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Abstract
Dataset distillation aims to synthesize a small
number of images per class (IPC) from a large
dataset to approximate full dataset training with
minimal performance loss. While effective in
very small IPC ranges, many distillation meth-
ods become less effective, even underperform-
ing random sample selection, as IPC increases.
Our examination of state-of-the-art trajectory-
matching based distillation methods across vari-
ous IPC scales reveals that these methods strug-
gle to incorporate the complex, rare features of
harder samples into the synthetic dataset even
with the increased IPC, resulting in a persistent
coverage gap between easy and hard test sam-
ples. Motivated by such observations, we in-
troduce SelMatch, a novel distillation method
that effectively scales with IPC. SelMatch uses
selection-based initialization and partial updates
through trajectory matching to manage the syn-
thetic dataset’s desired difficulty level tailored
to IPC scales. When tested on CIFAR-10/100
and TinyImageNet, SelMatch consistently outper-
forms leading selection-only and distillation-only
methods across subset ratios from 5% to 30%.

1. Introduction
Dataset reduction, essential for data-efficient learning, in-
volves synthesizing or selecting a smaller number of sam-
ples from a large dataset, while ensuring that models trained
on this reduced dataset still perform comparably or occur
minimal performance reduction compared to those trained
with the full dataset. This approach addresses challenges
associated with training neural networks on large datasets,
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such as high computational costs and memory requirements.

A prominent technique in this field is dataset distillation,
also known as dataset condensation (Wang et al., 2018; Zhao
et al., 2020; Zhao & Bilen, 2021; 2023; Cazenavette et al.,
2022). This method distills a large dataset into a smaller,
synthetic one. Data distillation has shown remarkable perfor-
mance in image classification tasks, especially at extremely
small scale, compared to coreset selection methods (Chen
et al., 2010; Sener & Savarese, 2018; Mirzasoleiman et al.,
2020; Killamsetty et al., 2021a). For example, the Matching
Training Trajectories (MTT) algorithm (Cazenavette et al.,
2022) achieves 71.6% accuracy on a simple ConvNet (Gi-
daris & Komodakis, 2018) using only 1% of the CIFAR-10
dataset (Krizhevsky et al., 2009), closely approaching the
84.8% accuracy of the full dataset. This remarkable effi-
ciency arises from the optimization process, where synthetic
samples are optimally learned in a continuous space, instead
of being directly selected from the original dataset.

However, recent studies indicate that many dataset distilla-
tion methods lose effectiveness and can even underperform
compared to random sample selection as the scale of the
synthetic dataset or images per class (IPC) increases (Cui
et al., 2022; Zhou et al., 2023; Guo et al., 2023). This is
counterintuitive, considering the greater optimization free-
dom that distillation provides over discrete sample selection.
Specifically, DATM (Guo et al., 2023) investigated this
phenomenon by analyzing the training trajectories of the
state-of-the-art MTT method, noting how the effectiveness
of distilled datasets is significantly influenced by the stage
of the training trajectories the method focuses on during syn-
thesizing the dataset; particularly, easy patterns learned in
early trajectories and hard patterns in later stages distinctly
impact MTT’s performance across different IPCs.

We further examine the MTT method across varying IPC,
by comparing the coverage of easy versus hard real samples
by the synthetic dataset as IPC increases, revealing that the
distillation method fails to adequately incorporate the rare
features of hard samples to the synthetic dataset even with
the increased IPC. This leads to a consistent coverage gap
between easy vs. hard test samples, highlighting that the
reduced efficacy of dataset distillation methods at larger
IPC ranges is partially attributed to their tendency to focus
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on the simpler, more representative features of the dataset.
Conversely, as IPC increases, the inclusion of harder, rarer
features becomes more crucial for the generalization ability
of models trained on the reduced dataset, as demonstrated in
data selection studies, both empirically (Toneva et al., 2018;
Jiang et al., 2021) and theoretically (Kolossov et al., 2023;
Sorscher et al., 2022).

Motivated by such observations, we propose a novel method,
SelMatch, as a solution for effectively scaling up dataset dis-
tillation methods. The key intuition is that as IPC increases,
the synthetic dataset should encompass more complex and
diverse features of real dataset with suitable difficulty level.
The core idea is to manage the desired difficulty level of
the synthetic dataset by selection-based initialization and
partial updates through trajectory matching.

▷ Selection-Based Initialization: To overcome the limita-
tions of the traditional trajectory matching methods overally
focusing on easy patterns even with the increased IPC, we
propose to initialize the synthetic dataset with real images of
suitable difficulty level optimized for each IPC. Traditional
trajectory matching methods typically initialize the syn-
thetic dataset, with randomly selected samples (Wang et al.,
2018; Zhao et al., 2020; Zhao & Bilen, 2023; Cazenavette
et al., 2022), or with easy or representative samples near the
class centers (Cui et al., 2022) to improve the convergence
speed of distillation. Our approach is novel in the sense that
we initialize the synthetic dataset with a carefully chosen
subset, which contains samples of an appropriate difficulty
level tailored to the size of the synthetic dataset. This ap-
proach ensures that the subsequent distillation process starts
with samples of an optimized difficulty level for the specific
IPC regime. Experimental results show that selection-based
initialization plays an important role in the performance.

▷ Partial Updates: In traditional dataset distillation meth-
ods, every sample in synthetic dataset is updated during
the distillation iterations. However, this process keeps re-
ducing the diversity of samples in the synthetic dataset as
the distillation iteration increases (as observed in Fig. 1),
since the distillation provides a signal biased toward easy
patterns of the full dataset. Thus, to maintain the rare and
complex features of hard samples – essential for model’s
generalization ability in larger IPC ranges – we introduce
partial updates to the synthetic dataset. The main idea is to
keep a fixed portion of the synthetic dataset as unchanged,
while updating the rest portion by the distillation signal. The
ratio of unchanged portion is adjusted according to the IPC.
Experimental results show that such partial updates is an
important knob for effective scaling of dataset distillation.

We evaluate our method, SelMatch, on the CIFAR-10/100
(Krizhevsky et al., 2009) and TinyImageNet (Le & Yang,
2015; Deng et al., 2009) benchmarks, and demonstrate
its superiority over state-of-the-art selection-only and

distillation-only methods in settings ranging from 5%
to 30% subset ratios. Remarkably, for CIFAR-100, in
the setting with 50 images per class (10% ratio), Sel-
Match exhibits 3.5% increase in test accuracy compared
to the leading method. Our code is publicly available at
https://github.com/Yongalls/SelMatch.

2. Related Works
We begin by reviewing two main approaches in dataset
reduction: sample selection and dataset distillation.

