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Abstract

Neural finite-state transducers (NFSTs) form an expressive family of neurosymbolic
sequence transduction models. An NFST models each string pair as having been gen-
erated by a latent path in a finite-state transducer. As they are deep generative models,
both training and inference of NFSTs require inference networks that approximate
posterior distributions over such latent variables. In this paper, we focus on the result-
ing challenge of imputing the latent alignment path that explains a given pair of input
and output strings (e.g., during training). We train three autoregressive approximate
models for amortized inference of the path, which can then be used as proposal dis-
tributions for importance sampling. All three models perform lookahead. Our most
sophisticated (and novel) model leverages the FST structure to consider the graph
of future paths; unfortunately, we find that it loses out to the simpler approaches—
except on an artificial task that we concocted to confuse the simpler approaches.

1 Introduction
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Figure 1: Marked finite-state trans-
ducer, all of whose paths generate
input x and output y. We show
the transitions from the initial state,
with their input:output symbols and
marks. The same example appears
in Fig. 3 without the marks shown.

Recent advances in applied deep learning have typically applied
end-to-end training to homogeneous architectures such as re-
current neural nets (RNNs) [23], convolutional neural networks
[11], or Transformers [27]. For small-data settings, however,
end-to-end training can benefit from inductive bias through
domain-specific constraints and featurization [20]. In the case of
sequence-to-sequence problems—e.g., grapheme-to-phoneme
[9] or speech-to-text [17]—one technique is to use finite-state
transducers (FSTs) [10], whose topology can be manually de-
signed based on the task of interest. In this paper, we design and
compare inference networks for use with “neuralized” FSTs.

Neuralized FSTs (NFSTs) [14] abandon the Markov property to
become more expressive than standard arc-weighted FSTs [6].
A path’s weight is computed by some arbitrary neural model
from the ordered string of marks encountered along the path.
The marks on each arc provide features of the transduction
operation carried out by that arc (as illustrated in Fig. 1).

However, the expressiveness of NFSTs comes at the cost of training efficiency. Modeling joint or
conditional probabilities on observed string pairs (x,y) requires imputing the latent NFST path z that
aligns each observed input string x with its output string y, as we review in §2. Summing over these
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paths is expensive because NFSTs give up the Markov property that enables dynamic programming
on traditional weighted FSTs [16]. We must fall back on importance sampling. To this end, Lin et al.
[14] built an autoregressive proposal distribution for these latent paths.1

Their proposal distribution—basically the SWS method described in §3.2 below—sampled a path
through the NSFT from left to right. At each step, the choice of the next arc was influenced by the
prefix path sampled so far and by the suffixes of x and y that have yet to be aligned. In this paper, we
extend this idea (§3.3) to consider the graph of possible alignments of those suffixes (Fig. 3), as de-
termined by the NFST topology. We evaluated the quality of the proposal distributions on three tasks:

• (tr) reverse transliteration of Urdu words from the Roman alphabet to the Urdu alphabet
• (scan) compositional navigation commands paired with the corresponding action sequences
• (cipher) synthetic dataset created by enciphering the input text with certain patterns

Task examples are shown in Table 1, and more descriptions are available in Appendix A. We compared
our novel proposal distribution (§3.3) to the approach of [14] (§3.2) and to an even simpler baseline
(§3.1). Overall, it was difficult to get our novel method to work. In the tr and scan tasks, it is
apparently possible to choose the next arc well enough by the existing method of looking ahead to
the unaligned suffixes. Perhaps the existing method learns to compare their lengths or their unordered
bags of symbols. We designed the cipher task to frustrate such heuristics, and there our novel
method really was necessary, benefiting from its domain knowledge of possible alignments (the given
FST). But for the tr and scan tasks, our novel proposal distribution did considerably worse—perhaps
our architecture was unnecessarily complicated and harder to train. This raises questions about the
necessity and wisdom of explicitly considering the graph of possible alignments for real-world tasks.

2 Preliminaries: Neuralized Finite-State Transducers

2.1 Marked FSTs
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Figure 2: Directed graph con-
structed by composing an edit-
distance MFST T with input x =
abc and output y = cd. The marks
are suppressed here, but see Fig. 1.

A marked FST, or MSFT, is a directed graph in which some
states are designated as initial and/or final, and each arc is
labeled with an input substring, an output substring, and a mark
substring. An generating path in the MFST is any path z from
an initial state to a final state. It is said to generate the pair (x,y)
with mark string ω if x,y,ω respectively are the concatenations
of the input, output, and mark substrings of z’s arcs.2

The mark string on a generating path of T provides domain-
specific information about the path. It may record information
about the states along the path, the symbols being generated
(for example, their phonetic or orthographic properties), how
the path aligns input and output symbols (that is, which symbols
or properties are being edited), and the contexts of these aligned
symbols (for example, whether they fall in the onset, nucleus,
or coda of a linguistic syllable). We may compose the MFST T with strings x,y to obtain a restricted
FST x ◦ T ◦ y whose generating paths correspond exactly to the paths in T that generate (x,y),
with the same marks. A standard simple example is shown in Fig. 2: input "abc" and output "cd"
have been composed with a 1-state MFST whose arcs (which are self-loops) allow symbol insertions,
deletions, and substitutions. The generating paths are the paths from (0, 0) to (3, 2). The red path in
Fig. 2 transforms "abc" to "cd" by deleting the second symbol of "abc" and substituting for the others.

