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ABSTRACT

Geometric median (GM) is a classical method in statistics for achieving a robust
estimation of the uncorrupted data; under gross corruption, it achieves the opti-
mal breakdown point of 0.5. However, its computational complexity makes it
infeasible for robustifying stochastic gradient descent (SGD) for high-dimensional
optimization problems. In this paper, we show that by applying GM to only a
judiciously chosen block of coordinates at a time and using a memory mechanism,
one can retain the breakdown point of 0.5 for smooth non-convex problems, with
non-asymptotic convergence rates similar to that of SGD with GM

1 INTRODUCTION

Consider smooth non-convex optimization problems with finite sum structure:

B 1 n
i = - i . 1
min lf(X) - ;f (X)] (1)
Mini-batch SGD is the de-facto method for optimizing such functions (Robbins & Monro, [1951;
Bottou, 2010; Tsitsiklis et al., [1986) which proceeds as follows: at each iteration ¢, it selects a random

batch D, of b samples, obtains stochastic gradients gfi) = V/fi(x¢), Vi € Dy, and updates the
parameters using iterations of the form:

. _ 1
i1 =% — 780, g0 = Dy > 2
1€Dy

In spite of its strong convergence properties in the standard settings (Moulines & Bach; 2011} |Dekel
et al., 20125 L1 et al., 2014} |Goyal et al.,2017; Keskar et al.| [2016;|Yu et al., 2012), it is well known
that even a small fraction of corrupt samples can lead SGD to an arbitrarily poor solution (Bertsimas
et al.;|2011; Ben-Tal & Nemirovski, [2000). This has motivated a long line of work to study robust
optimization in presence of corruption (Blanchard et al.,|2017} |Alistarh et al.,|2018aj Wu et al., [2020;
Xie et al.,2019). While the problem has been studied under a variety of contamination models, in this
paper, we study the robustness properties of the first-order method (2) under the strong and practical
gross contamination model (See Definition 1)) (L1} [2018; [Diakonikolas & Kane, [2019;|Diakonikolas
et al.,[2019bza) which also generalizes the popular Huber’s contamination model and the byzantine
contamination framework (Huber, |1992; |[Lamport et al., |1982).

In particular, the goal of this work is to design an efficient first-order optimization method to solve
(1), which remains robust even when 0 < ¢) < 1/2 fraction of the gradient estimates are arbitrarily
corrupted in each batch Dy, without any prior knowledge about the malicious samples. Note that,
by letting the corrupt estimates to be arbitrarily skewed, this corruption model is able to capture
a number of important and practical scenarios including corruption in feature (e.g., existence of
outliers) , corrupt gradients (e.g., hardware failure, unreliable communication channels during
distributed training) and backdoor attacks (Chen et al.,[2017a; Liao et al.,|2018;|Gu et al., [2019;
Biggio et al.| 2012; Mhamdi et al., 2018} [Tran et al.,|[2018).

!The implementation of the proposed method is available at|Code Link


https://anonymous.4open.science/r/BGmD-NeuRips-2021

Under review as a conference paper at ICLR 2022

Algorithm Iteration Complexity =~ Breakdown Point
SGD O(bd) 0
CMD * (Yang et al.,[2019;|Yin et al., 2018) O(bd) 1/2 - Q(+/d/b)
GMD (Cohen et al.,2016; Wu et al., 2020) O(de=2 + bd) 1/2
Data & Diggavi| (2020) O(db? min(d, b) + bd) 1/4
BGMD (This work) O(ke™2 + bd) 1/2

Table 1: Comparison of time complexity and robustness properties of different robust optimization methods.
The bold quantities show a method achieves the theoretical limits. * CMD throughout the paper will refer to
coordinate wise median descent i.e. simply replacing the aggregation step of SGD by CM(+)

Definition 1 (Gross Corruption Model). Given 0 < ¢ < % and a distribution family D on R? the
adversary operates as follows: n samples are drawn from D € D. The adversary is allowed to
inspect all the samples and replace up to {n samples with arbitrary points.