Sample Selection In sample selection, there are two main
approaches: optimization-based and score-based selection.
Optimization-based selection aims to identify a small core-
set that effectively represents the full dataset’s diverse char-
acteristics. For example, Herding (Chen et al., 2010) and
K-center (Sener & Savarese, 2018) select a coreset that
approximates the full dataset distributions. Craig (Mirza-
soleiman et al., 2020) and GradMatch (Killamsetty et al.,
2021a) seek a coreset that minimizes the average gradient
difference with the full dataset in neural network training.
Although effective in small to intermediate IPCs, these meth-
ods often face scalability issues, both computationally and
in performance, especially as IPC increases, compared to
score-based selection. Score-based selection assigns value
to each instance based on difficulty or influence (Koh &
Liang, 2017; Pruthi et al., 2020) in neural network training.
For instance, Forgetting (Toneva et al., 2018) gauges an in-
stance’s learning difficulty by counting the number of times
it is misclassified after being correctly classified in a previ-
ous epoch. C-score (Jiang et al., 2021) assesses difficulty
as the probability of incorrectly classifying a sample when
it is omitted from the training set. These methods priori-
tize difficult samples, capturing rare and complex features,
and outperform optimization-based selection methods, es-
pecially in larger IPC scales (Paul et al., 2021; Toneva et al.,
2018). These studies show that, as IPC increases, incorpo-
rating harder or rarer features is increasingly important for
the improved generalization capability of a model.

Dataset Distillation Dataset distillation, introduced in
(Wang et al., 2018), aims to create a small synthetic set S,
so that a model θS trained on S achieves good generalization
performance, performing well on the full dataset T :

S∗ = argmin
S

LT (θS), with θS = argmin
θ
LS(θ)

Here, LT and LS are losses on T and S, respectively. To
tackle the bi-level optimization’s computational complexity
and memory demands, existing works have employed two
methods: surrogate-based matching and kernel-based ap-
proaches. Surrogate-based matching replaces the complex
original objective with simpler proxy tasks. For instance,

2

https://github.com/Yongalls/SelMatch


SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates

250 500 1000 1500
IPC

0.55

0.60

0.65

Co
ve

ra
ge

(a) Coverage comparison w.r.t. IPC
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(b) Coverage evolution (IPC=1000)
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Figure 1. (a) (left) Overall coverage and (right) coverage of easy vs. hard groups with varying IPC. We observe that coverage by MTT
saturates as IPC increases, especially for the hard group. SelMatch (our method) exhibits superior overall coverage, with marked
improvements for the hard group. (b) Coverage by MTT decreases rapidly as the distillation proceeds, while that with SelMatch remains
stable. (c) Test accuracy on easy vs. hard groups with varying IPC. With MTT, the test accuracy for the hard group eventually aligns with
that achieved by random selection as IPC increases. All this findings indicate that traditional MTT overly focuses on synthesizing easy
features, leading to saturation in both coverage and test accuracy even with higher IPCs. In contrast, our method, SelMatch, achieves
effective scaling with IPC, enhancing coverage for both easy and hard samples and consequently achieving superior test accuracy.

DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), and
MTT (Cazenavette et al., 2022) aim to align the trajectory
of model θS , trained on S, with that of the full dataset T
by matching gradients or trajectories. DM (Zhao & Bilen,
2023) ensures S and T have similar distributions in fea-
ture space. Kernel-based methods, alternatively, approxi-
mate neural network training for θS using kernel methods
and derive a closed-form solution for the inner optimiza-
tion. Examples include KIP (Nguyen et al., 2020; 2021) us-
ing kernel-ridge regression with the Neural Tangent Kernel
(NTK) and FrePo (Zhou et al., 2022) reducing training costs
by focusing only on regression over the last learnable layer.
However, both surrogate-based matching and kernel-based
approaches struggle to scale effectively, either computation-
ally or performance-wise, as IPC increases. DC-BENCH
(Cui et al., 2022) reported that these methods underperform
compared to random sample selection at higher IPCs.

Recent research has sought to address the scalability issues
of the state-of-the-art MTT methods, focusing on either
computational aspects, by reducing memory requirements
(Cui et al., 2023), or performance aspects, by harnessing the
training trajectory of the full dataset in later epochs (Guo
et al., 2023; Du et al., 2024). In particular, DATM (Guo
et al., 2023) discovered that aligning with early training tra-
jectories enhances performance in low IPC regimes, while
aligning with later trajectories is more beneficial in high IPC
regimes. Based on this observation, DATM optimized the
trajectory-matching range based on IPCs to adaptively incor-
porate easier or harder patterns from expert trajectories, thus
improving MTT’s scalability. While DATM efficiently de-
termines the lower and upper bounds of trajectory-matching
range based on the tendency of change in matching loss
outside these bounds, explicitly quantifying or searching

for the desired difficulty level within training trajectories
remains as a challenging task. In contrast, our method, Sel-
Match, employs selection-based initialization and partial
updates through trajectory matching to incorporate com-
plex features of hard samples suited to each IPC. In par-
ticular, our approach introduces the novelty of initializing
synthetic samples with a tailored difficulty level for each
IPC range, a strategy not explored in previous literature on
dataset distillation. Furthermore, unlike DATM, which is
specifically tailored to enhance MTT, the main components
of SelMatch, selection-based initialization and partial up-
dates, have broader applicability across various distillation
methods (Appendix D.2). We demonstrate the effectiveness
of our approach, comparing to leading selection-only or
distillation-only methods, including DATM in Sec. 5.

3. Motivation
3.1. Preliminary

Matching Training Trajectories (MTT) The state-of-
the-art dataset distillation method, MTT (Cazenavette et al.,
2022), will serve as a baseline to analyze the limitations of
traditional dataset distillation methods in large IPC range.
MTT aims to generate synthetic dataset by matching the
training trajectories between the real dataset Dreal and the
synthetic dataset Dsyn. At each distillation iteration, the
synthetic dataset is updated to minimize the matching loss,
defined in terms of the training trajectory {θ∗t } of the real
dataset Dreal and that {θ̂t} of the synthetic dataset Dsyn:

L(Dsyn,Dreal) =
∥θ̂t+N − θ∗t+M∥22
∥θ∗t − θ∗t+M∥22

, (1)
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Figure 2. Illustration of our select-and-match method, SelMatch. Our method comprises two key components: 1) Selection-based
initialization: SelMatch employs our sliding-window algorithm to select a subset of a suitable difficulty level, initializing the synthetic
dataset Dsyn with this chosen subset; 2) Partial update: SelMatch freezes (1-α) fraction of samples (Dselect) and update only α fraction of
samples (Ddistill) while minimizing the matching loss L(Dselect ∪ Ddistill,Dreal) to preserve unique features of selected real samples.

where θ∗t is the model parameter trained on Dreal at step t.
Starting from θ̂t = θ∗t , θ̂t+N refers to the model parameter
obtained by training with Dsyn for N steps, while θ∗t+M is
the parameter obtained after training on Dreal for M steps.

3.2. Limitations of Traditional Methods in Larger IPC

We first analyze how the patterns of synthetic data, produced
by MTT, evolve as the images per class (IPC) increases. For
a dataset distillation method to remain effective in larger
synthetic datasets, the distillation process should keep pro-
viding novel and intricate patterns of the real dataset to the
synthetic samples as IPC increases. We initially demonstrate
that the trajectory matching methods, though state-of-the-art
at low IPC levels, fall short in achieving this objective.

We show this by examining the ‘coverage’ for the real (test)
dataset. ‘Coverage’ is defined as the proportion of real sam-
ples that fall within a certain radius (r) of synthetic samples
in the feature space. The radius r is set to the average nearest
neighbor distance of the real training samples in the feature
space. A higher coverage indicates that the synthetic dataset
captures the diverse features of real samples, enabling the
model trained on the synthetic dataset to learn not just the
easy but also the complex patterns of the real dataset.