2.2 Neuralized FSTs

A neuralized finite-state transducer (NFST) is an MFST T paired with some parametric scoring
function p̃θ that maps any generating path’s mark string to a non-negative weight. Given an appropriate
T , this defines an unnormalized probability distribution p̃θ over the paths. See Appendix B for a
formal definition.

1Better ensembles of weighted proposals can be jointly generated by using multinomial resampling (in particle
filtering or particle smoothing), as Lin and Eisner [13] did in a simpler setting. We do not pursue this extension here.

2An ordinary FST omits the mark string, and the familiar FSA also omits the output string.
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Figure 3: Choosing a generating path a in Tx,y with mark string ω. (Note that a ranges over paths
in Tx,y, whereas z ranges over paths in T . Marks are not shown.) The top graph shows that after
choosing the first 3 arcs aprefix = a1a2a3, reaching state (3, 2), the sampler must choose a suffix
path through the subgraph asuffix of Tx,y that is reachable from (3, 2). Its choices for a4 are the three
thick out-arcs from (3, 2); choosing the arc to (4, 3) yields the reduced graph of possible paths a at
the bottom. To make its stochastic choice, the sampler (SWA, SWS, or SWP) conditions on certain
properties of the top graph, shown in the dashed box at the left. Here xprefix,yprefix,ωprefix refer to the
labels on aprefix, while xsuffix,ysuffix are the remaining portions of x,y. SWP’s choice is determined
by a global backward pass on Tx,y in which the probabilities of the out-arcs depend only on asuffix.

In practice, we will estimate p̃θ by estimating its parameters θ. The unnormalized probability of a
string pair is obtained by summing over the paths z that might have generated that string:

p̃θ(x,y)
def
=

∑
z∈x◦T ◦y p̃θ(z) (1)

Given the pair (x,y), the posterior distribution over the latent generating path z ∈ x ◦ T ◦ y is
pθ(z | x,y)

def
= p̃θ(z)/p̃θ(x,y). We emphasize that p̃θ(z) depends on z only through its mark string.

Computing the quantity log p̃θ(x,y) is crucial for training θ. However, equation (1)’s marginalization
over mark strings z is in general intractable. We resort to using a Monte Carlo variational lower
bound, which imputes z ∼ pθ(· | x,y) by importance sampling using a neural proposal distribution
qϕ(z | x,y) ≈ pθ(z | x,y). In Appendix C we describe a procedure for jointly training pθ and qϕ,
making use of the importance weighting estimator [3] and making certain assumptions about T and pθ.

Our focus in this paper is to consider different parametric forms for the distribution qϕ over paths
that generate (x,y). To simplify our study, we assume that θ is given, and only train ϕ to minimize
the divergence KL(pθ ∥ qϕ) = E

z∼p(·|x,y)
[− log qϕ(z | x,y)] by following its gradient (or rather, the

biased estimate of its gradient that we obtain by normalized importance sampling, sample size 16).

3 Three Proposal Distributions

We explore three distribution families qϕ(z | x,y), sketched in Fig. 3. Like pθ itself, each qϕ family
is insensitive to the specific topology and labeling of T . Any MFST that was equivalent to T in the
sense of generating the same set of (x,y,ω) triples—that is, the same regular 3-way relation—would
give the same parametric proposal distribution qϕ. Sampling from qϕ in each case is done by sampling
a mark string ω and using it to identify a path z in T . To make this identification possible, we
henceforth assume that distinct paths in T with the same x,y always have distinct mark strings. (A
stronger assumption is already needed for the particular model p̃θ that we spell out in Appendix C.)

Let Tx,y be a version of x ◦ T ◦ y that has been determinized with respect to the mark tape and then
minimized.3 Then Tx,y is a canonical MFST that expresses the same relation as x ◦ T ◦ y, while

3Brief technical details [see e.g. 21, 15, 1]: Treat T as a finite-state automaton over the mark alphabet,
weighted by (input, output) string pairs. x ◦ T ◦ y can be determinized (made subsequential) because it is
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guaranteeing that (a) each arc’s mark substring has length 1, (b) the out-arcs from a state are labeled
with different marks, and (c) every choice of out-arc can lead to a final state.

It follows that we can sample a mark string ω by autoregressively sampling a generating path a in Tx,y ,
at each step requiring only a distribution over the out-arcs from the current state, or equivalently, over
their distinct marks. We abuse notation and write qϕ for qϕ(a | Tx,y), qϕ(ω | Tx,y), and qϕ(z | x,y).
Since we use the standard minimization construction, Tx,y is reduced, meaning that the input and
output symbols on a path appear “as soon as possible” [21]. This standardizes how the symbols are
distributed along the path, ensuring that xsuffix,ysuffix are well-defined in the SWS sampler (§3.2).

