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Abstract

Neural Radiance Fields (NeRFs) have achieved impressive results in novel view
synthesis and surface reconstruction tasks. However, their performance suffers
under challenging scenarios with sparse input views. We present CorresNeRF, a
novel method that leverages image correspondence priors computed by off-the-
shelf methods to supervise NeRF training. We design adaptive processes for
augmentation and filtering to generate dense and high-quality correspondences.
The correspondences are then used to regularize NeRF training via the corre-
spondence pixel reprojection and depth loss terms. We evaluate our methods
on novel view synthesis and surface reconstruction tasks with density-based and
SDF-based NeRF models on different datasets. Our method outperforms pre-
vious methods in both photometric and geometric metrics. We show that this
simple yet effective technique of using correspondence priors can be applied as
a plug-and-play module across different NeRF variants. The project page is at
https://yxlao.github.io/corres-nerf/.

1 Introduction

Building on coordinate-based implicit representations [1, 2, 3], Neural Radiance Field (NeRF) [4]
has achieved great success in solving the fundamental computer vision problem of reconstructing 3D
geometries from RGB images, benefiting various downstream applications. However, training such
implicit representations typically requires a large number of input views, especially for objects with
complex shapes, which can be costly to collect. Therefore, training NeRFs with sparse input RGB
views remains a challenging yet important problem, where solving it can benefit various real-world
applications, e.g., 3D portrait reconstruction in the monitoring system [5, 6, 7], the city digital
reconstruction [8, 9, 10], etc.

Several works [11, 12, 13, 14, 15, 16] have been proposed to address this problem by optimizing the
rendering process or adding training constraints. However, these methods may suffer from poor real-
world performance [12], since only sparse 2D input views are an under-constrained problem [17, 13],
and the training process is prone to overfitting on the limited input views. Recent works have proposed
to utilize extra priors to supervise NeRF training [14, 16, 18]. For example, some work proposed to
train a separate network to compute depth priors [14]. However, current priors are not robust enough
against the sparse property of the target scene, e.g., DS-NeRF [13] relies on running external SfM
module [19] which may not yield sufficient point clouds for supervision, or not have an absolute scale
and shift from the monocular depth estimation [16].
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Input A Corres(A, B) UNISURF Render UNISURF Mesh

Input B Corres(C, B) NeuS Render NeuS Mesh

Input C Corres(C, A) CorresNeRF Render CorresNeRF Mesh

Figure 1: Novel view synthesis and surface reconstruction from sparse inputs with image correspondence
priors. Given a sparse set of input images (column 1), our method leverages the image correspondence priors
computed from pre-trained models (column 2) to supervise NeRF training. The color of the highlighted pixels
represents the confidence of the correspondence, where higher confidence values are greener. With image
correspondence supervision, we achieve much higher quality novel view synthesis (column 3) and surface
reconstruction (column 4) compared to the baseline UNISURF [20] and NeuS [21] models. The correspondence
priors can be used in both density-based and SDF-based neural implicit representations on both novel-view
synthesis and surface reconstruction tasks. Best viewed in color.

Our key observation is that image correspondences can provide strong supervision signals for
the training of NeRF. In Figure 2, we visualize the point cloud created from triangulating the
image correspondences pre-processed by our automatic augmentation and filtering (Section 3.2).
Without training any NeRF networks, this triangulated point cloud clearly captures rich geometrical
information about the target scene, which suggests that the image correspondences, along with the
given camera parameters, can provide strong supervision signals for NeRF Training. The idea of using
image correspondences as priors is widely applicable, since the correspondences can be estimated
as long as there are sufficient textured overlapping regions among the input views, regardless of the
NeRF variants. Additionally, the acquisition of image correspondence is inexpensive, as they can be
directly computed using pre-trained off-the-shelf methods [22, 23, 24].

To improve the robustness of our method, we propose an automatic augmentation and outlier filtering
process for the correspondences, ensuring their quantity and quality. Ablation studies demonstrate the
effectiveness of our proposed augmentation and filtering strategy. To incorporate the correspondences
into the NeRF training, we design novel correspondence loss terms, including pixel reprojection loss
and depth loss. The reprojection loss is designed to constrain the distances between the reprojected
corresponding points in the 2D pixel coordinates and the pixel-level distances. The depth loss is
designed to constrain the relative depth differences between the corresponding points. Moreover, the
confidence values from correspondence estimation are adopted as loss weights to avoid the negative
impact of mismatching correspondences.

We evaluate our method on novel view synthesis and surface reconstruction tasks on LLFF [25] and
DTU [26] datasets. We observe that the combination of correspondence priors via our method leads
to significantly improved performance in novel-view synthesis (e.g., the PSNR of NeRF baseline [4]
on LLFF is improved more than 3dB, SSIM is enhanced by 14%) and surface reconstruction (the
DepthMAE of NeRF baseline on LLFF is decreased from 1.66 to 0.91, and Chamfer-L1 distance is
reduced from 6.16 to 2.63 for NeuS [21] on DTU). Furthermore, we benchmark our method against
other state-of-the-art sparse-view reconstruction methods on different datasets, and show that our
approach (built based on the simple typical NeRF, i.e., vanilla NeRF [4] for view synthesis and
NeuS [21] for surface reconstruction) outperforms the comparative methods in terms of photometric
and geometrical metrics.
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Input A Corres(A, B) Points Viewed at A

Input B Corres(B, C) Points Viewed at B

Input C Corres(A, C) Points Viewed at C Points from Corres

Figure 2: Reconstructing point cloud by triangulating dense image correspondences. Column 1 shows
the input images. Column 2 shows the correspondences between image pairs. With these correspondences
and camera parameters, one can directly reconstruct 3D points without any training. Column 3 shows the
reconstructed point cloud visualized using the same input cameras. The rightmost column shows the points
rendered in novel view, as well as the camera poses. This example showcases the strong supervision signals that
correspondences can bring to NeRF training. Best viewed in color.

