
Sketch-Plan-Generalize : Learning and Planning with
Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Namasivayam Kalithasan * 1 Sachit Sachdeva * 1 Gurarmaan Singh Panjeta 1 Harsh Himanshu Vora 1

Himanshu Gaurav Singh 2 Vishal Bindal 2 Arnav Tuli 2 Divyanshu Aggarwal 1 Rohan Paul 1 Parag Singla 1

Abstract

Effective human-robot collaboration requires the
ability to learn personalized concepts from a lim-
ited number of demonstrations, while exhibiting
inductive generalization, hierarchical composi-
tion, and adaptability to novel constraints. Exist-
ing approaches that use code generation capabil-
ities of pre-trained large (vision) language mod-
els as well as purely neural models show poor
generalization to a-priori unseen complex con-
cepts. Neuro-symbolic methods (Grand et al.,
2023) offer a promising alternative by searching
in program space, but face challenges in large
program spaces due to the inability to effectively
guide the search using demonstrations. Our key
insight is to factor inductive concept learning as:
(i) Sketch: detecting and inferring a coarse sig-
nature of a new concept (ii) Plan: performing
an MCTS search over grounded action sequences
guided by human demonstrations (iii) General-
ize: abstracting out grounded plans as inductive
programs. Our pipeline facilitates generalization
and modular re-use, enabling continual concept
learning. Our approach combines the benefits of
code generation ability of large language models
(LLMs) along with grounded neural representa-
tions, resulting in neuro-symbolic programs that
show stronger inductive generalization on the task
of constructing complex structures vis-á-vis LLM-
only and purely neural approaches. Further, we
demonstrate reasoning and planning capabilities
with learned concepts for embodied instruction
following.

*Equal contribution 1IIT Delhi 2Work Done when at IIT
Delhi. Correspondence to: Namasivayam Kalithasan <Namasi-
vayam.k@cse.iitd.ac.in>.

Accepted at Programmatic Representations for Agent Learning
Workshop, 42nd International Conference on Machine Learning,
Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

1. Introduction
For robots to collaborate effectively with humans, they must
quickly learn personalised concepts from just a few demon-
strations. This ability to form inductive representations of
novel grounded concepts and apply them for tasks beyond
training is a hallmark of human intelligence (Tenenbaum
et al., 2011; Chollet, 2019). In the context of robot learning,
such representations are characterized by four fundamen-
tal properties: (a) it should be grounded directly in human
demonstrations, reflecting the human’s intent rather than
relying sorely on prior world knowledge, (b) it must gen-
eralize beyond observed examples; e.g., from a few towers
of certain heights, infer how to build towers of arbitrary
heights, (c) it should allow for the hierarchical interpreta-
tion of increasingly complex concepts as compositions of
simpler ones; e.g., a staircase as a sequence of towers of
increasing height, (d) it should be easily modifiable to in-
corporate additional constraints in new instructions, such as
ensuring no green block is placed near a blue or yellow one
in a staircase.

Existing approaches fall short of fully satisfying these cri-
teria. Recent advances in large language models (LLMs)
have enabled general-purpose planners. These planners use
world knowledge to identify relevant concepts and gener-
ate plans from language task specifications (Singh et al.,
2022; Liang et al., 2023; Ahn et al., 2022; Achiam et al.,
2023; Huang et al., 2022a). However, they often struggle to
learn new concepts from demonstrations, especially when
the concepts are linguistically novel. This is because they
rely heavily on prior world knowledge, which limits their
faithfulness to demonstrations and their ability to gener-
alize inductively. Purely neural approaches, such as (Liu
et al., 2023), can learn directly from demonstrations but
typically fail to generalize beyond training data because
they (a) do not explicitly model symbolic induction and
(b) lack modularity, restricting their ability to reuse learned
concepts. In contrast, neuro-symbolic approaches (Grand
et al., 2023; Ellis et al., 2021) offer a more promising alter-
native. They leverage LLMs or enumerative program search
to discover generalizable programs directly in the program
(string) space. While these models outperform purely LLM-

1

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

based or neural methods in terms of generalization, they still
face significant challenges: enumerative searches become
computationally infeasible in complex program spaces (e.g.,
Python programs), and such search cannot be easily guided
by human demonstrations.