Intuitively, this implies that (1 — ) fraction of the training samples are generated from the true
distribution (inliers) and rest are allowed to be arbitrarily corrupted (outliers) i.e. o := |B|/|G| <
1, where B and G are the sets of corrupt and good samples. In the rest of the paper, we will refer to a
set of samples generated through this process as a-corrupted.

Definition 2 (Breakdown Point). Finite-sample breakdown point (Donoho & Huber, |1983) is a way
to measure the resilience of an estimator. It is defined as the smallest fraction of contamination that
must be introduced to cause an estimator to break i.e. produce arbitrarily wrong estimates.

In the context Definition [I| we can say an estimator has the optimal breakdown point 1/2 if it is robust
in presence of a-corruption V ¢ < 1/2 or alternatively V o < 1.

Definition 3 (Geometric Median). Given a finite collection of observations X1 ,Xas, . . . Xy, defined

over a separable Hilbert space X with norm || - || the geometric median or the Fermet-Weber point
(Haldane, [1948; Weber et al.| |1929 [Minsker et al., 2015; Kempermanl |1987) is defined as:
. = Gui{xi}) = angmin g0 = 3 Iy = x| ®
ye i=1

We call a point x € R? an e-accurate geometric median if g(x) < (1 + €)g(x.).

Robust SGD via Geometric Median Descent (GMD). Under the gross corruption model (Defini-
tion[I)), the vulnerability of mini-batch SGD can be attributed to the linear gradient aggregation step
(Blanchard et al.,[2017; |Alistarh et al.,[2018a;|Yin et al.,|[2018; [Xie et al.,[2019). In fact, it can
be shown that no linear gradient aggregation strategy can tolerate even a single grossly corrupted

update, i.e., they have a breakdown point (Definition 2) of 0. To see this, consider the single malicious

gradient g](-t) =—-> €D\ ggt) which results in the average to become 0 implying mini-batch SGD

getting stuck at the initialization. Motivated by this, a popular approach for robust optimization
is to find an estimate §(*) such that with high probability ||g®*) — & 2eWeg g\ | is small even

in presence of gross-corruption (Diakonikolas & Kane} [2019). In this context, geometric median
(GM) (Definition [3) is a well studied rotation and translation invariant robust estimator with optimal
breakdown point of 1/2 even under gross corruption (Lopuhaa et al., 1991; Minsker et al.,[2015;
Cohen et al.| [2016). Due to this strong robustness property, SGD with GM-based gradient aggregation
(GMD) has been widely studied in robust optimization literature (Alistarh et al., 2018a;|Chen et al.,
2017b; |Wu et al.| 2020). Following the notation of the update step of GMD can be written as:

X1 =% — 189, g9 = 6m({g"}) Vi € [ 4

Despite the strong robustness guarantees of GM, the computational cost of calculating € approximate
GM is prohibitive, especially in high dimensional settings. For example, the best known result
(Cohen et al., 2016) uses a subroutine that needs O(d/¢*) compute to find an c-approximate
GM. Despite recent efforts (Vardi & Zhang, [2000; [Weiszfeld, |1937; [(Chandrasekaran & Tamir, |1989;
Chin et al.,2013; |Cohen et al., 2016; |Pillutla et al.,|2019) to design computationally tractable GM(-);
given that in practical large-scale optimization settings such as training deep learning models the
number of parameters (d) is large (e.g., d ~ 60M for AlexNet, d ~ 175B for GPT-3); GMD remains
prohibitively expensive and with limited applicability.
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Overview of Our Algorithm (BGMD). In this work, we leverage coordinate selection strategies
to significantly reduce the cost of GMD and establish Block co-ordinate GM Descent (BGMD)
(Algorithm [T) resulting in nearly two orders of magnitude speedup over GMD on most standard deep
learning training tasks, while maintaining the same level of accuracy and optimal breakdown point
1/2 even in presence of gross corruption.