We summarize our contributions below:

• We propose to use image correspondence as priors to supervise NeRF training, leading to
better performance under challenging sparse-view scenarios.

• We design an adaptive pipeline to automatically augment and filter image correspondences,
ensuring their quantity and quality.

• We propose robust correspondence loss, including pixel reprojection loss and depth loss
based on correspondence priors.

• Extensive experiments are conducted on different baselines and datasets, showing the
effectiveness of our method under different choices of neural implicit representations.

2 Related Work

Nerual implicit representations. Unlike traditional explicit 3D representations such as point
cloud, mesh, or voxels, neural implicit representations [2, 1, 3] define a 3D scene with an implicit
function that maps 3D coordinates and view directions to the corresponding properties (e.g., color
and density) or features. The implicit function is typically modeled with neural networks. These
types of representations are more compact and flexible towards different scenes, and they have been
successfully applied to various tasks such as 3D reconstruction [4] and novel view synthesis [21].

Sparse-view NeRFs. Due to the practical limitation and the high cost of data collection, the data
used for neural implicit representation learning is often sparse. To address this problem, researchers
have recently proposed to incorporate geometric [27, 14, 13, 15, 28, 29, 16, 30] or pre-trained
priors [12, 11, 31, 32, 33] to supervise the training of neural implicit representations. As a fundamental
property of a scene, depth priors are commonly used, including depth generated from an SfM
system [13], depth computed via monocular depth estimation [16], and depth predicted from a depth
completion network [27, 14]. In contrast to these works, we rely on a more robust and flexible low-
level feature, i.e., image correspondences, as supervision. The image correspondences obtained from
modern image matchers [24, 23] are typically denser than the depth maps generated from traditional
SfM system [19], when given sparse input views, since the matching is completed according to
various characteristics in addition to geometrical information. With the known camera parameters,
one can also compute absolute depth from the image correspondences, avoiding the ambiguity of
shift and scale of depth maps from monocular depth estimation methods [16]. ConsistentNeRF [34]
uses the depths from pre-trained MVSNeRF [31] to derive the correspondence mask to emphasize
the multi-view appearance consistency, while our method uses the correspondences computed from
off-the-shelf image matchers to regularize geometric properties of the scene. Concurrent work
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SPARF [35] uses image correspondences to refine noisy poses from sparse input views with a 2D
pixel-space correspondence loss, while our method uses both a 2D pixel-space loss and a 3D depth-
space loss. Our depth-space loss is normalized to compute the relative depth differences, adapting to
different scene scalings and geometry properties.

Geometric matching. The task of finding pixel-level correspondences between two views of a 3D
scene, known as geometric matching, is a fundamental computer vision problem. Early works of
geometric matching are based on matching measurement via hand-crafted local features [36, 37, 38].
Later, detectors and feature descriptors learned through data-driven processes [39, 40, 41, 22] were
proposed to substitute the hand-crafted features, surpassing their performance. Recently, detector
free methods [23], transformer-based [42, 43], and dense geometric matching [44, 45, 24] have been
proposed to further improve the performance. In this work, we use image correspondences generated
by the state-of-the-art dense image matcher [24] as supervision for neural implicit representations.

3 Method

3.1 Background of Neural Radiance Fields

For a given 3D point x ∈ R3 and a viewing direction d ∈ R3, a neural radiance field [4] predicts the
corresponding density σ ∈ [0,∞) and RGB color c ∈ [0, 1]3, modeled by an MLP network, as

fθ : (γ(x), γ(d)) 7→ (c, σ), (1)

where γ is the positional encoding function.

A ray is defined as r(t) = o+ td, t ∈ [tn, tf ], where o is the camera center and d is the ray direction,
tn is the near bound and tf is the far bound. To render the ray r with a pre-defined tn and tf , we
integrate the density σ and color c along the ray, as

ĉθ(r) =

∫ tf

tn

T (t)σθ(r(t))cθ(r(t),d)dt, T (t) = exp

(
−
∫ t

tn

σθ(r(t))dt

)
, (2)

where T (t) is the accumulated transmittance, cθ(r(t),d) and σθ(r(t)) are the predicted color and
density output from fθ, respectively. The rendering is implemented via stratified sampling approach,
where M points are sampled in [tn, tf ], as {x1, ..., xM}. The density and color can be obtained as

ĉθ(r) =

M∑
i=1

Ti(1− exp(−σθ(xi)δi))cθ(xi,d), Ti = exp(−
i−1∑
j=1

σθ(xj)δj), (3)

where δj = tj+1 − tj is the distance between adjacent samples. Specifically, for a ray r, its predicted
3D point can be obtained by summing up the weighted depth values along the ray, as

y = o+

(
M∑
i=1

Ti(1− exp(−σθ(xi)δi))ti

)
d. (4)

To optimize parameter θ in the NeRF model, a set of input images and camera parameters are
provided, and the mean squared error color loss is minimized for optimization, as

Lcolor (θ,R) = Er∈R ∥ĉθ(r)− c(r)∥22 , (5)

where R is the set of rays in the training views, and c(r) is the ground-truth color of the ray r.