In Figure 1a (left), we show how the coverage changes with
increasing IPC for CIFAR-10 dataset. Further, in Figure
1a (right), we analyze this for two groups of samples - the
‘easy’ 50% and the ‘hard’ 50% (categorized by Forgetting
score (Toneva et al., 2018), a difficulty measure for real
samples). The observation reveals that coverage with MTT
does not effectively scale with IPC, consistently falling
below that of random selection. Moreover, the coverage
for hard sample group is much lower than that of the easy
group. This indicates that MTT does not effectively embed
the hard and complex data patterns to synthetic samples even
with the increased IPC, which can be a reason of MTT’s

ineffective scaling performance. Our method, SelMatch,
exhibits superior overall coverage, with a notable gain in
coverage for the hard group, especially as IPC increases.

An additional important finding is the diminishing coverage
of MTT as the number of distillation iterations increases, as
shown in Figure 1b. This observation further indicates that
traditional distillation methods primarily capture the ‘easy’
patterns over multiple iterations, making the synthesized
dataset less diverse as the distillation iterations grow. In
contrast, with SelMatch, coverage remains stable even with
increasing iterations. As shown in Figure 1c, coverage also
influences test accuracy. A marked difference in coverage
between the easy and hard test sample groups translates into
a substantial gap in test accuracy between the two groups.
SelMatch, enhancing coverage for both groups, leads to
improved test accuracy overall, especially for hard group,
as IPC increases.

SelMatch achieves this by combining two key ideas:
selection-based initialization and partial updates through
trajectory matching. These concepts and their implications
will be further elaborated in the following section.

4. Main Method: SelMatch
Figure 2 illustrates the core idea of our method, SelMatch,
which combines selection-based initialization with partial
updates through trajectory matching. Traditional trajectory
matching methods typically initialize the synthetic dataset,
Dsyn, with a randomly selected subset of the real dataset,
Dreal, without any specific selection criteria. During each
distillation iteration, the entire Dsyn is updated to minimize
a matching loss L(Dsyn,Dreal), as defined in (1).

In contrast, SelMatch begins by initializing Dsyn with a
carefully chosen subset, Dinitial, which contains samples of
an appropriate difficulty level tailored to the size of the
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Figure 3. The result of sliding window experiment on CIFAR-10
with varying subset size (5 to 30%). Dashed horizontal lines
indicate the accuracy of the models trained by randomly selected
subsets of the corresponding size. Solid lines indicate the accuracy
of the models trained by a window subset of samples ordered by
their difficulty scores (from hardest to easiest by c-score (Jiang
et al., 2021)) with varying window starting point β%.

synthetic dataset. Then, during each distillation iteration,
SelMatch updates only a specific portion, denoted as α ∈
[0, 1], of Dsyn (referred to as Ddistill), while the remaining
fraction, (1 − α), of the dataset (referred to as Dselect) is
kept unchanged. This process aims to minimize the same
matching loss L(Dsyn,Dreal) in (1), but withDsyn now being
a combination ofDdistill andDselect. The rationale and details
behind these key components will be elaborated below.

Selection-Based Initialization: Sliding Window Alg.
An important observation from Fig. 1 is that the traditional
trajectory matching methods tend to focus on easy and rep-
resentative patterns of the full dataset rather than complex
data patterns, resulting in less effective scaling in larger IPC
settings. To overcome this, we propose initializing the syn-
thetic dataset, Dsyn, with a carefully selected difficulty level
that includes more complex patterns from the real dataset as
IPC increases. The challenge then becomes how to select a
subset of the real dataset, Dreal, with an appropriate level of
complexity, considering the size of Dsyn.

To address this, we design a sliding window algorithm. We
arrange the training samples in descending order of difficulty
(most difficult to easiest) based on pre-calculated difficulty
scores (Jiang et al., 2021; Toneva et al., 2018). We then
assess window subsets of these samples by comparing the
test accuracy achieved when a model is trained on each
window subset while varying its starting point. For a given
threshold β ∈ [0, 100]%, after excluding the top β% of
the hardest samples, the window subset includes samples
from the [β, β + r]% range, where the subset portion is
r = (|Dsyn|/|Dreal|) × 100% and |Dsyn| equals IPC times
the number of classes. Here, we make sure that each window
subset includes equal number of samples from each class.

As depicted in Figure 3, the starting point of the window,
corresponding to the level of difficulty, significantly influ-
ences the generalization ability of the model, as measured
by test accuracy. Particularly for smaller windows (5-10%
range), we observe up to a 40% deviation in test accuracy
according to where the window starts. Moreover, the best
window subsets, achieving the highest test accuracy, tend to
include more difficult samples (smaller β) as the subset size
increases, which aligns with the intuition that incorporating
complex patterns from the real dataset enhances the model’s
generalization capability as IPC grows.

Building on this observation, we set the initialization ofDsyn
to Dinitial, where Dinitial is the best-performing window sub-
set identified by the sliding window algorithm for the given
Dsyn size. This approach ensures that the subsequent distil-
lation process starts with images of an optimized difficulty
level for the specific IPC regime.

Partial Updates After initializing the synthetic dataset
Dsyn with the best window subset Dinitial, chosen from the
sliding window algorithm, our next goal is to update Dsyn
through dataset distillation to efficiently embed the infor-
mation from the entire real dataset Dreal. Traditionally, the
matching training trajectories (MTT) algorithm updates all
the samples in Dsyn, by backpropagating through N model
updates, to minimize the matching loss (1). However, as
shown in Fig. 1b, this approach tends to favor simpler pat-
terns in the dataset, leading to a reduction in coverage over
successive distillation iterations. Thus, to counter this and to
maintain the unique and complex features of some real sam-
ples – essential for model’s generalization ability in larger
IPC ranges – we introduce partial updates to Dsyn.

We partition the initial synthetic dataset Dsyn = Dinitial into
two subsets Dselect and Ddistill based on each sample’s dif-
ficulty score. The subset Dselect contains (1 − α) × |Dsyn|
samples with higher difficulty, while the remaining α frac-
tion of samples are assigned to Ddistill, where α ∈ [0, 1] is a
hyperparameter adjusted according to the IPC.

During distillation iterations, we keepDselect unchanged and
update only the Ddistill subset. The update aims to minimize
the matching loss between the entire Dsyn = Dselect ∪Ddistill
and Dreal, i.e.,

L(Dselect ∪ Ddistill,Dreal), (2)

rather than minimizing L(Ddistill,Dreal), the loss considering
only the updated portion of Dsyn. This strategy encourages
Ddistill to condense the knowledge not present in Dselect,
thereby enriching the overall information within Dsyn.

Combined Augmentation After creating the synthetic
dataset Dsyn, we assess its effectiveness by training a ran-
domly initialized neural network using this dataset. Typ-
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ically, previous distillation methods have employed Dif-
ferentiable Siamese Augmentation (DSA) (Zhao & Bilen,
2021) to evaluate synthetic datasets. This approach, in-
volving more complex augmentation techniques than the
simpler methods (like random cropping and horizontal flip-
ping) commonly used for real datasets (Krizhevsky et al.,
2012), has been shown to yield better results for synthetic
data, as noted in empirical studies (Cui et al., 2022). This
improved performance may arise because synthetic datasets
predominantly capture easier patterns, making them more
suitable for the stronger augmentation by DSA.