At a high level, at each iteration BGMD selects a block of 0 < k < d important coordinates of the
stochastic gradients. Importance of a coordinate is measured according to the largest directional
derivative measured by the squared ¢ norm across all the samples (Algorithm [2). The remaining
(d — k) dimensions are discarded and gradient aggregation happens only along these selected k
directions. This Implies the GM subroutine is performed only over gradient vectors in R* (a
significantly lower dimensional subspace). Thus, when k < d, this approach provides a practical
solution to deploy GM-based aggregation in high dimensional settings)”| The intuition behind our
approach is that as a consequence of over-parameterization, for deep learning models most of the
information in the gradients is captured by a small subset of the coordinates [Shi et al. (2019). Hence,
by the judicious block coordinate selection subroutine outlined in Algorithm [2 one can identify an
informative low-dimensional representation of the gradients and use highly robust estimators such as
GM even in high dimensional setting which was previously intractable. While Algorithm [2]identifies
a representative block of the coordinates, aggressively reducing the dimension (i.e., £ < d) might
lead to a significant approximation error, which in turn might lead to slower convergence (Nesterov,
2012; Nutini et al., |2015)) rate, dwarfing the benefit from reduction in per iteration cost. To alleviate
this issue, by leveraging the idea of Error Compensation (Seide et al., [2014; Stich & Karimireddy|
2019; Karimireddy et al.,|2019b) we introduce a memory augmentation mechanism. Specifically, at
each iteration the residual error from dimensionality reduction is computed and accumulated in a
memory vector m; and in the subsequent iteration, m; is added back to the new gradient estimates.

Algorithm 1 Block GM Descent (BGMD)

Initialize: estimate: x, € R%, step-size: v, memory: my = 0, Block Coordinate Selection operator:
Ci(+), Geometric Median operator: GM(-)
for epochs t=0, ..., until convergence do

Select samples D; = {41, ..., } and obtain : gf@ =V /fi(x¢), Vi € Dy
Let G; € RP*4 s.t. each row Gy, :] = ggz)

Gyfi,:] < 7Gyfi, )] +my Vi € [)]  (Memory Augmentation)

A, := Cr(Gy) € R?*  (Select k important dimensions via Algo. D
M1 =Gy —A; (Compute Residuals)

myiq = % Zogigb M 1[i, ] (Update memory)

g: := GM(A;) (Robust Aggregation in R¥)
X¢+1 =Xt — g (Global model update)

end

Algorithm 2 Block Coordinate Selection Strategy

Input: G, € R"*4 k
for coordinates j=0,...,d-1do
| s; < IG¢[:,4]lI* (norm along each dimension)
end
Sample set Il;, of k dimensions with probabilities proportional to s;
Cr(Go)[i,j € In] = Guli, j], Cr(Go)[i,j ¢ L] =0
Return: Ci,(G¢)

Contributions. The main contributions of this work are as follows:

e We propose BGMD (Algorithm I, a method for robust optimization in high dimensions. BGMD
is significantly more efficient than the standard GM-SGD method but is still able to maintain the
optimal breakdown point 1/2.

’The notation k < d implies that k is at least an order of magnitude smaller than d.
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e We provide strong guarantees on the convergence rate of BGMD in standard non-convex sce-
narios including smooth non-convex functions, and non-convex functions satisfying the Polyak-
Lojasiewicz Condition. These rates are comparable to those for GM-SGD under more restricting
conditions such as strong convexity (Chen et al.[(2017b); Pillutla et al.|(2019); [Wu et al.|(2020).

e Through a computational complexity analysis and extensive experiments under several common
corruption settings ; we demonstrate that BGMD can be up to 3x more efficient to train than
GM-SGD on Fashion MNIST and CIFAR-10 benchmarks while still ensuring similar test accuracy
and maintaining same level of robustness.