3.2 Generating Correspondences

In this paper, we focus on how to utilize the computed image correspondences to enhance the
performance of neural implicit representations in NeRF. Thus, the quality of correspondence is
crucial. For each pair of images in the training views, we compute the correspondences using an
off-the-shelf SOTA pre-trained image-matching model. In particular, DKMv3 [24] is used because it
provides dense matching results, which is suitable for our use case. To improve generalization ability,
we fuse the predictions of the indoor and outdoor models, which are pre-trained on ScanNet [46] and
MegaDepth [47] respectively. To further enhance the reliability of the correspondences, we propose
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Figure 3: Correspondence generation process. The left column illustrates correspondence propagation in
a connected component in the correspondence graph G. Given correspondence pairs (rq, rm) and (rm, rs)
with confidence αq,m and αm,r , we assign correspondence relationship to pair (rq, rs) with αq,s = αq,mαm,s.
The right columns show the overall correspondence generation process: (A) input images; (B) correspondence
pairs generated by the vanilla matcher; (C) correspondence pairs augmented by image transformations and
correspondence propagation; and (D) correspondence pairs after outlier removal. Best viewed in color.

to utilize the correspondence confidence, and also design the automatic and adaptive correspondence
process algorithm, increasing the convincing correspondences and removing the outliers.

Confidence. For ray rq in training rays R, the image matcher computes a set of corresponding
rays C(rq). For each pair of correspondences rq (query) and rs (support) in {(rq, rs) | rq ∈ R, rs ∈
C(rq)}, a confidence value αq,s ∈ [0.5, 1] is also predicted by DKMv3. Note that a ray rq can have
0, 1, or more corresponding rays rs in different images. Confidence scores are used as the scaling
factors for the correspondence losses, which will be described in Sec. 3.3.

Augmentation. To increase the number of correspondences, we perform augmentations for corre-
spondences. The first type of augmentation is image transformations, including flipping, swapping
query and support images, and scaling. These image transformations can effectively increase the den-
sity of the predicted correspondences since the image transformations can provide various context con-
ditions to generate correspondences. The second type of augmentation propagates correspondences
across image pairs, effectively increasing the area coverage of the correspondences. We build an
undirected graph G = (V, E), with vertices V = {r | r ∈ R}, and edges E = {(rq, rs) | rs ∈ C(rq)}.
For each edge (rq, rs), a confidence value αq,s is assigned. We then propagate the correspondence
relationship to vertex pairs within each connected component in G. In particular, let rq and rs be
two vertices with distance d, where is a path (rq, r1, r2, . . . , rd−1, rs) connecting them. We assign
a correspondence relationship between rq and rs with confidence αq,s = αq,1α1,2 . . . αd−1,s. In
practice, we cap the propagation distance d ≤ dmax, where we use dmax = 2 in our experiments.
Figure 3 (B) and (C) show the original and augmented correspondences, respectively.

Outlier filtering. To increase the quality of the correspondences to guide the supervision, we
remove outliers after calculating and enhancing the correspondences. First, we remove outliers
according to the projected ray distance between corresponding points. Suppose pq and ps be a pair of
2D correspondence in Iq to Is, πq and πs be the world-to-pixel projection for Iq and Is, respectively.
Given a pair of correspondences and camera parameters, we compute the closest 3D points xq and xs

along the two rays shot from the camera centers through the two correspondences. Then, we project
these two 3D points to the correspondence’s image plane. The projected ray distance [48] is defined
as the averaged Euclidean distance between the projected points and the correspondences:

dproj =
∥πq(xs)− pq∥2 + ∥πs(xq)− ps∥2

2
. (6)

We remove the correspondences with projected ray distance dproj larger than a threshold. Second,
we remove outliers by checking if a point is statistically far from its neighbors. For each pair of
correspondences, two 3D points xq and xs can be obtained, which has been indicated in the last
paragraph. We then consider 1

2 (xq + xs) to be the 3D point of the correspondence. We do this for all
correspondence pairs to obtain a set of 3D points P . For each 3D point in P , we compute the average
distance to its k nearest neighbors and remove the point (as well as its matched correspondence pair)
if the distance is larger than a threshold. This threshold is determined by the standard deviation of all
points’ average distances in P .
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Figure 4: Correspondence loss of a ray pair (rq, rs).
oq and os are the ray origins. xq and xs are the closest
points along the two rays. yq and ys are the 3D points
predicted by the NeRF model. πq(ys) and πs(yq) are
the 2D projections of ys and yq on the other image.
The correspondence losses are defined with the geo-
metric properties as illustrated.

Experiments in Sec. 4.5 demonstrate the effects
of our proposed augmentation and removal strat-
egy since they can increase the reliability of the
correspondences utilized in NeRF’s training.

3.3 Correspondence Loss

We incorporate the obtained correspondences into
NeRF training from two aspects: correspondence
pixel reprojection loss and depth loss, as illus-
trated in Fig. 4.

Correspondence pixel reprojection loss. Let
yq and ys be the corresponding 3D points pre-
dicted via NeRF, by accumulating the weighted
sum of z-depth values to the ray origin according
to Eq. 4. We compute the pixel-space reprojection
loss as follows:

Lpixel(θ,R) = Erq∈R,rs∈C(rq) αq,s (∥πq(ys)− pq∥2 + ∥πs(yq)− ps∥2) . (7)
The pixel-space reprojection loss is similar to the projected ray distance [48]. The difference is that
we reproject the predicted 3D points yq and ys, instead of reprojecting the closest points along the
two rays. Moreover, we utilize the correspondence score αq,s as weights to provide a more reliable
metric. Since the camera parameters are known, the projected ray distance is constant. However, the
reprojection of the predicted 3D points can provide a supervision signal to guide the NeRF model.

