
Proximity Enhanced Graph Neural Networks with Channel Contrast

Wei Zhuo , Guang Tan∗

Shenzhen Campus of Sun Yat-sen University, China
zhuow5@mail2.sysu.edu.cn, tanguang@mail.sysu.edu.cn

Abstract
We consider graph representation learning in an
unsupervised manner. Graph neural networks use
neighborhood aggregation as a core component that
results in feature smoothing among nodes in prox-
imity. While successful in various prediction tasks,
such a paradigm falls short of capturing nodes’ sim-
ilarities over a long distance, which proves to be
important for high-quality learning. To tackle this
problem, we strengthen the graph with three types
of additional graph views, in which each node is
directly linked to a set of nodes with the highest
similarity in terms of node features, neighborhood
features or local structures. Not restricted by con-
nectivity in the original graph, the generated views
provide new and complementary perspectives from
which to look at the relationship between nodes. In-
spired by the recent success of contrastive learning
approaches, we propose a self-supervised method
that aims to learn node representations by maximiz-
ing the agreement between representations across
generated views and the original graph, without the
requirement of any label information. We also pro-
pose a channel-level contrast approach that greatly
reduces computation cost. Extensive experiments
on six assortative graphs and three disassortative
graphs demonstrate the effectiveness of our ap-
proach.

1 Introduction
Graph neural networks (GNNs) have emerged as a power-
ful tool for many graph analytic problems such as node clas-
sification, graph classification and link prediction [Kipf and
Welling, 2017; Ying et al., 2018; Zhang and Chen, 2018].
Most of these tasks are semi-supervised, requiring a certain
number of labels to guide the learning process. In reality, the
label information is sometimes difficult to obtain, or may not
conform to the overall distribution of the data, resulting in
inaccurate models. Recently, self-supervised learning (SSL)
on graphs, which aims to construct self-supervision signals
from the input data itself without using any external labels,

∗Corresponding author.

has gained increasing interest in the community due to its
strong performance on various downstream tasks.

Most GNNs [Kipf and Welling, 2017; Veličković et al.,
2018] depend on the assumption that similar nodes are likely
to be connected and belong to the same class. Through lo-
cal feature smoothing by neighborhood aggregation, these
models tend to generate node embeddings that preserve the
proximity of nodes from the original graph. Such an ap-
proach, however, faces challenges in some real-world net-
works, where neighbor relationship does not necessarily
mean similarity [Ma et al., 2021], and sometimes truly simi-
lar nodes are far apart. For example, in social networks, the
unique attributes of celebrities would be diluted if aggregated
with their followers. To enhance their unique attributes, the
nodes need to aggregate messages from those with similar at-
tributes, regardless of distance. This requires the GNN model
to preserve the proximity of nodes in the feature space in-
stead of in the original graph. Two nodes’ proximity in the
feature space can be reflected by the similarity between their
own features, termed self-features, or by the similarity be-
tween the features of their neighborhoods. The latter form is
well known in matchmaking agency [Chen et al., 2021] who
aims to connect two people on a blind date, based on a care-
ful assessment of similarities of their close friends, rather than
directly comparing features between the opposite genders.

In still other cases, it is found that structural similarity
plays a particularly important role for graph learning. For
example, for catalysts in the protein-protein interaction net-
work of a cell [Ribeiro et al., 2017], nodes with similar struc-
tural features are defined to be similar, establishing a notion
of proximity in the topology space.

With supervision signals or prior knowledge, most GNNs
use only specific types of proximity information. For exam-
ple, AM-GCN [Wang et al., 2020] tries to leverage proximity
in the feature space and the original graph; Struc2vec [Ribeiro
et al., 2017] and RolX [Henderson et al., 2012] preserve
proximity in topology space, while ignoring proximity infor-
mation in other forms.

In this paper, we argue that the three measures of prox-
imity, namely proximity in the original graph, in the fea-
ture space, and in the topology space, provide complemen-
tary views of the graph, and thus combining all of them in
a proper way can significantly improve the robustness and
adaptability of GNNs. By exploiting the inherent consis-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2448

tency between different graph views, we are able to learn
useful embeddings without label information. Our method
follows the self-supervised contrastive learning (CL) ap-
proach [Chen et al., 2020]. By contrasting positive pairs
against negative pairs in different views of the graph, CL has
demonstrated clear advantages on unsupervised representa-
tion learning [Veličković et al., 2019; Hassani and Khasah-
madi, 2020] and pre-training [You et al., 2020] tasks on
graphs.

Our Contributions We present Proximity-Enhanced
Graph Contrastive Learning (PE-GCL), a novel self-
supervised graph representation learning framework. First,
we reconstruct the graph in the feature space and topology
space to generate three kinds of graph views, in which simi-
lar nodes in terms of self-features, neighborhood features or
local structures are linked. In the contrastive stage, we adopt
an alternate training strategy to accelerate the training pro-
cess, where our model alternately maximizes an agreement
between the representations of a generated view and the origi-
nal graph, with positive and negative pairs at the channel level
instead of the node level. Compared with the state-of-the-art
methods [Zhu et al., 2020a; Zhu et al., 2020b], which requires
computation complexity O(N2), where N is the number of
nodes, PE-GCL reduces the number of contrastive pairs to
O(d2), where d is the output dimension.

