrix x(p) again
reveals the mechanism. The highlighted bottom-right (high-frequency) block is scattered and non-diagonal
(Block Diagonal Dominance Ratio = 0.3250). This visually demonstrates that high-frequency modes of
the initial graph do not map cleanly to high-frequency modes of the final graph; their energy is scattered,
destroying the original pattern.
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5.5 Signal Transport as a Spectral Filter

Our final synthetic experiment demonstrates that our framework can predict the fate of patterns on a
changing network. The results in Figure [ show that a major structural change acts as a spectral low-
pass filter. The top row shows the result of pattern preservation. A smooth, low-frequency signal (Panel
a) is successfully transported to the new network with its structure closely preserved (Panel b)(Pearson
correlation between initial and transported signal: r = 0.9846, p < 10722). The transformation matrix
Xx(p) (Panel c) reveals the mechanism: its top-left, low-frequency block is strongly diagonal, showing that
the geometric language for smooth patterns is robust to the change, quantified by applying the Diagonal
Dominance Ratio definition (Equation to this 5 x 5 block, yielding a value of 0.5251. The bottom row
visualises pattern destruction. A noisy, high-frequency signal (Panel d) is almost completely destroyed by
the transport, collapsing to a closely uniform, low-energy state (Panel e); the destruction is quantified by
a strong negative correlation between the initial and transported signals (r = —0.8724, p < 107?). The
transformation matrix (Panel f) again reveals why: its bottom-right, high-frequency block is scattered and
non-diagonal, proving that the geometric language for noisy patterns has been fundamentally broken by the
process, reflected in a low Block Diagonal Dominance Ratio (calculated via Equation on this 5 x 5 block)
of 0.3250. This experiment confirms that our framework provides a tool for predicting not just that a pattern
will change, but how it will change, based on its alignment with the network’s underlying spectral geometry.
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Figure 7: The Serengeti Case Study Area. This figure provides an overview of the two primary datasets
used in our real-world case study. (a) A map of the Serengeti National Park showing the geographic
distribution of the 225 camera traps from the Snapshot Serengeti project (Swanson et all 2015)). The
camera grid covers an area of 1,125 km?, and each point represents a unique camera site, plotted using its
UTM coordinates. The basemap provides topographical context for the study area. (b) The full topological
structure of the Serengeti food web, based on the data from Baskerville et al.| (2011). The network consists
of 161 species (nodes) and 592 directed feeding links (edges). Nodes are colour-coded by their functional
group to illustrate the ecosystem’s trophic structure: carnivores are shown in reds, herbivores in greens, and
the broad plant base in grey. The high proportion of plant nodes reflects the high taxonomic resolution of
the primary producer data, a key feature of this food web.

6 Real-World Case Study 1: Serengeti Ecosystem Dynamics and Drought Impacts

Having established the theoretical foundations of our Proc-to-Spec framework in and validated its
core properties with numerical experiments in we now apply it to complex, real-world systems. To
demonstrate the generality and robustness of our framework, we selected two comprehensive case studies
from fundamentally different scientific domains, each presenting a distinct set of analytical challenges.
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The first, presented in this section, is an analysis of the Serengeti food web (Baskerville et al., 2011]).
This case study serves as a test in a high-signal, macro-timescale, and physically-grounded setting.
The objective here is to move from mathematical verification to scientific discovery, demonstrating our
framework’s power to interpret a known, massive event from high-resolution, inherently noisy ecological
data. The core challenge in this domain is not signal detection, but signal interpretation: we must prove our
framework is robust to the significant data sparsity of camera traps (Swanson et al.,|2015) while successfully
providing a novel, geometric characterisation of a system-wide shock. This analysis will serve as a direct
methodological contrast to our second case study in §7} which will test the framework’s sensitivity in a
high-speed, low-signal, abstract cognitive system.

Table 2: Summary of the Serengeti ‘Snapshot’ and Food Web Datasets.

Metric Value Source

Snapshot Serengeti Camera Trap Data

Study Area 1,125 km?  |Swanson et al.| (2015)
Number of Camera Traps 225 |Swanson et al.| (2015)
Time Period 20102013 |Swanson et al.| (2015)
Total Image Sets Classified 1.2 million |Swanson et al.| (2015])
Food Web Topology Data

Total Species (Nodes) 161 |Baskerville et al.| (2011))
Feeding Links (Edges) 592 |Baskerville et al.| (2011))
Functional Groups

Carnivores 9 |Baskerville et al.| (2011)
Herbivores 23 |Baskerville et al.| (2011))
Plants 129 |Baskerville et al.| (2011))

6.1 The Serengeti Food Web Ecosystem

We have chosen the Serengeti ecosystem in northern Tanzania to be the testbed for our framework. It
is a well-studied, resource-constrained system characterised by strong seasonal dynamics and occasional
environmental shocks. Its complex food web and the availability of rich, modern datasets provide an valuable
opportunity to test our framework’s ability to analyse real-world network dynamics.

Our analysis is built upon two public datasets. The first is the “Snapshot Serengeti” dataset, a large collection
of 1.2 million classified camera trap image sets from 225 camera traps spread across 1,125 km? of the Serengeti
National Park from 2010 to 2013 (Swanson et al., |2015). This dataset provides a high-frequency, event-level
record of animal activity. The second is a high-resolution food web topology, which details 592 predator-prey
interactions among 161 species, notable for its high taxonomic resolution at the plant level (Baskerville et al.|
2011). An overview of these datasets is provided in Figure [7|and Table

6.2 Data Processing and Dynamic Network Construction

To apply our framework, we developed a rigorous data processing pipeline to transform the raw, event-level
camera trap data (Swanson et al.| 2015]) into a time-series of dynamic networks in the Proc category. This
pipeline consists of the following steps:

Step 1: Event Aggregation and Cleaning The foundational dataset, the Snapshot Serengeti consensus
data, presents several data processing challenges. First, it is an event-level log, not an aggregated time-series.
Second, and most critically, the ‘Count’ field is non-numeric, recorded as strings to represent uncertainty
(e.g., ‘17, ‘2, “11-507, ‘514").

As a foundational cleaning step, we implemented a robust parsing methodology to convert this raw log into
a quantitative time-series. First, we ensured data integrity by filtering out any records missing essential
fields (a valid timestamp, species identifier, or count string). Next, we defined a deterministic rule to convert
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the count strings to integers: simple numeric strings were cast directly, ranges were mapped to their lower
bound (e.g., ‘11-50° — 11), and open-ended ranges were mapped to their base value (e.g., ‘51+’ — 51). Any
unparseable entries were conservatively treated as zero.

With a clean, numeric count for each event, we then performed temporal aggregation. We parsed the
‘DateTime’ field of each event to extract its ‘Year’ and ‘Month’. Finally, we grouped the entire dataset by
“Year’, ‘Month’, and ‘Species’ and summed the numeric counts to produce a single, clean time-series: the
total observed count for each species for each month of the study period.

Step 2: Species Unification and Network Weighting The aggregated count time-series (from Step 1)
must be mapped onto a static food web topology. This presented a significant data unification challenge: the
camera trap counts use common species names (e.g., ‘lionFemale’, ‘gazelleThomsons’), whereas the food web
topology dataset (Baskerville et al., |2011]) uses scientific names (e.g., ‘Panthera leo’, ‘Eudorcas thomsonii’).
A critical pre-processing step was to meticulously map all species from the count data to their corresponding
scientific names in the topology, ensuring the two datasets could be algorithmically joined.

With the datasets unified, we constructed a dynamic network G; for each month ¢. The static node set (161
species) and edge set (592 feeding links) were taken from Baskerville et al.| (2011). The dynamic edge weights
Wi(u,v) for a predator u and prey v were then computed using a well-established mass-action model in the
literature (Murray), 2007)):

Wi(u,v) = C - county(u) - county(v) (16)

where count;(u) and count;(v) are the aggregated monthly counts for the predator and prey, respectively.
Any interaction where either species had a count of zero resulted in a weight of zero. The scaling constant
C was set to 1072 to scale the interaction strengths appropriately. This process resulted in a time-series of
dynamic networks, each representing a monthly snapshot of the food web’s effective interaction strengths.

Step 3: Defining the Active Subgraph The resulting monthly networks G are highly sparse, as a zero
count for either predator or prey in a given month results in a Wi(u,v) = 0. To analyse the dynamics of
the system, we must first isolate the components that are active in each snapshot. We defined the ‘active
subgraph’ G} as the subgraph containing only nodes and edges that participated in an interaction with a
positive weight (i.e., where both predator and prey were observed that month).

This active subgraph G} is often still disconnected. To focus on the core of the interacting system, we
identified its main component by finding the Largest Connected Component (LCC). It is crucial to note
that this LCC was identified from the undirected representation of G}, thus capturing the primary cluster
of interacting species regardless of the direction of resource flow. This standard approach (Newmanl 2018))
ensures our analysis is robust to the transient disappearance of peripheral species and isolates the main,
interacting component of the ecosystem for each month.

Step 4: Ensuring a Stable Node Set for Transformation Analysis A key requirement of our
framework for computing the transformation x(p:) : x(G¢) — x(Gi+1) is that both network states are
defined over the same set of n nodes, ensuring the transformation is a map between vector spaces of equal
dimension. In a real-world dataset, data sparsity can cause peripheral nodes to ‘blink’ in and out of the
active LCC (as defined in Step 3) from one month to the next. Analysing these changing node sets directly
would introduce high-dimensional noise and artifacts.

To ensure a robust and stable analysis, we therefore computed all transformations on the largest common
active component. This component is formally defined as the subgraph induced by the intersection of the
node sets of the two consecutive LCCs: Viommon = V(LCCi) N V(LCCiiq). All spectral analyses and
transformation matrices were subsequently computed on this stable, common subgraph. This approach
ensures our analysis is robust to observation noise and isolates the geometric changes of the core system.

To quantitatively assess the impact and robustness of this LCC-based approach, we analysed the coverage
and temporal stability of the LCC throughout the study period (Figure . The results show that, for
this dataset, the LCC consistently contained 100% of all nodes and resources involved in active interactions
each month (Figure ), indicating that no interacting components were excluded by focusing on the LCC.
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Furthermore, the node membership of the LCC was generally highly stable month-to-month, reflected in high
overlap metrics (mean Jaccard Index = 0.939, Figure[I0p) and low turnover rates (mean < 4%, Figure [10f).
Significant LCC turnover (up to 40%) occurred primarily during the 2011 drought period, confirming the
LCC’s sensitivity to major ecological events while validating its use as a stable analytical core for most of
the time series.
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Figure 8: Spectral Dynamics of the Serengeti Food Web (2010-2013). The figure presents three
metrics derived from the monthly network time-series, revealing a roughly consistent seasonal cycle and a
major anomalous event. (a) Active Core Size: The number of species in the Largest Connected Com-
ponent (LCC) shows a seasonal “pulse”, vibrating between dry (shaded) and wet seasons. (b) Network’s
Algebraic Connectivity: The Fiedler value (A3) of the LCC is approximately anti-correlated with the dry
seasons. The inset shows the full range, capturing a massive connectivity spike of the shrunken core during
the July 2011 drought. (c) Process Signature: The fragmentation term reveals fragmenting processes
(red bars) at the onset of dry seasons and consolidating processes (green bars) during recovery. The inset
highlights the extreme nature of the 2011 event. Collectively, these results show that the framework is sen-
sitive enough to detect both the subtle, recurring seasonal cycle and the multi-faceted signature of a major,
documented drought event.
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Figure 9: Rate of Geometric Change in the Serengeti Food Web (2010-2013). This figure quan-
tifies the month-to-month geometric instability of the network’s spectral structure. (a) The rate of overall
geometric change, measured as the Frobenius distance ||x(p:) — I||r between consecutive months. Both the
raw monthly value (dashed line) and a 3-month running average (solid line) are shown. The highest rate
of change occurred in August 2012, while elevated rates are also observed during the 2011 drought period.
Shaded regions indicate dry seasons. (b) The rate of geometric change decomposed into low-frequency (top
5x5 block of x(p:) — I, green lines) and high-frequency (bottom 5x5 block, orange lines) spectral modes.
High-frequency changes exhibit greater month-to-month volatility, while low-frequency changes show larger,
slower swings that drive the major peaks. (c, d) Comparison of the x(p) transformation matrices during
two periods of high geometric instability: the Drought Collapse (June — July 2011) and the Peak Change
period (July — Aug 2012). Both matrices are highly off-diagonal, indicating significant structural reorgani-
sations, but exhibit qualitatively different patterns. Highlighted blocks correspond to the low-frequency and
high-frequency components analysed in panel (b).
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Figure 10: LCC Coverage and Stability Analysis for the Serengeti Network (2010-2013). This
figure validates the use of the Largest Connected Component (LCC) by quantifying its coverage and temporal
stability. (a) LCC Coverage: Plots the percentage of total active nodes (nodes with weight > 0) and total
active resource (sum of weights > 0) contained within the LCC each month. In this dataset, the LCC
consistently encompasses 100% of the active network components. Shaded regions indicate dry seasons. (b)
LCC Node Set Stability (Overlap): Shows the month-to-month stability of the LCC node set using
the Jaccard Index (mean=0.939, std=0.105) and Dice Coefficient (mean=0.966, std=0.063). Values near
1.0 indicate high stability, while dips (e.g., mid-2011) correspond to periods of greater structural flux. (c)
LCC Node Set Stability (Turnover): Shows the percentage of nodes leaving the LCC (mean=2.5%,
std=7.9%) and entering the LCC (mean=3.5%, std=8.1%) each month. While generally low, turnover rates
peak significantly during the 2011 drought period, quantifying the disruption.

6.3 Experimental Results

Using the constructed monthly networks, here we conducted a series of experiments with each designed to
validate a different core theorem of our framework.

Detecting the Ecosystem’s Pulse and a Major Ecological Shock. Our first experiment tests the
framework’s sensitivity to environmental change. As shown in Figure[§] the analysis reveals a clear, cyclical
pattern in the ecosystem’s structure corresponding to the wet and dry seasons. The size of the active core
(Panel a) and the network’s algebraic connectivity (Panel b, Fiedler value) both consistently contract during
the resource-scarce dry seasons. The framework also proves highly sensitive to extreme events, detecting a
major anomaly in July 2011 that corresponds to a severe, well-documented regional drought. The framework
provides a multi-faceted signature of this crisis: a collapse of the active core (Panel a), preceded by the most

significant structural fragmentation event in the time-series (Panel c¢), which resulted in a small, hyper-
connected remnant network (Panel b).