Correspondence depth loss. The correspondence depth loss term penalizes the difference between
the predicted depth and the ground-truth depth. The ground-truth depth is estimated by computing
the closest 3D points xq and xs along the two rays shot from the camera centers oq and os through
the two correspondences. We use a relative depth loss, which is adaptive to different scalings and can
be described with the following equation:

Ldepth(θ,R) = Erq∈R,rs∈C(rq) αq,s

(∣∣∣∣∥yq − oq∥2
∥xq − oq∥2

− 1

∣∣∣∣+ ∣∣∣∣∥ys − os∥2
∥xs − os∥2

− 1

∣∣∣∣) , (8)

where αq,s is the confidence of correspondence to regular the effects of the relative depth loss. In the
ideal scenario, yq should overlap with xq and similarly ys should overlap with xs, so the loss will be
zero. The relative depth loss is a smooth function and is minimized when the predicted depth is close
to the estimated depth of the ground truth.

Training procedure. For each ray in a batch of rays Rbatch, we query the correspondence map to
find the corresponding rays in all training rays R. We assume that each ray may have B corresponding
rays, B ∈ [0,+∞). For each pair of corresponding rays, we run the forward pass of the NeRF
model to obtain the predicted 3D points. We then compute the pixel-space reprojection loss and the
correspondence depth loss for each pair of corresponding rays. The final loss is the sum of pixel-space
correspondence reprojection loss, correspondence depth loss, and the regular NeRF color loss Lcolor:

L = Lcolor + λ1Lpixel + λ2Ldepth, (9)
where λ1 and λ2 are the loss weights, and we set them to 0.1 in our experiments.

4 Experiments

4.1 Datasets

We compare novel view synthesis results on LLFF [25] with density-field-based NeRF models. We
follow the convention to use every 8th image as test images [4], while selecting the training views
uniformly from the rest of the images [29]. The selected training views and test views are the same
across all methods. Three input views are used for training.

We compare surface reconstruction results on DTU [26] with SDF-based NeRF models. We follow
the convention to use the same 15 scenes from DTU as previous works [21, 49]. The selected training
views and test views are the same across all methods. Three input views are used for training.
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Table 1: Quantitative results on LLFF. We compare novel view synthesis on the LLFF dataset for 3 input
views. Our method outperforms the baseline NeRF model and the sparse-view optimized models. Our model is
built with the vanilla NeRF as the direct baseline.

PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓
NeRF [4] 16.79 0.56 0.37 1.66
DS-NeRF [13] 17.09 0.57 0.38 1.64
RegNeRF [29] 19.08 0.59 0.34 1.02
Ours 19.83 0.70 0.29 0.91

Table 2: Quantitative results on DTU. We compare novel view synthesis and surface reconstruction with
SDF-based methods on the DTU dataset for 3 input views. All models are trained without foreground masks. For
evaluation, we report photometric metrics for the masked foreground object and the full image. The Chamfer-L1

geometric metric is computed with the official DTU evaluation code with foreground masks applied. Our model
is built with NeuS as the direct baseline, achieving the best results across photometric and geometric metrics.

PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer-L1 ↓
Object Image Object Image Object Image Object

UNISURF [20] 12.90 13.85 0.47 0.58 0.28 0.57 7.23
VolSDF [52] 15.68 15.44 0.58 0.65 0.21 0.47 4.44
NeuS [21] 16.06 16.37 0.59 0.66 0.21 0.46 6.16
Ours 20.58 18.23 0.77 0.76 0.13 0.33 2.63

4.2 Evaluation Metrics

For the novel view synthesis task, we report photometric metrics, including PSNR, structural similarity
index (SSIM) [50], and the learned perceptual metric LPIPS [51]. In addition to the image metrics,
we also report the mean absolute error (MAE) for depth prediction. We compute the pseudo ground
truth depth using the baseline NeRF model given all input views. The depth error is calculated as the
mean absolute difference between the predicted depths and the pseudo ground truth depths. Both the
predicted depths and the pseudo ground truth depths are in the normalized coordinates.

For the surface reconstruction task, we report the Chamfer distance with DTU’s official evaluation
code [26], where the Chamfer distance is computed in the unnormalized world coordinates for the
foreground objects. We also report the PSNR, SSIM, and LPIPS metrics for the rendered images
with (object) and without (image) the foreground masks.

4.3 Novel View Synthesis

Quantitative comparison. For the novel view synthesis task, we compare our method with the
baseline NeRF [4] as well as few-view optimized DS-NeRF [13] and RegNeRF [29]. DS-NeRF uses
external SfM module COLMAP [19] to generate sparse point clouds for depth supervision, while
RegNeRF applies additional regularizations on depths and colors rendered from unobserved views.
The experiments are performed on the LLFF dataset with 3 input views. Our method outperforms
all other methods regarding photometric metrics and depth prediction. The results are shown in
Table 1. For DS-NeRF, we observe that if COLMAP is only given sparse-view inputs with known
camera poses for SfM (as opposed to providing all views for SfM and selecting visible points from
sparse views), COLMAP does not generate a sufficient number of points for depth supervision. In
contrast, our method relies on image correspondences as inputs that are computed according to
various characteristics. Therefore, it can leverage much denser prior information for supervision, as
shown in Fig. 3.