In response, we present a neuro-symbolic agentic framework
that (i) identifies when learning a new concept is required,
(ii) requests human demonstrations to learn an inductively
generalizable representation of the unknown concept, and
(iii) uses the learned concepts to generate control policies for
novel instruction-following tasks with discrete constraints.
Unlike prior methods, our concept learning approach, called
SPG, factorizes the concept learning task into three stages:
(a) Sketch: Given a language-annotated demonstration of a
novel concept, an LLM is used to postulate a function sig-
nature. (b) Plan: Using MCTS, grounded action sequences
are discovered by maximizing a reward that measures how
closely the constructed structure matches the human demon-
stration. (c) Generalize: The code-generation capability of
an LLM is leveraged to distill grounded plans from multiple
demonstrations into an inductively generalizable program.
This enables learning of inductively generalizable represen-
tations while restricting the search to the grounded actions,
which can be effectively guided through dense rewards from
human demonstration and is less expensive than searching
directly in the program space. We also show how the learned
concepts can be used for goal-conditioned planning in novel
input scenes and instructions, even when visual or spatial
constraints are present. Our experiments demonstrate that
our framework can accurately learn both simple and com-
plex concepts from just a few demonstrations across various
spatial structures. Moreover, it exhibits strong inductive
generalization in out-of-distribution settings, significantly
outperforming baseline methods.

2. Related Works
Concept Learning: The problem of acquiring higher-order
programmatic constructs is often modelled as Bayesian in-
ference over a latent symbol space given observed instances.
Seminal works have demonstrated efficient inference over la-
tent generative programs to express handwritten digits (Lake
et al., 2015), 2D drawings (Ellis et al., 2018), grid-world puz-
zles (Wang et al., 2024a), visual question answering (Mao
et al., 2019), goal-directed policies (Silver et al., 2019), and
compressed or refactored code (Grand et al., 2023; Ellis
et al., 2021). These approaches typically either (i) search
program space using a probabilistic grammar, which is in-
feasible for large program spaces like Python, or (ii) use
LLMs to directly infer programs, which may produce physi-
cally ungrounded outputs. Furthermore, because partially
generated programs cannot be evaluated, direct search in
program space does not effectively leverage demonstrations

to guide the search. In contrast, our approach first searches
for grounded action sequences that can be efficiently guided
by dense rewards from human demonstrations. We then use
an LLM to abstract these sequences into a program, making
program inference more tractable and efficient. While prior
works focus on 2D problems without considering physical
plausibility (for example, towers can be drawn from top
to bottom but cannot be constructed that way in reality),
we expose the search to assessing the physical construction
plausibility, thereby learning physically grounded concepts.

Learning-to-plan Methods: Our work is complementary to
efforts that learn symbolic constructs for efficient planning.
Works such as (Silver et al., 2023; 2024; Liu et al., 2024),
infer state-action abstractions for planning by querying large
pre-trained models or by optimizing a goal attainability ob-
jective. This paper, instead, focuses on learning a represen-
tation for complex spatial assemblies as inductive programs
leading to the ability to infer complex goal specifications
which can then be combined with aforementioned works
for synthesize efficient plans to realize complex assemblies.
Works such as (Li et al., 2020) learn to construct structures
by encoding relational knowledge via graph neural network.
However, this effort suffers from poor generalization to un-
seen examples, (e.g., tower of larger size) and do not possess
a mechanism to re-use previously acquired concepts. Works
such as (Wang et al., 2023a; 2024b) shows lifelong learning
of skills by learning to plan high-level tasks through com-
position of simple skills for simulated agents. Others (Wan
et al., 2023; Parakh et al., 2023) initiate new skill acquisition
upon detecting task failure, building a library of skills over
time. However, they do not model inductive use of learned
concepts and initiate skill acquisition only upon failure as
opposed to learning continually even from goal-reaching
demonstrations.