To gain insight into the network’s structural reorganisation dynamics, we computed the rate of geometric
change between consecutive months, measured as the Frobenius distance ||x(p:) — I|| 7 between the transfor-
mation matrix and the identity matrix (Figure E[) This metric quantifies the magnitude of month-to-month
instability in the network’s spectral geometry (Figure @a) While elevated rates of change occurred during
the 2011 drought period (marked by the blue dashed line), the absolute peak occurred later, in August 2012
(marked by the red dashed line), suggesting a significant lagged reorganisation or response to other factors
not captured by simple connectivity metrics. Decomposing this change by spectral frequency (Figure |§|b)7
using 3-month running averages to visualise trends, reveals that high-frequency modes (representing finer
structural details, orange lines) exhibit greater month-to-month volatility but fluctuate around a relatively
stable mean. In contrast, low-frequency modes (representing core structure, green lines) undergo slower but
wider swings that appear to drive the major peaks in overall geometric change. A comparison of the x(p)
matrices during the 2011 drought collapse (Figure [0k) and the 2012 peak change period (Figure [9) con-
firms both were major, highly off-diagonal reorganisations, albeit with different geometric signatures. The
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observed month-to-month fluctuations throughout the time series (dashed/dotted lines in Fig @a, b) also
highlight the inherent variability and potential noise present in real-world ecological data.
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Figure 11: Real-world Validation of the Spectral Trace Conservation Law (Theorem on the
Serengeti Food Web (2010-2013). This figure provides a direct, quantitative test of the predicted
relationship between physical resource dynamics and their spectral counterparts. Each point represents a
month-to-month transition in the Serengeti ecosystem. The x-axis shows the change in the total observed
animal count, our proxy for the total system resource (AR). The y-axis shows the corresponding change
in the trace of the symmetrised Laplacian (ATr(Lsy.m)). The data reveals a strong, positive, and linear
correlation between the physical and spectral quantities, as predicted by our framework. This relationship is
quantified by a Pearson correlation coefficient of = 0.9553 (p < 0.0001), providing compelling, real-world
evidence that the physical conservation of resources within the system is directly reflected by this spectral
invariant.

Verifying Physical Conservation Laws in the Spectral Domain. To validate the framework’s phys-
ical grounding, we tested the Spectral Trace Conservation Law. Figure[L1]plots the change in total observed
animal activity (our proxy for the system’s total resource, AR) against the change in the trace of the sym-
metrised Laplacian (ATr(Lgy,)) for each month-to-month transition. As predicted by Theorem [3] the two
quantities exhibit a near-perfect linear relationship (r = 0.9553,p < 0.0001). It is important to note that this
strong correlation is not a noisy, empirical biological finding, but rather a direct validation of the mathemat-
ical consistency of our framework. The result confirms that the abstract spectral quantity we defined (the
Laplacian trace) behaves exactly as predicted by the physical quantity it is designed to represent (the total
system resource, here modelled by camera-recorded animal activity). This grounds our functorial framework
in the physical reality of the system.

The Geometric Signature of a Crisis. We then leveraged the Process Interpretation Toolkit to move
beyond detecting change to characterising its fundamental nature. Figure [I2] compares the geometric sig-
nature (x(p) matrix) of the 2011 drought collapse to that of a typical seasonal transition. The results are
visually striking. A typical seasonal change (Panel ¢) is a minor perturbation, with a signature close to the
identity matrix, although still significantly off-diagonal (Diagonal Dominance Ratio, Eq. is 0.2884), and
its core community structure is preserved (Panel f); this preservation is quantified by the very low Shannon
entropy (0.0353 bits) calculated from the squared components shown. In contrast, the drought collapse
(Panel a) has a complex, highly off-diagonal signature(Diagonal Dominance Ratio = 0.1890, even lower dur-
ing recovery, Panel b, Ratio = 0.1566), corresponding to a topologically complex shattering of the Fiedler
vector (Panel d), quantified by a significantly higher entropy (0.9582 bits, increasing further during recovery
to 2.1167 bits, Panel e). The species-level analysis (Row 3) provides a concrete ecological interpretation.
The pre-drought Fiedler vector (Panel g) is defined by the classic partition between migratory herds (e.g.,
Connochaetes taurinus) and their resident predators (e.g., Crocuta crocuta). The low Participation Ratios
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Figure 12: The Geometric-Spectral Signature and Species-Level Impact of Ecological Processes
of the Serengeti Food Web (2010-2013). This figure provides a multi-layered validation of our frame-
work’s diagnostic power by comparing the geometric signature (x(p) matrix) and structural impact of three
distinct ecological processes. Top Row (Panels a-c): The heatmaps show the overall geometric signature
of each process. A “typical” seasonal transition from wet to dry in 2012 (c) has a signature that is relatively
more diagonal (Diagonal Dominance Ratio = 0.2884) compared to the highly off-diagonal signatures of the
2011 drought collapse (a) (Ratio = 0.1890) and subsequent recovery (b) (Ratio = 0.1566), quantitatively
confirming the latter two as catastrophic structural reorganisations. Middle Row (Panels d-f): These
panels reveal the mechanism behind the signatures by showing the transformation of the Fiedler vector
(v2), which represents the ecosystem’s primary community structure. During the typical transition (f), the
Fiedler vector is quantitatively preserved, mapping almost entirely onto the new Fiedler vector (Shannon
Entropy of squared components = 0.0353 bits). During the drought collapse (d), this vector is quantitatively
shattered, its energy scattered across many new structural modes (Entropy = 0.9582 bits). The recovery
phase (e) shows the highest scattering (Entropy = 2.1167 bits). Bottom Row (Panels g-i): This pro-
vides a concrete, species-level interpretation. The low Participation Ratios of the initial Fiedler vectors
(PRy=1.1319, PR;,=1.2603, PR;=1.0974) indicate these structural modes were highly localised. The Fiedler
vector of the pre-drought network (g) and the typical network (i) is defined by the classic ecological partition
of the Serengeti: the large migratory herds (e.g., Connochaetes taurinus, Equus quagga) on one side, and
their primary resident predators (e.g., Crocuta crocuta, Panthera leo) on the other. The shattering of this
vector during the drought is the geometric signature of a well-documented ecological phenomenon: severe
droughts force migratory herds to break their normal patterns in search of scarce resources, thus temporarily
destroying the predictable spatial predator-prey dynamics that define the ecosystem’s structure (Sinclair
. The framework has detected and characterised this real-world crisis at the species level.
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Figure 13: A Falsifiable Prediction of Ecological “Winners” and “Losers” of the 2011 Drought
using Signal Transport (Theorem E[) This figure demonstrates the framework’s predictive power. The
signal is a species’ importance, defined by its eigenvector centrality in the stable, pre-drought network of
June 2011. This signal is then projected through the drought process using the transport matrix Tt qnsport =
V'VT to predict the new centrality of each species in the drought-stricken state of July 2011. The slope
chart visualises the predicted change in rank for the top 10 most central species before the drought versus
after applying the Signal Transport Theorem. The prediction indicates a major disruption to the species
importance hierarchy, quantified by a large Mean Absolute Rank Change of 6.1 positions. Consistent with
a significant reshuffling, the correlation between the initial and predicted ranks is weak and not statistically
significant (Spearman’s p = 0.20, p = 0.58). Despite the rank disruption, the framework predicts key
ecological shifts reported in the literature (Sinclair et al., [2007): large grazers, such as Thomson’s Gazelle
(Eudorcas) and Hartebeest (Alcelaphus), and their specialist apex predator, the Lion (Panthera), are correctly
identified as primary “losers”, suffering a significant drop in relative importance. Conversely, adaptable,
opportunistic carnivores like the Spotted Hyena (Crocuta) are predicted to be primary “winners”, maintaining
their central role. These results validate that the Signal Transport Theorem can quantitatively anticipate
the significant reorganisation of ecological roles under major perturbations such as drought.

of these initial Fiedler vectors (PRy=1.1319, PR;,=1.2603, PR;=1.0974) confirm that this structure was
highly localised, dominated by relatively few key species on either side of the partition. The shattering of
this vector is the geometric signature of a well-documented ecological phenomenon: severe droughts force
migratory herds to break their normal patterns, temporarily destroying the predictable spatial predator-prey
dynamics that define the ecosystem’s structure (Sinclair et al.l [2007]).

Predicting Ecological Winners and Losers. Our final experiment demonstrates the framework’s pre-
dictive power. We defined a signal of species’ “importance” (eigenvector centrality) on the stable, pre-drought
network. We then used the transport matrix (Tiransport) derived from the drought process to generate a fal-
sifiable prediction for the new importance of each species in the drought-stricken state. Figure [[3] visualises
these predictions for the top 10 species initially. The transport predicts a major disruption to the species
importance hierarchy, quantified by a large Mean Absolute Rank Change of 6.1 positions among the top 10
species shown. Consistent with this significant reshuffling, the correlation between the initial and predicted
ranks is weak and not statistically significant (Spearman’s p = 0.20, p = 0.58). The framework predicts that
large grazers (e.g., Fudorcas thomsonii) and their specialist predators (Panthera leo) will be the primary
“losers”, while more adaptable, opportunistic carnivores (e.g., Crocuta crocuta) will maintain their central
role. These predictions are supported by the ecological literature. Severe droughts are known to disrupt
the primary food source for large grazers and, consequently, the specialist predators that depend on them.
For instance, drought conditions in the Serengeti are known to fundamentally alter the dynamics of the
wildebeest-predator system, affecting migration, foraging, and predation patterns (Sinclair et al. [2007). De-
spite the low overall rank correlation, the framework correctly identifies key ecological shifts reported in the
literature: large grazers and their specialist predators are predicted “losers”, while adaptable carnivores like
hyenas are predicted “winners” (Sinclair et al., [2007). These results validate that the Signal Transport Theo-
rem can quantitatively anticipate the significant reorganisation of ecological roles under major perturbations,
correctly identifying key functional shifts even amidst substantial rank instability.
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7 Real-World Case Study 2: Detecting Cognitive Processes in Brain Connectomics

To demonstrate the versatility and robustness of the Proc-to-Spec framework, we now apply it to a second
case study from a fundamentally different scientific domain. This new case study, drawn from neuroscience,
is designed to be a direct methodological contrast to the Serengeti analysis. Where the Serengeti study
( tested our framework’s ability to diagnose and interpret a high-signal, macro-timescale, external
shock (a drought) in a sparse, physically-grounded network, this brain network study tests its sensitivity to
low-signal, micro-timescale, internal events (cognitive state shifts) in a dense, abstract network.

The scientific challenge here is distinct and, in many ways, more demanding. In the ecological case, the
process of change was a massive, system-wide perturbation with a clear signal. In this neuroscience case,
the process is a fleeting, internal cognitive shift, and its signature is notoriously subtle, buried within the
high-dimensional, high-noise environment of fMRI (functional Magnetic Resonance Imaging) data. The core
question thus shifts from one of interpretation (characterising a known shock) to one of detection: is the
Proc-to-Spec framework sensitive enough to identify and quantify the unique geometric signature of a rapid,
cognitive process?

7.1 HCP Data Processing and Dynamic Network Construction

The HCP case study requires a processing pipeline that is substantially different from the Serengeti’s, one
adapted for the high-speed, high-noise, and abstract nature of fMRI data. Our pipeline, summarised in
Table [4] is designed to translate this data into the language of our Proc-to-Spec framework. We selected
21 subjects from the HCP 100 Unrelated release (see Table|3) for this analysis.

Table 3: HCP-Young Adult 2025 Subject Cohort (n=21) used in this study. All subjects were
selected from the latest Human Connectome Project (HCP) S1200 release (updated in August 2025, datasets
available for download at https://balsa.wustl.edu/project?project=HCP_YA), which provides extensive
neuroimaging and behavioural data from healthy young adults (Van Essen et all 2012). This table details
the demographic and data completion status for each subject. Release (e.g., S500, S900) indicates the data
release cohort, and Acquisition (e.g., Q07) denotes the acquisition quarter. 3T__Full_MR__Compl con-
firms completion of the full 3T MRI protocol, which includes the resting-state (rfMRI) and working-memory
task (tfMRI_WM) data used in our analysis. The 7T__Full_MR__Compl and MEG__FullProt__Compl
columns are included for reference and indicate completion of other imaging protocols not used in this specific
study. We specifically selected those subjects for whom the full 3T, 7T, and MEG (Magnetoencephalogra-
phy) imaging protocols were completed.

Subject ID Release Acquisition Gender Age 3T_Full MR_Compl 7T_Full MR_Compl MEG_ FullProt_ Compl

105923 MEG2 Q07 F 31-35 true true true
108323 S500 Q04 F 26-30 true true true
109123 S500 Q06 M 31-35 true true true
116726 S900 Q08 M 26-30 true true true
140117 S500 Q04 F 26-30 true true true
156334 MEG2 Q03 F 26-30 true true true
162935 S900 Q09 M 22-25 true true true
164636 S900 Q09 M 22-25 true true true
175237 S900 Q10 F 31-35 true true true
185442 S500 Qo7 M 22-25 true true true
191033 S500 Q06 F 26-30 true true true
192641 MEG2 Q07 F 31-35 true true true
198653 S900 Q10 M 22-25 true true true
204521 S500 Q07 F 31-35 true true true
257845 S900 Q09 M 26-30 true true true
283543 S900 Q09 M 22-25 true true true
406836 S900 Q10 F 31-35 true true true
581450 S900 Q09 M 22-25 true true true
680957 Q3 Q03 F 26-30 true true true
725751 S900 Q05 M 26-30 true true true
898176 S500 Q06 M 31-35 true true true
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Table 4: HCP Case Study: Data and Processing Parameters. This table details the full processing
pipeline and parameters used to construct the dynamic Resource Connectome (dRC) time-series from the raw
HCP fMRI data. The Dataset parameters define the source data from the HCP S1200 release (Van Essen
et al., |2012)), the 379-node Glasser parcellation (Glasser et al., 2016]), and the canonical Cole-Anticevic
mapping to functional networks (Ji et al., |2019). The Temporal Parameters are critical: we use a 30-
second (42 TR) window to ensure temporal precision for brief cognitive events, and a 50% (21 TR) step
size to ensure consecutive windows are sufficiently distinct, which is essential for capturing the process
of change. Finally, the Proc-to-Spec Model parameters define our novel, biologically-grounded network
representation: Node Resource is the BOLD signal variance (a proxy for local metabolic activity (Garrett
et all [2011} |Grady & Garrett), [2014)), and the Edge Weight is defined by our gated mass-action model,
W = max(0,r) - var(u) - var(v), which directly parallels the ecological model in g@

Network Mapping

Nodes (Regions)
Temporal Parameters
fMRI Signal
Repetition Time (TR)
Window Duration
Window Step Size
Proc-to-Spec Model
Network Type

Parameter Value

Dataset

Source Human Connectome Project (HCP) S1200 (Van Essen et al.,2012)
at https://balsa.wustl.edu/project?project=HCP_YA

Subjects 21 (See Table

Runs All 4 resting-state (rfMRI) & 7 tasks (t¢fMRI: WM, MOTOR,
LANGUAGE, EMOTION, GAMBLING, RELATIONAL, SO-
CIAL)

Atlas Glasser et al. (2016) Multi-Modal Parcellation (Glasser et al., [2016)

Cole-Anticevic Brain-wide Network Partition (Ji et al., [2019) at
https://github.com/ColeLab/ColeAnticevicNetPartition
379 (360 Cortical + 19 Subcortical)

BOLD (Blood Oxygenation Level Dependent)
0.720 seconds

30 seconds (42 TRs)

21 TRs (~15.1s, 50% Overlap)

Dynamic Resource Connectome (dRC)

Node Resource Metric ~ Signal Variance: var(BOLD;), a proxy for local metabolic activity

(Garrett et al.l |2011; |Grady & Garrett} 2014])

Edge Weight Metric Gated Mass-Action: W = max(0,7) - var(u) - var(v)

Step 1: BOLD Time-Series Extraction and Definition of Network Nodes. Our analysis begins
with the publicly available Human Connectome Project (HCP) S1200 release (Van Essen et all [2012), from
which we selected 21 subjects (listed in Table [3)). The HCP provides extensive neuroimaging data for each
subject, acquired using functional Magnetic Resonance Imaging (fMRI). This technology does not measure
neural firing directly; instead, it measures the Blood Oxygenation Level Dependent (BOLD) signal (an
example of which is shown in Figure ) The BOLD signal is a complex, indirect proxy for neural activity,
reflecting the localised changes in blood flow and oxygenation that occur when a brain region becomes
metabolically active (Hej 2013).