Our theoretical analysis from the perspective of maximiz-
ing mutual information confirms its rationality. We con-
duct experiments node classification task on a total of 9 real-
world benchmark datasets including 6 assortative graphs and
3 disassortative graphs, and demonstrate that PE-GCL out-
perform representative unsupervised graph learning methods
and sometimes defeat semi-supervised methods.

2 Related Work
Self-supervised learning on graphs aims to construct super-
vision signals from the graph itself without external labels.
Earlier methods based on shallow neural networks construct
supervision signals from graph structures to enforce the rep-
resentations of nodes in the same local context to be simi-
lar, where local context can be random walk sequences [Per-
ozzi et al., 2014; Grover and Leskovec, 2016], community
members or specific order neighbors [Tang et al., 2015].
With the success of graph neural networks, some methods
use multilayer graph autoencoder to learn to reconstruct cer-
tain parts of the graph, where the parts of the graph can be
the adjacency matrix [Kipf and Welling, 2016], node fea-
tures [Park et al., 2019] or both nodes and edges [Hu et al.,
2020]. Recently, Contrastive learning (CL) has been success-
fully applied in graph representation learning. The key idea
is to contrast views by maximizing agreement between pos-
itive pair and disagreement between negative pairs, where
contrastive pairs can be subgraph-graph pairs [You et al.,
2020], node-graph pairs [Veličković et al., 2019; Peng et al.,
2020] or cross-view identical node pairs [Zhu et al., 2020a;
Zhu et al., 2020b].

Proximity preserving is a means for graph learning mod-
els to retain and learn from the similarity and relation be-
tween nodes. Based on different similarity measures, the

models may be classified into three categories: 1) mod-
els that preserve proximity in the graph structure. Net-
work embedding methods such as DeepWalk [Perozzi et al.,
2014], LINE [Tang et al., 2015], and node2vec [Grover
and Leskovec, 2016] follow this approach by maximizing
the co-occurrence probability of nodes and their neighbor-
hoods. Message passing GNNs [Veličković et al., 2018;
Hamilton et al., 2017] realize this by local feature smooth-
ing; 2) models that preserve proximity in feature space, where
nodes with similar features are brought into proximity. To this
end, AM-GCN [Wang et al., 2020] constructs a kNN graph
based on the feature matrix, and then input the generated
kNN graph together with the original graph to jointly train
the GNN model; 3) models that preserve proximity in topol-
ogy space, where nodes with similar local structures become
close to each other. Struc2vec [Ribeiro et al., 2017] uses a
hierarchy to capture structural similarity at different scales.
RolX [Henderson et al., 2012] recovers a soft-clustering of
nodes into a specific number of distinct roles using recursive
structural feature extraction.

3 Preliminaries
Notation Let G = (V,E,X) denotes an unweighted at-
tributed graph, V = {vi}Ni=1 is a set of nodes with |V | = N ,
E ⊆ V × V is a set of edges, and X = {xi}Ni=1 is a set
of feature vectors, where xi ∈ RF is a F -dimensional vec-
tor for node vi. Each column of X is a attribute vector, de-
noted as X:,k ∈ RN . The adjacency matrix A ∈ RN×N : if
eij = (vi, vj) ∈ E, then Aij = 1, otherwise, Aij = 0.
Proximity Graph We reconstruct the graph in both feature
and topology spaces to generate augmented views. As shown
in Figure 1, the augmentation pool P(·|G, k) consists of three
view generators, i.e., Φ(X, k), Ψ(A, k) and Θ(A,X, k). In
the feature space, Φ(X, k) aims to build a self-feature prox-
imity graph (FPG) where each node only links to the k nodes
with most similar feature vectors, denoted Gf = (Af ,X).
Θ(A,X, k) aims to generate a neighborhood feature prox-
imity graph (NPG), where each node links to k most simi-
lar nodes in terms of attribute distribution of the feature sets
of neighborhoods, denoted Gn = (An,X). In the topology
space, Ψ(A, k) builds a topology proximity graph (TPG)
where each node links to the top k nodes with most similar
local topology, denoted Gt = (At,X). As such, Gf , Gt and
Gn are three views of the input graph G. Note that the simi-
larity ranking may be asymmetric so the generated views are
directed. In addition, proximity graphs are structural views,
therefore the augmentation is only applied to the structure
of the graphs rather than the initial node features. Ψ(A, k)
means the TPG generator only leverages the structure infor-
mation A from G, so as other generators.

4 Views Generation
In this section, the instantiation of the generators Φ(X, k),
Ψ(A, k) and Θ(A,X, k), is presented.

4.1 Instantiation of Ψ(A, k) for TPG
Figure 1 shows an example where nodes u, v and w have
similar local topology: they all have degrees 4, and are con-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2449

cv

cv

1

GNN MLP

Channel-level ContrastPositive pair
Negative pair

Information flow of
Information flow of

Alternate
Training Local Topo.

Encoding

Local Neigh.
Similarity

Node Feat.
Similarity

random in each epoch

Figure 1: Overview of PE-GCL. The input graph G and its augmented view Ga, selected from Gf , Gt or Gn alternately, are fed into a shared
GNN followed by an MLP. The final contrastive objective is to maximize the agreement of the same channels cross two output representation
matrices, such as c1 and ca1 , and distinguish different channels, such as c1 and ca2 .