2 RELATED WORK

Robust optimization in the presence of gross corruption has received renewed impetus in the machine
learning community, following practical considerations such as preserving the privacy of the user data
and coping with the existence of adversarial disturbances. There are two main research directions
in this area: The first direction aims at designing robustness criteria to identify and subsequently
filter out corrupt samples before employing the linear gradient aggregation technique in (2)). For
example, (Ghosh et al., 20195 |Gupta et al., 2020) remove the samples with gradient norms exceeding
a predetermined threshold; (Yin et al., [2018) remove a fraction of samples from both tails of the
gradient norm distribution; (Chen et al.,[2018; | Yang & Bajwal [2019) use redundancy (Von Neumann,
1956) and majority vote operations; (Diakonikolas et al., 2019b) rely on spectral filtering; (Steinhardt
et al.,[2017; Blanchard et al., 2017; |Data & Diggavi, 2020; Bulusu et al.,[2020) use (¢, o)-resilience
based iterative filtering approach; while (Xie et al., 2019) instead add a resilience-based penalty
to the optimization task to implicitly remove the corrupt samples. Our approach falls under the
second research direction, where the aim is to replace mini-batch averaging with a robust gradient
aggregation operator. In addition to GM operator (Feng et al., 2014} |Alistarh et al.,[2018a; (Chen
et al.,|2017b) which was discussed earlier, other examples of robust aggregation techniques including
krum (Blanchard et al.,[2017), coordinate wise median (Yin et al.,[2018)) use some approximation of
median in high dimensions by loosing some factor in resilience (breakdown point). We also compare
a number of robust optimization methods with BGMD in terms of computational complexity and
breakdown in Table[I] Please see[A.2|for more discussion on connection to prior art.

3 BLOCK COORDINATE GEOMETRIC MEDIAN DESCENT (BGMD)

As discussed earlier, BGMD (Algorithm [I)) involves two key steps: (i) Selecting a block of informative
coordinates and run computationally expensive GM aggregation over a low dimensional subspace and
(i) Compensating for the residual error due to block coordinate selection. In the rest of this section
we discuss these two ideas in more detail.

[

0 120 150 180 210 240 3 a4 s 6 7
Gradient Aggregation Steps Number of passes over data

(a) Residual Error (b) Importance of Memory (c) Computational Complexity

Figure 1: Training LeNet on fashion mnist with the proposed block descent approach (a) we see that the residual
error 7, — 0 as training progresses for suitably chosen k. (b) we plot the generalization performance at different
3. We see that training with the memory mechanism (m) enjoys the same accuracy while using a much smaller
5. (c) We plot the theoretical asymptotic complexity per iteration (Lemma@ at different dimensions to highlight
the trade off and further emphasize of the importance of the memory mechanism.

Block Selection Strategy. The key intuition why we might be able to select a small number of
k coordinates for robust gradient estimation is that in practical over-parameterized models, most
of the information of the gradient is likely concentrated along a few coordinates (Chaudhari et al.|
2019). So, what would be the best strategy to select the most informative block of coordinates?



Under review as a conference paper at ICLR 2022

Ideally, one would like to select the best & dimensions that would result in the largest decrease in
training loss. However, this task is NP-hard in general (Das & Kempe, 2011; Nemhauser & Wolsey,
1981; |Charikar et al., |2000). Instead, we adopt a simple and fast block coordinate selection rule:
Consider G; € R*“ where each row corresponds to the transpose of the stochastic gradient estimate:

Gyi,:] = (g!")T € R4, Vi € [b] where b is the batch size (Z). Then, selecting k dimensions is
equivalent to selecting k columns of G;; which we select according to the norm of the columns. That
is, we assign a score to each dimension proportional to the /5 norm (total mass along that coordinate)
ie. s; = ||G¢[:, 4]||%, for all j € [d]. We then sample only k coordinates with with probabilities
proportional to s; and discard the rest to find a set wy, of size k (see Algorithm . We show that this

method produces a contraction approximation to G.

Lemma 1. Algorithm E yields a contraction approximation: E [[|C(G;) — G¢||?|G;] < (1 —
OIG?, & <& <1, where Cu(Gy)i, j € wi] = Gyli, j], Ci(Gy)[i, 5 ¢ wi] = 0.