This raw BOLD signal is exceptionally noisy, as it is contaminated by non-neural artifacts from subject head
motion, breathing, and heartbeat. To address this, we used the HCP’s pre-processed ‘ICA-FIX’ denoised
dataset. This dataset has been rigorously cleaned using Independent Component Analysis (ICA) to identify
and regress out these known noise components, providing a much cleaner signal that is more representative
of underlying neural dynamics.

To model the brain as a network, we must first parcellate it into a set of discrete nodes. We employed the
Glasser et al. (2016) Multi-Modal Parcellation (Glasser et al., 2016, a state-of-the-art atlas that defines 379
distinct brain regions (360 cortical, 19 subcortical) based on their architecture, function, and connectivity
(visualised in Figure [14h).
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For each subject, we analysed all available fMRI scans, which fall into two categories:

o Resting-state fMRI (rfMRI): Four separate runs (two with ‘LR’ and two with ‘RL’ phase-
encoding) where subjects simply rest. These provide a baseline of the brain’s “idle” or spontaneous
activity.

o Task fMRI (tfMRI): All seven distinct cognitive tasks, each with two runs (LR and RL encoding),
for a total of 14 task runs. These tasks (Working Memory, Motor, Language, etc., as listed in Table
present specific cognitive challenges that actively reorganise the brain’s functional networks.

The average BOLD time-series was extracted from each of the 379 Glasser regions for all of these fMRI runs.
The final output of this step is a (timepoints X 379 regions) data matrix for each subject and run, which
serves as the raw input for constructing our dynamic resource connectomes.

Step 2: Defining the Proc Object (The dRC Matrix). A significant challenge in applying our
framework is that brain networks are not directly observed resource flows, but are instead abstract correlation
matrices. Standard functional connectivity (FC) often uses the Pearson correlation coefficient r, which
includes negative values (anti-correlations) and is bounded, making it incompatible with our non-negative,
resource-constrained Proc category. To bridge this gap, we defined a new metric, the dynamic Resource
Connectome (dRC), that is theoretically consistent with our framework and parallels the mass-action model
from the Serengeti study. This construction involves two steps:

First, we define a node’s resource, R(u,t). The raw BOLD signal’s mean is an arbitrary scanner unit,
but its variance (or standard deviation) within a time window ¢ is a well-established, meaningful signal.
The literature has long demonstrated that BOLD signal variability is not mere “noise” but is a powerful,
non-negative proxy for local metabolic “power”, correlating with age, cognitive performance, and functional
integrity (Garrett et al., 2011; |Grady & Garrett, [2014). We thus define our node resource as:

R(u,t) = var(BOLD,, ;) (17)

This provides a non-negative scalar value for each node’s metabolic resource consumption at time ¢.

Second, we define the edge weight W (u,v) using a gated mass-action model:
Wi(u,v) = max(0,7yy) - R(u,t) - R(v,t) (18)

This model is a direct analogue to the Serengeti’s C - count(u) - count(v). The model has two components:

o The Cooperation Gate (max(0,7,,)): The term 7, is the Pearson correlation between regions u
and v within the window ¢. The max(0,r) function acts as a gate, filtering for only positive, in-phase
synchrony. This creates a graph that explicitly models the brain’s “cooperative” resource network,
while treating anti-correlations (a mechanistically different process) as a “no connection” state.

o The Mass-Action Component (R(u,t)- R(v,t)): This term models the interaction strength as
the product of the resources each node brings to the connection. A strong interaction requires both
high synchrony (high r) and high metabolic activity (high variance) from both participating nodes.

This results in a non-negative, symmetric matrix W; that is a valid object in our Proc category. This
variance-based metric is also sensitive to complex neural phenomena, such as the task-induced reduction in
variability reported in the literature (He| [2013), making it a powerful tool for capturing non-obvious network
reorganisations.

Step 3: Defining the Proc Morphism (The Process p;). We create a time-series of these Gy = (V, W,)
matrices to model the brain’s dynamic processes, p; : Gy — G¢41. The choice of sliding window parameters
is a critical and non-trivial methodological step in all dynamic connectivity studies. The parameters must be
carefully chosen to balance two competing factors: statistical stability (which favours longer windows to get
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a reliable matrix) and temporal precision (which favours shorter windows to detect brief cognitive events)
(Leonardi & Van De Ville| 2015} [Zalesky & Breakspear} |2015). For this study, we selected a 30-second
(42-TR) window. This is a principled choice, as the cognitive blocks in the HCP task-fMRI (tfMRI) runs
are themselves brief (e.g., the Working Memory task blocks are 25 seconds). A 30-second window is therefore
short enough to achieve high temporal precision, creating W; matrices that are more likely to represent a
single, “pure” cognitive state (either ‘Rest’ or ‘Task’) rather than averaging or “smearing” them together,
which would be an unavoidable artifact of a longer (e.g., 60s or 90s) window.

Crucially, we used a 50% overlap (21-TR step size). This ~15s step is a critical methodological choice.
Our initial experiments using a 1-TR (0.72s) step, which creates a 99% overlap between consecutive windows,
failed to find a signal. This is because the extreme overlap mathematically “averaged out” the signal of
change, as G; and G,1 were nearly identical. The 50% overlap is a standard signal-processing technique
that ensures consecutive networks are substantially distinct, allowing our framework to robustly detect the
process of change between them. The resulting Proc objects (Grest, Gtask) and the morphism (Giask — Grest)
are visualised in Figure [15] (a-c).

(b) Regional BOLD (Subject 105923, rfMRI_REST1_LR)

12200 Ww\w‘ %N'VWNWWWNWMM W Mwﬂ ‘ c) Stati

(a) Brain Parcellation (Network Nodes) R_V1_ROI 1000
R g ot |

13000

R_6mp_ROI
12800

12300

f R_MI_ROI 12200
12100

11300

R_VVC_ROI 11200

11100

11700
11600

L_5mv_ROI

9100
- L_111_ROI 9000
B 8900
11500
ACCUMBENS_RIGHT
11000

Brain Regions (Glasser Atlas)
Log(Resource Interaction Strength)

:
12700 p W\* : :
L_IP1_ROI MW f 0
MR EEEEEEE " | ey i Mo Wy Brain Regions (Glasse Atlas)
12500
0 45 90 135 179 0 100000 200000 300000 400000
Parcellation Index (Left Hemisphere) Time (ms)

Figure 14: Overview of the Human Connectome Project (HCP) Case Study Data (Subject ID:
105923). This figure illustrates the key components of our brain network analysis. (a) Brain Parcel-
lation (Network Nodes): The 379 regions of the Glasser atlas (360 cortical + 19 subcortical) plotted
on a left-hemisphere 3D cortical surface. These regions serve as the nodes of our network topology. (b)
Regional BOLD Time Series (Signal): Example raw time series from 8 selected regions in the resting-
state run (rfMRI_REST1_LR; TR = 720 ms). BOLD (Blood Oxygenation Level Dependent) signal reflects
neurovascular coupling—changes in blood oxygenation and flow that indirectly track local neural activity.
(c) Static Resource Connectome (Full 379 x 379): This heatmap visualises the full static network
W, computed using our theoretically-grounded resource model. The weight of an edge (u,v) is defined as
W (u,v) = max(0,7y,,) - var(u) - var(v), where var(u) is the variance (activity) of region w and r, is the
Pearson correlation. This gated mass-action model is a direct analogue to the ecological model used in §6]
and ensures all edge weights are non-negative. The matrix is log-transformed (log(1 4+ W)) for visualisation,
which compresses the extreme values to reveal the brain’s rich community structure (bright diagonal blocks)
and inter-community connectivity (off-diagonal patterns).

Step 4: Validating the Proc Model. Before applying our spectral functor to the full dataset, we
first validated that our dRC model (our Proc objects) is biologically meaningful. We performed an in-
depth analysis of the Working Memory (WM) task data for a representative subject (105923), as shown
in Figure To create stable representations of the Proc objects for this subject, we first averaged all
30-second W; matrices (from Step 3) that were identified as ‘Rest’ periods to create a single, stable baseline
connectome, Grest = (V, Wiest). This is visualised in Figure . We did the same for all ‘Task’ windows
to create Giask = (V, Wiask) (Figure ) These heatmaps, which are log-transformed for visual clarity,
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Figure 15: Validation of the Proc Category Representation in a Brain Network (Subject ID:
105923). This figure demonstrates that our resource-based model for objects and morphisms in Proc is
robust and biologically meaningful in a complex neuroscience case study. (a), (b) The objects in Proc, G est
and Gyqsk, are visualised as 379 x 379 resource connectomes. The edge weights are defined by our gated mass-
action model, W (u, v) = max(0, 7, ) - var(u) - var(v), which parallels the ecological model in §6] The matrices
are log-transformed for visualisation, revealing the brain’s clear modular structure. (c), (e€) The morphism
(process) p : Grest = Grask is visualised as the raw difference matrix Wigsp — Wiest. This signature shows
the complex geometric reorganisation of resource flow, with red connections being formed/strengthened and
blue ones dissolved/weakened. (d) A 3D graph visualisation of the baseline network’s core connections. (f)
Critical validation of our Proc model. This bar chart plots the total change in resource output for each
node (AR; =5 ; (Wiask,ij — Wrest,ij)). This reveals a novel insight distinct from standard activation maps:
the ‘Winners’ (largest positive AR;) are predominantly regions of the Default Mode Network (DMN),
while the ‘Losers’ (largest negative AR;) are key regions of task-positive networks like the Visual Network
and Dorsal Attention Network. This suggests that our metric captures a complex reorganisation where

task networks ‘lock in’ (reducing variance and thus W), while the DMN deactivates into a higher-variance
‘idling’ state.

36



Published in Transactions on Machine Learning Research (02/2026)

confirm the model from Figure and show the clear, modular structure of the brain’s resource connectome
in both states.

The morphism (process) p : Grest — Giask is then defined by the raw difference matrix, Wy rr = Wigsk —
Wiest, visualised in Figure [[5k. This matrix is the geometric signature of the cognitive process. Figure [I5{d
and [I5k provide 3D spatial intuition for this, showing the core baseline network and the sparse “scaffolding”
of change, respectively. The critical validation is shown in Figure [I5f. Here, we computed the change in
total resource output for each node i, AR; = > j(WmSk,ij — Whrest,ij). This analysis reveals a novel and
counter-intuitive insight that is central to our case study. The ‘Winners’ (largest positive AR;, bars to the
right) are predominantly regions of the Default Mode Network (DMN). The ‘Losers’ (largest negative
AR;, bars to the left) are key regions of task-positive networks: the Visual Network and the Dorsal
Attention Network.

This finding, which is the inverse of a standard activation map (where DMN deactivates and Visual/Attention
activates), is mechanistically sound. It suggests that our variance-based resource metric (W o< var(u)-var(v))
is not capturing simple BOLD increases, but a deeper reorganisation. Specifically, task-positive networks
‘lose’ resource interaction strength as their nodes ‘lock in’ to the task, reducing their signal variance (becoming
more efficient). Conversely, the DMN ‘deactivates’ by disengaging and entering a more chaotic, high-variance
idling state, which our metric registers as an increase in total resource interaction (He, [2013; |Garrett et al.)
2011). Having thus validated that our Proc representation is not just an abstraction but is biologically
plausible and capable of uncovering novel, non-obvious network dynamics, we now proceed to apply our
Proc-to-Spec functor to analyse its spectral properties.

Step 5: Constructing the Spec Object (The x(p) Matrix). With the time-series of W; matrices (our
Proc objects) established, we apply the identical Proc-to-Spec functor x as in the Serengeti study (
For each consecutive, 50%-overlapping pair (G, Giy1), we:

1. Compute the Symmetrised Laplacian Ly, ¢ from W (as defined in Eq. .
2. Compute Lgym ¢4+1 from Wiy,

3. Compute the change-of-basis transformation matrix x(p;) = thjert, where V; and Vi1 are the
orthonormal eigenvector matrices of their respective Laplacians (as defined in Lemma [2)).

This results in a new time-series of y(p;) matrices, which represent the spectral signatures of the brain’s
cognitive processes. This time-series of spectral objects is the data we analyse in the following sections.

7.2 Experimental Results

Our analysis of the HCP dataset proceeds in a logical sequence. We first validate our Proc category repre-
sentation (the dRC) by showing it captures a known, non-trivial neuroscientific phenomenon. We then apply
our Proc-to-Spec functor to the n x n x(p) matrices and analyse them with scalar metrics, revealing the
first quantitative evidence of two distinct process families. We then apply our new Spec-to-Func projection
(Theorem [10)) to create k X k functional fingerprints, which we deconstruct using a hub analysis. Finally, we
provide a rigorous machine learning validation, proving that these fingerprints are quantitatively separable,
generalisable features for classifying cognitive states.