(a) (b)

Figure 2: (a) Barbell graph B(6, 2), where nodes with the same
first-order neighbor have the same color. (b) Local topology repre-
sentations in R2 (topology space of the graph) learned by factorizing
the kernel matrix with Nyström approximation. It shows nodes with
the same local structure coincide well in the topology space.

nected to 2 triangles, therefore they should be connected in
the topology space to construct TPG Gt. To this end, we first
encode the structural roles of each node as a vector in the
topology space. Although several structural role embedding
methods [Ribeiro et al., 2017; Henderson et al., 2012] can do
the job, they require separate back-propagation or enumera-
tion operations, which are too heavy as a preprocessing step.
Here, we give an alternative method based on graph kernel.

We first extract local subgraphs for all nodes, where the
subgraphs can be r-hop egonets (i.e., the induced subgraph
surrounding each node) or induced by a set of random walk
(RW) sequences starting from each node. We have found that
different choices do not affect the results significantly, except
that RW which we use here is more efficient for dense graphs.
Let S = {S1, · · · , SN} be the set of extracted local sub-
graphs for each node, we adopt the Weisfeiler-Lehman (WL)
subtree kernel [Shervashidze et al., 2011] on the subgraph set
S . Then, we can obtain a symmetric positive semi-definite
kernel matrix K ∈ RN×N , where Kij denotes the similarity
between local subgraphs Si and Sj , which can be seen as the
local topological similarity between vi and vj . Then, we can
directly factorize K to obtain a low-dimensional representa-
tion of each subgraph Si, and this vector is the local topolog-

ical representation of vi. However, matrix factorization leads
to a high computational complexity of O(N3). To solve this
problem, we use Nyström approximation [Nikolentzos et al.,
2018] to reduce the cost to O(m2N), where m ≪ N . The
Nyström method only uses a small subset of m columns of
K, such that K ≈ RR⊤ where R ∈ RN×m. Finally, each
row of R represents the coordinate of the corresponding node
in the graph’s topology space, and therefore serves as the lo-
cal topology representation of the node. Figure 2 shows an
experiment on a barbell graph B(6, 2). Based on R, we con-
struct a directed graph where each node links to top-k most
similar nodes using outgoing edges, denoted Gt = (At,X).
Note that R is only used to generate the structure At of Gt,
and node features are still X.

4.2 Instantiation of Φ(X, k) for FPG
Φ(X, k) is defined in the feature space. It generates a self-
feature proximity graph (FPG) Gf = (Af ,X) directly based
on node features X, where each node only links to the k most
similar nodes in terms of node features. Figure 1 shows nodes
with similar colors (features) are connected to build Gf .

4.3 Instantiation of Θ(A,X, k) for NPG
To capture more complex graph properties which rely on both
local topology and node features, we introduce the concept
of neighborhood feature proximity graph (NPG): the exis-
tence of an edge between two nodes is based on the simi-
larity of their local neighborhoods’ features. The rationale
behind our idea is that FPG only considers the relationship
between individual node features, which is not robust to fea-
ture noise. Moreover, in some graphs such as disassortative
graphs, harnessing neighborhoods’ features while ignoring
the self-features can significantly improve the discriminative
power of the learned representations [Ma et al., 2021].

Although MPNN-based GNNs obtain a node representa-
tion that encodes a rooted subtree around the center node by
iteratively aggregating neighborhoods, such a representation
does not well reflect the characteristics of a node’s neighbors,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2450

since it is a mixture of neighbors’ features without consid-
ering the distribution of each attribute. Hence, Θ measures
the similarity between nodes by the distance between the at-
tribute distributions of the feature sets of the nodes’ neigh-
borhoods. Given every node’s neighborhoods Ŝ = {Ŝi}Ni=1,
where Ŝi = Si/ vi is the neighbor set of vi excluding itself.
From each Ŝi, we sample m′ nodes uniformly with replace-
ment to generate a neighborhood feature matrix Xi ∈ Rm′×F

for vi, where the k-th attribute is Xi
:,k. Then we assume the

attribute is a discrete random variable whose realizations de-
pend on the specific pair-wise nodes. Specifically, for vi and
vj , the realizations of the k-th attribute are a set of all dif-
ferent values that appear in Xi

:,k and Xj
:,k, denoted as ωk.

We denote the set of all different values in Xi
:,k as ωi

k, then
ωi
k ∪ ωj

k = ωk where |ωi
k|, |ω

j
k| ≤ m′. We can vectorize the

attribute distribution of Xi
:,k as an |ωi

k|-dimensional vector
πi
k, where πi

k(t) is the frequency of an attribute value ωi
k(t)

occurs in Xi
:,k, and

∑
t π

i
k(t) =

∑
t π

j
k(t) = m′. Then, we

measure the neighborhood feature similarity between vi and
vj with Wasserstein distance (WD) between the correspond-
ing attribute distributions as D(vi, vj) =

∑F
k=1 W

k(vi, vj),
where:

W k(vi, vj) = min
T

|ωi
k|∑

l=1

|ωj
k|∑

t=1

Tlt||ωi
k(l)− ωj

k(t)||1

subject to
|ωi

k|∑
l=1

Tlt = πj
k(t),

|ωj
k|∑

t=1

Tlt = πi
k(l),Tlt ≥ 0,

(1)

where T ∈ R|ωi
k|×|ωj

k| is a flow matrix. In this way, the
smaller value of D(vi, vj) indicates the higher similarity be-
tween the attribute distributions of the feature sets of two
nodes’ neighborhoods. As shown in Figure 1, u, w and r
have similar neighborhood feature distributions (3 orange and
1 grey), so they are more likely to be connected. Based on the
distance measure D(vi, vj), the generator Θ links top-k most
similar nodes for each node to build a neighborhood feature
proximity graph (NPG) as an augmented view, denoted as
Gn = (An,X). Eq. (1) fits the form of WD, which has
been well-studied and fast specialized algorithms [Pele and
Werman, 2009] have been proposed to solve it.