3.1 Sampler with Attention (SWA)

The SWA sampler proposes the next mark ωt in ω by considering (1) the marks ω<t = ω1 · · ·ωt−1

already chosen and (2) an assessment of which marks might be chosen in future. For (1), we use
a recurrent neural network to encode ω<t into a vector ht−1. For (2), an attention mechanism is
employed to mine information from the raw strings (x,y). More formally, SWA samples from

qϕ(ωt | ω<t, Tx,y) ∝ exp(W [1;ht−1;Att(ht−1, enc(x,y))]) (2)

meaning a softmax distribution over just the marks ωt that Tx,y allows to follow ω<t. Equation (2)
applies the learned matrix W to the concatenation of the state ht−1, which encodes ωprefix, and
Att(· · · ) which uses ht−1 to attend to (x,y) (not necessarily just xsuffix,ysuffix in Fig. 3 We compute
ht−1 ∈ Rd with a left-to-right GRU [4], as in Lin and Eisner [13]. We compute enc(x,y) ∈ Rn×d

by applying a separate bidirectional GRU4 to the concatenation x#yR, whose length we denote by
n.5 We then use ht−1 as a softmax-attention query over the n encoded tokens of x#yR:

Att(ht−1, enc(x,y)) =
n∑

i=1

ai enci(x,y), where ai =
exp(ht−1 · enci(x,y))∑n
j=1 exp(ht−1 · encj(x,y))

(3)

3.2 Sampler with State Tracking (SWS)

The SWS sampler is simpler than SWA (no attention), but it takes care to consider only the suffixes of x
and y that remain to be aligned. The prefix path of Tx,y marked with ω<t has generated aligned input
and output strings x<t,y<t (which may not have length t). Let x≥t and y≥t denote the unaligned
suffixes of x,y, and encode them into vectors by encx and ency, which are separate right-to-left GRUs.
SWS samples from

qϕ(ωt | ω<t, Tx,y) ∝ exp(W [1;ht−1; encx(x≥t); ency(y≥t)]) (4)

As before, this is a softmax over choices of ωt that are legal under Tx,y; other marks have probability 0.

The SWS method is directly inspired by [14]. It is a relatively weak model, as the three information
sources ω<t, x≥t, and y≥t contribute independent summands to the logits of the possible marks.
There is no additional feed-forward layer that allows these sources to interact. In contrast, SWA mixed
all three sources by having an encoding of ω<t attend to a joint encoding of x#yR.

3.3 Sampler with Path Structures (SWP)

The main contribution of this work is the SWP sampler. It assigns embeddings and weights to the arcs
of Tx,y and uses this to define a distribution over its paths a, yielding a distribution over mark strings
ω. So it samples a ∈ Tx,y and then returns the (x,y)-generating path z ∈ T with the same marks.

SWP’s proposal distribution assigns weights to the arcs of Tx,y and treats it as a weighted FST
(WFST). Recall that in the NFST T , paths are scored globally using p̃θ(z). A WFST is simpler: each

unambiguous (due to our assumption above) and has bounded variation (since all mark strings map to the fixed
strings x and y) or equivalently has the twins property (since for the same reason, all cycles must produce empty
input and output). We remark that only the SWS sampler really requires the (input, output) weights, as they guide
its sampling of a mark string. The SWA and SWP samplers could simply drop them from x ◦ T ◦ y and apply
ordinary unweighted determinization and minimization [see 8].

4Other representation methods like Transformer encoder could also be used.
5Inspired by [26], we use the reversed output string yR so that the end of x and the end of y are adjacent.

This setup makes it potentially easier for enc(x,y) to consider alignments between xsuffix and ysuffix.
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arc s→ s′ has a fixed weight ws→s′ , and the weight of a path a is the product of its arc weights.6
This makes exact path sampling tractable: if the path a<t = a1 · · · at−1 = ends at state s, then the
autoregressive probability of choosing at to be the arc s→ s′ depends only on s (a Markov property):

qϕ(s→ s′ | a<t, Tx,y) = qϕ(s→ s′ | s) = ws→s′β(s
′) / β(s) (5)

where β(s) denotes the “backward weight”—the total weight of all paths from s to a final state.

The β(s) values are the solution to the system of linear equations β(s) = (
∑

s′ ws→s′β(s
′)) +

I(s is final). If Tx,y is acyclic, this is an acyclic recurrence that can be solved in linear time by the
backward algorithm [2, 19].

But where do the WFST arc weights ws→s′ come from? We will assume Tx,y is acyclic and use a
similar recurrence to define arc embeddings es→s′ and state embeddings es that yield the arc weights
ws→s′ . Algorithm 1 computes these along with β(s) and qϕ(s→ s′ | s, Tx,y), all in a single pass.

The state embedding es is a LatticeRNN-like embedding [25] that attempts to summarize the mark
strings of all suffix paths from s. A graph of such paths is shown as asuffix in Fig. 3. Suffix paths with
higher WFST weight will have more influence on the summary, thanks to the weighted average at line 8.
Similarly, the arc embedding es→s′ attempts to summarize all suffix paths of the form s→ s′ → · · · .
Put another way, it encodes the mark on s→ s′ in a way that considers its possible right contexts.

.
Algorithm 1 Constructing WFST arc weights w, backward weights β, and transition probabilities q

Input: An acyclic MFST Tx,y ,
1: for s← states(Tx,y) in reverse topological order :
2: β(s) = I(s is final)
3: for each out-arc s→ s′ (with mark ω) : ▷ note that s′ has already been visited
4: es→s′ = σ(U [1; eω; es′ ]) ▷ U and mark embeddings eω are learned (part of ϕ)
5: ws→s′ = exp(w · es→s′) ▷ arc weight; w is learned
6: β(s) += ws→s′β(s

′) ▷ backward algorithm
7: qϕ(s→ s′ | s) = ws→s′β(s

′)/β(s) ▷ transition probability (equation (5))
8: es =

∑
s′ qϕ(s→ s′ | s) es→s′ ▷ state embedding is weighted average of arc embeddings

9: return all transition probabilities qϕ(s→ s′ | s)

After running Algorithm 1, we can use qϕ to sample a path a of Tx,y from left to right, yielding its
mark string ω. Choosing the next arc at is tantamount to choosing its mark as the next mark ωt.