Robot Instruction Following: Instruction following in-
volves grounding symbolic constructs expressed in language
with aspects of the state-action space such as object assem-
blies (Paul et al., 2018; Collins et al., 2024; Lachmy et al.,
2022), spatial relations (Tellex et al., 2011; Kim et al.,
2024), reward functions (Boularias et al., 2015), or motion
constraints (Howard et al., 2014). These works assume the
presence of grounded representation for symbolic concepts
and only learn associations between language and concepts.
In contrast our work jointly learns higher-order concepts
composed of simpler concepts along with their grounding
in the robot’s state and action space. Others (Singh et al.,
2022; Wang et al., 2023b; Ahn et al., 2022; Liang et al.,
2023) leverage prior-knowledge embodied in large vision-
language models to directly translate high-level tasks to
robot control programs. Our experiments (reported subse-
quently) demonstrate their limitation in outputting programs
for structure assembly-type tasks that require long-range
(inductive) spatial reasoning and consideration of physi-

2

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 1: Problem Overview. Our goal is to enable an embodied agent to learn grounded and generalizeable representations for spatial
abstractions possessing a notion of induction (e.g., constructing a tower, row or their combinations such as staircases, boundary etc.).
(Left) A human demonstrates the construction of a row and tower of size three. (Right) The agent learns program representation that
enables inductive generalization to novel structures (varied sizes and visual attributes) and expresses complex concepts as hierarchical
composition of previously acquired ones. E.g., tower as blocks placed one on top of another and a pyramid as rows of decreasing size.

cal plausability of construction. Our approach addresses
this problem by coupling abstract task knowledge from
pre-trained models with physical reasoning in the space of
executable plans.

3. Preliminaries and Problem Setting
We consider an embodied agent that uses a visual and depth
sensor to observe its environment and can grasp and release
objects at specified poses. We represent the robot’s domain
as a goal-conditioned MDP < S,A, T , g,R, γ > where S
is the state space, A is the action space, T is the transition
function, g is the goal, R is the reward model and γ is the
discount factor. The agent’s objective is to learn a policy that
generates a sequence of actions from an initial state s0 to
achieve the goal g in response to an instruction Λ specifying
the intended goal from a human. We assume that the agent
possesses a model of semantic relations (e.g., left(), right()
etc.) as well as semantic actions such as moving an object
by grasping and releasing at a target location. Such modular
and composable notions can be acquired from demonstra-
tions via approaches outlined in (Kalithasan et al., 2023;
Mao et al., 2019; 2022). Such notions populate a library of
concepts L available as grounded executable function calls.
Following recent efforts (Liang et al., 2023; Huang et al.,
2022b; Ahn et al., 2022; Singh et al., 2022) in representing
robot control directly as executable programs, we represent
action sequence corresponding to a plan as a program con-
sisting of function calls to executable actions and grounded
spatial reasoning.

Our goal is to enable a robot to interpret and learn the con-
cepts in instructions such as “construct a tower with red
blocks of height five". Specifically, we aim to learn spa-
tial constructs like a tower that requires sequential actions

that repeatedly place a block on top of a previously con-
structed assembly, a process akin to induction. Given a
few demonstrations of constructing a spatial assembly, D,
each consisting of natural language description Λ (“con-
struct a tower of red blocks of size five") and a sequence
of key frame states {S1, · · · , Sg} associated with the con-
struction process, we seek to learn a program that models
the inductive nature of the concept of tower. This learned
representation should enable the agent to generalize induc-
tively to new instructions, such as "construct a tower of blue
blocks of height ten." Moreover, the learned concepts should
facilitate the learning of more complex structures, which are
challenging to represent using primitive actions alone. For
example, the concept of a "tower" should assist in learning
a "staircase," which can be represented as a sequence of
towers of increasing heights.

4. Representing Inductive Spatial Concepts
We formalize the notion of inductive spatial concepts and
formulate the learning objective.

Inductive Spatial Concepts: A spatial structure is an induc-
tive concept if its construction can be described recursively
using a similar structure of smaller size or as a composi-
tion of other simpler structures. Formally, let C1, · · · , C|L|
represent the concepts in the concept library L. We define
a partial order on L where a concept C is "dependent on"
C̃ if C̃ is a substructure of C. For example, a staircase is
dependent on a tower, and X (cross) is dependent on diago-
nals, and so on. This partial order is referred to as structural
complexity, where a concept C is more structurally complex
than C̃ if C is dependent on C̃. Without loss of generality,
assume that C1, · · · , C|L| are written in topological order
as per their structural complexity. Now, the construction

3

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

of an inductive spatial concept Ck of size n at position p,
denoted by h(Ck, n, p), is defined recursively as:

h(Ck, n, p) = hλ(Ck, n− 1, pos(.))︸ ︷︷ ︸
Induction (I)

◦

L(Ck)∏
l=1

h
(
Ck′

l
, size(.), pos(.)