Summary. FPG and TPG are kNN graphs that use cosine
distance to measure node feature similarity and structural
similarity, while NPG is a kNN graph based on Wasserstein
distance, as we are interested in distribution similarity instead
of vector similarity of neighborhoods. These three views are
reconstructions of the original graph structure to preserve the
high-order interactions between nodes with respect to self-
features, local topology and distributions of neighborhoods.
Now we decide the augmentation pool as P(·|G, k): feeding
G and an integer k into the pool, it outputs a view from one
of the generators. In the views generation stage, the computa-
tional cost mainly comes from calculating the vector similar-
ity for the kNN graphs, which is O(N2). Fortunately, fast
approximation and parallelization methods have been well

studied to construct kNN graphs efficiently. We are able to
construct kNN graphs with local sensitive hashing [Zhang et
al., 2013] in O(ln(F + logN)).

5 Proximity Enhanced GCL
We describe each component of PE-GCL in order as depicted
in Figure 1.

(1) Alternate training strategy. In each training epoch, we
randomly set a k and generate a view Ga ∼ P(·|G, k), where
the generator is alternately set to Φ, Ψ or Θ. In other words,
each training epoch involves only one augmented view Ga,
which is taken turns to set to FPG (Gf), TPG (Gt) or NPG
(Gn). In this way, multiple types of proximity information
can be preserved. As compared to joint training with three
kinds of views in one epoch, the alternate training strategy re-
duces computational cost and accelerates the training process.
Moreover, the randomness of k helps improve the diversity of
views, so that proximity at different scales can be preserved.
This also helps to achieve a trade-off among different types of
proximity measures. However, repeatedly constructing kNN
graphs in each training step is expensive. To address this is-
sue, we limit k to a maximum value kmax, i.e., k ≤ kmax.
We only need to find top-kmax neighbors for each proximity
graph before training, which is a single-time effort. Then in
each training step, an FPG, NPG or TPG with k can be easily
obtained from the preprocessed kmax neighbors by masking a
certain number of neighbors at the end of the similarity rank-
ing. In practice, kmax is a hyperparameter and kmax < 10 is
found to work well.

(2) Shared GNN encoder and projection head. The view
Ga ∼ P(·|G, k) together with G are fed into a shared GNN
encoder, where each node aggregates the messages propa-
gated from its in-neighbors. We use GAT as the encoder;
other MPNN-based GNNs can also be used without much dif-
ference in performance. Following the GNN encoder, we use
a shared MLP g(·) as a projection head [You et al., 2020] to
enhance the expressive power of the output representations.
All trainable parameters are shared between two graphs dur-
ing training.

(3) Channel-level contrastive objective. Unlike most pre-
vious methods that construct contrastive pairs between aug-
mented views, PE-GCL constructs contrastive pairs between
the original graph and a view. Specifically, the shared MLP
outputs two representation matrices H,Ha ∈ RN×d for G
and its augmented view Ga respectively, which can be seen as
two signals with d channels on two graphs. Some works [Zhu
et al., 2020b; Zhu et al., 2020a] focuses on node-level con-
trasting, which suffers from high computation cost. We offer
an alternative method that generates contrastive pairs at the
channel level. As shown in the right part of Figure 1, the i-th
channels of two output signals, denoted ci and cai , are the i-
th columns of H and Ha, respectively. Then the contrastive
objective aims to maximize the consistency between two rep-
resentation matrices, such that the same channels ci and cai
as inter-graph positive pairs (red solid double-headed arrows)
are to be pulled together, and different channels ci and caj,j ̸=i

as negative pairs (gray dashed double-headed arrow) to be

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2451

Cora CiteSeer PubMed WikiCS ACM CoauthorCS Texas Chameleon Actor

|V | 2,708 3,327 19,717 11,701 3,025 18,333 183 2,277 7,600
|E| 5,429 4,732 44,338 216,123 13,128 81,894 295 31,421 26,752
F 1,433 3,703 500 300 1,870 6,805 1,703 2,325 932

Classes 7 6 3 10 3 15 5 5 5

Table 1: Datasets statistics.

Input Type Algo. Cora CiteSeer PubMed WikiCS ACM CoauthorCS

Unsup

A RW DeepWalk 74.49(±0.3) 49.29(±1.2) 80.25(±0.3) 68.33(±1.2) 60.09(±0.2) 85.00(±0.4)
node2vec 75.72(±0.3) 51.33(±1.4) 79.88(±0.2) 69.06(±0.8) 61.15(±0.8) 84.97(±0.4)

A,X

AE GAE 81.37(±1.1) 68.42(±0.6) 80.81(±0.4) 68.72(±0.5) 87.62(±0.7) 92.46(±0.2)
VGAE 80.80(±1.3) 69.60(±0.6) 82.25(±0.3) 75.64(±0.6) 89.78(±0.5) 92.10(±0.2)

CL

MVGRL 83.77(±0.7) 73.35(±0.5) 85.33(±0.2) 74.13(±0.6) 90.80(±0.3) 92.08(±0.5)
DGI 83.61(±0.7) 70.24(±1.4) 85.31(±0.2) 75.70(±0.5) 90.01(±0.3) 92.30(±0.2)