However, applying DSA across our entire synthetic dataset
Dsyn might not be ideal, especially considering the presence
of the subset Dselect, which contains diifficult samples. To
address this, we propose a combined augmentation strategy
tailored to our synthetic dataset. Specifically, we apply
DSA to the distilled portion, Ddistill, and use the simpler,
more traditional augmentation techniques for the selected,
more complex subset Dselect. This combined approach aims
to leverage the strengths of both augmentation methods to
enhance the overall performance of the synthetic dataset.

Putting all together, SelMatch is summarized in Alg. 1.

5. Experimental Results
5.1. Experiment Setup

We evaluate the performance of our method, SelMatch,
on various datasets including CIFAR-10/100, and Tiny
ImageNet. Considering that SelMatch is a combined mech-
anism of selection and distillation method, we compare our
method with both selection-only and distillation-only base-
lines. For the selection-only baselines, we incorporate two
sample selection methods, Forgetting (Toneva et al., 2018),
representing difficulty score-based selection, and Glister
(Killamsetty et al., 2021b), representing optimization-based
coreset selection. Additionally, we present the result of
oracle-window selection, which denotes the optimal subset
Dinitial obtained by the sliding window algorithm (Fig. 3).
For distillation-only baselines, we include DSA (Zhao &
Bilen, 2021), DM (Zhao & Bilen, 2023), MTT (Cazenavette
et al., 2022), FTD (Du et al., 2023), and DATM (Guo et al.,
2023). Due to scalability issues, kernel-based methods are
excluded from our experiment.

It is noteworthy that previous distillation methods use Con-
vNet architecture (Gidaris & Komodakis, 2018; Zhao et al.,
2020) with Instance Normalization (Ulyanov et al., 2016)
(denoted as ConvNet-IN) for both distillation and evalua-
tion instead of Batch Normalization (ConvNet-BN) (Ioffe &
Szegedy, 2015). In contrast, we employ ConvNet-BN for
the distillation and ResNet18 architecture (He et al., 2016)
for the evaluation. For a fair comparison, we evaluate all

methods with ResNet18 architecture and DSA augmentation
(combined augmentation for SelMatch). We report the mean
and standard deviation of test accuracy by training 5 ran-
domly initialized networks with the reduced dataset. Note
that, we set the number of training steps to be 25% of that
required for training with the full dataset over 200 epochs.
Specifically, we train networks for 1,000, 500, 250, and
167 epochs when evaluating reduced dataset of 5%, 10%,
20%, and 30% subset ratios, respectively. More details of
experiment setup are presented in Appendix B.

5.2. Main Results

CIFAR and Tiny ImageNet We compare SelMatch
against the existing sample selection (Random, Forgetting,
Glister) and dataset distillation (DSA, DM, MTT, FTD,
DATM) baselines for CIFAR-10/100 and Tiny ImageNet
across 5% to 30% selection ratios. Oracle window is the
result obtained by using the window subset Dinitial selected
from the sliding window algorithm (Fig. 3) but without
the subsequent dataset distillation. As shown in Table 1,
the performance gains from previous distillation methods
saturate rapidly, or even fall behind random selection, as
IPC increases. Another interesting observation is that oracle
window selection outperforms all other baselines except
SelMatch, in every tested ratio on CIFAR-10 and Tiny Im-
ageNet. This result indicates that choosing the subset of a
desirable difficulty level tailored to each IPC scale is im-
portant in developing effectively scalable dataset reduction
methods. Previous distillation methods have not effectively
achieved this. Through the optimized selection-based ini-
tialization and partial updates, our method establishes the
new state-of-the-art performance in all settings. Particularly,
we achieve a performance gain of 3.5% compared to the
next best method on CIFAR-100 with IPC=50 (subset ratio
10%).

Cross-Architecture Generalization One of the essential
characteristics of a distilled dataset is its ability to generalize
across different, unseen architectures. In fact, we have
already demonstrated SelMatch’s generalization capability
by conducting distillation on the ConvNet architecture and
evaluating it on the ResNet18 architecture. Nevertheless,
we further evaluate the cross-architecture generalizability
by considering additional network architectures, such as
VGG (Simonyan & Zisserman, 2014). As presented in
Table 2, our method exhibits competitive performance on
unseen architectures. We notice that our method shows
lower performance than DATM on simpler architectures
(ConvNet and VGG-11) but still outperforms MTT. This
outcome is a natural consequence, as our distilled dataset
contains complex features that are challenging to learn with
smaller networks like ConvNet.
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Table 1. Performance of SelMatch compared to other baselines on CIFAR-10, CIFAR-100 and Tiny ImageNet. We highlight the
best result across all methods in bold and underline the best result among selection-only baselines. †denotes the use of distilled
dataset provided by the original paper without reproduction. For all subset ratios, we set the number of training steps to be 25% of
that with full dataset for 200 epochs. For the full dataset, we also report the test accuracy measured by training for the full 200
epochs in bracket.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 250 500 1000 1500 25 50 100 150 50 100

Ratio 5% 10% 20% 30% 5% 10% 20% 30% 10% 20%

Random 73.4±1.5 79.3±0.3 85.6±0.4 88.3±0.2 35.8±0.6 40.7±1.0 53.2±0.9 60.3±1.3 30.1±0.6 40.1±0.4
Forgetting 30.7±0.3 41.5±0.7 68.4±1.6 83.5±1.8 9.5±0.3 13.2±0.6 27.0±1.1 42.3±1.0 5.7±0.1 12.4±0.2

Glister 46.6±1.3 56.6±0.5 79.0±0.7 85.0±0.9 21.7±0.8 26.7±1.3 39.9±1.4 52.1±1.3 22.6±0.5 34.0±0.3
Oracle window 79.3±0.7 85.2±0.1 89.9±0.5 90.6±0.3 43.2±1.8 50.0±0.8 59.2±0.8 64.7±0.5 42.5±0.3 49.2±0.3

DSA1 74.7±1.5 78.7±0.7 84.8±0.5 - 38.4±0.4 43.6±0.7 - - 27.8±1.4† -
DM1 75.3±1.4 79.1±0.6 85.6±0.5 - 37.5±0.6 42.6±0.5 - - 31.0±0.6† -
MTT2 80.7±0.4 82.2±0.4 86.1±0.3 88.6±0.2 49.9±0.7 51.3±0.4 58.7±0.6 63.1±0.3 40.3±0.3 44.2±0.5
FTD3,4 78.8±0.2 80.0±0.7 85.6±0.2 87.8±0.4 47.4±0.2 49.0±0.2 56.2±0.3 61.0±0.5 30.2±0.3 36.9±0.6

DATM3 - 84.8±0.3† 87.6±0.3† - - 51.0±0.5† 61.5±0.3† - 42.2±0.2† -

SelMatch(ours) 82.8±0.2 85.9±0.2 90.4±0.2 91.3±0.2 50.9±0.3 54.5±0.6 62.4±0.6 67.4±0.2 44.7±0.2 50.4±0.2

Full Dataset 93.2±0.3 (95.0±0.2) 73.9±0.2 (76.5±0.7) 58.5±0.3 (61.1±0.2)
1 We reproduce DSA and DM only on the scalable regime: CIFAR-10 with IPC ranging from 250 to 1000, and CIFAR-100 with IPC ranging from 25 to 50, following

dc-benchmark (Cui et al., 2022).
2 We reproduce MTT with ConvNet-BN and with larger max start epoch T+ than used in the original paper.
3 ZCA whitening is used in FTD and DATM.
4 EMA (exponential moving average) is used in FTD.