A Quantitative Toolkit for x(p) Matrices. The n x n transformation matrices x(p) (where n = 379)
are intractably large for direct interpretation and comparison (see Figure -c). To quantitatively analyse
their geometric properties, we first define a toolkit of three scalar metrics, which are plotted in Figures
and Let A = |x(p)| be the matrix of absolute element values and [[x(p)[1 = >_; ; Ai; be its Li-norm.
The metrics are computed as follows:

o Diagonal Concentration (AUC): This metric quantifies “structural inertia” (Theorem [7)) by
measuring how much of the transformation’s energy is concentrated along the main diagonal. We
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Figure 16: Quantitative analysis of the “Null” vs. “Cognitive” process signatures (Subject
ID: 105923). This figure compares the geometric transformation (x(p)) matrices from “Null” processes
(all rest-to-rest transitions) with “Cognitive” processes (all rest-to-task transitions) for the Working
Memory task. The analysis reveals that the cognitive transformation is a “lock-in” to a more stable, struc-
tured geometric state. (a) The mean “Null” signature, Yrest, representing baseline geometric noise. (b)
The mean “Task” signature, Xtask, which is visibly more structured and diagonally-dominant. (c) The
difference matrix, Xtask — Xrest, Which is not random noise. It highlights a strong, positive diagonal and
structured off-diagonal changes, confirming the “lock-in” effect. (d) Diagonal Concentration: The Task
transformation (red) has more of its energy consistently concentrated near the main diagonal than the Rest
transformation (blue). (e) Sharpness: The Task transformation’s energy is consistently concentrated in
fewer, high-magnitude elements (higher sharpness) compared to the more diffuse, noisy Rest transformation.
(f) Spatial Coherence: The Task transformations (red histogram) are significantly more structured and
less random (higher local autocorrelation) than the Rest transformations (blue histogram). The difference
is statistically irrefutable (t = 5.63,p = 3.47 x 10~7) for subject 105925.
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Figure 17: Multi-task statistical validation of geometric process metrics. This figure compares the
“Null” process (Rest-to-Rest) against all seven “Cognitive” processes (Rest-to-Task) using subject-level
means (N=21) for the three geometric metrics. The results show that the metrics successfully separate
the tasks into distinct families. (a) Diagonal Concentration (AUC): Higher-order tasks like Emotion,
Gambling, Relational, and Social show a highly significant increase in diagonal concentration compared
to Rest. (b) Sharpness (AUC): This metric reveals a different pattern. Motor and Language tasks are
characterised by a significant decrease in sharpness, while Gambling, Relational, and Social show a signif-
icant increase. (c) Spatial Coherence: This metric shows the clearest separation. The “Social/Executive”
tasks (Emotion, Gambling, Relational, Social) are all significantly more coherent (more structured, less
random) than the Rest state. Notably, the Working Memory (WM) task is statistically indistinguishable
from Rest on all three metrics at the group level (all p > 0.24), suggesting that its geometric signature is
highly variable across subjects. Collectively, this demonstrates that our framework provides a rich, multi-
dimensional feature space capable of robustly distinguishing between different families of cognitive processes.

Table 5: Statistical comparison of cognitive task signatures against the “Null” process. This table
provides the quantitative statistics for the distributions shown in Figure[I7] Each row represents a paired t-
test comparing the subject-level means of a Rest-to-Task process against the Rest-to-Rest (Null) process
(N=21 subjects). P-values less than 0.05 are in bold. The results show a clear, non-uniform separation
of tasks. “Social/Executive” tasks (Emotion, Gambling, Relational, Social) show a highly significant
increase in Coherence and Diagonal Concentration. In contrast, Motor and Language tasks are uniquely
characterised by a significant decrease in Sharpness. Working Memory (WM) shows no significant difference
from Rest at the group level on any metric.

Spatial Coherence Diagonal Concentration (AUC)  Sharpness (AUC)

Task N t-statistic p-value t-statistic p-value t-statistic p-value
WM 21 1.191 0.2477 1.142 0.2669 -0.061 0.9520
Motor 21 -0.715 0.4829 0.482 0.6349 -3.934 0.0008
Language 21 -1.406 0.1749 0.751 0.4614 -3.095 0.0057
Emotion 21 3.639 0.0016 6.192 <0.0001 -0.010 0.9919
Gambling 21 5.536 <0.0001 8.754 <0.0001 3.409 0.0028
Relational 21 4.717 0.0001 2.052 0.0535 3.452 0.0025
Social 21 5.050 <0.0001 8.419 <0.0001 5.971 <0.0001
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Figure 18: Functional Signatures of Cognitive Processes Derived from the Spec-to-Func Pro-
jection (Theorem . This figure displays the group-average (N=21) k x k functional transformation
matrices, M (p), for the “Null” process (a) and seven distinct cognitive tasks (b-h). Each matrix is the opti-
mal Galerkin projection of the full n x n spectral transformation y(p) onto the k = 13 functional networks
(rows/columns) of the Cole-Anticevic atlas . The entry M (p)ap (v-axis: a, x-axis: b) quan-
tifies the average spectral influence that original structural modes from functional network b (x-axis) exert
on the new structural modes of functional network a (y-axis) during the process. Green indicates a positive
transformation; purple indicates a negative (inverse) transformation. The results visually and quantitatively
separate the cognitive processes into two distinct families, precisely explaining the statistical findings in
Table | (a-d) “Incoherent” Processes: The (a) Rest process (a “Rest-to-Rest” transition) serves as
the null model. It is quantitatively shown to be a zero-mean (matrix mean ~ —0.000063) and low-variance
(std = 0.0011) process, confirming the baseline stability of the brain’s spectral-functional geometry. The (b)
WM, (c) Motor, and (d) Language tasks, while possessing higher variance (e.g., Motor std = 0.0035, 3.1x
> Rest), are also zero-mean processes (e.g., WM mean =~ 0.000018). This lack of a consistent, structured
signature (i.e., a non-zero mean) at the group level explains why they were statistically indistinguishable
from Rest on coherence-based metrics in Table (e-h) “Coherent” Processes: In stark contrast, the “So-
cial/Executive” tasks — (e) Emotion, (f) Gambling, (g) Relational, and (h) Social — are high-variance,
non-zero-mean processes (e.g., Emotion mean = 0.00073, std = 0.0052, 4.6x > Rest). They exhibit strong,
structured, and unique off-diagonal “fingerprints”, visually confirming their high statistical significance for
metrics like Spatial Coherence (Table [5)). These signatures offer mechanistic insights: Gambling (f) reveals
a composite signature, capturing two parallel processes: (1) a strong negative (purple) transformation from
the Default network to the Orbito-Affective network (value -0.0120), a known reward/valuation circuit,
and (2) a strong positive (green) transformation from Visual2 to the Ventral-Multimodal network (value
0.0118), representing the task-positive visual-to-executive pathway. Emotion (e) shows a different non-
trivial signature, characterised by a massive positive transformation from the Frontoparietal network to
the Ventral-Multimodal network (value 0.0238) and the strongest diagonal self-preservation of any task in
the Visuall network (value 0.0212), indicating a profound spectral reorganisation and integration of exec-
utive and sensory networks.
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Figure 19: Quantitative Analysis of Functional Hubs of Geometric Transformation (N=21 Sub-
jects). This figure provides a quantitative deconstruction of the k x k functional transformation matrices,
M (p), from Figure[18l (a) Total Geometric Activity by Process: This panel plots the total off-diagonal
power of each process, calculated as the sum of all absolute off-diagonal values of M (p) (i.e., the Total Broad-
cast Score). This quantifies the total magnitude of spectral-functional transformation. The plot reveals two
distinct families: the stable Rest process (Total Activity =~ 1.06), a group of “Incoherent” processes with
low-to-moderate activity (e.g., WM: 1.88, Language: 2.14), and a group of “Coherent” processes with high
activity (e.g., Gambling: 2.46, Emotion: 3.14). This provides a quantitative explanation for the statistical
separation seen in Table 5| (b) Network Self-Transformation (Preserve vs. Invert): This heatmap
plots the diagonal element M (p),, for each functional network (y-axis) across each process (x-axis). This
reveals a “Preserve vs. Invert” signature. The Rest column is uniformly near-zero (mean ~ 0.000048),
providing a stable baseline. In contrast, visually-driven “Coherent” tasks like Emotion and Gambling show
a strong positive (green, “preserve”) value for the Visuall network (values +0.02119 and +0.01450, respec-
tively). Conversely, non-visual “Incoherent” tasks like Motor and Language show a strong negative (purple,
“invert”) value for Visuall (values —0.00996 and —0.00955, respectively), suggesting a fundamental differ-
ence in how these task families modulate visual network geometry. (c, d) Gambling Task Hub Analysis
(A from Rest): These panels quantify the specific flow of geometric transformation for the Gambling task
by plotting the change in hub scores relative to the Rest baseline. (c¢) Broadcast Hubs (Senders): This
plots the change in the Broadcast Score (sum of abs. column, excluding diagonal). It identifies the primary
“senders” of the transformation, quantitatively confirming the Default (A = +0.185), Visual2 (A = +0.182),
and Cingulo-Opercular (A = +0.178) networks as the main drivers of geometric change. (d) Receive Hubs
(Receivers): This plots the change in the Receive Score (sum of abs. row, excluding diagonal). It iden-
tifies the primary “receivers” of the transformation, with the largest changes in the Ventral-Multimodal
(A = +0.242), Orbito-Affective (A = +0.184), and Visuall (A = 40.168) networks. Together, (¢) and (d)
provide a quantitative flow diagram of the Gambling process.
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Figure 20: Machine Learning Validation of Functional Fingerprints (M (p)). This figure presents
the results of an 8-class classification experiment to quantitatively validate that the k x k functional transfor-
mation matrix, M (p), serves as an informative and generalisable feature vector for cognitive processes. The
features consist of the flattened k2-dimensional (169) M (p) matrix for each of the 378 subject-run samples.
We use a rigorous Leave-One-Subject-Out (LOSO) cross-validation (N=21 subjects) to ensure generalisabil-
ity. The chance level for 8 classes is 12.5%. (a) Logistic Regression (Linear Classifier): The linear
model achieves an accuracy of 25.9%, a 107% improvement over chance, proving the M (p) features are
linearly informative. However, the confusion matrix reveals significant confusion, particularly with the Rest
class; for example, 47.6% of WM samples are misclassified as Rest. (b) RBF SVM (Non-Linear Clas-
sifier): The non-linear RBF SVM achieves a high accuracy of 59.3%, a 374% improvement over chance.
The confusion matrix shows a dramatic improvement in separability, confirming the non-linear structure
of the feature space. Key findings include: (1) The Rest “null process” is learned perfectly, with 100%
recall (84/84 samples correct). (2) High-coherence tasks like Emotion are also learned with near-perfect
97.6% recall (41/42 correct). (3) The errors are random but neuroscientifically plausible, such as the confu-
sion between the related Social (40.5% recall) and Relational (33.3% confusion) tasks. (c¢) Class-wise
F1-Scores: This plot summarises the per-class performance, confirming that the RBF SVM (orange) sig-
nificantly outperforms the Logistic Regression (blue) across all task types. It visually quantifies the RBF
SVM’s high confidence in classifying Rest (F1 ~ 1.0) and Emotion (F1 &~ 0.98) and its ability to separate
“incoherent” tasks like WM (F1 =~ 0.7) far more effectively than the linear model (F1 =~ 0.13).
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Figure 21: Explanation of RBF SVM Classifier Performance (59.3% Accuracy). This figure ex-
plains why the non-linear RBF SVM classifier in Figure [20| was able to successfully classify the 8 cognitive
processes using the k?-dimensional M (p) functional fingerprint as features. (a) RBF Kernel Similarity
Matrix: This 378 x 378 matrix shows the RBF kernel similarity between all pairs of samples, sorted by pro-
cess type. The figure provides a visual proof of the rigorous Leave-One-Subject-Out benchmark’s difficulty
and the Spec-to-Func features’ separability: 1) The Rest-Rest diagonal block is bright green, indicating
high within-class similarity and explaining its 100% recall. 2) In contrast, the other 7 task-task diagonal
blocks (e.g., WM-WM) are dark, visually confirming the high inter-subject variability. The classifier’s high
performance comes from the RBF kernel successfully finding a space where these 7 diffuse task classes are
separable from the single, stable Rest cluster. (b) Feature Discriminability (Network Interactions):
This 13 x 13 heatmap visualises the F-statistic (discriminability) for each of the 169 features (M (p)qp) in
separating the 8 process types. The color of cell (a,b) indicates the importance of the feature transfor-
mation from network b (x-axis) to network a (y-axis). The analysis reveals that the classifier is not using
simple features, but has learned a sparse, non-trivial set of interactions. The most discriminative features
(darkest red, max discriminability = 0.365) are high-level integration pathways, such as the transformation
from the Ventral-Multimodal network to the Cingulo-Opercular network, and the self-transformation of
the Dorsal-Attention network. This provides a mechanistic insight, identifying which specific geometric
interactions are the most reliable fingerprints of a cognitive state.
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compute a cumulative energy distribution curve C'(w) for a band width w € [1,n — 1]:

n

ZZH —jl < w) - Ayj (19)

HX 155

where I(-) is the indicator function. The final metric is the Area Under this Curve (AUC),
AUCpe = -4 ZZ_:ll C(w), which is the mean of the C'(w) values. A higher AUCp¢ indicates
a more diagonally-dominant transformation.

C(w) =

o Sharpness (AUC): This metric quantifies the Gini-like concentration of the transformation’s en-
ergy. Let v = vec(A) be the n?-dimensional vector of absolute elements and 7, = Percentile(v, p)
be the p-th percentile of v. We compute a curve S(p) for p € [0,100]:

S) = ——— 3" (v > ) - v (20)

Ix(P)ll S,

The final metric is the AUC of this curve, AUCs = 155 0100 S(p)dp. A higher AUCg indicates a

sharper transformation driven by a few high-magnitude elements.

o Spatial Coherence (Is¢): This metric quantifies how “structured” versus “random” the y(p)
matrix is. Let vy = vec(A1n,1:m—1) and vy = vec(A1rn,2.). Let v = vec(A1.p—1,1.0) and vi, =
vec(Azin1:n)- Let vp = vec(A1:p—1,1:n—1) and v/, = vec(Aa.p 2., ). The metric is the average 1-pixel
spatial autocorrelation of A:

Isc(x(p)) = % (Corr(vy, viy) + Corr(vy, vi,) + Corr(vp, vh)) (21)

where Corr(+,-) is the Pearson correlation coefficient.