It is also worth noting that without additional distributional assumption on G the lower bound on
¢ cannot be improved || However, in practice the gradient vectors are extremely unlikely to be
uniform (Alistarh et al., 2018b) and thus BGMD is expected to satisfy Lemmau with £ = 1 for
sufficiently large k. We provide empirical support in Figure|I[a) where we plot relative residual error
re = |Gt — Cpa(Gy)||?/||G¢||* of our block selection approach for different 0 < 3 < 1

The Memory Mechanism. While descending along only a small subset of k& coordinates at each
iteration significantly improves the per iteration computational cost (Lemma [2), a smaller value of &
would also imply larger gradient information loss i.e., a smaller £ (Lemmal|l). Intuitively, a restriction
to a k-dimensional subspace results in a d/k factor increase in the gradient variance (Stich et al.,
2018)). We mitigate this by adopting the following a memory mechanism: Throughout training, we
keep track of the residual errors in G; — C,(G¢) viam, € R that we call memory. At each iteration
t, it simply accumulates the residual error incurred due to ignoring d — k dimensions, averaged over
all the samples participating in that round. In the next iteration, m; is added back to all the the new
gradient estimates as feedback. Following our Jacobian notation, the memory update is given as:

Memory Augmentation G.[i,:] = 7Gq[i,:] + My Vi € [b]
Memory Update M, = G, — C(Gy) ;1 = 1/b Z{KM M, [i, ]

Intuitively, as the residual at each iteration is not discarded but rather kept in memory and added back
in a future iteration, this ensures similar convergence rates as training in R?.

3.1 COMPUTATIONAL COMPLEXITY ANALYSIS

To theoretically understand the overall computational benefit of our proposed scheme we analyze
per iteration computational complexity BGMD and other robust aggregation methods as described
in Table E Consider solving problem (1)) using SGD style iterations of the form ) with |D;| = b
and x € R? Note that the difference between the iterations of SGD, GM-SGD, and BGMD
is primarily based on how they aggregate the updates communicated by samples participating in
training during that iteration. Formally, at iteration ¢, let 7;* denote the time to aggregate the
gradients. Also let, 77 denote the time taken to compute the batch gradients (i.e., time to perform
back propagation). Thus, the overall complexity of one training iteration is roughly O(72 + 77).
Now, note that 7 is approximately the same for all the algorithms mentioned above and for methods
like GM-SGD 77 < 7{. So we focus on 7 to study the relative computational cost of different
robust gradient aggregation schemes as summarized in Table[I} The complexity proofs are provided
in supplementary |A.4] In particular, we show that 7 for BGMD is O(k/e? + bdg, where the first
term in computational complexity is due to computation of GM of gradients in R” and the second
term is due to the coordinate sampling and memory procedure. Based on this observation, one can
derive the following resul

3To see this, consider the case where each gil) is uniformly distributed along each coordinates. Then, the
algorithm would satisfy Lemmawith &= g. In this scenario, the achievable bound is identical to the bound
achieved via choosing the k dimensions uniformly at random

*In most practical settings, be? < 1/F
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Lemma 2. Let k < O(1/F — be?) - d. Then, given an e- approximate GM oracle, Algorithmlz
achieves a factor F speedup over GM-SGD for aggregating b samples.

In contrast, GM-SGD and its variants (Alistarh et al.||2018a;|Chen et al.,[2017b; Byrd et al., 2012)
require computing e-approximate GM of b points in R incurring per iteration cost of at least O(d/e?)
(Cohen et al., 2016; Pillutla et al.| 2019; |Alistarh et al., 2018a; (Chen et al., [2017b) and can be
significantly costlier than usual SGD which needs only O(bd) computation per iteration. As we also
show in Fig. [L(c) that by choosing a sufficiently small block of coordinates i.e. k¥ < d, BGMD can
result in significant savings per iteration over GMD.

3.2 CONVERGENCE GUARANTEES OF BGMD

We first briefly recall some related concepts and state our main assumptions.

Assumption 1 (Stochastic Oracle). Each non-corrupt sample i € G is endowed with an unbiased
stochastic first-order oracle with bounded variance, i.e.

E:p;(gi(x,2)] = Vfi(x),  Eznp,

Assumption 2 (Smoothness). Each non-corrupt function f; is L-smooth, Vi € G,

VEi(x,2)||* < o? 5)

L
fi) < fily) + (x =y, V) + S x = yl?. vx,y € R% (6)

Assumption 3 (Polyak-Lojasiewicz Condition). The average of non-corrupt functions f :=
& Y icq fi(x) satisfies the Polyak-Lojasiewicz condition (PLC) with parameter pu, i.e.