)
︸ ︷︷ ︸

Composition (C)

◦
L′(Ck)∏
l=1

ηlθ
(
pos(.)

)
︸ ︷︷ ︸

Base (B)

(1)

where, λ ∈ {0, 1}, k′ < k, 0 ≤ L(Ck), L
′(Ck) ≤

o(|L|), pos(.) = pos(Ck, l, n, p) and size(.) =
size(Ck, l, n) are functions that predict the size and po-
sition of the structure to be constructed.

1. Induction term: The first expression (I) represents in-
duction vis-á-vis the possibility of constructing Ck of
size n using Ck of size n − 1. Here, λ depicts the
absence(λ = 0) or presence(λ = 1) of the (I) term.

2. Composition term: The second term (C) expresses the
construction of Ck as a composition of prev. known
concepts in the library (L). The number of required
compositions (L(Ck)) depends on Ck and len(L).

3. Base term: The third term (B) defines the base case
where the construction of concept Ck may include L′

number of primitive actions. Here, ηθ are pre-trained
primitive actions resulting in the repositioning of an
object to the desired spatial position. For ex., a tower
of size n can be constructed by a (primitive) move-top
action after constructing a tower of size n− 1.

Learning Objective: The functional space of inductive
concepts (h) leads to a hypothesis space H of associated
neuro-symbolic programs. Each goal-reaching demonstra-
tion corresponds to a particular instantiation of a given in-
ductive concept, i.e. h(Ck, n, p), where the p comes from
the sequence of frames, and n, Ck comes from Λ. We aim to
learn a generic representation H = h(Ck, ·, ·) ∈ H for the
given concept, which is general for all n and p. Given (few)
demonstrations of a human constructing a spatial structure,
concept learning can be formulated as the Bayesian poste-
rior (Lake et al., 2015; Shah et al., 2018; Silver et al., 2019),
PH(H|Λ, S1..Sg) ∝ P(S1..Sg|Λ, H) · P(H|Λ). Here, the
likelihood term associates a candidate program, and the
prior term regularizes the program space. The maximum
a-posteriori estimate, representing the learnt program, is
obtained by optimizing the following objective:

H∗ = arg min
H∈H

[Loss({S1..Sg}, Exec(H,Λ, S1))

− log P(H|Λ)] (2)

Since exact inference is intractable, approximate inference
is performed via search in the program space. Note that

learning inductive spatial concepts given demonstration con-
siders programs that represent plans that attain physically
grounded/feasible structures, an object we model during the
search. Additionally, we seek strong generalization from
a few instances of an inductive structure to structures with
arbitrary sizes, in effect favouring programs with iterative
looping constructs.

5. Learning Inductive Concepts from
Demonstrations

For estimating a succinct generalized program as per Eq.
2, a direct symbolic search in the space of programs can
explicitly reason over previously acquired concepts, it is
intractable, particularly due to looping constructs needed
for modeling induction. Alternatively, neural methods that
attempt to directly predict action sequence to explain the
demonstrations are resilient to noise, but are challenged
in the continual setting as the number of concepts can in-
crease prohibitively over time. Our approach blends both
approaches and factors the concept learning task as:

• Sketch: From the natural language instruction (Λ),
we extract a task sketch (H∗

S) using an LLM that pro-
vides the signature (concept name and instantiated ar-
guments) of the concept to be learned.

• Plan: An MCTS-based search is performed using the
library concepts (learnt previously) which outputs a
sequence of grounded actions that best explain the
given demonstration.

• Generalize: The grounded plan H∗
P and task sketch

H∗
S are provided to an LLM to obtain a general Python

program whose execution on the given scene matches
the searched plan.