Qualitative comparison. Besides the quantitative comparison, we provide the qualitative comparison
to demonstrate the effects of our approach in improving novel view synthesis performance. The
visual samples are shown in Fig. 5. Compared with baselines, our results have sharper and more
accurate details and fewer artifacts. Such an improvement in performance is most visually evident in
challenging cases such as small or thin structures.
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4.4 Surface Reconstruction

Quantitative comparison. We apply the same correspondence loss terms to the SDF-based neural
implicit field method NeuS [21] and compare the results with the baseline NeuS model as well as
other two SOTA SDF-based surface reconstruction method, UNISURF [20] and VolSDF [52]. The
experiments are performed on the DTU dataset with 3 input views. The results are shown in Table 2.
Our method outperforms all baseline models in terms of Chamfer-L1 distances, i.e., ours generates
more accurate surfaces. Moreover, ours also is also significantly better than the baselines in terms of
rendering metrics, including PSNR, SSIM, and LPIPS. This further demonstrates that our approach
can be plugged into different types of network backbones (density-based and SDF-based) and can be
applied to different tasks (novel view synthesis and surface reconstruction).

Qualitative comparison. The visual comparisons between our method and the baseline for surface
reconstruction are shown in Fig. 6. It’s apparent that our 3D reconstruction results have more precise
geometrical shapes. Combined with the correspondence priors, our CorresNeRF achieves clean and
high-quality reconstruction even when given sparse input views.

4.5 Ablation Studies

We perform ablation studies of the correspondence generation process, correspondence loss terms,
robustness to correspondence noise, and the effect of foreground masks.

Correspondence generation process. We compare the result with augmentation removed, with
automatic filtering removed, and with the full pipeline. The results are shown in the first two rows
in Table 3. The result shows that both the augmentation and the automatic outlier filtering process
are able to improve the reconstruction quality measured in photometric and geometric metrics. The
augmentation step can provide denser supervision signals, while the filtering step is able to remove
the noisy correspondences to further improve the reconstruction quality.

Correspondence loss terms. We evaluate the effectiveness of the correspondence pixel reprojection
loss and correspondence depth loss terms. We compare the results with only the reprojection loss
removed, with only the depth loss removed, and the full pipeline. The results are displayed in Table 3.
Our results show that both correspondence reprojection loss and the correspondence depth loss
contribute significantly to the reconstruction quality, each adding ∼1 dB PSNR compared to the
vanilla NeRF. The combined loss term yields the best performance, adding ∼3 dB PSNR.

Robustness to correspondence noise. To evaluate the robustness of CorresNeRF to noisy corre-
spondences, we introduce Gaussian noise with standard deviations of 1, 2, and 4 pixels to both the x
and y pixel coordinates. We measure the performance of CorresNeRF on LLFF dataset with 3 input
views. The results are shown in Table 4. The automatic filtering process is able to remove the noisy
correspondences, demonstrating the robustness of CorresNeRF to noisy correspondences.

Correspondence with mask supervision. For the surface reconstruction task, we evaluate the
performance of CorresNeRF when the foreground mask is provided. When the foreground mask is
available, the correspondences are filtered by the mask, allowing the model to focus on the foreground
region. The results are shown in Table 5. Our model outperforms the NeuS model in both the
with-mask and without-mask settings. Qualitative visualization results are shown in Fig. 8 in the
supplementary material.

5 Conclusion

We presented CorresNeRF, a method that can utilize the image correspondence priors for training
neural radiance fields with sparse-view inputs. We propose automatic augmentation and filtering
methods to generate dense and high-quality image correspondences from sparse-view inputs. We
design reprojection and depth loss terms based on the correspondence priors to regularize the neural
radiance field training. Experiments show that our method can significantly improve the reconstruction
quality measured in photometric and geometric metrics with only a few input images.

Limitations and future work. In CorresNeRF, convincing correspondences are obtained by using
SOTA matching networks and further processed via adaptive augmentation and outlier removal. An
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NeRF [4] DS-NeRF [13] RegNeRF [29] CorresNeRF Ground Truth

Figure 5: Qualitative results from the LLFF dataset.

UNISURF [18] VolSDF [52] NeuS [21] CorresNeRF Ground Truth

Figure 6: Qualitative results from the DTU dataset.
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Table 3: Ablation study on correspondence generation and loss terms. We verify the effectiveness of
correspondence pre-processing and correspondence loss terms. We find that both correspondence augmentation
and outlier filtering are helpful for the final performance. We also find that both the pixel reprojection loss and
correspondence depth loss contribute to the final performance on both photometric and geometric metrics.

PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓
NeRF [4] 16.79 0.56 0.37 1.66
Ours w/o Corres Augment 18.50 0.66 0.32 1.15
Ours w/o Corres Filter 19.32 0.69 0.29 0.93
Ours w/o Pixel Loss 18.16 0.62 0.42 1.33
Ours w/o Depth Loss 17.75 0.59 0.51 1.47
Ours 19.83 0.70 0.29 0.91

Table 4: Ablation study on robustness to correspondence noise. We add Gaussian noise to the correspondences
generated by our method and evaluate the performance of CorresNeRF on the LLFF dataset with 3 input views.