This formulation of SWP does have some limitations relative to SWA and SWS. The right-to-left
embedding update at line 4 is RNN-style; one would have to add a GRU-style forget gate to make it
comparable. Another limitation of SWP is that its choice of ωt is not influenced by the embedding
ht−1 of ωt−1. An obvious fix would be to replace w with ht−1 at line 5. However, then sampling at
each step t would require re-running Algorithm 1 with the new ht−1 to re-embed and re-weight the
sub-MFST that is reachable from the current state s (shown in Fig. 3). A cheaper variant would run
Algorithm 1 only at the start and never change the embeddings or weights, but have step t choose arc
s→ s′ with probability proportional to exp(ht−1 · es→s′)β(s

′) or perhaps just exp(ht−1 · es→s′).

4 Training and Evaluation of Proposal Samplers

Recall that our qϕ chooses z in T (by sampling ω from Tx,y). To evaluate whether qϕ(z | x,y) ≈
pθ(z | x,y) as desired, we follow Lin and Eisner [13] and consider the exclusive KL divergence

KL(qϕ ∥ p̃θ) = Ez∼qϕ(·|x,y)[log qϕ(z | x,y)− log pθ(z | x,y)] (6)

However, since the normalization term (1) is hard to compute, we drop it and compute the resulting
Partial KL, averaging it over a held-out test dataset D (and estimating the expectation by sampling):

1

|D|
∑

(xi,yi)∈D Ez∼qϕ(z|xi,yi) [log qϕ(z | xi,yi)− log p̃θ(z)] (7)

To make the comparison fair, we need to enforce that the dropped normalization term (1) is the
same for different samplers. Thus, we evaluate our different samplers with the same frozen model

6In general there could be multiple s → s′ arcs, but for simplicity, we gloss over this in the notation.
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p̃θ, only training the sampler parameters ϕ. We train ϕ to minimize the inclusive KL divergence, as
mentioned at the end of §2.2, to avoid the instability of minimizing the exclusive divergence (7) by the
high-variance REINFORCE estimator. The reason that we still evaluate with exclusive KL is that it
serves our actual goals for qϕ: if we were training θ to minimize the variational log-likelihood (13) in
Appendix C, then a qϕ with smaller exclusive KL would obtain a tighter variational bound.

We obtained our frozen p̃θ by alternately optimizing θ (via (13)) and the ϕ of an SWA sampler qϕ
(again trained via inclusive KL, for stability, even though exclusive KL would give a tighter bound
(13)), simplifying the latter to replace GRUs with RNNs. We then discarded this sampler. (One might
expect this choice of p̃θ to benefit the SWA sampler, but as we will see below, it never performed best.)

5 Experiments

We conducted our experiments on three datasets (described in Appendix A): tr, scan, and cipher.
Figure 4a has the main results. Figure 4b shows the importance sampling estimate of the expected mark
string length E(x,y)∼D

[
Ez∼pθ(·|x,y) [ |zΩ| ]

]
and Table 7 shows the (de-duplicated) effective sample

size. For tr and scan tasks, the mark string length is fixed regardless of alignment, as the FST design
only allows deletion/insertion. For cipher, however, SWP is able to discover higher-probability
alignments with more substitutions and shorter mark strings, both by identifying the correct cipher and
by aligning the strings more accurately under that cipher. This improves both Partial KL and estimated
length. Qualitative examples of proposals from different samplers are presented in Appendix E.

Sampler TR Scan Cipher Avg

SWA 23.3 38.1 101.3 54.3
SWS 21.8 25.4 87.1 44.7
SWP 38.1 102.9 73.9 71.7

(a) Figure 4a. Partial KL divergence comparison (lower
values are better) for different proposal samplers.

Sampler TR Scan Cipher

SWA 24.3 65.6 68.4
SWS 24.3 65.6 67.6
SWP 24.3 65.6 59.9

(b) Figure 4b. Expected mark string length under pθ,
estimated by importance sampling with proposals ∼ qϕ.

For tr, the true alignment between Urdu and English scripts is monotonic, and the training/test sets
exhibit similar length distributions. Here the SWA sampler performed comparably to the SWS sampler,
suggesting that a basic attention mechanism suffices on this task. SWP showed no advantage in this
case (indeed, it did worse), probably because simple symbol-counting and local-lookahead heuristics
are effective at guessing the next step, and these can be captured by both SWA and SWS architectures.

In the scan dataset, where the true alignment is non-monotonic and test examples are longer than
training examples, the SWS sampler outperforms the SWA sampler. Presumably SWS is able to find
better alignments—that is, generating paths with higher scores p̃(z)—by looking ahead into the near
future of the unaligned suffixes x≥t,y≥t to see how to complete the partial alignment summarized
by ht−1. We had expected that SWP might do even better by globally aligning x,y using a WFST,
but evidently it completely failed to learn the alignment (see Table 5), perhaps due to uninformed
initialization7 or the WFST’s Markov property that ignores z<t. Indeed, SWP did even worse than a
baseline “no-lookahead” model (see Fig. 7) we trained to predict the next mark ωt from only ht−1.

Moving to the cipher task, however, the SWP sampler excelled. The FST’s topology is more informed
in this case, and plays a crucial role in considering possible alignments of x≥t,y≥t (especially at
t = 1, to identify which cipher should be used). The other samplers struggle here without this, as
simple heuristics no longer work. A hyperparameter sweep for this dataset (see Fig. 6) reinforces
the importance of alignment information: even the smallest model for the SWP sampler (hidden
dimension=64) outperforms SWS and SWA samplers based on much larger models.