Table 2. Cross-architecture experiment results on CIFAR-10 with
IPC=1000. Our method generalizes well on unseen network archi-
tectures, especially on large networks.

Method Conv Res-18 Res-34 Res-50 VGG-11 VGG-16

Random 79.8 85.6 85.8 85.9 81.9 84.8
MTT 82.3 86.1 85.7 85.8 83.9 85.6

DATM 84.8 87.6 87.2 86.9 86.3 86.3
SelMatch (ours) 83.5 90.4 89.9 89.3 86.0 88.2

Table 3. Ablation study on key components of our method on
CIFAR-100 with IPC=100. Note that the top row indicates the
baseline (MTT) and the last row indicates our method, SelMatch.

Select Init Partial Update Combined Augment Acc

✗ ✗ ✗ 58.7
✓ ✗ ✗ 61.0
✓ ✓ ✗ 61.5
✓ ✓ ✓ 62.4

5.3. Ablation Study and Further Analysis

Key Components We conduct an ablation study to ana-
lyze the effect of three key components of SelMatch, de-
scribed in Section 4. Specifically, we isolate and measure
the effects of 1) selection-based initialization, 2) partial up-
dates, and 3) combined augmentation. Table 3 presents the
ablation results on CIFAR-100 with IPC=100. As shown
in the table, all components of our method contribute to
performance improvement. Especially, we observe that
selection-based initialization leads to a substantial perfor-
mance boost (+2.3% compared to MTT), demonstrating the

Table 4. Ablation on the way of using selection and distillation on
CIFAR-100 with varying IPC.

IPC 25 50 100 150

Selection-only (Oracle window) 43.2 50.0 59.2 64.7
Distillation-only (MTT) 49.9 51.3 58.7 63.1
Merge 51.1 53.1 61.7 67.0
SelMatch (ours) 50.9 54.5 62.4 67.4

critical significance of carefully initializing the synthetic
dataset. Furthermore, partial updates yield additional per-
formance improvements, with the combined augmentation
amplifying the effectiveness of partial updates.

Selection and Distillation SelMatch updates only a spe-
cific portion, denoted as α ∈ [0, 1], of Dsyn (referred to
as Ddistill), while the remaining fraction, (1 − α), of the
dataset (referred to as Dselect) is kept unchanged from ini-
tialization. This process aims to minimize the matching loss
L(Ddistill ∪ Dselect,Dreal). A less sophisticated approach is
simply using L(Ddistill,Dreal) and merge Dselect and Ddistill
after the distillation. We call this method “Merge”. Table
4 compares the performances of oracle-window (selection
only), MTT (distillation only), Merge (simply merging se-
lected samples with distilled dataset) and our SelMatch. We
can observe that simply merging selected samples with dis-
tilled dataset (initialized with the optimized Dinitial) already
brings a significant gain than the traditional MTT. SelMatch
brings additional improvement than the simple Merge.
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Figure 4. (a) Ablation on distillation portion α in synthetic dataset for CIFAR-100 with varying IPC. Optimal α tends to decrease as
IPC increases. (b) Ablation on augmentation strategy on CIFAR-100 with IPC 50. The result shows the effectiveness of our combined
augmentation technique. (c) Ablation on batch normalization on CIFAR-100 with IPC=50. Employing Batch Normalization for both
distillation and evaluation exhibits the best performance. (d) Ablation on max start epoch T+ on CIFAR-100 with IPC=50, 100. The
result indicates that utilizing later epochs enhances performance in large IPC regime.
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Figure 5. Analysis of SelMatch on CIFAR-100 with IPC=50. (a) T-SNE visualization of (left) MTT and (right) SelMatch. Small red,
green, blue points represent real samples (test set) of the first three classes of CIFAR-100. Large circles indicate samples in the synthetic
dataset. For SelMatch, unaltered samples (Dselect) are denoted as ‘X’ marker with darker colors. We observe that samples in Dselect are
located closer to the decision boundary compared to Ddistill. (b) Evolution of ℓ2 norm of network gradients on Dselect and Ddistill. The
gradient norm on Dselect is larger than Ddistill. Note that network is trained on entire synthetic set Dsyn = Dselect ∪ Ddistill.

Distillation portion α Figure 4(a) shows the effect of
distillation portion α in the synthetic dataset for different
IPC scales. The result reveals that the optimal value of α
decreases as IPC increases, i.e., updating a smaller portion
of the synthetic dataset by distillation results in better per-
formance for larger IPC scales. This observation aligns with
our intuition that maintaining complex and unique samples
has a greater benefit in larger IPC regimes.

Combined Augmentation We also study the impact of
our combined augmentation in Figure 4(b). We observe
that the combined augmentation outperforms both DSA-
only and simple-only augmentations. This result demon-
strates that our proposed augmentation strategy can effi-
ciently leverage the benefits of combining Dselect and Ddistill.

Batch Normalization Previous distillation works often
use instance normalization (IN) instead of batch normal-

ization (BN), since inaccurate batch statistics of extremely
small synthetic dataset can hamper the performance. How-
ever, since we target on larger synthetic dataset, we employ
batch normalization for SelMatch and reproduction of MTT.
To explore the effect of batch normalization, we perform an
ablation on CIFAR-100 with IPC=50, both for distillation
and evaluation steps by applying IN or BN, as shown in Fig-
ure 4(c). The result reveals that using batch normalization
both for distillation and evaluation yields the best result.

Max Start Epoch T+ We perform an ablation study on
max start epoch T+ of MTT where the start epoch t in the
matching loss (1) is randomly chosen from t ≤ T+. As
shown in Fig. 4(d), we observe that increasing T+ improves
the performance in large IPC settings. This result indicates
that leveraging information of later training epochs is bene-
ficial for larger synthetic dataset. In Table 1, we reproduced
MTT with T+ = 80 and used the same T+ for SelMatch
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for all cases, while the original paper used T+ ≤ 40.

Further Analysis The core idea behind SelMatch is to
synthesize representative samples while preserving com-
plex and rare features through partial updates. To validate
that our method actually works as intended, we investigate
the typicality of updated subset Ddistill and unaltered subset
Dselect. In Figure 5(a), we depict the data distribution of
MTT and SelMatch. We train networks on each synthetic
dataset to extract features and visualize these features using
T-SNE (Van der Maaten & Hinton, 2008). The visualiza-
tion reveals that samples in Dselect (with ‘X’ marker) are
positioned closer to the decision boundary than samples in
Ddistill. Consequently, SelMatch demonstrates the ability to
incorporate more diverse and hard samples in the real distri-
bution than MTT. Additionally, we measure the network’s
gradient norm on Ddistill and Dselect throughout the training.
As shown in Figure 5(b), we observe that Dselect generates a
larger gradient norm, indicating that Dselect contains more
complex and intricate patterns compared to Ddistill.