Formally, the factored exploration of the program space for
a demonstration is performed as:

H∗
S ← Sketch(Λ ; θS) ; H

∗
P ← Plan(S1..Sg, H

∗
S ; θP) ;

H∗
G ← Generalize(H∗

P , H
∗
S ; θG) (3)

Here, θS , θP and θG are the learnable parameters (including
hyperparameters) of the Sketch, Plan and Generalize func-
tions, respectively. The concept library L is initialized with
primitive visual and action concepts. Upon acquiring a new
inductive concept H∗

G = H∗, we update our library accord-
ingly: L ← L ∪H∗. An example is provided in Appendix
Sec. A.5. Fig. 2 illustrates an example of progressive prog.
estimation. Next, we detail each of these three steps.

5.1. (Sketch) Grounded Task Sketch Generation

An LLM driven by in-context learning is used to get a pro-
gram signature (a sketch) for a concept from the natural

4

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 2: Method Overview. We learn a neuro-symbolic program for inductive spatial concepts factored as (a) Sketch (b) Plan (c)
Generalize. The example above shows the progressive realization of a program for the concept of a staircase acquired by observing a
single human demonstration of building a staircase of size four, and its corresponding language instruction

language instruction. The task sketch is a tree of nested func-
tion calls that outlines the function header (name and the
parameters) of the inductive concept/program to be learned.
Detailed exposition on prompting appears in the app. C.1.

The task sketch thus obtained is then grounded on the input
scene using a visual grounding module akin to (Mao et al.,
2019; Kalithasan et al., 2023; Wang et al., 2023c). This
module has three key components: (1) a visual extractor
(ResNet-34 based) that extracts the features of all objects
in the scene, (2) a concept embedding module that learns
disentangled representations for visual concepts like green
and dice, and (3) an executor equipped with pre-defined
behaviours such as “filter” to select/ground the objects of
interest. For example, grounding the task sketch “Tower
(height =3, objects = filter(green, dice))” results in an instan-
tiated function call “Tower(height = 3, ObjectSet)” where
ObjectList is an ordered list of the green coloured dice.
Since it is now grounded in the initial scene of the demon-
stration, the task sketch corresponds to a particular instance
of the concept demonstrated in the given demonstration.

5.2. (Plan) Physical Reward Guided Plan Search

The plan search involves finding a generalizable plan that
effectively explains the demonstration S1, · · · , Sg . Specifi-
cally, this involves determining the concepts, their respec-
tive grounded parameters, and the order of composition as
specified in the Equation 1.

Primitive Actions. Constructing complex structures in-
volves two steps: (1) identifying or imagining the place-
ment location of an object/structure and (2) picking and
placing the object at the imagined location. The position
posθ(.) for placement is determined using a head, which
represents a cuboidal enclosure in 3D space. Conceptually,
moving the head is akin to the robot’s cognitive exploration

of potential placements to achieve the desired spatial con-
figuration. We define a set of primitive functions, Ap, to
guide the movement and placement of objects in two ways:
(1) move_head(direction): This primitive is a neu-
ral operator that moves the abstract head to a desired rel-
ative position. It is trained on a corpus of pick-and-place
instructions, similar to the approach in (Kalithasan et al.,
2023); and (2) keep_at_head(objects): This primi-
tive places the target object from the list objects at the
current location of the head.

MCTS Search. We use an object-centric state represen-
tation defined by bounding boxes (including the depth
of the center) and visual attributes of all the objects that
are present on the table. Each previously learned in-
ductive concept <cpt> has an associated macro-action
Make_<cpt>(size), that executes the corresponding
program for the given size argument, resulting in the con-
struction of the desired concept. Thus, the set of actions A
is the union of primitive actions Ap and compound/macro-
actions Ac. Intersection over Union (IoU) between the
attained state and the expected state in the demonstra-
tion is provided as a reward for all macro actions and
keep_at_head(objects); all other actions yield zero
reward. An MCTS procedure similar to (Khandelwal et al.,
2016) (detailed in Appendix A.3) is performed to find a plan
(sequence of grounded actions) that maximizes the reward.