GRACE 83.24(±0.8) 71.50(±0.8) 86.07(±0.2) 78.26(±0.2) 90.28(±0.5) 92.42(±0.2)
GMI 83.51(±0.7) 72.18(±0.4) 82.97(±1.0) 77.57(±0.5) 87.15(±0.5) 91.92(±0.1)

GarphCL 82.42(±1.2) 70.80(±0.6) 78.24(±1.6) 77.10(±0.3) 85.03(±0.9) 86.57(±0.1)
PE-GCL 84.12(±0.6) 72.79(±1.3) 86.31(±0.6) 80.33(±1.0) 91.73(±0.2) 93.58(±0.0)

Semi-sup A,X ,Y GNN

GCN 82.57(±0.2) 71.81(±0.7) 86.12(±0.2) 76.40(±1.0) 87.66(±1.2) 93.05(±0.3)
GAT 83.38(±0.2) 72.50(±0.7) 84.70(±0.0) 77.60(±0.6) 86.52(±1.0) 92.42(±0.3)

AM-GCN 81.15(±0.1) 74.08(±0.3) 80.93(±0.2) 75.92(±0.3) 91.42(±1.0) 92.00(±0.1)
DMGI 81.73(±0.3) 71.88(±0.7) 85.22(±0.1) 77.42(±0.3) 89.15(±0.9) 91.47(±0.2)

Table 2: Average classification accuracy (%) with standard deviation. Bold : best; Underline: runner-up.

pushed away. Hence, the loss function of pair-wise channels
(ci, c

a
i) is defined as:

ℓi = −
(
log

exp(ϕ(ci, c
a
i)/τ)∑d

j=1,j ̸=i exp(ϕ(ci, c
a
j)/τ)

+ log
exp(ϕ(ci, c

a
i)/τ)∑d

j=1,j ̸=i exp(ϕ(cj , c
a
i)/τ)

) (2)

where τ is the temperature hyper-parameter to scale the co-
sine similarity ϕ(·, ·). [Chen et al., 2020] finds that an appro-
priate τ can help the model learn from hard negatives. Con-
sidering all d channels, the total contrastive loss function is:

Lcont =
1

d

d∑
i

ℓi (3)

Prediction. The GNN encoder and MLP are all trained in
an unsupervised manner. After the training stage, the original
graph G is fed into the GNN encoder to generate the result-
ing node embeddings Z, as shown in Figure 1. Then we can
apply Z to downstream prediction. See Appendix A for a
description of the algorithm.

5.1 Theoretical Analysis
We create three graphs Gf , Gt and Gn as augmented views
of G, and then maximize the agreement between the output
embedding matrices of G and a view. By this means, the
GNN encoder is able to capture richer semantic information
(i.e., self-feature similarity, neighborhood feature similarity
and structural equivalence), which may boost the subsequent
prediction tasks. In other words, minimizing the contrastive

objective in Eq. (3) aims to maximize the “correlation” be-
tween the input graph G and its proximity graph Gf , Gt or
Gn. However, what does “correlation” precisely mean? In
the following, we theoretically discuss the connection be-
tween the loss function of PE-GCL and InfoNCE [Kong et
al., 2019] to answer this question, and prove that minimiz-
ing our proposed channel-level contrastive objective can be
viewed as a kind of maximizing a lower bound of the Mutual
Information (MI) between G and its views.

Let fθ(c, ca) = ϕ(g(GNN(G)), g(GNN(Ga)))/τ be the
contrastive loss of a specific pair-wise channels c and ca,
where θ is parametrized by τ , the GNN encoder GNN(·)
and the MLP g(·), we can arrive at the following theorem.
Theorem 1. The contrastive loss in Eq. (3) can be trans-
formed to the InfoNCE form and lower bounded by the MI
between H and Ha as:

−Lcont =2EP(ci,cai)fθ(ci, c
a
i)− EP(ci) logEP(caj)fθ(ci, c

a
j)−

EP(cai) logEP(cj)fθ(cj , c
a
i) ≤ 2I(H,Ha).

The proof is in Appendix B. Thus, minimizing Lcont is
equivalent to maximizing a lower bound of MI between H
and Ha.

6 Experiments and Analysis
6.1 Datasets, Evaluation and Baselines
Datasets. We conduct node classification experiments on
the following commonly used six assortative graphs (Cora,
CiteSeer, PubMed, WikiCS, ACM and CoauthorCS) [Kipf and
Welling, 2017; Mernyei and Cangea, 2020; Sinha et al., 2015]

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2452

Algo. Texas Chameleon Actor

DeepWalk 35.47(±7.6) 41.16(±6.1) 26.80(±1.3)
node2vec 31.04(±5.7) 36.39(±8.2) 25.78(±1.0)

GAE 56.22(±4.3) 48.62(±1.8) 27.04(±1.2)
VGAE 54.86(±6.1) 49.26(±1.4) 27.35(±0.9)

MVGRL 63.84(±4.0) 55.37(±1.3) 30.52(±0.7)
DGI 57.03(±6.9) 51.68(±2.8) 26.80(±0.8)

GRACE 56.76(±4.8) 53.65(±1.2) 27.06(±1.2)
GMI 53.24(±7.7) 49.72(±0.8) 29.51(±0.8)