These metrics allow us to compress each 379 x 379 matrix into a 3-dimensional feature vector, enabling
statistical comparison between cognitive processes.

We now applied this quantitative toolkit to first compare the “Null” process (all Rest-to-Rest transitions)
against the Cognitive process (all Rest-to-Task transitions) for a single representative subject (Figure .
The results support our “lock-in” hypothesis from the Proc analysis (Figure: the cognitive transformation
into a task state is a shift to a more stable, structured geometric configuration. This is shown in Figure [I6],
where the cognitive x(p) matrices are proven to be significantly more structured (higher Spatial Coherence,
p < 107%) and more diagonally-dominant (Figure ) than the noisy, diffuse “Null” process. This provides
evidence that task engagement, which is known to reduce BOLD variance (He, |2013)), also imposes a more
stable and coherent spectral geometry in brain connectivity.

We then extended this analysis to the full 21-subject cohort. Figure [L7]and Table [5] present the subject-level
statistics for these metrics, comparing the “Null” process to all seven distinct cognitive tasks. The results
reveal two distinct process families, which we term based on their group-level geometric coherence:

o Family 1 (Low Group Coherence): The WM, Motor, and Language tasks. At the group level,
these tasks are statistically indistinguishable from the Rest process on the Spatial Coherence and
Diagonal Concentration metrics (all p > 0.17). This does not mean that they lack a signature, but
rather that their geometric signature may be highly variable across subjects, thus averaging to zero
at the group level (Poldrack & Farah| [2015]).

o Family 2 (High Group Coherence): The Emotion, Gambling, Relational, and Social tasks.
These are often grouped as higher-order “social-affective” or “executive” tasks in the literature (Ji
et al) [2019; Van Essen et all [2012). Our metrics show that they possess a strong, consistent,
and highly significant group-level signature, with a clear increase in both Spatial Coherence (all
p < 0.002) and Diagonal Concentration (all p < 0.0001, except Relational).

This provides strong, quantitative evidence that our framework can separate families of cognitive processes.

However, these three scalar metrics alone are not rich enough to capture the subject-variable signatures of
the “Low Coherence” tasks, motivating a more refined, functional projection.
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From Spec-to-Func: Discovering the Functional Fingerprints. The scalar metrics in Table [f]showed
that the “Coherent” tasks were different, but not how or where. To interpret the full n xn geometric signature,
we applied our model reduction T heorem We projected each 379 x 379 x(p:) matrix down to its k x k (13
x 13) functional transformation matrix, M (p;). Figure|18|shows the group-average M (p) for all 8 processes.
This projection provides an effective visual and quantitative explanation for the “two families” finding:

o (a-d) “Low Coherence” Processes: The (a) Rest matrix is quantitatively shown to be a zero-
mean (mean ~ —0.000063) and low-variance (std = 0.0011) process, confirming that the “Null”
process is a stable identity transformation in the functional subspace. The “Incoherent” tasks (b)
WM, (c) Motor, and (d) Language, while possessing higher variance, are also zero-mean processes
(e.g., WM mean =~ 0.000018). This visually confirms our hypothesis from Table [5; their geometric
signatures are highly subject-variable, lacking a consistent, non-zero mean at the group level.

o (e-h) “High Coherence” Processes: In stark contrast, the “Social/Executive” tasks are high-
variance, non-zero-mean processes (e.g., Emotion mean ~ 0.00073). They exhibit strong, structured,
and unique off-diagonal fingerprints, revealing the precise inter-network reconfigurations that define
them. These signatures offer novel mechanistic insights:

— The Gambling task (f) reveals a clear composite signature: 1) a strong negative (purple)
transformation from the Default network to the Orbito-Affective network (value -0.0120), a
known reward and valuation circuit (Kringelbachl 2005} Liu et al., [2011; |[Rushworth et al.l 2011]),
and 2) a parallel positive (green) transformation from Visual2 to the Ventral-Multimodal
network (value 0.0118).

— The Emotion task (e) shows a different non-trivial signature, characterised by a massive
positive transformation from the Frontoparietal network—a key region for top-down cognitive
control—to the Ventral-Multimodal network (value 0.0238), indicating a non-trivial spectral
reorganisation and integration of executive and sensory networks during emotional processing
in the brain (Phelps| 2006; Buhle et al., [2014).

Deconstructing the Functional Fingerprints with Hub Metrics. To deconstruct the rich structure of
the k x k functional fingerprints M (p) (shown in Figure[I8) and quantify the flow of geometric transformation,
we defined a set of hub analysis metrics. These metrics, plotted in Figure [I9] are computed as follows:

e Total Geometric Activity: This is the sum of the absolute values of all off-diagonal elements,
quantifying the total magnitude of inter-network transformation for a process p:

E k
Stotal (p) = Z Z |M(p)ij| (22)

i=1 j#i

e Network Self-Transformation: This is simply the diagonal value for a given functional network
a, Sseif(a) = M(p)aa- It captures the degree to which a network’s own geometry is preserved (if
positive) or inverted (if negative) during the process.

o Broadcast Score (Sender): This score quantifies how much a functional network j acts as a
“sender” or driver of geometric change. It is the sum of the absolute values of its corresponding
column j (excluding the diagonal):

k
Sbroadcast (]) = Z |M(p)lj| (23)
i£j

o Receive Score (Receiver): This score quantifies how much a functional network ¢ acts as a
“receiver” of geometric change. It is the sum of the absolute values of its corresponding row 4
(excluding the diagonal):

k
Sreceive (Z) = Z ‘M(p)ij| (24)

J#i
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These metrics provide a quantitative flow-diagram of the transformation in Figure identifying which
functional networks are the primary drivers (hubs) and which are the primary recipients of the geometric
reorganisation. This analysis allows us to quantify the process of flexible network reconfiguration that is
central to cognition (Cole et al., [2014} [Shine et al., [2016)):

o Panel (a) plots the Total Geometric Activity, Siotqr(p), providing a single scalar to quantify the
overall magnitude of spectral-functional network reconfiguration. This metric perfectly separates the
stable, low-activity Rest process (Total Activity ~ 1.06) from the high-activity “Coherent” processes
(e.g., Emotion at 3.14).

o Panel (b) reveals a novel “Preserve vs. Invert” signature by plotting the self-transformation,
Sseif(a) = M(p)aa, for each network. This provides insight into how task engagement modulates
core network modules. The Rest column is uniformly near-zero (mean ~ 0.000048), providing a stable
baseline. In contrast, visually-driven “Coherent” tasks like Emotion and Gambling show a strong
positive (green, “preserve”) value for the Visuall network (values +0.021 and +0.015), indicating
its geometric modes are recruited and stabilised for the task. Conversely, non-visual “Incoherent”
tasks like Motor and Language show a strong negative (purple, “invert”) value for Visuall (values
—0.010 and —0.010), suggesting its modes are actively decoupled or re-purposed to reallocate
resources—a fundamental difference in how these task families reconfigure visual network geometry.

o Panels (c, d) provide a flow diagram for the Gambling task by plotting the change in hub scores
relative to Rest. This analysis quantitatively confirms the mechanistic insights from Figure [L8f. The
primary “Senders” (Broadcast Hubs) of geometric change are the Default (Send A = +0.185)
and Visual2 (Send A = +0.182) networks. The primary “Receivers” (Receive Hubs) are the
Ventral-Multimodal (Receive A = 40.242) and Orbito-Affective (Receive A = +0.184) net-
works. This precisely matches and quantifies the Default — Orbito-Affective (reward) and
Visual2 — Ventral-Multimodal (visual-executive) pathways identified in the fingerprint itself.

Machine Learning Classification of Cognitive Processes. Finally, we performed a rigorous quanti-
tative test: can these M(p) fingerprints be used as generalisable biomarkers to classify cognitive processes?
We used the k2-dimensional (169) flattened M (p) matrix as a feature vector for each of the 378 (subject,
run) samples. We performed an 8-class classification using a strict Leave-One-Subject-Out (LOSO)
cross-validation. This is the scientific “gold standard” benchmark for fMRI classification, as it tests for
a strictly generalisable, subject-independent signature. This rigorous protocol contrasts with many
deep learning approaches that report high accuracy by using a “subject-mixed” protocol (pooling all subjects
before data splitting), which risks data leakage by learning subject-specific artifacts rather than generalisable
cognitive patterns (Wang et al., 2020; [Huang et al. 2021} |Zhang et al., 2023). The LOSO benchmark is
notoriously difficult due to the high inter-subject variability in brain function, which is the primary challenge
in connectome-based classification (Haynes, 2015)). The results, shown in Figure provide a strong valida-
tion. A simple linear model (Logistic Regression) achieves only 25.9% accuracy (Figure ), a performance
level typical for linear models that struggle with the highly non-linear variability between subjects. However,
a non-linear RBF SVM (Figure 20b) achieves 59.3% accuracy—a 374% improvement over the 12.5% chance
level. This result establishes a new, high-performance benchmark for this challenging 8-class, cross-
subject task using our theoretically-derived, scientifically-interpretable features. It demonstrates that our
framework is robust to inter-subject variability and provides a strong foundation for building generalisable
machine learning models in neuroscience. The confusion matrix (Figure ) explains why our fingerprint
is such an effective feature and confirms our previous findings:

1. The classifier has 100% recall (84/84) for Rest. It perfectly learned the unique, near-zero “Null”
process signature.

2. Tt has 97.6% recall (41/42) for Emotion, proving that its strong, coherent fingerprint is also unique
and separable.

3. Its errors are neuroscientifically plausible, such as confusing WM with Motor (16.7% error) and Social
with Relational (33.3% error).
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4. Tt confirms our “two families” theory: the “incoherent” tasks like WM are no longer confused with
Rest (0% error), but their signatures are more similar to each other than to the “coherent” tasks.

Finally, Figure 2] provides a direct explanation for how the non-linear classifier achieved this performance.
Panel (a) visualises the 378 x 378 RBF kernel similarity matrix, and it provides a striking validation of the
LOSO benchmark’s difficulty. The matrix shows two key features:

1. High Separability of Rest: The Rest process forms a single, highly coherent cluster (a bright
green diagonal block), which is strongly dissimilar (dark purple) to all 7 task states. This visually
explains why the SVM could learn the “Null” process with 100% recall.

2. High Inter-Subject Variability of Tasks: Critically, the other 7 diagonal blocks (e.g., WM-WM,
Motor-Motor) are not bright. They are dark, indicating low within-class similarity. This provides
visual proof of the notoriously difficult inter-subject variability: a WM process from one subject looks
very different from a WM process in another. The RBF kernel, therefore, is not finding 8 simple,
tight clusters. Instead, it is successfully finding a high-dimensional feature space where the 7 diffuse,
highly-variable task classes are nonetheless separable from the single, stable Rest cluster and (to a
good degree) from each other.

Panel (b) then identifies the most discriminative features (based on an F-statistic) that the classifier used
for this separation. The analysis reveals that the classifier’s decisions are not driven by simple features, but
by high-level, sparse functional network interactions. The single most important feature for separating the 8
processes (discriminability = 0.365) was the Ventral-Multimodal — Cingulo-Opercular transformation.
This confirms that our framework is an effective, principled feature-engineering tool that uncovers deep,
non-obvious, and quantitatively informative signatures of complex brain processes.

8 Discussion and Conclusion

The analysis of dynamic networks has traditionally focused on characterising sequences of states, often leaving
the transformations that drive the evolution between them as unformalised, black-box processes. In this
work, we introduced Proc-to-Spec, a new, category-theoretical framework that provides a principled and
interpretable language for the processes of change themselves. Our central contribution is the construction of
a spectral functor, y, that maps physical processes in a source category Proc to unique linear transformations
between spectral eigenspaces in a target category Spec.

8.1 Summary of Key Findings

Our theoretical claims were validated through a two-pronged approach. First, a suite of numerical experi-
ments provided a rigorous, controlled validation of each of our core theorems (§5]), confirming the mathemat-
ical soundness of the framework. Second, we demonstrated the framework’s analytical power and generality
across two comprehensive case studies from fundamentally different scientific domains, each posing a unique
challenge. Through the Serengeti case study (§6))—a high-signal, high-noise, macro-timescale, physi-
cal system—we demonstrated that:

e (Theorem [3)) An abstract spectral invariant—the Laplacian trace—is rigorously and directly cou-
pled to a physical quantity in the system, the total observed animal activity, validating the frame-
work’s physical grounding.

o (Theorem E[) The framework is sensitive enough to detect both the subtle, cyclical pulse of seasonal
change and the unique signature of a catastrophic, real-world drought event.

o (Process Interpretation Toolkit) The geometric signature (x(p) matrix) provides a powerful
diagnostic tool, revealing that a major drought has a complex, off-diagonal signature corresponding
to a shattering of the ecosystem’s core predator-prey structure, fundamentally different from the
near-identity signature of a typical seasonal change.
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o (Theorem E[) The framework has predictive power. The Signal Transport theorem was used to make
a set of ecologically meaningful predictions about which species would become functional “winners”
and “losers” during the drought.

In direct contrast, through the HCP neuroscience case study (§7)—a low-signal, high-noise, micro-
timescale, abstract system—we demonstrated that:

o (Model Validation) Our Proc object, the dynamic Resource Connectome (dRC), captured a non-
trivial ‘lock-in’ effect of task-positive brain networks, validating our model’s biological plausibility.

o (Process Detection) The framework is sensitive enough to detect and separate fleeting cogni-
tive processes, using scalar metrics on x(p) to identify two distinct families of tasks (coherent vs.
incoherent) from high-noise fMRI data.

o (Theorem Our Spec-to-Func projection provides a mathematical tool for model reduction,
compressing high-dimensional 379 x 379 spectral transformations into biologically interpretable 13 x
13 functional fingerprints.

o (Machine Learning Application) These fingerprints serve as effective, generalisable features
for machine learning, enabling a non-linear SVM to classify 8 different cognitive states with high
accuracy (59.3%) using the rigorous, highly challenging Leave-One-Subject-Out cross-validation, far
exceeding chance (12.5%).

Together, these two case studies validate the framework as a robust and general tool for scientific discovery,
capable of moving from mathematical verification to novel, interpretable insights in complex systems.