Corres % After Filter PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓
NeRF [4] N/A 16.79 0.56 0.37 1.66
Ours (Noise STD = 4 px) 13.96% 18.31 0.61 0.48 1.04
Ours (Noise STD = 2 px) 27.04% 19.16 0.66 0.33 1.06
Ours (Noise STD = 1 px) 48.91% 19.31 0.67 0.28 1.06
Ours (Noise STD = 0 px) 100.00% 19.83 0.70 0.29 0.91

Table 5: Ablation study on the effects of foreground masks. We report the results of NeuS and our model
trained with and without foreground masks on the DTU dataset with 3 input views. The photometric metrics are
calculated with the foreground masks applied regardless of the training settings.

PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓
NeuS w/o Mask 16.06 0.59 0.21 6.16
Ours w/o Mask 20.58 0.77 0.13 2.63

NeuS w/ Mask 20.85 0.78 0.12 2.36
Ours w/ Mask 21.85 0.81 0.11 1.57

admired number of correspondences can be acquired for most practical scenes (proved by experiments
on various benchmarks). However, there are still some extreme cases where few correspondences are
computed via matching networks (due to unreasonable camera positions or some specific textures
of target scenes). Correspondence generation methods are needed for these cases to synthesize
convincing correspondences along with the optimization of NeRF. Some recent works [53, 54] have
proved that neural implicit representations can be utilized to learn correspondences in turn. Dealing
with such extreme scenes will be our future work.
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Appendix

A Discussions on Correspondence

In this section, we provide additional discussions and visualizations on the correspondence generation
pipeline, including direct correspondence reconstruction, comparing correspondence with SfM, and
the correspondence propagation process.

A.1 Comparing with SfM

We compare the DS-NeRF [13]’s SfM pipeline with our CorresNeRF’s correspondence generation
procedure in terms of the number of points generated and the number of correspondences generated.
The results are reported in Table 6. The table shows that CorresNeRF is able to leverage much denser
supervision compared to SfM-based depth supervision methods.

Table 6: Comparison of DS-NeRF’s SfM point cloud number, CorresNeRF’s correspondence number,
and their pixel coverage (%). We compare the number of points in the supervision point cloud used in
DS-NeRF [13] generated by COLMAP SfM [19] with the number of correspondences used in CorresNeRF. The
numbers are reported in counts (total number of points and total number of correspondences) and pixel coverage
percentage (the percentage of pixels that are supervised by sparse point cloud in DS-NeRF and the percentage of
pixels having correspondences in CorresNeRF). For DS-NeRF, we run COLMAP only on the selected input
views with camera poses provided (as opposed to providing all views for SfM and selecting visible points from
input views). The results are reported on the LLFF dataset with 3 input views.

DS-NeRF [13]
with SfM

Ours

Base Base+Filter Base+Filter+Aug

fern 362 (0.19%) 325,633 (57%) 281,382 (49%) 368,798 (65%)
flower 685 (0.35%) 415,459 (73%) 278,180 (49%) 356,044 (62%)
fortress 609 (0.31%) 435,676 (76%) 377,956 (66%) 430,044 (75%)
horns 512 (0.27%) 270,778 (47%) 224,812 (39%) 271,705 (48%)
leaves 201 (0.11%) 272,158 (48%) 153,024 (27%) 198,412 (35%)
orchids 229 (0.12%) 213,660 (37%) 153,250 (27%) 242,620 (42%)
room 345 (0.18%) 226,156 (40%) 190,302 (33%) 260,308 (46%)
trex 644 (0.34%) 202,650 (35%) 164,047 (29%) 233,950 (41%)

A.2 Correspondence Propagation

We provide additional visualizations to demonstrate the correspondence propagation process. With
correspondence propagation, image pairs initially with few or no correspondences may still obtain
correspondence relationships propagated by other image pairs. For the propagated correspondences,
we assign a new confidence score as the cumulative product of the confidence scores in the propagation
path. These confidence levels are used to weigh the loss terms, as described in the main paper. See
Fig. 7 for the visualizations.

B Implementation Details

LLFF dataset. For the novel view synthesis task on LLFF, we based our code on NeRF [4]. For
most parameters, we use the same settings as the original NeRF paper.

• Number of input views: 3
• Image scale factor: 8
• Correspondence pixel reprojection weight (Lpixel): 0.1
• Correspondence depth weight (Ldepth): 0.1
• Training iterations: 50K2

• Learning rate: 5e−4

2Similar to RegNeRF [29]’s 44K iterations in a 3-view setting. More iterations could enhance results.
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Input A Corres(A, B) Corres(A, B) with Propagation

Input B Corres(C, B) Corres(C, B) with Propagation

Input C Corres(C, A) Corres(C, A) with Propagation

Figure 7: Correspondence propagation visualizations. Column 1 shows the sparse set of input images.
Column 2 shows the correspondences without correspondence propagation but with all other augmentations and
filtering enabled. Column 3 shows the propagated correspondences. The correspondence colors represent the
confidence scores, where the higher confidence scores are greener. The highlighted area shows that the image
pair (A, B) can receive additional correspondence relationships by propagating their correspondences from C.

DTU dataset. For the novel view synthesis and surface reconstruction task on DTU, we based our
code on NeuS [21]. Important parameters are listed below. For most parameters, we utilize the same
settings as in the original NeuS paper.

• Number of input views: 3
• Image scale factor: 4
• Correspondence pixel reprojection weight (Lpixel): 0.1
• Correspondence depth weight (Ldepth): 0.1
• Training iterations: 200K
• Learning rate: 5e−4

C Additional Results

C.1 Effects of Foreground Masks

We provide additional qualitative results to demonstrate the effects of foreground masks with corre-
spondence priors in Fig. 8.