6 Conclusion

In this paper, we explored proposal distributions over paths in a graph. We found that while the
proposal distribution could sometimes benefit from examining the structure of the graph, our proposal
distribution that did so proved hard to train. As a result, except on a particularly challenging

7It might have helped to do supervised pre-training of qϕ on (x,y,ω) triples drawn unconstrained from p̃θ .
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artificial task, our structure-aware sampler performed worse than its less complex, non-structure-aware
alternatives. One might try improved training methods to minimize either inclusive KL, such as
DPGoff [18], or exclusive KL, such as PPO with entropy bonus [24]. It is also possible that variant
architectures would succeed better, as discussed in §3.3.
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A Datasets

In this section, we describe the datasets in more detail. Examples of the 3 tasks are shown in Table 1
and statistics in Table 2.

Dataset Input Output
tr a s a m a r (some urdu text)
scan look right twice after jump left I_TURN_LEFT I_JUMP I_TURN_RIGHT

I_LOOK I_TURN_RIGHT I_LOOK
cipher g c c i n f j n c g i i r d i t y s

Table 1: Examples of datasets used.

Task Split Input Length Output Length Avg #States Avg #Arcs

tr, vocab size=177 Train 7.2 6.9 232 303
Valid 7.3 7.0 237 310
Test 3.0 6.8 220 287

scan, vocab size=35 Train 8.1 12.0 285 366
Valid 8.0 11.5 271 349
Test 9.0 25.3 658 854

cipher, vocab size=67 Train 6.2 6.4 1028 1191
Valid 6.1 6.3 992 1149
Test 12.0 12.2 3989 4645

Table 2: Data statistics for different tasks and splits. The vocab size refers to the size of the mark
alphabet. The state and arc counts refer to Tx,y before minimization, averaged over (x,y) pairs in the
dataset. Note that a single edit operation such as “delete a” may be carried out in T by a single arc
with input a, output ε, and mark string “<delete><a>”, but each instance of this operation in Tx,y
will require two arcs with an intermediate state, since each arc of Tx,y has exactly one mark. Before
minimization, such intermediate states have only one out-arc, which reduces the arc-to-state ratio.

Transliteration (tr) For the reverse transliteration task, we use the English-Urdu section from the
Dakshina [22] dataset. The topology is shown in Fig. 5a, which is a deletion/insertion MFST. Such an
MFST allows for any arbitrary transliteration from the Roman alphabet Σ to the Urdu alphabet ∆.
Examples are shown in Tables 1 and 4.

We hope that after training, the model prefers—and the sampler proposes—paths where corresponding
English and Urdu tokens are deleted and inserted close to each other. Note that our MFST T does
not include substitution arcs like a : bc. It would accomplish this substitution by a sequence such
as a : ε, ε : b, ε : c, and p̃θ can be trained to favor such sequences. This saves us from the need to
enumerate all reasonable substitutions within T . We do not even include copy arcs like a : a, since the
Urdu and English alphabets are different.
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c i pher  1

Ci pher  N

... (other  ciphers)

a:b

...

(b) Cipher Machine

...

?:?

(a) Insertion/Deletion Machine

?:? 

?:?

?:?

?:?

Figure 5: MFST topologies T used for different tasks. Here Σ and ∆ are the alphabets of possible
input and output symbols. An arc with input, output, and mark substrings x,y,ω would ideally be
displayed with the label x : y/ω, but in this figure we suppress the marks ω.
(a) tr and scan only use this deletion/insertion topology, which freely generates input symbols a ∈ Σ
(via deletion arcs a : ε) interleaved arbitrarily with output symbols b ∈ ∆ (via insertion arcs ε : b).
Thus, it generates all (x,y) pairs with all possible alignments.
(b) cipher begins with the random-cipher MFST shown in the drawing. That MFST deterministically
replaces each input symbol a ∈ Σ with a specific other symbol b ∈ ∆ (via a substitution arc a : b),
according to a cipher selected nondeterministically from N = 5 possible ciphers. The cipher task
composes this with a deletion/insertion/copy MFST, which has a single state (just as in the tr task)
and self-loop arcs of the form b : ε (deletion), ε : b (insertion), and b : b (copy) for all b ∈ ∆. Thus,
some of the enciphered input symbols are deleted from the output, while some are copied and some
other output symbols are inserted. We implement the composition of two MFSTs so that when
a : b with marks ω1 from the cipher MFST composes with b : ε or b : b with marks ω2 from the
deletion/insertion/copy MFST, the resulting arc (whose input:output is a : ε or a : b respectively) will
have marks ω1ω2, in that order.

Navigation Commands (scan) We apply the same deletion/insertion topology to the scan dataset.
The dataset contains command instructions in an English-like artificial language as input and action
sequences as output. Alignments are nonmonotonic. Examples are shown in Tables 1 and 5.

In this dataset, test samples are longer on average than training samples, requiring the model p̃θ to
actually learn the correspondence between commands and actions to generalize well to test data.
Whether or not p̃θ succeeds in generalization, our goal in this paper is to make qϕ approximate the
conditionalization of p̃θ on test data.