6. Discussions
To address the limitations of current distillation methods,
which struggle to scale effectively with increasing IPC,
we introduced SelMatch, a novel distillation method that
combines selection-based initialization with partial updates
through trajectory matching. Our approach ensures that
the distillation process begins with images at an optimized
difficulty level, tailored to the specific IPC regime. More-
over, through partial updates, it maintains the unique fea-
tures of some real samples in the unchanged portion of the
synthetic set. Meanwhile, the representative features of a
whole dataset are translated through distillation to the rest
of the images. SelMatch sets a new benchmark in perfor-
mance, outperforming traditional dataset distillation and
sample selection methods across various subset ratios on
the CIFAR-10/100 and Tiny ImageNet datasets.

Our SelMatch approach holds two primary limitations. First,
it requires predefined difficulty scores. While our selec-
tion strategy (sliding window) avoids a computationally
expensive optimization process, it depends on the existence
of difficulty scores for training samples. If pre-computed
difficulty scores are unavailable, additional computational
overhead is incurred. In our study, we used measures like
C-score (Jiang et al., 2021) and Forgetting score (Toneva
et al., 2018), both of which demand significant computa-
tional resources. Alternatively, EL2N (Paul et al., 2021) can
be employed to assess difficulty with minimal computation
by training the network for only a few epochs and quantify-
ing the difficulty of each sample using the initial loss. We
provide the corresponding results in Appendix D.1.

Second, SelMatch’s hyperparameter tuning introduces ad-

ditional computation overhead. SelMatch introduces two
hyperparameters, the distillation portion (α) and the win-
dow starting point (β), to regulate the incorporation of hard
patterns in the distilled set. The optimal values of these
hyperparameters vary with the dataset and IPC, necessitat-
ing tuning for each setting. We provide tuning guidance
in Appendix E to help find optimal values more efficiently.
Further developing a metric to estimate the optimal α and
β without the distillation process remains as an open chal-
lenge.

Impact Statement
This paper introduces an effectively scalable dataset distilla-
tion method that extends beyond extremely small IPC scales.
Our approach enables the training of neural networks in a
manner that is both computationally and memory-efficient,
with minimal to no performance loss compared to train-
ing with the full dataset. Significantly, our experimental
results demonstrate that the synthetic dataset generated by
our method generalizes well across various architectures. It
proves effective not only in simpler ConvNet architectures,
traditionally used for dataset distillation testing, but also in
more complex models like ResNet. This versatility high-
lights the potential of our distilled dataset in maintaining
high performance, even when applied to sophisticated neu-
ral network architectures. Such adaptability is crucial for
advancing dataset distillation, ensuring efficient and robust
training across diverse architectures.

Acknowledgements
This research was supported by the National Research Foun-
dation of Korea under grant 2021R1C1C11008539.

References
Cazenavette, G., Wang, T., Torralba, A., Efros, A. A., and

Zhu, J.-Y. Dataset distillation by matching training tra-
jectories. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

Chen, Y., Welling, M., and Smola, A. Super-samples from
kernel herding. In Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, pp. 109–
116, 2010.

Cui, J., Wang, R., Si, S., and Hsieh, C.-J. Dc-bench: Dataset
condensation benchmark. Advances in Neural Informa-
tion Processing Systems, 2022.

Cui, J., Wang, R., Si, S., and Hsieh, C.-J. Scaling up dataset
distillation to imagenet-1k with constant memory. In
International Conference on Machine Learning, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

9



SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates

L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, 2009.

Du, J., Jiang, Y., Tan, V. Y., Zhou, J. T., and Li, H. Minimiz-
ing the accumulated trajectory error to improve dataset
distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023.

Du, J., Shi, Q., and Zhou, J. T. Sequential subset matching
for dataset distillation. Advances in Neural Information
Processing Systems, 2024.

Gidaris, S. and Komodakis, N. Dynamic few-shot visual
learning without forgetting. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018.

Guo, Z., Wang, K., Cazenavette, G., LI, H., Zhang, K., and
You, Y. Towards lossless dataset distillation via difficulty-
aligned trajectory matching. In The Twelfth International
Conference on Learning Representations, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, 2015.

Jiang, Z., Zhang, C., Talwar, K., and Mozer, M. C. Char-
acterizing structural regularities of labeled data in over-
parameterized models. In International Conference on
Machine Learning, 2021.

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., and
Iyer, R. Grad-match: Gradient matching based data sub-
set selection for efficient deep model training. In Interna-
tional Conference on Machine Learning, 2021a.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G.,
and Iyer, R. Glister: Generalization based data subset
selection for efficient and robust learning. In Association
for the Advancement of Artificial Intelligence, 2021b.

Koh, P. W. and Liang, P. Understanding black-box pre-
dictions via influence functions. In Advances in Neural
Information Processing Systems, 2017.

Kolossov, G., Montanari, A., and Tandon, P. Towards a
statistical theory of data selection under weak supervision.
In The Twelfth International Conference on Learning
Representations, 2023.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 2012.

Krizhevsky, A. et al. Learning multiple layers of features
from tiny images. 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. Coresets
for data-efficient training of machine learning models. In
International Conference on Machine Learning, 2020.

Nguyen, T., Chen, Z., and Lee, J. Dataset meta-learning
from kernel ridge-regression. In International Conference
on Learning Representations, 2020.

Nguyen, T., Novak, R., Xiao, L., and Lee, J. Dataset distil-
lation with infinitely wide convolutional networks. Ad-
vances in Neural Information Processing Systems, 2021.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
In Advances in Neural Information Processing Systems,
2021.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.
In Advances in Neural Information Processing Systems,
2020.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and Mor-
cos, A. Beyond neural scaling laws: beating power law
scaling via data pruning. Advances in Neural Information
Processing Systems, 2022.

Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Instance nor-
malization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022, 2016.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 2008.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

Yin, Z., Xing, E., and Shen, Z. Squeeze, recover and rela-
bel: Dataset condensation at imagenet scale from a new
perspective. Advances in Neural Information Processing
Systems, 2024.

10



SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates

Zhao, B. and Bilen, H. Dataset condensation with differen-
tiable siamese augmentation. In International Conference
on Machine Learning, 2021.

Zhao, B. and Bilen, H. Dataset condensation with distribu-
tion matching. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV),
2023.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching. In International Conference on
Learning Representations, 2020.

Zhou, D., Wang, K., Gu, J., Peng, X., Lian, D., Zhang, Y.,
You, Y., and Feng, J. Dataset quantization. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, 2023.

Zhou, Y., Nezhadarya, E., and Ba, J. Dataset distillation
using neural feature regression. Advances in Neural In-
formation Processing Systems, 2022.

11



SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates

A. Full Algorithm: SelMatch

Algorithm 1 Dataset Distillation via Selection and Matching (SelMatch)

Input: Full training set Dreal, difficulty score {si}|Dreal|
i=1 , number of classes C, images per class IPC, set of expert

trajectories {τ∗i }, Maximum start epoch T+, Differentiable augmentation function A, number of updates for student
network N , number of updates from the chosen start epoch for target expert trajectory M , distillation portion α ∈ [0, 1],
window starting point β ∈ [0, 1].