8.2 Broader Implications: The Geometry of Change

The Proc-to-Spec framework offers more than a new set of analytical tools; it offers a new lens through
which to view the dynamics of complex systems. By focusing on the geometry of the transformations,
we move beyond simply describing that a system has changed to providing a mechanistic, interpretable
signature for how it has changed. This provides a ‘glass box’ alternative to many contemporary machine
learning models. As we proved in §4.2] common temporal GNN architectures are often non-functorial and
thus introducing artificial dynamics while being path-dependent, making their latent representations an
artifact of the data’s sampling rate (Seo et al., 2018} [Rossi et al., [2020). Our framework, by contrast,
provides a provably path-independent language for these transformations, which is essential for rigorous
scientific analysis. Furthermore, our work demonstrates that this rigorous approach has direct applications
within machine learning. Our neuroscience case study ( showed that the framework can be a powerful and
principled feature-engineering tool. The Spec-to-Func projection (Theorem creates low-dimensional,
interpretable fingerprints (M (p)) of complex cognitive processes. These fingerprints were successfully used to
classify subtle, high-noise cognitive states from brain fMRI data with high, generalisable accuracy (59.3% vs
12.5% chance with the rigorous Leave-One-Subject-Out cross-validation). This opens avenues for applying
categorical methods not just for scientific interpretation but also for building more robust and interpretable
machine learning classifiers. This process-centric viewpoint has broad potential applicability in other domains
where dynamic networks are central, such as systems biology (gene regulatory networks), economics (financial
networks), and other areas of neuroscience (brain connectivity).

8.3 Limitations and Future Work

Here, we discuss the theoretical and practical limitations of our work as well as suggest future research
directions to overcome those.

Theoretical Limitations. The category-theoretical foundations of Proc-to-Spec, while rigorous, are

built upon specific assumptions that define the scope of the current framework. Future work should aim to
generalise these foundations.
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e Preservation of the Node Set: The functorial mapping x is formally defined for morphisms in
Proc that represent processes preserving the set of nodes. Our current analysis of node removal
(Theorem , while providing a clear geometric interpretation as a projection, exists outside this
primary functorial definition. A key avenue for future work is to extend the framework to a richer
category that can formally accommodate morphisms that change the dimension of the underlying
vector space, perhaps by employing concepts from persistence homology or sheaf theory to track
topological features across changing dimensions (Perea & Harer} 2015)).

e Choice of Spectral Representation: Our framework is built upon the symmetrised Laplacian.
While this operator has many desirable properties—including a real spectrum and an orthonormal
eigenbasis—other matrix representations, such as the random walk Laplacian, the adjacency matrix,
or higher-order Laplacian (Nurisso et al., |2025), capture different aspects of network dynamics.
Future theoretical work could explore the construction of parallel functors for these different spectral
representations.

o Basis Assumption in Spec-to-Func Projection: Our Spec-to-Func projection (Theorem is
a key tool for interpretability, but it relies on a theoretical simplification. The operator x(p) maps
between two distinct spectral bases (span(Vy) — span(Vii1)), while the partition matrix P and
projector p are defined in the nodal basis (i.e., the standard basis). The formula M (p) = px(p)P is
the optimal Galerkin projection that effectively treats x(p) as a map in the nodal basis. While this
assumption proved highly effective in our HCP case study (yielding separable features), it glosses
over the geometric distinction between the spectral and nodal domains. A more complex, basis-aware
projection could be a fruitful direction for future theory.

Practical Limitations. The application of our framework to both the Serengeti and HCP case studies
highlighted several practical challenges that offer opportunities for future refinement and application.

o Modelling of Edge Weights (Ecological): The insights from the Serengeti study are contingent
on our choice of a mass-action model for dynamic edge weights. While this is a standard and
justified model (Murray, [2007), it is a simplification of complex ecological interactions. Future
work could explore more sophisticated, domain-specific models for interaction strength, potentially
incorporating the non-linear dependencies and external environmental variables that are known to
modulate the strength of species interactions (Tylianakis et al., [2008)).

o Modelling of Edge Weights (Neuroscience): Similarly, the HCP study relied on our dynamic
Resource Connectome (dRC) model, Wy(u,v) = max(0,ry,) - R(u,t) - R(v,t), where resource R
was the BOLD signal variance (Garrett et al., [2011; |Grady & Garrett], |2014). This variance-based,
non-negative model was a specific theoretical choice to fit the Proc category and capture metabolic
activity rather than just BOLD synchrony. Other standard functional connectivity metrics (e.g.,
full Pearson correlation, coherence) would represent different aspects of brain dynamics and are an
avenue for future comparison.

o Data Sparsity and the LCC (Ecological): The Serengeti case study demonstrated that real-
world ecological data is often sparse, leading to monthly network snapshots that are disconnected.
Our robust method of analysing the largest connected component (LCC) was effective and scientifi-
cally sound, and our analysis (Figure showed that it captured 100% of the active network, thus
losing no information. However, this points to a broader need for spectral theories that can grace-
fully handle and perhaps even draw insight from the natural fragmentation and disconnectedness of
real-world systems, rather than treating it as a feature to be isolated (Banerjeel 2021)).

o Temporal Parameters and Noise (Neuroscience): The HCP analysis was critically depen-
dent on methodological choices for handling high-noise, high-speed fMRI data. Our results relied
on pre-processed ICA-FIX denoised data to remove non-neural artifacts (Van Essen et al.| 2012)).
Furthermore, our choice of a 30-second window with 50% overlap was a necessary trade-off between
temporal precision and statistical stability, designed to be short enough to capture brief cognitive
events without ‘smearing’ them, yet with enough separation to detect a signal of change (Leonardi
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& Van De Ville, 2015} |Zalesky & Breakspear} [2015). How the framework performs under different
windowing parameters is a key question for future sensitivity analysis.

o Dependency on Functional Atlases (Neuroscience): Our Spec-to-Func projection (Theorem
is a powerful tool for interpretation, but its results are contingent on the a priori choice of a
static brain parcellation (e.g., the Glasser atlas (Glasser et al.;2016)) and functional mapping (e.g.,
the Cole-Anticevic atlas (Ji et al.,2019)). The resulting functional fingerprints are an interpretation
through the lens of this pre-defined modularity. Exploring how these fingerprints change when using
different or data-driven parcellations is an important next step.

o Classifier Model Choice (Neuroscience): Our HCP case study successfully used the framework
as a principled feature-engineering tool, where the k x k M (p) fingerprints were fed into a non-linear
RBF SVM. This two-stage approach was highly effective (59.3% accuracy), while a linear model failed
(25.9%), confirming the non-linear separability of the process signatures. This, however, suggests a
limitation: our features are rich and complex, and a standard SVM may not be the optimal classifier.
Future work could explore end-to-end deep learning models (e.g., Convolutional Neural Networks)
that learn directly from the M (p) fingerprint images (Figure [18)), or even from the full n x n x(p)
matrices (Figure . This could potentially capture more subtle, higher-order patterns and improve
classification performance further under the same Leave-One-Subject-Out protocol.

8.4 Conclusion

In this paper, we introduced Proc-to-Spec, a functorial framework for the analysis of dynamic networks. Our
work was motivated by a dual limitation in the study of such systems: traditional methods are predominantly
descriptive, while modern predictive models, such as temporal GNNs, often lack the mathematical guarantees
required for rigorous scientific discovery. We formalised this critique by proving that common GNN-RNN
architectures are non-functorial and path-dependent, leaving the transformations that drive system evolution
as unformalised, black-box processes. By shifting the analytical focus from states to the processes themselves,
we have developed a principled and powerful toolkit for understanding how complex systems evolve, including
a Spec—to-Func projection for interpretable, low-dimensional analysis. Through a suite of rigorous numerical
experiments, we first validated the mathematical soundness of our core theorems in controlled settings.
We then demonstrated the framework’s generality and real-world applicability in two comprehensive case
studies from distinct scientific domains: a high-signal, high-noise, macro-timescale case study of the Serengeti
ecosystem, using high-resolution camera trap data, and a low-signal, high-noise, micro-timescale case study
of the human brain, where our framework’s features successfully classified subtle cognitive states from fMRI
data. This work opens new avenues for a more mechanistic, interpretable, and geometric understanding of
the dynamic networks that pervade both the natural and social sciences. By providing a ‘glass box’ that
reveals the path-independent geometry of change, in contrast to ‘black-box’ predictive models, our framework
represents a step towards a deeper and more predictive science of complex, interconnected systems.
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A Detailed Proofs of Results in Qﬂ

Here, we give the full mathematical proofs for the lemmas and theorems presented in our theoretical analysis
in §4 We present the proofs in the same order as they appear in the main text, beginning with the
foundational guarantee of functoriality and proceeding to the main scientific and interpretive results. The
proofs for Lemma [I] and Lemma [2] are provided in and §A.7] respectively. We then present the proofs
for our critique (Identity and Composition Failures) of entangled machine learning models in and
The proofs for our main theorems are provided in the subsequent sections: Theorem |3| (Trace Conservation)
in Theorem [4] (Spectral Sensitivity) in §A.5, Theorem [5| (Stability-Spectrum Equivalence) in
Theorem [6] (Rank-One Update) in Theorem [7] (Structural Inertia) in §A.9] Theorem 8] (Node Removal)
in Theorem [9] (Signal Transport) in , and Theorem [10]in §A.12|

A.1 Proof of Lemma [} Functoriality of x

Lemma (1| (Functoriality of x). The map x : Proc — Spec is a functor. It preserves identity morphisms
and the composition of morphisms.

Proof. To formally prove that y is a functor, we must verify that it satisfies the two defining axioms of a
functor: (1) it maps identity morphisms in the source category Proc to identity morphisms in the target
category Spec, and (2) it preserves the structure of composition.

1. Preservation of Identity Morphisms. We must show that for any object G' € Proc, x(idg) = idy ().

Let G = (V, E,WW) be an object in Proc. The identity morphism on this object, idg : G — G, is the process
that results in no change to the network state. This means the resulting weight function W’ is identical to
the initial weight function W.

The functor y maps an object G to the vector space x(G) spanned by the orthonormal eigenvectors {v;}! ;
of its symmetrised Laplacian, Lgy,,. The action of the functor on the morphism, x(idg), is the linear
transformation that maps the eigenbasis of the initial state to the eigenbasis of the final state.

Since W' = W, the Laplacians are identical (LY,,, = Lsym), and therefore their eigenspaces are identical.

The transformation y(idg) maps the vector space x(G) to itself, and it maps the chosen orthonormal basis
{v;} to the identical basis {v/; = v;}. A linear transformation that maps every vector in a basis to itself is,
by definition, the identity transformation on that vector space.

Therefore, x(idg) = idy(g). This part of the proof is now self-contained.

2. Preservation of Composition. We must show that for any two composable morphisms p; : G; — G4
and py : Ga — G, the following holds: x(p2 o p1) = x(p2) o x(p1)-

Let By = {v;}, B = {u;}, and Bs = {w;} be the orthonormal eigenbases for the Laplacians of G, Ga, and
('3, respectively.

The functor maps these processes to linear transformations in Spec, which are change of basis operations:

e x(p1) : x(G1) = x(G3) maps basis B; to Bs.

o x(p2) : x(G2) = x(G3) maps basis By to Bs.

The composition of these linear transformations in Spec, x(p2) o x(p1), is the map from x(G1) — x(Gs)
obtained by first applying x(p1) and then x(p2).
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Now consider the composition in Proc. The process ps o py is a single morphism that maps G; directly to
G3. The functor maps this composite process to the linear transformation x(p2op1) : x(G1) = x(G3), which
is the single operation that maps basis By to Bs.

In linear algebra, the transformation matrix for a change of basis from a basis B; to a basis B3, via an
intermediate basis Bs, is given by the product of the individual change of basis matrices. Let M; be the
matrix for x(p1) and Ms be the matrix for x(p2). The composition x(p2) o x(p1) corresponds to the matrix
product MsM;. This resulting matrix is precisely the change of basis matrix from B; to Bjs, which is the
matrix representation of x(p2 o p1).

Therefore, the linear transformations are the same: x(p2 o p1) = x(p2) © x(p1)-

Since x preserves both identity morphisms and composition, it is a valid functor. O

A.2 Proof of Theorem[I} The Identity Failure of Entangled Models

Theorem (1] (The Identity Failure of Entangled Models). An Entangled State-Update Model (as defined in
Definition |1)) is non-functorial as it fails to preserve the identity morphism. The model’s representation of
an identity process p;q : Gy — Gy is not the identity transformation on the latent history space.

Proof. The proof demonstrates that the model introduces artificial latent dynamics because its update
function is not an identity map, even when the physical process is an identity.

1. The Functorial Axiom for Identity: A valid functor ¥ must map the identity morphism in the
source category (Proc) to the identity morphism in the target category (Latent). Let p;q : Gy — G
be the identity morphism in Proc (i.e., the process with the same source and target object). Let
z; be the latent representation of the system’s history up to state G;. The axiom requires that the
model’s map for this process, W(p;q), must be the identity transformation idy,,,,, on the latent
space. Therefore, applying this map to the latent state z; must yield z; itself:

U(pia)(zt) = idvyyn, (2t) = 2t (25)

2. Formalising the Model’s Computation: We now compute the model’s actual output for the
identity process p;q. Per Definition [1} the model computes the next history vector z;11 by applying
the update function F' to the current history z; and the embedding of the new state. For the identity
process piq : Gy — Gy, this new state is G, itself. Thus, the model’s computation is:

21 = F(Q(Gy), z¢) (26)

3. The Functorial Failure (Conclusion): We now compare the required output from Step 1 with
the model’s actual output from Step 2. The functorial axiom requires:

Ziy1 = Z¢ (27)

The model’s computation provides:
Zir1 = F(P(Gt), zt) (28)
Therefore, for the model to be a functor, its update function F' must satisfy the following condition:
F(O(Gt),2¢) =z (29)

for any arbitrary state G; and any corresponding history z;.

This is a contradiction. The update function F' in an Entangled State-Update Model is a non-linear,
parameterised function (e.g., an LSTM or GRU cell) that is trained to transform its history vector
z; based on the new state input ®(G;). In the general, non-trivial case, F(x,h) # h. The model
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has no architectural guarantee of being an identity map for any input, and in fact, is trained to be
the opposite.

The model’s output z;1; is not equal to z;. It fails to map the identity process to the identity
transformation, thus violating the axiom and proving it is not a functor.

This completes the proof. O

A.3 Proof of Theorem [2} The Composition Failure of Entangled Models

Theorem (2| (The Composition Failure of Entangled Models). An Entangled State-Update Model (as defined
n Deﬁm’tz’on is mon-functorial as it fails to preserve the composition of morphisms.