Cipher (cipher) We synthetically create a cipher dataset by composing a cipher MFST with an
deletion/insertion/copy MFST (see Fig. 5). Each of the 5 ciphers is chosen randomly (through random
permutation using the Fisher-Yates shuffle algorithm [7]). As shown in Fig. 5b, the initial state has ε
arcs to 5 cipher states; these arcs are marked with distinct marks. The ith cipher state has 26 arcs
corresponding to the enciphering process x → σi(x) for an input alphabet of size 26, and the ith

cipher function σi(·) is chosen randomly. As explained in the caption to Fig. 5, we then compose the
cipher MFST with a deletion/insertion/copy MSFT that introduces noise into the ciphertext. The
point of this construction is that a cipher-dependent alignment is now required. Similar to scan, we
intentionally make the training samples shorter on average compared to the test samples, so that p̃θ
must learn to generalize.

Example mark strings are shown in Table 6. Note that the sampler qϕ must begin by predicting a mark
that indicates which of the 5 ciphers will be used. All of our sampler designs use lookahead to make
this prediction, but SWP has an advantage, because it can examine the entire graph asuffix of possible
x-to-y alignments under all 5 ciphers. This graph is constructed with explicit knowledge of the FST
topology, which the other samplers lack.
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B Neuralized Finite-State Transducers

A neuralized finite state transducer (NFST) [14] is defined as a pair (T , p̃θ) where T is a marked
finite-state transducer (MFST) and p̃θ is a mark string scoring function parmeterized by θ.

An MFST can be regarded as having three left-to-right tapes, one for input symbols, one for output
symbols, and one for the mark symbols. More formally,

T = (Σ,∆,Ω, Q,E, qinit, F )

where Σ,∆,Ω are alphabets of input symbols, output symbols, and mark symbols. Q is a finite set of
states and E ⊆ Q× (Σ∗ ×∆∗ ×Ω∗)×Q is a finite multiset of arcs. qinit is the initial state and F is a
set of final states. Note that the marks on an arc may mention the input and output on that arc, but they
can also mention other features that are consumed by p̃θ; for example, the symbol "<C>" can be used
to mark every arc that outputs a consonant. A generating path z in T (also known as an accepting
path) is a sequence of arcs from E that forms a path from qinit to any state in F . We write zΣ, z∆, or
zΩ respectively for the concatenation of the input, output, or mark strings along the arcs of z.

The mark scoring function p̃θ : Ω∗ → R≥0 maps mark strings to non-negative scores. Define

Zθ
def
=

∑
z∈T

p̃θ(zΩ) (8)

p̃θ(x,y)
def
=

∑
z∈T : zΣ=x,z∆=y

p̃θ(zΩ) (9)

where z ∈ T ranges over generating paths of T . Provided that Zθ is finite and positive, the NFST
defines a parametric probability distribution over the generating paths of T , namely pθ(z)

def
= p̃θ(z)/Zθ.

It also defines a parametric probability distribution over Σ∗ ×∆∗, namely pθ(x,y)
def
= p̃θ(x,y)/Zθ.

C Parametrizing and Training NFST

Given an NFST (T , p̃θ) and a datasetD of (x,y) pairs, a natural estimator to use for θ is the maximum
likelihood estimator:

θ̂D = argmax
θ

 ∑
(x,y)∈D

[log p̃θ(x,y)− logZθ]

 (10)

The difficulty is in computing Zθ and ensuring that it is finite. We can avoid these difficulties by
dropping the logZθ term. That would be justified if Zθ = 1; a first attempt to guarantee that is to
adopt a locally normalized (autoregressive) model of mark strings:

p̃θ(ω) =

T+1∏
t=1

pθ(ωt | ω<t) (11)

where T = |ω|, ωT+1 by convention is a distinguished end-of-sequence symbol EOS /∈ Ω, and any
parametric conditional probability distribution over Ω∪ {EOS} may be used for the factors. This often
ensures that

∑
ω∈Ω∗ p̃θ(ω) = 1. However, it does not ensure Zθ = 1 as desired.

To avoid Zθ > 1, we will require that different paths of T have different mark strings, so that no
string in Ω∗ is double-counted. However, typically Zθ < 1 (the distribution is deficient), since some
probability mass is allocated to “ungrammatical” mark strings that do not appear on any path of T .8

By regarding the set of ungrammatical mark strings as a special event ⊥, we may regard p̃θ as a
probability distribution over Ω∗ ∪ {⊥}. As that distribution is already normalized (Zθ + p̃θ(⊥) = 1),
its maximum likelihood estimator is

θ̂D = argmax
θ

∑
(x,y)∈D

log p̃θ(x,y) (12)

8For some families of conditional distributions in equation (11), it is even possible for some probability
mass to be allocated to infinite mark sequences [5], which we also regard as ungrammatical. (Then even∑

ω∈Ω∗ p̃θ(ω) < 1.)
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In practice, pθ̂D will tend to place a positive but small probability on ⊥, since ⊥ is never observed in
D. The maximum likelihood objective would prefer to raise the probability of grammatical mark
strings and particularly the ones that can explain D. In other words, training θ in this way should
approximately learn the grammaticality constraint p̃θ(⊥) ≈ 0 rather than having it be a structural zero
of the model. In effect, it forces θ to learn something about the structure of T (which could, in fact,
serve as a useful form of multi-task regularization that improves generalization).