Modularity and Scalability. MCTS that searches for a plan
only in terms of primitive actions may not be generalizable
due to lack of modularity(C.3). The use of macro-actions in
the search ensures that the plan H∗

p for a given demonstra-
tion is concise, modular, and easily generalizable. This can
be seen as a form of regularization in terms of the length
of concept description by making the prior P (H) ∝ |H|−α

5

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

(where α > 0) in equation (2)

H∗ = arg min
H∈H

[Loss({S1..Sn}, H(Λ)) + α log |H|]

However, as the action space expands with the learning of
more concepts, the search becomes slower, necessitating the
pruning of the search space. To avoid searching over the size
parameter in macro-actions, we greedily select the smallest
size that achieves the maximum average reward from the
current state. Additionally, to prune primitive actions, we
train a reactive policy πneural which, given the current state
s̃t and the next expected state st+1 (from the demonstration),
outputs one of the primitive actions a∗t ∈ Ap. Consequently,
the effective branching factor of the search is reduced from
N ∗ |Ac|+ |Ap| to |Ac|+1, where N is the average number
of size-parameter variants. Thus, our MCTS algorithm is
modular through the hierarchical composition of learned
concepts and efficient through action space pruning, and is
referred to as MCTS+L+P. (Detailed in app. A.3)

5.3. (Generalize) Plan to Program Abstraction

Leveraging the code generation and pattern matching abili-
ties of LLMs (Mirchandani et al., 2023), we use GPT-4 to
distil out a general Python program from the sequence of
grounded actions as determined by MCTS+L+P. The learnt
program is incorporated in the concept library, L, for modu-
lar reuse in subsequent learning tasks. We take a curriculum
learning approach (App. D.2). Further details & discussion
can be found in app. items C.2, A.4 and A.3.

6. Adapting Learned Concepts for Novel
Instructions and Constraints

Goal Grounding: A complex Natural Language (NL) in-
struction is passed to the Parser, which extracts two compo-
nents: the relevant concepts and the associated constraints.
If some of the concept(s) are not present in the concept
library L, the system queries for a Human Demonstration,
which is then processed via the SPG framework, and the
abstracted & generalised concept(s) are appended to L, as
in Figure: 3.

Figure 3: Pipeline for using Solvers and LLMs to solve
constraints in Instructions over concepts in Library L and
learning additional concepts via SPG if necessary.

Following this, an LLM identifies whether an explicit con-
straint resolution is required. If yes, the Language Parser

isolates the constraint components from the NL Instruction.
, and generates a program of constraints that can be solved
independently. This bifurcation allows the system to resolve
increasingly complex constraints without entangling them
with the core structural learning. This is an improvement
over directly relying on LLMs to simultaneously learn struc-
tures and resolve complex constraints, since LLMs often
fail to reason about spatial grounding, visibility, occlusion,
and physical stability (Appendix: D.5). Our pipeline mod-
ularizes the constraint resolution stage by invoking neural
solver modules, external constraint solvers, or LLMs, based
on downstream tasks, thereby improving the pure-LLM
baseline. We aim to improve the robustness of our pipeline
by integrating advanced reasoning capabilities.

Plan Synthesis: We qualitatively demonstrate that the con-
cepts we have acquired can help us to perform goal condi-
tioned planning. These goals may either be direct instances
of concepts in L, or constraint-satisfying goals obtained
from sec. 6 above. We perform a forward search using the
abstract state and action representations to the inferred goal
akin to (Liu et al., 2024; Kalithasan et al., 2024) (detailed
in Appendix D.5).

7. Evaluation Setup
Corpus. A corpus is created using a simulated Robot Manip-
ulator assembling spatial structures on a table-top, viewed
by a visual-depth sensor. Demonstration data (3 demon-
strations per structure, up to 20 objects per scene) includes
RGBD observations of the action sequences (picking and
placing of blocks) resulting in the construction of the final
assembly using varied block instances and types (cubes,
dice, lego etc.). The scope of concepts and associated eval-

Figure 4: Illustrative examples of spatial structures from
the corpus, showing inductive composition over simpler
structures. Details and visualizations in Appendix B

uation tasks are adapted from closely related works. The
staircase and enclosure construction tasks are inspired from
from (Silver et al., 2019), adapted to 3D from the original 2D
grid world setting. Structures such as boundaries involving
repetitive use of columns and rows (w/o explicit joint fas-
tening) are inspired by a robotic assembly data set (Collins
et al., 2024). Finally, the arch-bridge and x-shaped patterns
are inspired from concept learning works as (Lake et al.,
2015). A total of 15 structures types are incorporated and
are additionally modulated in size/spatial arrangement for