▷ Selection-based initialization with sliding-window algorithm.
Sort Dreal = {(xi, yi)}|Dreal|

i=1 by difficulty score {si}|Dreal|
i=1 in descending order.

Re-order it while guaranteeing yi = (i mod C) and si ≥ si+kC for k ∈ Z+.
m← ⌈β × |Dreal|⌉ ▷ prune the hardest β × 100% samples
Dselect ← {(xi, yi)}m+⌈(1−α)×IPC×C⌉

i=m

Ddistill ← {(xi, yi)}m+IPC×C
i=m+⌈(1−α)×IPC×C⌉+1

▷ Matching with partial update.
Freeze Dselect.
repeat

Sample expert trajectory τ∗ ∼ {τ∗i } with τ∗ = {θ∗t }T0
Sample start epoch t, where t ≤ T+

θ̂t ← θ∗t ▷ Initialize student network
for i = 1 to N do
bt+i ∼ (Dselect ∪ Ddistill) ▷ Sample a mini-batch from the entire synthetic set
θ̂t+i ← θ̂t+i−1 − η∇l(A(bt+i); θ̂t+i−1) ▷ Update student network w.r.t. classification loss

end for
Compute matching loss L between θ̂t+N and θ∗t+M with (1).
Update Ddistill and η with respect to L.

until Converge
Output: Synthetic dataset Dsyn = Dselect ∪ Ddistill

B. Implementation Details
B.1. SelMatch and Reproduction of MTT

In our experiments, we follow the hyperparameters outlined in the original MTT paper (Cazenavette et al., 2022) for
generating expert trajectories. However, we introduce some modifications to the hyperparameters related to the distillation
process. As discussed in Section 5.3, we employ the ConvNet architecture with batch normalization (ConvNet-BN) for
distillation and extend the maximum start epoch T+ to 80, as this adjustment has been shown to enhance performance in
scenarios with large IPC. We also reproduce MTT using ConvNet-BN and the increased T+. Additionally, on CIFAR-100
with IPC=50, MTT updates student networks using full synthetic set instead of sampling a mini-batch and uses a large
number of student updates N = 80. Due to the linear scaling of required memory with respect to N and synthetic batch
size |b|, distillation with these settings becomes exceedingly resource-intensive. To address this, we impose constraints
on these hyperparameters, setting N = 55 on CIFAR-10/100 (20 on Tiny ImageNet) and |b| = 125 across all settings in
both SelMatch and the reproduction of MTT, for practicality and efficiency. Moreover, MTT applies ZCA whitening in
certain cases but omits its use in others. Given that the ablation results in the MTT paper suggest that ZCA whitening has a
negligible effect on performance when IPC is not very small, we perform distillation without employing ZCA in all settings
including reproduction of MTT, for the sake of simplicity.

For SelMatch, in sorting samples based on their difficulty scores, we utilize pre-computed C-score (Jiang et al., 2021) on
CIFAR-10/100 and use Forgetting score (Toneva et al., 2018) on Tiny Imagenet as the difficulty score. Then, we find an
optimal window starting point β for each dataset and subset ratio by the sliding window algorithm. After finding the optimal
β, we tune the values of distillation portion α with the fixed β. It is worth noting that we can tune α and β more efficiently
than through grid search based on our insights on the optimal α and β. More details are provided in Appendix E. We report
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Table 5. Hyper-parameters used for SelMatch.

Dataset IPC Student Updates Expert Epochs Synthetic Batchsize Distillation Portion Window Start Learning Rate
(N ) (M ) (|b|) (α) (β%) (pixel)

CIFAR-10

250

55 2 125

0.6 50 1000
500 0.2 30 1000
1000 0.1 20 10000
1500 0.1 20 10000

CIFAR-100

25

55 2 125

0.8 80 1000
50 0.6 70 1000

100 0.3 60 1000
150 0.2 40 1000

Tiny 50 20 2 125 0.6 80 1000
100 0.5 70 1000

the hyperparameters used for our main result in Table 5. For both SelMatch and MTT, we distill for 10,000 iterations to
ensure convergence. All other hyperparameters are remained unchanged from the original MTT paper.

B.2. Reproduction of Other Baselines

DSA / DM We reproduce DSA (Zhao & Bilen, 2021) / DM (Zhao & Bilen, 2023) baselines only on CIFAR-10 with IPC
ranging from 250 to 1000 and CIFAR-100 with IPC ranging from 25 to 50, due to scalability issue. For Tiny ImageNet
with IPC=50, we use distilled dataset provided by original papers without reproduction. As hyper-parameters for large IPC
settings are not reported in the original papers, we set the number of inner optimizations and outer optimizations both to 10
following DC-BENCH (Cui et al., 2022). We distill the dataset for 1,000 iterations with learning rate 0.1 for DSA and 10 for
DM. Following the original papers, no ZCA whitening is applied for DSA and DM.

FTD / DATM Since distilled datasets for FTD (Du et al., 2023) are not provided, we reproduce FTD baselines in all
settings. As hyper-parameters for large IPC scales are not given, we set hyper-parameters to the same values used in the
original paper for the corresponding dataset of the largest IPC setting (IPC=50 for CIFAR-10/100 and IPC=10 on Tiny
ImageNet). Consistent to SelMatch and MTT, we restricte N to 55 on CIFAR-10/100 (20 on Tiny ImageNet) and |b| to 125.
We perform distillation on 5,000 iterations with ZCA whitening and exponential moving average (EMA), following the
original paper. For DATM (Guo et al., 2023), we evaluate with distilled datasets provided by original paper. Note that these
datasets are distilled with much larger memory and computation cost (N = 80, |b| = 250 or 1000) and ZCA whitening.

B.3. Evaluation of Distilled Dataset

We evaluate all methods by training ResNet18 network with batch normalization using SGD optimizer with momentum 0.9,
weight decay 5e-4, learning rate 0.1, and batch size 128. For SelMatch and MTT, we utilize cosine annealing scheduler. For
other baselines, we employ step scheduler following the original papers. Additionally, we apply random cropping padded
with 4 pixels and random horizontal flipping on Dselect for combined augmentation of our method, which is typically used
for subset selection method.

C. More Experimental Results
C.1. Sliding Window Experiment

To validate the consistency of our sliding-window algorithm (described in Sec. 4) across diverse datasets, we show additional
results on CIFAR-100 and Tiny ImageNet, as illustrated in Figure 6. As the complexity of dataset increases (from CIFAR
to Tiny ImageNet), the optimal β achieving the highest test accuracy tends to increase, implying that the optimal window
subset for selection-based initialization includes easy samples for complex dataset. As the subset ratio increases, on the other
hand, the optimal β decreases, indicating the importance of incorporating hard and complex samples in the increased IPC.