GraphCL 55.78(±8.2) 58.35(±1.1) 28.47(±0.9)
PE-GCL 77.62(±4.9) 67.66(±1.0) 36.10(±0.7)

GCN 61.33(±7.7) 63.96(±1.5) 30.28(±0.7)
GAT 58.93(±4.3) 59.21(±0.7) 26.30(±1.3)

AM-GCN 68.43(±7.4) 59.77(±2.8) 29.56(±0.9)
DMGI 57.25(±8.2) 55.43(±1.9) 27.57(±0.5)

Table 3: Node classification accuracy on disassortative graphs.

and three disassortative graphs (Texas, Chameleon and Ac-
tor) [Pei et al., 2019]. The statistics of datasets are in Table 1.
Evaluation Protocol. For assortative graphs, we use ten
splits of the nodes into 10%/10%/80% for train/validation/test
nodes over 10 random seeds, and run 10 times for each split
to report average accuracy with standard deviation. For disas-
sortative graphs, we use the same setting as [Pei et al., 2019].
The model is firstly trained in an unsupervised manner. In
the test stage, the original graph is directly fed into the GNN
encoder and output a node representation matrix Z ∈ RN×d′

,
then the embeddings of the training set are used to train an
ℓ2-regularized logistic regression classifier and give the re-
sults of classification on the test nodes.
Baselines. PE-GCL1 is compared with three categories of
unsupervised methods: (1) Random walk based methods, in-
cluding DeepWalk [Perozzi et al., 2014], node2vec [Grover
and Leskovec, 2016]. (2) Auto-encoder (AE) based meth-
ods, including GAE and VGAE [Kipf and Welling, 2016].
(3) Contrastive learning (CL) based methods, including MV-
GRL [Hassani and Khasahmadi, 2020], DGI [Veličković
et al., 2019], GRACE [Zhu et al., 2020a], GMI [Peng et
al., 2020], GraphCL [You et al., 2020]. We also compare
PE-GCL with semi-supervised GNNs, including GCN [Kipf
and Welling, 2017], GAT [Veličković et al., 2018], AM-
GCN [Wang et al., 2020], and DMGI [Park et al., 2020].

6.2 Results and Analysis
Overall performance. From Table 2 we can make several
observations. (1) Our PE-GCL achieves the best results on
five out of the six datasets. Only on CiteSeer dataset, PE-
GCL is slightly weaker than MVGRL. Considering that MV-
GRL needs 4 GNN encoders at the same time per epoch,
this method suffers from high parameter complexity. By
contrast, every component is shared across graphs in PE-
GCL, so only a single GNN encoder is needed. (2) Al-
though without labels to guide training, PE-GCL still outper-
forms most semi-supervised methods on most datasets. (3)

1The source code, hyper-parameter settings and complexity anal-
ysis are available at https://github.com/JhuoW/PE-GCL

Algo. Cora Texas Chameleon
PE-GCL 84.12(±0.6) 77.62(±4.9) 67.66(±1.0)

PE-GCL w/o FPG 83.03(±0.8) 66.50(±6.5) 67.53(±0.9)
PE-GCL w/o TPG 84.02(±0.5) 71.33(±4.7) 66.57(±1.0)
PE-GCL w/o NPG 82.95(±0.5) 77.73(±5.8) 64.42(±2.2)

Table 4: Ablation experiments on Cora, Texas and Chameleon

Cora CiteSeer PubMed
0.700
0.725
0.750
0.775
0.800
0.825
0.850

Ac
c

GRACE
PE-GRACE

(a)

64 128 256 512
d 0

512

256

128

64

d

81.42 82.57 84.13 83.61

81.18 81.21 82.93 82.72

80.02 80.11 80.94 81.77

79.65 78.81 80.1 80.03

(b)

Figure 3: (a) Comparing different graph augmentation schemes on
GRACE. (b) Parameter sensitivity of on Cora.

GRACE and GraphCL both construct augmented views by
imposing random perturbations on the graph, and MVGRL
constructs views with diffusion. These methods and our PE-
GCL achieve comparable or even better results than semi-
supervised methods. It shows the superiority of CL models
on graph learning tasks. (4) Traditional network embedding
methods like DeepWalk and node2vec with negative sam-
pling can also be seen as a kind of CL-based method, yet
they do not perform well, because node features are ignored,
and the number of negative samples is usually very small.

Table 3 shows that PE-GCL consistently yields the best
performance on disassortative graphs, where most connected
nodes belong to different classes. It demonstrates that our
augmented views can help the model capture long-distance
correlations between nodes.

Gain from views. We propose FPG, TPG and NPG as aug-
mented views to help representations integrate high-order
similarity information. However, it is not intuitive how much
gain is generated by each type of view. To answer this ques-
tion, we introduce three PE-GCL variants, each of which
has one type of view removed. We choose Cora, Texas and
Chameleon to conduct the ablation experiments. The results
are shown in Table 4. We see that considering FPT and NPG
can improve the model accuracy by 1.09%, 1.17% on Cora,
while the gain from TPG is small. For Texas, FPG and TPG
is important, while NPG may bring about some negative ef-
fects. However, for Chameleon, NPG plays a non-negligible
role. Thus, our PE-GCL combines these proximity graphs
that help achieve balanced gains for general graphs.