IVF)I? > 2u(f(x) — f(x)), p >0 where x* = argmin f(x), Vx e R (7)

We further assume that the solution set X* € R® is non-empty and convex. Also note that ji < L.

We now analyze the convergence properties of BGMD (Algorithm [T and state the results in Theorem
and Theorem for general non-convex functions and functions satisfying PLC, respectively.

Theorem 1 (Smooth Non-convex). Consider the case where the functions f; correspond to non-
corrupt samples i € G are non-convex and smooth (Assumption[I{2 hold). Run Algorithm|[I with
compression factor & (Lemma , learning rate v = 1/2L and e—approximate GM(*) in presence of
a—corruption (Definition|l)) for T iterations. Then for any T € [T'| sampled uniformly at random:

%) |2 = L(f(x0) — f(x*)) , o262 L?e?
E[|V f(x,)] O< T +(1_a)2+|G|2(1_a)2>.

Theorem|I]and Theorem 2]state that BGMD with a constant step-size convergences to a neighborhood
of a first order stationary point. The radius of this neighborhood depends on two terms. The first
term depends on the variance of the stochastic gradients as well as the effectiveness of the coordinate
selection strategy through £. The second term depends on how accurate the GM computation is
performed in each iteration.

Theorem 2 (Non-convex under PLC). Further assume f = £ 3, ¢ fi(x) satisfies the PLC with
parameter ju i.e. Assumption[I}3|hold. Then, after T iterations of BGMD with compression factor &,
learning rate v = 1 /4L and e—approximate GM(+) oracle in presence of a—corruption satisfies:

. LRy wT o262 L%
Elxr — x*[? = O 222 [1 . —}
e =l (w scl T —ar EER - a2 )

for a global optimal solution x* € X*. Here, X1 := WLT ZtT;()l wyxy with weights wy := (1 —
_ il
4p) "0, Wr =30, 5 we.

Due to space constraints a clear proof outline tl and the complete proofs |, i are provided in
supplementary material.
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Furthermore, both terms in the radius depend on «. By noting that the result holds Vo := |B|/|G| =
- . 7 < 1 (see Deﬁnltlon we can can establish the following result.

Remark 1 (BGMD Breakdown Point). BGMD converges to the neighborhood of a stationary
point Y0 < 1 < 1/2 i.e. has optimal breakdown point of 1/2.

We note that the convergence rates established match the rate of GM-SGD when the data is non i.i.d.

(see e.g. (Chen et al., 20170b; [Alistarh et al., [2018a; [Wu et al.| 2020 |;|Data & Diggavi| 2020) and the

references therein). Further compared to the existing analysis that require strong convexity(Alistarh|
et al.|(2018a)); [Wu et al. (2020); Data & Diggavi (2020)), Theorem@only assumes PLC which is a
much milder condition. [

Discussion on choice of j. Based on the discussion above, we note that the size of the block
k = [d trades off between per-iteration complexity and the final error of the estimate. While a small
0 < 8 < 1 ensures faster iterations (Lemma/2), it also implies that BGMD can converge to a larger
neighborhood of sub-optimality (Theorem|1}[2). While finding a bound on 3 might be difficult since
it will depend of the structure of the data itself and thus treated as a hyper-parameter; we will show
empirically that it is often possible to run BGMD with a small 3 to significantly speed up robust
optimization while maintaining strong generalization performance (Figure 3| @] and 3).

4 EMPIRICAL EVIDENCE

In this section, we describe our experimental setup, present our empirical findings and establish
strong insights about the performance of BGMD. Table 2 provide a summary of the results on two
vision datasets comparing BGMD with SGD and other robust aggregation based approaches GMD
and CMD. To ensure reproducibility, all the exp. are run with deterministic CUDNN back-end and
repeated 5 times with different random seeds and the confidence intervals are noted in the Table[2] In
particular, we use the following two important optimization setups for our experimenty’|

Homogeneous samples. We trained a moderately large LeNet (LeCun et al[T998) with 1.16M
parameters on the challenging Fashion-MNIST dataset in the mini batch setting
with 32 parallel independent and identically distributed (i.i.d) mini-batches each with batch size 64.
Each experiment under this setting was run for 50 full passes over training data (epochs).