C.2. Coverage Analysis

We present more results on coverage analysis, similar to that presented in Sec. 3.2. ‘MTT’ represents the original algorithm,
initialized with random samples, while ‘MTT init’ refers to MTT but initialized with the optimal window subset Dinitial, as
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Figure 6. The result of sliding window experiment on CIFAR-10/100 and Tiny ImageNet.

like SelMatch. As can be observed in Figure 7, both for MTT and MTT init, updating all samples during distillation results
in rapid diminish of coverage as the distillation iteration increases, especially on large IPC. This coverage diminish is caused
because traditional MTT overly changes rare and unique features of real samples into easy and representative patterns. On
the other hand, the coverage by SelMatch remains stable due to the partial updates of SelMatch, which maintains the unique
and rare features of selected hard samples within the synthetic dataset.
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Figure 7. Change of coverage throughout the distillation process. The first two rows and the last two rows show the results for CIFAR-10
and CIFAR-100, respectively, across various IPC settings. In each pair of rows, the first row plots coverage on the entire dataset and the
second row plots coverage on easy vs. hard groups.
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D. Further Ablation Studies
D.1. Other Difficulty Scores

SelMatch requires a measure of the difficulty of training samples to determine the appropriate difficulty level. For this
purpose, we leverage C-score for CIFAR-10/100 and Forgetting score metrics, both of which necessitate substantial
computational resources for computation, particularly the C-score. In cases where pre-computed difficulty scores were
unavailable, we explored the use of an alternative difficulty metric known as EL2N (Paul et al., 2021). EL2N quantifies
the initial loss during training and consequently necessitates only a few epochs of network training for computation. We
conducted sliding window experiments with different scores on CIFAR-100 with IPC=50, 100 and present the results in
Figure 8. All three test accuracy - difficulty curves using different difficulty scores exhibit a similar shape, but the curve
with the EL2N score appears more flat, resulting in a lower best test accuracy. We conjecture that EL2N has less power to
measure the samples’ difficulty because it utilizes only information from the early training phase. In Table 6, we present
the performance of SelMatch when utilizing these three different difficulty scores. We observe that using the Forgetting
score also leads to high performance comparable to using the C-score, which is leveraged for the main result (Table 1). This
verifies the robustness of our method to the choice of difficulty metric. However, when using EL2N score, there is slight
performance degradation, which results from the lower performance of the initialization point. This result can be viewed as
a trade-off between computation cost and performance.
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Figure 8. The result of sliding window experiment on CIFAR-100 with different difficulty scores.

Table 6. Performance of SelMatch using other different sample difficulty measures on CIFAR-100 with IPC=50 and 100.

IPC C-score Forgetting EL2N

50 54.5 54.2 52.9
100 62.4 62.9 61.6

D.2. Other Distillation Methods

For implementation, we utilize MTT (Cazenavette et al., 2022) as the base distillation method. However, our selection-based
initialization and partial update strategies are independent of the base dataset distillation method and can be applied to
other dataset distillation methods. To explore SelMatch’s adaptability to different baseline methods, we implemented
SelMatch on two other baselines: DSA(Zhao & Bilen, 2021) and SRe2L(Yin et al., 2024), and evaluated performance on
CIFAR-100 dataset. DSA updates the synthetic set to make its gradient similar to the gradient of the real dataset. SRe2L
decouples the bi-level optimization of the model and synthetic set, allowing for the use of larger models on large-scale
datasets. We report the results on DSA and SRe2L in Table 7 and Table 8, respectively. For SRe2L, we also include the
performance of initializing with random real samples, as the original baseline initializes synthetic samples with Gaussian
noise, for a fair comparison. The results demonstrate that both our initialization strategy and partial update mechanism
significantly contribute to performance enhancement, underscoring the effectiveness of SelMatch in terms of its versatility
and applicability.
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Table 7. Evaluation of SelMatch implemented on DSA baseline. The experiment is conducted on CIFAR-100 with IPC=25, 50.

IPC Baseline (DSA) Select Init Select Init + Partial Update (SelMatch)

25 38.3 43.4 45.0
50 43.6 49.8 50.8

Table 8. Evaluation of SelMatch implemented on SRe2L baseline. The experiment is conducted on CIFAR-100 with IPC=50, 100.

IPC Baseline Select Init Select Init + Partial Update
Noise Init Real Init (SelMatch)

50 49.9 57.5 59.7 63.1
100 57.1 61.4 64.2 67.1
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Figure 9. Results of the sliding window experiment with two different epoch settings. In the first setting, the network is fully trained on
each window subset (Full epochs), while in the second setting, the network is trained for only a few epochs (Few epochs).

E. Tuning Guidance
The implementation of SelMatch involves two critical hyperparameters: the distillation portion (α) and the window starting
point (β). However, determining the optimal values for α and β incurs substantial computational overhead. To address this,
we propose a more efficient approach for identifying these values.

To find the optimal window starting point (β), we suggest training the network on each window subset for only a few epochs
rather than fully training the networks. To evaluate the efficacy of this approach, we compared the results of the sliding
window algorithm using full epochs versus a reduced number of epochs, as shown in Figure 9. Specifically, for the “few
epochs” setting, we used 20% of the full number of epochs for CIFAR-10 and 10% for CIFAR-100 and Tiny Imagenet. The
figure demonstrates that the results from the sliding window algorithm with these two different epoch settings exhibit a high
rank correlation and nearly identical optimal window.

Additionally, we can significantly reduce the search space by leveraging two important observations from Figures 3 and
4(a). First, the α-test accuracy curve and the β-test accuracy curve exhibit a concave shape. Using this observation, we can
eliminate more than half of the entire search space. For example, start searching at α=0.5 and determine whether to increase
or decrease the α value based on evaluations at adjacent points (e.g., α = 0.4 or 0.6). Once the direction for adjustment is
established, continue searching until the test accuracy begins to decrease. Second, the optimal values for α and β decrease
as IPC increases. Using this observation, we can further reduce the search space. For instance, if we have already identified
the optimal α=0.3 on CIFAR-100 with IPC=100, then for larger IPC, we only need to search for α values smaller than 0.3.

F. Visualization
We compare the synthetic images of SelMatch for CIFAR-10 with IPC=250 (ratio=5%) and 1,500 (ratio=30%) in Figure
10 and 11, resp., for CIFAR-100 with IPC=25 (ratio=5%) and 150 (ratio=30%) in Figure 12 and 13, resp., and for Tiny
ImageNet with IPC=50 (ratio=10%) and 100 (ratio=20%) in Figure 14 and 15, respectively. In the figures, each column
corresponds to 10 classes (the all 10 classes for CIFAR-10, and the first 10 classes for CIFAR-100 and Tiny ImageNet),
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and the top five rows are images from Dselect and the bottom five rows are images from Ddistill. We can observe that the
synthetic dataset generated for the larger IPC tends to include more rare and unique images than the images generated for
the smaller IPC.

Dselect

Ddistill

Figure 10. Visualization of distilled dataset (CIFAR-10, IPC=250)
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Dselect

Ddistill

Figure 11. Visualization of distilled dataset (CIFAR-10, IPC=1,500)

18



SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates

Dselect

Ddistill

Figure 12. Visualization of distilled dataset (CIFAR-100, IPC=25)
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Dselect

Ddistill

Figure 13. Visualization of distilled dataset (CIFAR-100, IPC=150)
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Dselect

Ddistill

Figure 14. Visualization of distilled dataset (Tiny ImageNet, IPC=50)
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Dselect

Ddistill

Figure 15. Visualization of distilled dataset (Tiny ImageNet, IPC=100)
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