Transferrability. We also show that our proposed three
types of views and alternate training strategy can be trans-
ferred to other CL-based GNNs. For example, we replace the
graph augmentation scheme of GRACE which uses random
corruption with proximity graphs, and adopt alternate train-
ing strategy, called PE-GRACE. The objective function is still

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2453

https://github.com/JhuoW/PE-GCL

Algo. Cora CiteSeer
AUC AP AUC AP

GAE 91.37 91.99 89.53 92.02
VGAE 92.08 92.60 90.68 92.17

GRACE 91.37 92.07 92.51 92.96
DGI 91.19 91.46 90.36 90.16
GCN 91.52 91.56 90.00 90.90

PE-GCL 92.68 93.78 95.09 94.95

Table 5: Experimental results (%) of link prediction.

NT-xent [Zhu et al., 2020a] used in the original GRACE. We
compare the accuracy of GRACE and PE-GRACE to verify
the proximity graphs’ adaptability, see Figure 3(a). The re-
sults show that proximity graphs can also benefit GRACE and
perform better than using random corruption.

Sensitivity analysis. Figure 3(b) shows the impact of hid-
den layer sizes of the GNN encoder and the MLP on the clas-
sification results of PE-GCL on Cora. With the increase of
dimensionalities, the performance increases first and starts to
stabilize when the dimensionalities reaches 256.

6.3 Link Prediction
For link prediction, we conduct experiments on Cora and
CiteSeer, removing 5% existing edges and the same-size non-
existing edges for validation, 10% existing edges and the
same-size non-existing edges for testing. We compute the
predicted adjacency matrix by Apred = Sigmoid(ZZ⊤) and
report the AUC and AP in Table 5. The PE-GCL achieve
the highest prediction scores among baselines indicating that
PE-GCL has better reasoning ability for network connectivity
and can better retain similarity information between nodes.

7 Conclusion
In this work, we propose PE-GCL, a self-supervised repre-
sentation learning framework based on contrastive learning.
PE-GCL aims to preserve multiple types of proximity infor-
mation based on different definitions of node similarity. In
PE-GCL, we propose proximity-based graph views based on
self-feature similarity, local topology similarity and neigh-
borhood feature similarity. Then we use a contrastive objec-
tive to maximize the agreement of the views and the origi-
nal graph. In particular, we construct contrastive pairs on a
channel level, by which we can greatly reduce the number
of negative pairs. Experimental results show that PE-GCL is
competitive against state-of-the-art methods.

A The Pseudocode of PE-GCL
The details of PE-GCL are described in Algorithm 1.

B Proof of Theorem 1
Proof. Given two view sets A and B, both with the same
cardinality n, there exists a bijection π : A → B such that
each view of one set is positively paired with exactly one view
of the other set. Any other inter-set pairs are negative. Under

Algorithm 1 PE-GCL

1: Input: Graph G = (V,E,X); Upper limit of the number
of neighbors kmax; Number of iterations T ; Temperature
hyper-parameter τ ; Dimension of the projection head d;
Dimension of the GNN encoder d′

2: Âf ← Φ(X, kmax); Ât ← Ψ(A, kmax); Ân ←
Θ(A,X, kmax)

3: for t = 1, 2, · · · , T do
4: Random sample k ≤ kmax

5: Ω = Alternately sample a generator from {Φ,Ψ,Θ}
6: Aa = Mask(Ω(A, kmax), kmax − k) ▷ Mask the

kmax − k least similar neighbors for each node
7: Ga = (Aa,X)
8: Z ← GNN(G), Za ← GNN(Ga)
9: H ← g(Z), Ha ← g(Za)

10: Lcont ← Eq.(3)
11: end for

this condition, InfoNCE which is upper bounded by MI, can
be defined as:

INCE(A;B)

=E(a,b)∼P(Q)

[
fθ(a, b)− logEb̃∼P(B) exp fθ(a, b̃)

]
≤I(A,B)

(4)

where Q = ((a1, b1), · · · , (an, bn)), in which each pair as an
element in Q represents a positive pair, fθ(·) ∈ R is a func-
tion parameterized by θ, P(Q) is the distribution of positive
pairs, which is uniform. Then our contrastive objective Eq.
(3) can be rewritten as the expectation form:
− Lcont

=2EP(ci,cai)
ϕ(ci, c

a
i)

τ
− EP(ci) logEP(caj) exp(ϕ(ci, c

a
j)/τ)

− EP(cai) logEP(cj) exp(ϕ(cj , c
a
i)/τ)− 2 log d,

(5)
where Ha = g(GNN(Ga)), dimension d is a constant. To
fit Eq. (4), we set A = H , B = Ha, then (ci, c

a
i) is

a realization of the random variable Q. Here we consider
H and Ha as two view sets, and each column of H and
Ha, i.e., ci and cai are regarded as the views they are in.
Thus, Q = ((c1, c

a
i), · · · , (cN , caN)), where (ci, c

a
i) is a pos-

itive pair. ci and caj form a negative pair, where i ̸= j.
Hence, P(ci, cai) = P(Q) is a discrete uniform distribution
of size d, so P(ci, cai) = P(cai) = P(ci). Let fθ(c, ca) =
ϕ(g(GNN(G)), g(GNN(Ga)))/τ , where θ parametrized by
τ , the GNN encoder and the MLP g(·). Then Eq. (5) can be
transform to the InfoNCE form in Eq. (4) as:
−Lcont =2EP(ci,cai)fθ(ci, c

a
i)− EP(ci) logEP(caj)fθ(ci, c

a
j)−

EP(cai) logEP(cj)fθ(cj , c
a
i) ≤ 2I(H,Ha),

(6)
here we omit the constant 2 log d, which concludes the proof.