The remaining difficulty is that the log-likelihood (12) requires an intractable sum over all paths that
generate (x,y). So instead of minimizing the negative log-likelihood, we minimize a variational
upper bound (from Jensen’s inequality) that can be estimated by sampling:

L(θ) def
= −E(x,y)∼D [log p̃θ(x,y)]

= −E(x,y)∼D

log ∑
z∈T : zΣ=x,z∆=y

p̃θ(z)


= −E(x,y)∼D

[
logEz∼qϕ

[
p̃θ(z)

qϕ(z | x,y)

]]
≤ −E(x,y)∼D

[
Ez∼qϕ

[
log

p̃θ(z)

qϕ(z | x,y)

]]
def
= L′(θ)

(13)

where qϕ(· | x,y) may be any conditional distribution over the generating paths of (x,y) in T . The
tightest bound for a given parametric family qϕ is obtained by minimizing L′(θ) as a function of ϕ,
which minimizes the exclusive KL divergence (6).

For any qϕ, we may use the importance weighting estimator IWAE [3] to obtain an even tighter upper
bound based on averaging over K > 1 paths under the log:

L′
K(θ)

def
= −E(x,y)∼D

[
E

z(1)···z(K)∼qϕ

[
log

1

K

K∑
k=1

p̃θ(z)

qϕ(z | x,y)

]]
(14)

which can again be estimated by sampling.

What do we use for the autoregressive model in equation (11)? In our experiments, we follow [13] and
define

log pθ(ωt | ω<t) ∝ exp(W [1;ht−1]) (15)

for all ωt ∈ Ω ∪ {EOS}, where ht−1 is the state of an LSTM after reading ω<t.

D Hyperparameters

In this section, we describe the hyperparameters used for the frozen scorer and the various samplers in
the experimental setup of §4.

For the frozen scorer p̃θ, we parameterize it with a two-layer LSTM with hidden dimension 256.

For samplers qϕ, the recurrent networks are one-layer. Though the model architecture varies (as
described in §3), they all use the same hidden dimension size d for each of their recurrent networks
(except that the bidirectional encoder for SWA uses hidden dimension d/2 in each direction, so that
the dot product in equation (3) is conformable). Learned embeddings for the input, output, and mark
symbols also all have dimension d.

The result presented in Fig. 4a is based on d = 256. Note that while the models are matched in
dimensionality, they are unfortunately not matched in the number of parameters. We also vary the
dimension size in Fig. 6 to see the effect of model capacity on the samplers. The other hyperparameters
used consistently for all model training are shown in Table 3. As shown in the table, we use a small
batch size (16); this is because each example in the batch samples k = 16 proposals, leading to
16× 16 = 256 mark strings to generate or score in parallel.

We also employ common techniques like length penalty for very short sequences, as well as label
smoothing, gradient clipping, etc.
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Hyperparameter Value
batch_size 16
k (# proposals) 16
K (for IWAE) 32
dropout 0.3
grad_clip 5.0
learning_rate 1× 10−5

tilde_p_lr 1× 10−3

label_smoothing 0.1
length_threshold 100
length_penalty 1.0
Table 3: Hyperparameter List
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Figure 6: KL divergence for different samplers on cipher dataset, using base models with hidden
dimensions varying from 64 to 1024.

E Qualitative Analysis

In Tables 4 to 6, we compare the mark sequences proposal by different samplers for each dataset
to give a more thorough understanding of the proposal samplers’ behavior. For tr, the input is
"chalnay" and the output in Urdu is "<ur> 35 8 10 22" where <ur> is a fixed language code and the
numbers denote Urdu symbols. As tr alignment is monotonic, we see that all three samplers give
good alignments, where SWS and SWA propose the exact same path and SWP is slightly different in
that it made a mistake by aligning "c" to the language label "<ur>". For SWS and SWA, they
align "c" to "35", "hal" to "8", "n" to "10", and "ay" to "22". For SWP, it aligns "c" to "<ur>", "hal" to
"35 8", "n" to "10", and "ay" to "22". Therefore SWP is slightly wrong compared to the other two,
which is also reflected in the average KL divergence in the main results (Fig. 4a).

scan is a hard task for all three samplers as the alignment is not necessarily monotonic (although
the example we show here is actually monotonic). We find that SWS and SWA samplers produce
somewhat interpretable results (which presumably correspond to high-scoring paths under pθ), as they
mix the generation of the input mark strings with the output strings. For example, SWS proposes
"look around" followed by a sequence of actions, then proposes "jump around" that is followed by
"I_Jump", etc. However, for SWP sampler, its path suggests that it did not know how to align these
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input and output marks because it simply dumps all the output marks first and then deletes all the
input marks. As discussed in §5, we believe this is essentially a failure of training a complex model:
SWP does not learn how to usefully embed the graph of monotonic suffix alignments corresponding to
paths in the deletion/insertion FST.

Lastly, for cipher, the SWS and SWP samplers have proposed to use cipher2, which in this case
allows high-probability alignments with many copy marks that explain output symbols as enciphered
versions of input symbols. Given the choice of cipher2, SWP continues by finding a better alignment
than SWS does. (SWS erred by enciphering the second "d" and the final "o" too early ("d→f", "o→i"),
forcing it to delete those output characters and insert them again later.) The SWA proposal has
unwisely proposed cipher3, resulting in a much longer and lower-probability alignment that does not
explain any of the output symbols as enciphered input symbols, but must choose to insert all of them.