Heterogeneous samples.  Our theoretical results (Theorem [T, 2) are established without any
assumption on how the data is distributed across batches. We verify this by training an 18-layer
wide ResNet (He et al.,[2016) with 11.2M parameters on CIFAR-10 (Krizhevsky et al.}2012) in a
federated learning setting (McMabhan et al.|[2017) with 10 heterogeneous clients each running local
SGD with batch size 128. Each experiment was run for 200 epochs.

45% Corruption
B2 S Mean
* CoMed
* Geo-Med
H Timmed Mean
S Norm Clip
Krum

e o TueMean

”"""'ﬂmn,

19 20 25 2s 25

Clean Data

(a) Original Image (b) Salt & Pepper Noise (c) True gradients (d) 45% corruption

Figure 2: (a, b) Feature Corruption: shows the effect of the perturbations added to image. (c, d) Gradient
Corruption: This Toy example in 2 dimensions visually demonstrates the superior robustness properties of GM
for robust mean estimation (e.g. estimating the aggregated gradient) in presence of heavy corruption.

8 Additionally, in absence of corruption (i.e., o = 0), if the data is i.i.d., our theoretical analysis reveals that
by setting v = O(1/v/T) Algonthmlconvergences at the rate of O(1/ \/> T') to the statistical accuracy and
by setting v = O(1/T"), BGMD convergences at the rate of O(log T'/T") under PLC. This last result can be
established by using the concentration of the median-of-the-means estimator (Chen et al.L 2017b).

"Please refer to supplementaryfor additional results, details on network architecture and hyper-parameter
choices and a discussion on comparison with filtering based robust optimization approaches.
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In order to simulate a wide variety of real world corruption scenarios we consider all three possible
sources of error: corruption in features, corruption in labels, and corruption in communicated
gradients. All the experiments are repeated for 0% (i.e. clean), 20% and 40% corruption levels.
Feature Corruption. = We consider corruption in the raw training data itself which can arise
from different issues related to data collection. Particularly, adopting the corruptions introduced
in (Hendrycks & Dietterich, 2018)), we use two noise models to directly apply to the corrupt samples:
(i) Additive: Gaussian noise z; ~ A (0, 100) directly added to the image, and

(ii) Impulse: Salt and Pepper noise added by setting 90% of the pixels to O or 1.

Gradient Corruption. In distributed training over multiple machines the communicated gradients
can be noisy, e.g., due to hardware issues or simply because some nodes are adversarial and aim to
maliciously disrupt the training. Using standard noise models for gradient corruption (Fu, 1998} Xie
et al., 2019; Bernstein et al., 2018)) we directly corrupt the gradients in the following manner:

(i) Additive: adversary adds random Gaussian noise z; ~ A (0, 100) to the true gradient, and
(ii)Scaled Bit Flip: corrupted gradients g{ are the scaled bit flipped version of the true gradient (Bern-
stein et al., |2018) estimate. In particular, we use the following scale: gf = —100g;.

Label Corruption. We consider the important backdoor attack (Shen & Sanghavil 2019; [Tolpegin
et al., 2020) where the goal of the adversary is to bias the classifier towards some adversary chosen
class. To simulate this behavior: at each iteration we flip the labels of randomly chosen v fraction of
the samples to a target label (e.g. in Fashion-MNIST we use 8:bag as the backdoor label).

1500 1900 2100 2400 2700 3000 300 60 %0 1200 1300 1800 2100 2400 2700 3000
otime) orime)

(a) No corruption (b) 10% Corruption (¢) 20% Corruption (d) 40% Corruption

50 %0 1200 1500 1800 2100 2400 2700 3000
orime)

Figure 3: Robustness to Feature Corruption: Test accuracy of different schemes as a function of wall clock
time for training Fashion-MNIST using LeNet (i.i.d) in presence of impulse noise. Observe that BGMD is able
to maintain high accuracy even in presence of strong corruption while attaining at least 3x speedup over GMD
whereas CMD performs sub-optimally and SGD diverges at such high level of corruption.