Proof. The proof proceeds by demonstrating that the model’s output is path-dependent. We will show that
the model’s computed latent representation for a composite process is not equal to the representation it
computes when observing only the start and end states of that same process. This violates the functorial
axiom of composition.

1. The Functorial Axiom for Composition: A valid functor ¥ must preserve composition. For
any two composable morphisms p; : G; — G35 and py : Go — Gj3, their composite is p3 = ps o py
(which in our state-pair category is the morphism p3 : G; — G3). The axiom requires that the
application of the functor to the composite morphism must be equivalent to the composition of the
functor’s applications to the individual morphisms:

U(p3) = ¥(p2) o ¥(p1) (30)

When applied to an initial history vector z;, this means the computed results must be identical.

2. Formalising the Right-Hand Side (The Stepped Path): Let the system be in an initial state
G1, with its corresponding history vector z; € Vhistory. We first consider the computation for the
stepped path, (¥(p2) o ¥(p1))(z1). The model first processes p; : G; — Ga. Per Definition [1} it
computes the intermediate history vector zs:

Zo = F(‘P(Gg),zl) (31)

Next, the model processes ps : Go — Gj3, taking zo as its history input. It computes the final history
vector zs:
Z3 — F((I)(Gg),ZQ) (32)

Substituting the expression for zs, the final representation for the stepped path is:

Z3 = F((I)(Gg), F(@(GQ),Zl)) (33)

3. Formalising the Left-Hand Side (The Direct Path): Now, consider the computation for the
direct path, ¥(ps)(z1). Here, the model observes only the initial state G; (with history z;) and the
final state G3. It is blind to the intermediate state G2. The model must compute the update in a
single step based on the process p3 : G; — G3. Per Definition [I] it applies its update function F' to
the initial history z; and the final state’s embedding ®(G3):

Zé = F((I)(Gg),zl) (34)

4. The Functorial Failure (Conclusion): We now compare the result from the stepped path (Step
2) with the result from the direct path (Step 3). The composition axiom fails because z3 # zj:

F(®(Gs), F(®(G2),21)) # F(®(Gs),21) (35)
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This inequality holds for any non-trivial Entangled State-Update Model. The function F' (e.g., a
GRU or LSTM cell) is designed such that its output depends on its history argument. For any
process p; that is not an identity, the intermediate history F(®(Gz),z;1) will not be equal to the
initial history z;. Therefore, the model’s output for the stepped path is different from its output for
the direct path.

The model’s representation is path-dependent. It has failed to preserve the composition of mor-
phisms and is therefore not a functor.

This completes the proof. O

A.4  Proof of Theorem [3; The Spectral Trace Conservation Law

Theorem (3| (The Spectral Trace Conservation Law). Let p : G — G’ be a conservative process, where the
total resource is unchanged (R(G) = R(G")). The trace of the symmetrised Laplacian is conserved, i.e.,

Tr(Lgy,,) = Tr(Lsym). Consequently, the sum of the Laplacian eigenvalues is an invariant of the process.

Proof. The proof proceeds by first establishing a direct identity between the total resource of a network,
R(G), and the trace of its symmetrised Laplacian, Tr(Lgym)-

Let G = (V, E,W) be a network object in Proc with |[V| = n. The symmetrised Laplacian is defined as
Lsym = Dsym, - Asym~

1. Trace of the Laplacian. The trace of a matrix is the sum of its diagonal elements. For the
Laplacian, since Agy., has zeros on its diagonal (assuming no self-loops, or they can be handled
separately without loss of generality), the trace is the sum of the diagonal elements of the degree
matrix Dgym:

Tr(Lsym) = Z(Lsym)ii = Z(Dsym)ii (36)

2. Relating Trace to Adjacency Matrix. The i-th diagonal entry of the degree matrix, (Dgsym )ii,
is defined as the sum of weights of all edges incident to node 7 in the symmetrised graph. This is
the sum of the i-th row of the symmetrised adjacency matrix Agym,:

(Daym)ii = 3 _(Asym)ij (37)

Therefore, the trace of the Laplacian is the sum of all entries in the degree matrix, which is equivalent
to the sum of all entries in the symmetrised adjacency matrix:

sym Z Z sym ij (38)

=1 j=1

3. Relating Adjacency Matrix to Total Resource. We now substitute the definition of Agym,

where (Asym)ij = 7W(i’j);rw(j’i):

Lsym) n Zn:W W5,9) (39)

=1 ]:

.
—

n

SN Wi le_:lW(j,i) (40)

L\J\H

i=1 j=1

=
<.
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The term Z” W (i,j) is the sum of all edge weights in the original directed graph, which is by
definition the total resource R(G). The second term, >, . W (j,4), is also the sum over all edge
weights and is therefore also equal to R(G). This gives us the direct identity:

TH(Laym) = 5(R(G) + R(G)) = R(G) (41)

4. Applying the Conservative Constraint. The process p : G — G’ is defined as conser-
vative, meaning R(G) = R(G’). From the identity established in the previous step, we have
Tr(Lsym) = R(G) and Tr(Lj,,,) = R(G’). The conservation of resources therefore directly im-
plies the conservation of the trace:

5. Relating Trace to Eigenvalues. A fundamental theorem of linear algebra states that the trace

of any matrix is equal to the sum of its eigenvalues. Let {\;}-; be the eigenvalues of Ly, and
{A\;}™_, be the eigenvalues of L/ We have:

sym*

> X =Tr(Laym) and YN =Tr(L},,) (43)
i=1 =1

Combining this with the result from the previous step, we conclude that the sum of the eigenvalues
is conserved:
n n
S =3 N (44)
i=1 i=1

This completes the proof. O

A.5 Proof of Theorem [4; The Spectral Sensitivity of Algebraic Connectivity

Theorem [4] (The Spectral Sensitivity of Algebraic Connectivity). Let p: G — G’ be a process that induces a
sufficiently small change in the symmetrised Laplacian, ALy, = L;ym — Lgym. If the process is structurally
fragmenting, defined as satisfying the condition v3 (ALgsyy)ve < 0, where vo is the Fiedler eigenvector of

the initial graph G, then the Fiedler value will decrease (Ny < Az).

Proof. The proof for this theorem relies on a standard result from matrix perturbation theory, which describes
how the eigenvalues of a symmetric matrix change in response to a small perturbation.

Let Lgym be the symmetrised Laplacian of the initial graph G, with eigenvalues Ay < Ag < -+ < A,
and a corresponding complete orthonormal set of eigenvectors {v;}? ;. Let the process p induce a small
perturbation, resulting in a new Laplacian L, = Lgym +ALgym with new eigenvalues {\}}7;. We assume
the perturbation ALgy, is small enough such that first-order effects dominate.

1. First-Order Eigenvalue Perturbation. A fundamental result from matrix analysis (see, e.g.,
Bhatial (1992)) states that for a small symmetric perturbation ALy, the first-order change in a
simple eigenvalue )\ is given by the Rayleigh quotient of the perturbation matrix with respect to
the corresponding eigenvector vy:

& = Ak + VE(ALgym) Vi + O(||ALgym|?) (45)

For a sufficiently small perturbation, we can analyse the first-order term to determine the direction
of the change. The change in the eigenvalue is thus approximated by:

AN = N, — A & VE(ALgym)Vi (46)
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2. Applying to the Fiedler Value. The Fiedler value is the second smallest eigenvalue, Ao. For this
theorem, we assume ), is a simple (non-repeated) eigenvalue, which is the generic case for connected
graphs. Applying the perturbation formula to Ao, we get:

)\/2 — )\2 ~ Vg(ALSym)Vg (47)
where vy is the Fiedler eigenvector of the original Laplacian Ly, .

3. Applying the “Structurally Fragmenting” Condition. The theorem’s premise defines a pro-
cess as “structurally fragmenting” if it satisfies the following condition:

V3 (ALgym)ve < 0 (48)

This condition gives a precise mathematical meaning to the idea that the process is “aligned” with
the network’s primary structural vulnerability, as identified by the Fiedler eigenvector.

4. Conclusion. By substituting the condition from Step 3 into the first-order approximation from
Step 2, we directly obtain the result:
Ay — A2 <0 (49)

which implies:
)\/2 < Ao (50)

Therefore, for any sufficiently small process that is structurally fragmenting, the Fiedler value of the network
is guaranteed to decrease. This completes the proof. O

A.6 Proof of Theorem B} The Stability-Spectrum Equivalence

Theorem [5| (The Stability-Spectrum Equivalence). A dynamic network sequence (G¢)22, governed by dis-
sipative processes converges to a stable state Goo if and only if its corresponding sequence of spectral data
(eigenvalues and eigenvectors of Lsym. +) converges to a stable limit.

Proof. This is an equivalence proof, which requires proving two implications. The core of the proof rests on
the continuity of the maps between the spaces of weight matrices, Laplacians, and their spectral decompo-
sitions.

Part 1: Stability = Spectral Convergence. In this direction, we prove that if the physical state of
the network converges, its spectral representation must also converge.

1. Assumption of Stability. We assume that the system converges to a stable state G,. By
definition, this means the sequence of weight functions converges to a limit function, Wy — W, as
t — oo. This convergence is typically defined in terms of a matrix norm, e.g., |W; — W || — 0.

2. Continuity of the Laplacian Map. The mapping from a weight matrix W to its corresponding
symmetrised Laplacian Ly, is a continuous function. The entries of Ly, are simple linear com-
binations of the entries of W. Specifically, (Lsym):; is a function of W(s, j), W(j,¢), and sums of
weights connected to nodes 7 and j. As a finite sum of continuous functions, this mapping is con-
tinuous. Therefore, the convergence of the weight matrices implies the convergence of the Laplacian
matrices:

Wy - Wy = Lsym}t — Lsym7(x> (51)

3. Continuity of Spectral Decomposition. The eigenvalues and eigenvectors of a real symmetric
matrix are continuous functions of its entries (see, e.g., [Bhatia| (1992)). This means that for a
converging sequence of matrices, their spectra also converge.

4. Conclusion of Part 1. Since the sequence of Laplacians Ly, converges to a limit Lgym, oo, it
follows from the continuity of the spectral map that the corresponding sequences of their eigenvalues
and eigenvectors must also converge to a stable limit. This proves the first implication.
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Part 2: Spectral Convergence — Stability. In this direction, we prove that if the spectral repre-
sentation of the network converges, the physical state must also have converged.

1. Assumption of Spectral Convergence. We assume that the full set of spectral data converges.
This means the sequence of eigenvalues {); +} converges to a limit spectrum {); « }, and the sequence
of eigenvector matrices V; (whose columns are the eigenvectors) converges to a limit matrix V.

2. Convergence of the Laplacian. A real symmetric matrix is uniquely determined by its spectral
decomposition via the formula Ly, = VAVT, where A is the diagonal matrix of eigenvalues. Since
matrix multiplication and transposition are continuous operations, the convergence of both V; and
A; implies the convergence of the sequence of symmetrised Laplacian matrices:

(Vi = Vo and Ay = Ass) = Lgymt — Lsym,co (52)

3. From Laplacian Convergence to System Stability. The convergence of Ly, means that for
any small € > 0, there exists a time 7" such that for all t > T, || Lsym,i+1 — Lsym,¢|| < €. This implies
that the change in the trace, |Tr(Lsym, t+1) — Tr(Lsym,¢)|, must also approach zero.

From Theorem 3] we know that Tr(Lsym) = R(G). Therefore, the total resource change per step,
|R(Gt41) — R(Gy)|, must also approach zero.

The processes in our Proc category are fundamentally dissipative (R(Gi4+1) < R(Gy)). A dissipative
system can only stop dissipating resources when it has reached a stable fixed point or equilibrium
state. Since the change in total resource is approaching zero, the system must be approaching a
state where the processes acting upon it are no longer dissipative but have become conservative. In a
system without external energy inputs, the only state where this can happen is a stable equilibrium.
Any further change would either require dissipation (which would change the trace, contradicting
spectral convergence) or an external input (which is outside our current model).

Therefore, the convergence of the spectral data implies the convergence of the underlying physical
state to a stable equilibrium, G; — G.

Since both implications hold, the equivalence is established. This completes the proof. O

A.7 Proof of Lemma[2} The Change of Basis Formula

Lemma [2| (The Change of Basis Formula). Let p : G — G’ be a process, with {v;} and {v';} being
the orthonormal eigenbases of the initial and final Laplacians, respectively. The entry (i,j) of the matriz
representation of the linear transformation x(p) is given by the inner product of the respective basis vectors:

(x(p)ij = (V'i, vj).

Proof. Let the source vector space be U = x(G) and the target vector space be U’ = x(G’'). Let B =
{Vv1,..., vy} be the orthonormal eigenbasis for U, and let B’ = {v'1,...,V’,,} be the orthonormal eigenbasis
for U’.

The linear transformation x(p) : U — U’ is the map that governs the change of basis. By definition, the
matrix representation of a linear transformation is constructed column by column. The j-th column of the
matrix for x(p) is the coordinate vector of the transformed basis vector, x(p)(v;), expressed in the target
basis B'.

In our framework, the functor y maps the abstract process p to the specific linear transformation that
describes the change in the geometric frame of the network. This means the transformation maps the old
basis vectors directly onto themselves, but now they exist within the new space. Formally, we can consider
the action of the transformation on an old basis vector v; to be the vector v; itself, which we now must
represent in the new basis B’.

Let M be the matrix representation of x(p) with respect to the bases B and B’. The j-th column of M is
the vector [v;]p’, the coordinate representation of v; in the basis B'.
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To find the i-th component of this coordinate vector, we need to find the scalar coefficient ¢; in the linear
combination:

n
v; = Z v (53)
k=1

Since the basis B’ is orthonormal, we can find the coefficient ¢; by taking the inner product (dot product)
of both sides with the basis vector v/;:

n
(V'isvy) = <Vli7ZCkV/k> (54)
k=1
By the linearity of the inner product, we can move the summation and scalar coefficients out:

Vi, vi) =D (Vi Vi) (55)
k=1

Because B’ is an orthonormal basis, the inner product (v/;,v'y) is equal to the Kronecker delta, d;;, which
is 1 if ¢ = k and 0 otherwise. The summation therefore collapses, leaving only the term where k = i:

<V/i,Vj> =C;- 1= C; (56)

This shows that the i-th coordinate of the vector v; in the basis B’ is precisely the inner product (v/;, v;).

Since the entry (i, j) of the transformation matrix M is the i-th component of the j-th column vector, we
have:

Mi; = (x(p))ij = ¢i = (V'i, V) (57)

This completes the proof. O

A.8 Proof of Theorem 6 The Rank-One Update Signature

Theorem |§| (The Rank-One Update Signature). Let p be a simple process that only perturbs the weight of a
single edge between nodes a and b. The resulting change in the symmetrised Laplacian, ALgym, is a rank-one
matriz. Consequently, the transformation matriz x(p) is a low-rank perturbation of the identity matriz.