C.2 Per-Scene Results

We provide per-scene results for the novel view synthesis task on the LLFF dataset in Table 7, as well
as novel view synthesis and surface reconstruction tasks on the DTU dataset in Table 8 and Table 9.
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NeuS w/o Mask Ours w/o Mask NeuS w/ Mask Ours w/ Mask Ground Truth

Figure 8: Effects of foreground masks. Columns 1 and 2 compare NeuS [21] and our model trained without
foreground masks. Our model outperforms NeuS in terms of novel-view rendering quality and mesh reconstruc-
tion quality. Columns 3 and 4 compare NeuS and our model trained with foreground masks. Our model trained
with foreground masks further improves the rendering quality and geometric reconstruction quality. We observe
more geometric details and fewer artifacts in our reconstruction compared with NeuS.
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Table 7: Per-scene results on the LLFF dataset. We compare novel view synthesis on the LLFF dataset for 3
input views. Our method outperforms the baseline NeRF model and the sparse-view optimized DS-NeRF and
RegNeRF models. Our model is built with the vanilla NeRF as the direct baseline. Note that for RegNeRF [29],
the numbers reported here are results from our own evaluation, which are slightly better than the numbers (PSNR:
19.08, SSIM: 0.59, and LPIPS: 0.34) reported in the original author’s paper and Table 1.

NeRF [4] / DS-NeRF [13] / RegNeRF [29] / Ours

PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓
fern 20.47 / 21.28 / 19.87 / 21.15 0.71 / 0.75 / 0.70 / 0.74 0.33 / 0.27 / 0.30 / 0.33 0.28 / 0.29 / 0.34 / 0.31
flower 17.35 / 19.35 / 19.93 / 20.44 0.56 / 0.67 / 0.68 / 0.69 0.34 / 0.26 / 0.23 / 0.25 1.78 / 0.85 / 0.91 / 0.85
fortress 19.48 / 20.87 / 23.33 / 22.53 0.68 / 0.67 / 0.74 / 0.76 0.38 / 0.37 / 0.26 / 0.35 0.95 / 0.67 / 0.46 / 0.51
horns 14.46 / 14.50 / 15.64 / 19.18 0.49 / 0.48 / 0.61 / 0.71 0.51 / 0.49 / 0.36 / 0.32 3.06 / 2.92 / 1.68 / 1.09
leaves 12.73 / 14.83 / 16.60 / 16.89 0.28 / 0.43 / 0.61 / 0.59 0.45 / 0.41 / 0.22 / 0.32 4.16 / 2.91 / 3.08 / 3.10
orchids 13.92 / 14.44 / 15.56 / 15.85 0.38 / 0.41 / 0.50 / 0.48 0.33 / 0.32 / 0.25 / 0.38 1.13 / 0.96 / 0.71 / 0.56
room 19.97 / 17.69 / 21.53 / 22.41 0.82 / 0.71 / 0.86 / 0.87 0.25 / 0.40 / 0.18 / 0.19 0.77 / 2.14 / 0.45 / 0.38
trex 15.89 / 13.79 / 20.16 / 20.18 0.59 / 0.43 / 0.77 / 0.76 0.36 / 0.50 / 0.20 / 0.22 1.19 / 2.39 / 0.51 / 0.51

mean 16.79 / 17.09 / 19.08 / 19.83 0.56 / 0.57 / 0.68 / 0.70 0.37 / 0.38 / 0.25 / 0.29 1.66 / 1.64 / 1.02 / 0.91

Table 8: Per-scene results on the DTU dataset (image-level eval). We compare novel view synthesis and
surface reconstruction on the DTU dataset for 3 input views. The models are trained without mask supervision.
The models are evaluated without foreground masks applied (image-level).

UNISURF [20] / VolSDF [52] / NeuS [21] / Ours

PSNR ↑ SSIM ↑ LPIPS ↓
scan24 8.98 / 10.53 / 10.36 / 13.99 0.43 / 0.46 / 0.46 / 0.64 0.65 / 0.58 / 0.61 / 0.36
scan37 7.26 / 10.40 / 10.31 / 13.38 0.38 / 0.57 / 0.47 / 0.59 0.67 / 0.43 / 0.58 / 0.40
scan40 12.14 / 7.48 / 10.61 / 13.51 0.58 / 0.39 / 0.48 / 0.70 0.59 / 0.67 / 0.63 / 0.38
scan55 14.68 / 17.51 / 17.75 / 18.99 0.52 / 0.68 / 0.62 / 0.73 0.71 / 0.45 / 0.52 / 0.41
scan63 4.79 / 5.80 / 10.92 / 12.66 0.42 / 0.53 / 0.65 / 0.78 0.75 / 0.61 / 0.50 / 0.31
scan65 12.78 / 19.93 / 19.15 / 20.13 0.60 / 0.82 / 0.76 / 0.79 0.59 / 0.32 / 0.37 / 0.30
scan69 17.05 / 16.62 / 17.87 / 19.71 0.57 / 0.62 / 0.62 / 0.75 0.51 / 0.46 / 0.48 / 0.31
scan83 8.37 / 13.19 / 13.73 / 13.98 0.48 / 0.68 / 0.69 / 0.74 0.68 / 0.49 / 0.47 / 0.39
scan97 13.28 / 10.93 / 14.57 / 15.80 0.59 / 0.54 / 0.67 / 0.74 0.46 / 0.51 / 0.39 / 0.31
scan105 11.78 / 13.69 / 12.91 / 14.68 0.57 / 0.63 / 0.60 / 0.72 0.56 / 0.49 / 0.51 / 0.37
scan106 18.10 / 21.36 / 20.09 / 22.03 0.71 / 0.78 / 0.76 / 0.83 0.44 / 0.35 / 0.40 / 0.30
scan110 18.07 / 16.21 / 20.51 / 22.05 0.67 / 0.60 / 0.77 / 0.81 0.48 / 0.62 / 0.39 / 0.34
scan114 20.90 / 23.00 / 23.12 / 24.25 0.79 / 0.85 / 0.83 / 0.86 0.37 / 0.26 / 0.28 / 0.24
scan118 18.84 / 20.93 / 20.55 / 25.01 0.66 / 0.78 / 0.73 / 0.85 0.57 / 0.46 / 0.44 / 0.27
scan122 20.69 / 24.02 / 23.08 / 23.26 0.70 / 0.85 / 0.80 / 0.81 0.53 / 0.32 / 0.38 / 0.33