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 4: Robustness to Gradient Corruption: Training Fashion-MNIST using LeNet in i.i.d setting in
presence of scaled bit flip corruption to stochastic gradients. Similar to FigureEl, BGMD remains efficient.
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E
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)

E
0 30 o 00 1200 1500 1500 2100 200 2700 000 30 o0 %0 1200
ottme)

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 5: Robustness to Label Corruption: Training Fashion-MNIST (iid) with LeNet in presence of
backdoor attack. Even in this setting BGMD outperforms SGD, GMD, CMD

Discussion We observe that (Table[2) without corruption both BGMD and GMD are able to achieve
similar accuracy as the baseline (i.e., SGD). Conversely, CMD has significant sub-optimality gap even
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Corruption (%) SGD CmD BGwMD GMD
LeNet - Fashion MNIST (homogeneous)
Clean - 89.39+0.28 83.82+0.26 89.25+£0.19  88.98-+0.3
Gradient Corruption
Bit Flip 20 - 84.20i0.()2 88.4240.16  88.07+0.05
40 - 82.33+1.60 85.67+0.09 85.57+0.09
Additive 20 - 72.55i().] 6 87.87i().33 87.24+0.16
40 - 41.04+1.13 88.294+0.01  83.89-+0.08
Feature Corruption
Additive 20 - 82.38+0.13 86.76+0.03 86.63+0.04
40 - 78.54+0.65 82.27+0.06 81.23+0.03
Impulse 20 79.18+6.47  82.594+0.60  86.91-+0.36 86.23i().03
40 - 78.03+0.73  78.03+0.73 81.41+0.12
Label Corruption
Backdoor 20 86.99-+0.02 76.38i().1:§ 88.97i().1() 88.26-+0.04
40 73.01+£0.68  60.854+1.24 84.69+0.31 81.324+0.16
ResNet18 - CIFAR10 (heterogeneous)
Clean - 82.29-£1.32 85.50+1.43 84.824+0.76 85.65+0.48
Gradient Corruption
Bit Flip 20 - 80.87i(,).21 84.56i().0(§ 88.07i().()75
40 - 77.41+1.04 82.66+0.31 80.81-+0.01
Additive 20 20.74+1.56 54.75i().38 83.84£0.12 82.40i().§)()
40 - 23.35+6.13  82.79+0.68 79.46+0.24

Table 2: Summary of generalization performance under variety of corruption settings. - denotes divergence.

in the clean setting (Chen et al., | 2017b). We observe similar trend under different corruption models
over various levels of corruption. When corruption is high, SGD starts to diverge after a few iterations.
While CMD doesn’t diverge, at higher level of corruptions its performance significantly degrades. On
the other hand, both GMD and BGMD remain robust and maintain their test accuracy as expected from
their strong theoretical guarantees. Surprisingly, BGMD not only maintains similar robustness as
GMD, in several experiments it even outperforms GMD. In fact, in the heterogeneous setting it
outperforms SGD even in absense of corruption. To demonstrate the computational benefit of BGMD
we plot test accuracy as a function of the wall clock time. Figure[3,}4 and[5 suggest that under a
variety of corruption settings BGMD is able to achieve significant speedup over GMD often by more
than 3x while maintaining similar (sometime even better) test performance as GMD.

Summary of Results. The above empirical observations highlight the following insights:

(a) For challenging corruption levels/models, GM based methods are indeed superior while standard
SGD or CMD can be significantly inaccurate,

(b) In all of our reported experiments, BGMD was run with & set to 10% of the number of parameters.
Despite using such a small ratio BGMD retains the strong performance of GMD.

(¢) By judiciously choosing k£, BGMD is more efficient than GMD, and

(d) memory augmentation is vital for BGMD to attain a high accuracy while employing relatively
small values of k.

5 CONCLUSION

We proposed BGMD, a method for robust optimization in high dimensional setting that achieves the
optimal statistical breakdown point while delivering significant savings in the computational costs
per iteration compared to existing GM-based strategies. While the current work is more theoretical
and algorithmic in nature, we believe that robust learning — the main problem addressed in the work
—is a key requirement for deep learning systems to ensure that a few malicious data points do not
completely de-rail the system and produce offensive/garbage output.
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