6

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

generalization evaluation. Three evaluation data sets are
formed each with simple structures and complex structures
composed of simpler concepts (e.g., staircase consists of
towers as substructure). Dataset I and II contain demonstra-
tions constructing structures with size(.) ∈ [3, 5], where
size is defined in 4. Dataset II reverses the linguistic la-
bels used (e.g., the “tower" in I becomes “rewot" in II) to
assess model reliance on pre-training knowledge in presence
of new labels for concepts. Dataset III includes concepts of
larger size than those in training to test generalization.

Baselines. Four baselines are formed from two alternative
approaches as follows.

(1) Purely-Neural: An end-to-end neural model inspired
by StructDiffusion (Liu et al., 2023) that treats structure
construction as a rearrangement problem. We consider two
variations: (1.1) Struct-Diff+Grounder(SD+G): End-to-end
approach that assumes a perfect object selector/grounder
which identifies the relevant set of objects to be moved. (1.2)
Struct-Diff(SD): (1.1) without assuming a grounder.

(2) Pre-trained models that directly output symbolic pro-
grams: (2.1) LLMs for Scene-Graph Reasoning: This ap-
proach uses a Pre-trained Language Model (GPT-4) to gen-
erate Python programs from instructions which describe the
given demonstration. Input is provided to the LLM via tex-
tual symbolic spatial relationships (e.g., left(a,b)) between
objects in the demonstration. This baseline further assumes
the absence of distractor objects in the scene. (2.2) Vision
Language Model (GPT-4V): Similar to (2.1) but has the
ability to take input demonstration as images. For learning
the program of a new inductive concept, we give the demon-
stration to the VLM in the form of Λ, (S1..Sg). Additional
details on prompting method in Appendix C.6. Experiments
were also conducted with open-source LLMs such as CodeL-
lama (70Bq), Due to significantly poorer performances w.r.t.
GPT-4, GPT-4 was retained as the primary LLM baseline.

Model variants. We implement three variants of the MCTS
search to perform a grounded plan search over the action
space A: (i) MCTS+P+L: Our approach as described in
section 5.2, that uses the learnt concepts (L) from L in sub-
sequent searches, along with pruning (P) Ap using πneural,
(ii) MCTS-P+L: Our approach without neural pruning and
(iii) MCTS+P-L: No access to library of concepts during
continual learning. This method greedily selects the action
from Ap as given by πneural. For details refer App. D.4.

Metrics. We adopt the following metrics to evaluate our
models: (i) Program Accuracy: A binary score obtained
through human evaluation. 1 for constructing the structure
fully, 0 otherwise. (ii) Target Construction IoU: Intersection
over Union (2D-IoU) between bounding boxes. (iii) Target
Construction Loss: Mean Squared Error (MSE) loss over
the bounding boxes + depth of the center.

8. Results
Our experiments evaluate the following questions. Q1:
How does our model perform when compared to base-
lines in terms of concept learning and execution ability
(In-Distribution)? Q2: How does our model generalize to
concept instances not seen (larger) during training (Out-of-
Distribution)? Q3: How robust and efficient is our concept
learning pipeline? Q4: How can the acquired concepts be
used in for embodied instruction following tasks?

Q1: Concept Learning Accuracy

We compare the program accuracy (Table 1) and the
IoU/MSE values (Table 2) of the final states attained by SPG
and the baselines w.r.t. the gold states in the in-distribution
setting and find that SPG significantly outperforms other
approaches. Values for Purely neural approaches are marked
NA because Neural Outputs are not physically grounded.
We make the following observations: (i) For complex com-
positional structures, the accuracy of the pre-trained models
is poor (zero), indicating their inability to reason over the
numerous and complex spatial relations present in these
structures. (ii) While program inference via the LLM is bet-
ter than the VLM for learning simple structures, it is worse
for complex structures. This indicates the inherent weak-
ness of the textual descriptions of complex spatial relations
present in complex structures. (iii) While the data-intensive
purely neural approaches perform much better on complex
structures when compared to the pre-trained foundation
models, they are still weaker than SPG.