mean 13.85 / 15.44 / 16.37 / 18.23 0.58 / 0.65 / 0.66 / 0.76 0.57 / 0.47 / 0.46 / 0.33

Table 9: Per-scene results on the DTU dataset (object-level eval). We compare novel view synthesis and
surface reconstruction on the DTU dataset for 3 input views. Note that VolSDF fails to reconstruct a mesh for
one of the scenes (scan110), thus its Chamfer-L1 is averaged over the remaining scenes. The models are trained
without mask supervision. The models are evaluated with foreground masks applied (object-level).

UNISURF [20] / VolSDF [52] / NeuS [21] / Ours

PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer-L1 ↓
scan24 9.45 / 10.95 / 10.65 / 16.82 0.37 / 0.36 / 0.40 / 0.61 0.54 / 0.49 / 0.49 / 0.29 7.81 / 7.00 / 6.06 / 2.73
scan37 7.19 / 11.17 / 10.07 / 13.44 0.22 / 0.35 / 0.30 / 0.45 0.33 / 0.21 / 0.27 / 0.22 7.54 / 6.95 / 7.24 / 4.92
scan40 15.37 / 10.56 / 12.36 / 19.08 0.52 / 0.34 / 0.41 / 0.71 0.49 / 0.48 / 0.47 / 0.28 6.37 / 7.47 / 7.68 / 3.00
scan55 12.71 / 16.35 / 15.93 / 19.55 0.30 / 0.58 / 0.43 / 0.73 0.39 / 0.21 / 0.28 / 0.17 8.38 / 2.90 / 5.85 / 2.37
scan63 5.62 / 12.83 / 12.05 / 20.37 0.38 / 0.63 / 0.53 / 0.82 0.27 / 0.17 / 0.18 / 0.08 8.40 / 4.58 / 8.84 / 2.52
scan65 11.23 / 17.76 / 18.10 / 19.00 0.57 / 0.81 / 0.79 / 0.86 0.18 / 0.08 / 0.09 / 0.07 5.08 / 2.30 / 4.65 / 2.71
scan69 16.44 / 17.01 / 18.21 / 21.94 0.49 / 0.57 / 0.60 / 0.81 0.27 / 0.23 / 0.23 / 0.13 7.42 / 3.85 / 6.30 / 2.05
scan83 7.62 / 12.72 / 13.52 / 22.63 0.37 / 0.49 / 0.52 / 0.85 0.19 / 0.15 / 0.13 / 0.05 7.92 / 9.14 / 9.62 / 3.14
scan97 12.13 / 13.32 / 15.03 / 18.36 0.44 / 0.49 / 0.59 / 0.70 0.27 / 0.21 / 0.18 / 0.13 8.73 / 3.50 / 4.82 / 2.27
scan105 12.12 / 14.60 / 15.94 / 21.48 0.46 / 0.54 / 0.62 / 0.80 0.29 / 0.25 / 0.21 / 0.15 8.89 / 6.52 / 8.19 / 3.61
scan106 15.83 / 20.44 / 18.65 / 21.37 0.61 / 0.77 / 0.73 / 0.86 0.22 / 0.13 / 0.17 / 0.10 5.89 / 1.76 / 4.99 / 2.08
scan110 14.89 / 13.69 / 17.68 / 19.79 0.51 / 0.39 / 0.70 / 0.79 0.19 / 0.26 / 0.14 / 0.11 7.68 / N/A / 5.75 / 2.03
scan114 18.90 / 21.14 / 21.69 / 23.44 0.74 / 0.81 / 0.82 / 0.87 0.21 / 0.11 / 0.13 / 0.10 3.43 / 0.81 / 2.01 / 1.37
scan118 16.09 / 21.03 / 18.29 / 27.44 0.48 / 0.74 / 0.61 / 0.91 0.24 / 0.14 / 0.16 / 0.05 6.47 / 3.93 / 6.16 / 1.83
scan122 17.91 / 21.66 / 22.72 / 24.00 0.52 / 0.79 / 0.79 / 0.85 0.15 / 0.06 / 0.07 / 0.05 8.51 / 1.45 / 4.25 / 2.85

mean 12.90 / 15.68 / 16.06 / 20.58 0.47 / 0.58 / 0.59 / 0.77 0.28 / 0.21 / 0.21 / 0.13 7.23 / 4.44 / 6.16 / 2.63
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