Acknowledgements
This work is supported in part by Shenzhen Baisc Research
Fund under grant JCYJ20200109142217397.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2454

References
[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-

mad Norouzi, et al. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

[Chen et al., 2021] Yuzhou Chen, Baris Coskunuzer, and
Yulia Gel. Topological relational learning on graphs.
NeurIPS, 34, 2021.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In SIGKDD, 2016.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

[Hassani and Khasahmadi, 2020] Kaveh Hassani and
Amir Hosein Khasahmadi. Contrastive multi-view
representation learning on graphs. In ICML, 2020.

[Henderson et al., 2012] Keith Henderson, Brian Gallagher,
Tina Eliassi-Rad, et al. Rolx: structural role extraction &
mining in large graphs. In SIGKDD, 2012.

[Hu et al., 2020] Ziniu Hu, Yuxiao Dong, Kuansan Wang,
et al. Gpt-gnn: Generative pre-training of graph neural
networks. In SIGKDD, 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Variational graph auto-encoders. NIPS Workshop on
Bayesian Deep Learning, 2016.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Kong et al., 2019] Lingpeng Kong, Cyprien de Masson
d’Autume, Wang Ling, et al. A mutual information max-
imization perspective of language representation learning.
arXiv preprint arXiv:1910.08350, 2019.

[Ma et al., 2021] Yao Ma, Xiaorui Liu, Neil Shah, et al. Is
homophily a necessity for graph neural networks? arXiv
preprint arXiv:2106.06134, 2021.

[Mernyei and Cangea, 2020] Péter Mernyei and Cătălina
Cangea. Wiki-cs: A wikipedia-based benchmark for graph
neural networks. arXiv preprint arXiv:2007.02901, 2020.

[Nikolentzos et al., 2018] Giannis Nikolentzos, Polykarpos
Meladianos, Antoine Jean-Pierre Tixier, et al. Kernel
graph convolutional neural networks. In ICANN, 2018.

[Park et al., 2019] Jiwoong Park, Minsik Lee, Hyung Jin
Chang, et al. Symmetric graph convolutional autoencoder
for unsupervised graph representation learning. In IEEE
ICCV, 2019.

[Park et al., 2020] Chanyoung Park, Donghyun Kim, Jiawei
Han, and Hwanjo Yu. Unsupervised attributed multiplex
network embedding. In AAAI, 2020.

[Pei et al., 2019] Hongbin Pei, Bingzhe Wei, Kevin Chen-
Chuan Chang, et al. Geom-gcn: Geometric graph con-
volutional networks. In ICLR, 2019.

[Pele and Werman, 2009] Ofir Pele and Michael Werman.
Fast and robust earth mover’s distances. In IEEE ICCV,
2009.

[Peng et al., 2020] Zhen Peng, Wenbing Huang, Minnan
Luo, et al. Graph representation learning via graphical mu-
tual information maximization. In The Web Conf., 2020.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In SIGKDD, 2014.

[Ribeiro et al., 2017] Leonardo FR Ribeiro, Pedro HP
Saverese, and Daniel R Figueiredo. struc2vec: Learning
node representations from structural identity. In SIGKDD,
2017.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan Van Leeuwen, et al. Weisfeiler-
lehman graph kernels. Journal of Machine Learning
Research, 2011.

[Sinha et al., 2015] Arnab Sinha, Zhihong Shen, Yang Song,
et al. An overview of microsoft academic service (mas)
and applications. In WWW, 2015.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
et al. Line: Large-scale information network embedding.
In WWW, 2015.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, et al. Graph attention networks. ICLR,
2018.

[Veličković et al., 2019] Petar Veličković, William Fedus,
William L. Hamilton, et al. Deep graph infomax. In ICLR,
2019.

[Wang et al., 2020] Xiao Wang, Meiqi Zhu, Deyu Bo, et al.
Am-gcn: Adaptive multi-channel graph convolutional net-
works. In SIGKDD, 2020.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, et al. Hierarchical graph representation learning
with differentiable pooling. In NeurIPS, 2018.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
et al. Graph contrastive learning with augmentations.
NeurIPS, 2020.

[Zhang and Chen, 2018] Muhan Zhang and Yixin Chen.
Link prediction based on graph neural networks. In
NeurIPS, 2018.

[Zhang et al., 2013] Yan-Ming Zhang, Kaizhu Huang,
Guanggang Geng, et al. Fast knn graph construction with
locality sensitive hashing. In ECML PKDD, 2013.

[Zhu et al., 2020a] Yanqiao Zhu, Yichen Xu, Feng Yu, et al.
Deep graph contrastive representation learning. arXiv
preprint arXiv:2006.04131, 2020.

[Zhu et al., 2020b] Yanqiao Zhu, Yichen Xu, Feng Yu, et al.
Graph contrastive learning with adaptive augmentation.
arXiv preprint arXiv:2010.14945, 2020.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2455

	Introduction
	Related Work
	Preliminaries
	Views Generation
	Instantiation of (A, k) for TPG
	Instantiation of (X,k) for FPG
	Instantiation of (A,X,k) for NPG

	Proximity Enhanced GCL
	Theoretical Analysis

	Experiments and Analysis
	Datasets, Evaluation and Baselines
	Results and Analysis
	Link Prediction

	Conclusion
	The Pseudocode of PE-GCL
	Proof of theorem:mi