Proof. The proof consists of two parts. First, we show that a single edge perturbation results in a rank-
one update to the symmetrised Laplacian. Second, we state how this low-rank update affects the resulting
transformation matrix x(p).

1. The Rank of the Laplacian Perturbation. Let the process p change the weight of the directed edge
(a,b) by a value §; and the weight of the edge (b, a) by a value d5. In the simplest case, one of these is zero.
The change in the weight function is non-zero only for these two edges.

The change in the symmetrised adjacency matrix, AAgy,, is given by:

AW (i, 5) + AW (5,1
(Mg = WD)+ WG

(58)

This results in a matrix that is zero everywhere except at entries (a, b) and (b, a), where the value is (01 +42)/2.
Let § = (51 + (52)/2

The change in the symmetrised degree matrix, ADgy,,, is a diagonal matrix where (ADgym)ii =
> j(AAsym)ij- The only non-zero entries will be on the diagonal at positions (a,a) and (b,b):

* (ADaym)uu = (AAsym)ab =0
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i (ADsym)bb = (AAsym)ba =9

The total change in the symmetrised Laplacian is ALgsym = ADgym — AAgym. This matrix has only four
non-zero entries:

i (ALsym)aa =9
i (ALsym)bb =9
hd (ALsy'm)ab =6

i (ALsym)ba =6

Let ej be the standard basis vector with a 1 in the k-th position. The vector u = e, — €3 is a vector with
1 at position a, —1 at position b, and 0 elsewhere. The outer product of this vector with itself is a matrix
(uuT). Tts entries match the structure of our perturbation matrix. We can therefore write our perturbation
matrix as a scalar multiple of this outer product:

ALgym = 0(eq — €p)(€q — ep)” (59)

A matrix that can be expressed as the outer product of a single non-zero column vector and a single non-zero
row vector is, by definition, a rank-one matrix.

2. Consequence for the Transformation Matrix. The new Laplacian is L’Sym = Loym + ALgym. We
have shown that the perturbation ALy, is a simple, rank-one matrix.

According to matrix perturbation theory (specifically, results related to low-rank updates), the eigenvectors
of a matrix that has been perturbed by a low-rank matrix are themselves a low-rank perturbation of the
original eigenvectors. This means the new eigenbasis {v’;} is “close” to the original eigenbasis {v;}.

The transformation matrix x(p) has entries (x(p))i; = (v/s,v;). Since the new basis is a small perturbation
of the old orthonormal basis, the new basis vectors are nearly aligned with the old ones. This means:

 Diagonal entries (x(p))i = (V'i, vs) will be close to 1.

o Off-diagonal entries (x(p)):; = (v's,v;) for i # j will be close to 0.

Therefore, the transformation matrix x(p) will be a low-rank perturbation of the identity matrix, I. The
structure of this perturbation is not arbitrary but is determined by the components of the original eigenvectors
at the perturbed nodes, a and b.

This completes the proof. O

A.9 Proof of Theorem[ft The Structural Inertia Theorem

Theorem m (The Structural Inertia Theorem). Let p be a process that induces a small perturbation ALgyy,.
The resulting transformation matriz x(p) is diagonally dominant. The magnitude of its off-diagonal entries
is bounded by the norm of the perturbation and the spectral gaps of the original graph.

Proof. The proof relies on the Davis-Kahan theorem, a cornerstone of matrix perturbation theory, which
provides a bound on the rotation of eigenspaces under a symmetric perturbation.

Let Lgym and L’Sym = Lgym + ALgym be the initial and final symmetrised Laplacians, respectively. Let their
eigenvalues be {\;} and {\}, and their corresponding orthonormal eigenvector matrices be V- = [vy|...|vy]
and V' = [v/1]...|v/,,]. We assume the perturbation, as measured by its spectral norm ||ALgy.y,||2, is small.
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1. Matrix Entries as Inner Products. From Lemma [2] the entries of the transformation matrix
X(p) are given by the inner products of the old and new eigenvectors:

(x()is = (V'i,vj) (60)

2. Diagonal Entries. The diagonal entries are (x(p))s; = (v'i,v;) = cos(6;), where 6; is the angle
between the new and old i-th eigenvectors. For a small perturbation, the eigenvectors do not change
much, so 6; is small and cos(6;) is close to 1.

3. Off-Diagonal Entries and the Davis-Kahan Theorem. The off-diagonal entries, (x(p)):; for
i # j, represent the projection of an old eigenvector v; onto a new eigenvector v’;. The Davis-Kahan
Sine Theta Theorem provides a bound on the angle between the old and new eigenspaces. A direct
consequence of the theorem gives a bound on the magnitude of these individual inner products.

Let’s assume the eigenvalues of Ly, are simple. The magnitude of the inner product between a
new eigenvector v’; and an old eigenvector v; for i # j is bounded by:

[ALsym|l2

/
v <
|<V17V]>|— |)\17A_7|

(61)

The term |A\; — A;| is the spectral gap between the i-th and j-th eigenvalues.

4. Conclusion: Diagonal Dominance. The result from Step 3 shows that the magnitude of the off-
diagonal entries, |(x(p))ij|, is small, provided the perturbation ||ALgym||2 is small and the spectral
gap |A; — Aj| is not pathologically close to zero. The diagonal entries, as shown in Step 2, are close
to 1.

A matrix is diagonally dominant if, for every row, the magnitude of the diagonal entry is greater
than the sum of the magnitudes of all other (off-diagonal) entries in that row. For a sufficiently
small perturbation, the diagonal entries will be approximately 1, while the off-diagonal entries will
be close to 0. Thus, the matrix x(p) is guaranteed to be diagonally dominant.

This proves that a small physical perturbation cannot cause a large, arbitrary re-shuffling of the fundamental
structural modes of the network. This completes the proof. O

A.10 Proof of Theorem [8; The Node Removal Signature

Theorem |8 (The Node Removal Signature). Let p be a process that removes a node k from a network
G with n nodes. The resulting transformation x(p) maps the original n-dimensional eigenspace to the new
(n — 1)-dimensional eigenspace and is a projection operator.

Proof. The proof involves analysing the structural change in the Laplacian matrix that results from deleting
a vertex and then characterising the nature of the map between the corresponding eigenspaces.

Let the original graph be G with n vertices, and let its symmetrised Laplacian be Lgy.m,, an n x n matrix.
Let the resulting graph after removing node k be G’, with n — 1 vertices. The new Laplacian, L'Sym, is the

n —1) x (n — 1) principal submatrix of L., obtained by deleting the k-th row and k-th column.
Yy

1. Change in Dimension. The original eigenspace is x(G) = R", spanned by the eigenvectors {v;}1_,
of Lsym. The final eigenspace is x(G’) = R"~!, spanned by the eigenvectors {uj}?;ll of LY,,,. The
transformation x(p) is a map from an n-dimensional space to an (n — 1)-dimensional space. Such
a map cannot be an isomorphism (like a simple change of basis) but must involve a reduction in

dimension.

2. Constructing the Projection Operator. We can model the overall transformation in two concep-
tual steps. First, we define a projection operator Py : R* — R™®~! that removes the k-th component
from any vector in the original space. This operator effectively projects the original n-dimensional
space onto the subspace that corresponds to the remaining nodes.
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The eigenvectors of the new Laplacian, {u;}, form a basis for this target R™ ! space. The trans-
formation x(p) can be understood as the composition of this projection with a subsequent change
of basis within the lower-dimensional space. However, the dominant characteristic of the map from
R” to R~ is the projection itself.

3. The Kernel of the Transformation. A projection from a higher-dimensional space to a lower-
dimensional space has a non-trivial kernel (or null space)—the set of vectors that are mapped to the
zero vector. In this case, the kernel of the projection Py is the one-dimensional subspace spanned
by the standard basis vector ey (the vector with a 1 in the k-th position and zeros elsewhere).
Any structural mode of the original network that was entirely localised to node k (i.e., any vector
proportional to eg) is annihilated by the transformation. This directly corresponds to the physical
removal of the node.

4. Relationship Between Spectra (Cauchy Interlacing Theorem). The relationship between
the spectra of Lgy,;, and its principal submatrix L’sym is not arbitrary but is tightly constrained
by the Cauchy Interlacing Theorem. This theorem states that the eigenvalues of the new matrix

interlace the eigenvalues of the original matrix:
AMSAN <A <A< <A <\, (62)

This ensures that the spectral properties of the subgraph G’ are a predictable and well-behaved
consequence of the properties of the original graph G.

In summary, the removal of a node induces a transformation from an n-dimensional space to an (n — 1)-
dimensional space, which is fundamentally a projection. The kernel of this projection corresponds directly
to the removed node, providing a unique and identifiable signature for this type of major topological change.
This completes the proof. O

A.11 Proof of Theorem [0 The Signal Transport Theorem

Theorem |§| (The Signal Transport Theorem). Let f be a vector representing a “signal” on the nodes of a
network G. After a process p, the signal f' on the new network G’ that maintains the same coordinates with
respect to the new eigenbasis is given by the transformation £ = Transporif, where the transport matriz is
Tiransport = V'V, with V and V' being the matrices of eigenvectors for G and G', respectively.

Proof. The proof consists of deriving the explicit matrix form for the transport operator by defining the
signal in the spectral domain and then mapping it back to the node domain.

1. Signal Representation in the Spectral Domain. Let G be the initial network with its corre-
sponding symmetrised Laplacian Lgy,,. Let V be the n X n matrix whose columns are the complete
orthonormal set of eigenvectors of Lgym,, B = {v1,...,Vv,}.

A signal f € R” on the nodes of the graph can be expressed as a linear combination of these basis
vectors. The vector of coefficients, a € R™, which we call the spectral coordinates of the signal, is
given by:

f=Va (63)

Since V' is an orthonormal matrix, its inverse is its transpose (V! = VT). We can therefore find
the spectral coordinates from the signal via:

a=V1f=VTf (64)
2. Defining the Transported Signal. Let the process p transform the network from G to G’.

The new network G’ has a new symmetrised Laplacian L, and a new matrix of orthonormal
eigenvectors, V.

m
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The core idea of signal transport is to define a new signal, f’, on the nodes of G’ that has the ezact
same spectral coordinates a as the original signal, but expressed in the new basis V’. The new signal
is therefore synthesised from the original spectral coordinates and the new basis:

f'=V'a (65)
3. Deriving the Transport Operator. Our goal is to find the matrix Ty qnsport that maps the

original signal vector f directly to the new signal vector f’, such that f' = T},qnsporef.

We can derive this by substituting the expression for the spectral coordinates a from Step 1 into the
synthesis equation from Step 2:

£ =V (VTE) (66)
By the associativity of matrix multiplication, this can be written as:
£ = (V'V)f (67)

By comparing this result with the desired form £’ = T}rqnsportf, we can directly identify the transport

operator matrix:
Ttransport = V/VT (68)

This provides the explicit formula for the transport matrix, which depends only on the eigenvectors of the
initial and final network states. This completes the proof. O

A.12 Proof of Theorem [I0; The Direct Spectral-to-Functional Projection

Theorem (Direct Spectral-to-Functional Projection). Let x(p) € R™*™ be the spectral transformation
matriz. Let P € R"*F be the partition matriz mapping k functional groups to the n nodes, and let p € RFX"
be its pseudo-inverse projector. The k X k functional transformation matriz M (p) is the unique solution that
minimises the Frobenius norm of the approzimation error ||x(p) — PM(p)p||%, and is given by the Galerkin
projection:

M(p) = px(p)P (69)

Proof. This proof derives the unique k x k matrix M (p) that is the optimal solution to the least-squares
optimisation problem:
M (p) = argmin |x(p) — PMpl}, (70)
MERFXk
This finds the k x k operator M which, when “lifted” back into the n x n space by the embedding P (pre-
multiplying) and projector p (post-multiplying), provides the best approximation of the full n x n spectral
operator x(p).

1. Define the Loss Function: Let the loss function L(M) be the Frobenius norm squared of the
eITor:

L(M) = |x(p) = PMpl3, = Tr ((x(p) = PMp)" (x(p) — PMp)) (71)

2. Solve using Matrix Calculus: To find the minimum, we take the derivative of L(M) with respect
to M and set it to zero. We use the standard matrix derivative identity for a least-squares problem
of the form L(X) = ||A — BXC||%, which is g—f{ = BT(BXC - A)CT.

Applying this identity with A = x(p), B=P, C = p, and X = M:

oL

— =PI (PMp - T 72
oM (PMp—x(p))p (72)
Set the derivative to zero to find the optimal M:
PT(PMp—x(p))p" =0 (73)
PTPMpp" — PTx(p)p" =0 (74)
T

(PTP)M(pp") = P"x(p)p
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3. Simplify the Projection Terms: We analyse the two matrix products involving P and p.

e Let A= PTP. This is a k x k invertible diagonal matrix where A;; is the number of nodes in
group 1.
o Let B = ppT. Substituting p = (PTP)~1PT = A~1PT:

B=(AT"PT)Y(AT'PT)T = A7 PT(P(A™H)T) (76)
Since A = PT P is diagonal, it is symmetric, so (A=1)T = A~1
B=AYPTP)A ' = A AA = [ A7 = A1 (77)
Thus, we have the identity B = pp” = (PTP)~t = A~L.
4. Isolate the Optimal Matrix M: Substitute A = PT P and B = A~! back into the equation from

Step 2:
AMA™ = P'x(p)p" (78)

To solve for M, we right-multiply by A:
(AMA™H)A = (PTx(p)p")A (79)

AM = (PTx(p)p")(PTP) (80)
Now, substitute the definition p” = (P(PTP)~1):

AM = PTx(p)(P(PTP)~!)(PTP) (81)

By associativity, the last two terms cancel to the identity matrix:

AM = P'x(p)P - (P*P)"H(PTP)) = PTx(p)P - I (82)
(PTP)M = P"x(p)P (83)
Finally, to isolate M, we left-multiply by (PTP)~:
(PTP)~(P"P)M = (PTP)"'P"x(p)P (84)
M = ((PT"P)"'P")x(p)P (85)

Using the definition p = (PTP)~!PT we arrive at the unique solution:
M(p) = px(p)P (86)
This confirms that the functional transformation M (p) = px(p)P is the unique k x k matrix that optimally

approximates the full n x n spectral transformation x(p) in the least-squares sense, when projected onto the
functional subspace. This completes the proof. O
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