Input chalnay

Output <ur> 35 8 10 22

SWA insert <ur>, delete c, insert 35, delete h, delete a, delete l, insert 8, delete n, insert 10, delete a, delete y, insert 22

SWS same as SWA

SWP delete c, insert <ur>, delete h, delete a, delete l, insert 35, insert 8, delete n, insert 10, delete a, delete y, insert 22

Table 4: Proposed mark strings given an (x,y) pair from the tr dataset.
Input look around left twice and jump around right

Output
I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK
I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK
I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP

SWA

look I_TURN_LEFT around I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT
I_LOOK left I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK twice I_TURN_LEFT I_LOOK I_TURN_LEFT
I_LOOK I_TURN_RIGHT I_JUMP and jump around I_TURN_RIGHT I_JUMP right I_TURN_RIGHT I_JUMP
I_TURN_RIGHT I_JUMP

SWS

look around I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT left I_LOOK I_TURN_LEFT
twice I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT
I_LOOK and I_TURN_RIGHT jump around I_JUMP I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP right
I_TURN_RIGHT I_JUMP

SWP

I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK
I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK I_TURN_LEFT I_LOOK look I_TURN_LEFT I_LOOK
I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP I_TURN_RIGHT I_JUMP
around left twice and jump around

Table 5: Proposed mark strings given an (x,y) pair from the scan dataset.
Input d d o r g r r i q a v o

Output f j f i a e a a j k s z w i e

SWA
cipher3: d→m→ε, insert f, insert j, d→m→ε, insert f, insert i, o→x→ε, insert a, insert e, r→f→ε, insert a, insert a,
g→z→ε, insert j, insert k, r→f→ε, insert s, insert z, r→f→ε, insert w, insert i, i→j→ε, insert e, q→a→ε, a→e→ε,
v→h→ε, o→x→ε

SWS cipher2, d→f, d→f→ε, insert j, insert f, o→i, r→a, g→e, r→a, r→a, i→j, q→k, a→s, v→z, o→i→ε, insert w,
insert i, insert e

SWP cipher2: d→f, insert j, d→f, o→i, r→a, g→e, r→a, r→a, i→j, q→k, a→s, v→z, insert w, o→i, insert e

Table 6: Proposed mark strings given an (x,y) pair from the cipher dataset. The notation "a→b" is
actually an abbreviation for a sequence of 5 marks: replace, a, b, copy, b. The notation "a→b→ε" is
also an abbreviation for a sequence of 5 marks: replace, a, b, delete, b.

F Baseline Sampler with No Lookahead

We trained a baseline sampler that does not utilize information from the future (suffix of input x and
output y). The parameterization is shown below:

qϕ(ωt | ω<t, Tx,y) = softmax(W [1;ht−1]) (16)
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Task TR Scan Cipher

SWA 1.0 7.9 1.1
SWS 1.1 4.3 1.3
SWP 1.0 1.1 1.0

Table 7: Deduplicated effective sample size (ESS) from different samplers across tasks. Instead of
using the regular ESS, we first aggregate the probability mass for samples that are identical as we
realize that many duplicated samples are proposed. Then we compute the normalized probability ŵ

over the deduplicated probabilities and compute the ESS = 1
ŵ2 =

(
∑n

i=1 wi)
2∑n

i=1 w2
i

. We see that ESS is
very small for tr and cipher task, showing that the proposal distribution is sharp after training.

We would expect the samplers with lookahead to give better performance compared to this no-
lookahead baseline, but our result in Fig. 7 shows that SWP performs worse compared to it on tr
and scan tasks. This suggests that SWP might suffer from training issues or that even a well-trained
model with the SWP architecture tends to generalize poorly.

Sampler TR Scan Cipher Avg

SWA 23.3 38.1 101.3 54.3
SWS 21.8 25.4 87.1 44.7
SWP 38.1 102.9 73.9 71.7

No Lookahead 31.9 39.9 95.5 55.8

Figure 7: Partial KL divergence comparison (lower values are better) for different proposal samplers.
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G Limitations

Inference Speed In this work, we mainly focus on the quality aspect of inference networks, rather
than their speed. However, many applications of inference networks depend on their speed [12];
otherwise, comparable quality might be achieved using a more naive sampling strategy. For our
samplers, SWA is the fastest because it directly computes attention over the representation of the raw
strings. SWS is only slightly slower. Our novel method, SWP, is the slowest (about 10x time of SWA)
as it propagates information over the large graph of possible alignments defined by the FST topology.

Cyclic MFSTs Our SWP sampler assumes that the MFST Tx,y is acyclic. Since Tx,y is deterministic
and hence ε-free with respect to the mark tape, this is equivalent to saying that for each x,y, the
length of a mark string is bounded. This assumption is ordinarily satisfied, but might be violated if, for
example, T were obtained by composing an MFST that can insert arbitrarily many symbols with
another MFST that can delete them again. This would lead to infinitely many generating paths that
transform x into y, which would require a cyclic Tx,y encode.

Larger Datasets and Models Due to the computation cost of the parameter estimation that requires
sampling and state tracking, we are using three datasets with small vocabulary to showcase the
difference between samplers. We will leave scaling up the dataset/model for future investigation.

Alternative Architectures We used recurrent neural networks as our main building block. Switching
to Transformers, for example, would require a redesign of the SWP sampler to attend over arcs in the
suffix graph. We also limited our experiments to single-layer recurrent networks.

Particle Smoothing Due to computation cost, we also did not perform full particle smoothing
(used in [13]) because it requires sampling of multiple paths z in parallel and weighting the prefixes
z<t at each time step t by an estimate of their conditional probability. The benefit of calculating
these weights at each stage lies in their ability to measure effective sample size (ESS) and facilitate
multinomial resampling when the ESS drops below a certain threshold. As shown in Table 7, ESS
indeed falls low as many duplicated paths are proposed.
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