Table 1: Program Accuracy

Model Simple Complex

SPG(Ours) 1.00 0.83
GPT-4V 0.33 0.00
GPT-4 0.78 0.00
SD+G NA NA
SD NA NA

Table 2: In-distribution Performance (Mean ± Std-error)

Model Simple Complex

IoU MSE (1e-3) IoU MSE (1e-3)

SPG(Ours) 0.96 ± 0.00 0.01 ± 0.00 0.85 ± 0.02 2.06 ± 1.02
GPT-4V 0.75 ± 0.01 4.33 ± 0.41 0.50 ± 0.02 7.29 ± 1.10
GPT-4 0.89 ± 0.01 1.36 ± 0.26 0.28 ± 0.02 13.5 ± 1.65
SD+G 0.74 ± 0.01 1.42 ± 0.29 0.61 ± 0.02 2.43 ± 0.48
SD 0.49 ± 0.01 1.48 ± 0.24 0.46 ± 0.02 3.71 ± 1.53

Q2: Generalization Performance

Table 3, compares the generalization performance on
Dataset III for models trained on Dataset I (full table in Ap-
pendix, 9). We see that SPG outperforms other approaches.
We further consider the relative decrease (R.D.) in perfor-

7

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

mance (2D-IoU) on going from the in-distribution to the
out-of-distribution (OOD) setting. We make the following
observations: (i) SPG suffers a R.D. of 7.27% for simple and
5.74% for complex structures. (ii) In contrast, the SD+G
baseline shows a large R.D. of 63.25% on simple struc-
tures and 74.72% on complex structures; highlighting the
inability of Purely Neural Models to generalize inductively.
(iii) Pre-trained models also have a large R.D. in perf. for
complex structures (GPT-4 : 53.87% & GPT4V : 41.64%),
which is attributed to their inability to generate the correct
program that can generalize inductively to unseen data.

Table 3: OOD Performance. R.D% is the relative decrease in
IoU from Table 2. MSE is in 1e-3 units

Model Simple Complex

IoU R.D% MSE IoU R.D% MSE

SPG(Ours) 0.89 7.27 0.43 0.80 5.74 1.49
GPT-4V 0.58 23.33 13.2 0.29 41.64 10.9
GPT-4 0.78 12.61 5.51 0.13 53.87 19.1
SD+G 0.27 63.25 6.21 0.15 74.72 14.2
SD 0.24 51.84 6.86 0.15 67.67 11.6

Q3: Robustness and Efficiency Analysis

Reliance on pre-trained Knowledge vs. Demonstration.
Next, we evaluate the degree to which concept learning re-
lies on prior knowledge vs. the action sequences observed
in demonstrations. We compare pre-trained models against
our approach by learning programs on Dataset II (7), which
uses arbitrary names for concepts. This forces all models to
rely on demonstration data because there is no real-world
knowledge associated with the name of the concept, say
"rewot" instead of "tower". Table 4 indicates the corre-
sponding performances, with our approach outperforming
others. For the IoU/MSE values along with standard errors
refer to app. Table 10. The R.D. in performance (pro-
gram accuracy w.r.t. Table 1) for simple structures for
our approach (12%) is lower than GPT-4 (14%) & much
lower than GPT-4V (30%). The poorer generalization of
pre-trained models can be attributed to their over-reliance
on prior knowledge and failure to effectively incorporate the
data from demonstrations. In contrast, SPG better captures
the semantics of a novel concept, especially ones whose
knowledge may not be available for the LLMs/VLMs at
training time.

Table 4: Perf. on Dataset II with Reversed Names. Acc. is
Prog. Accuracy, MSE in 1e-3 units

Model Simple Complex

Acc. IoU MSE Acc. IoU MSE

SPG(Ours) 0.88 0.86 1.74 0.78 0.78 3.93
GPT-4V 0.23 0.71 3.92 0.00 0.09 21.29
GPT-4 0.67 0.78 3.16 0.00 0.00 22.73

Table 5: Ablation studies. Ablations with SPG-M+LMP and
GPT-4V+VR. MSE values are in 1e-3.

Model Simple Complex

Acc. IoU MSE Acc. IoU MSE

SPG(Ours) 1.0 0.96 0.01 0.83 0.85 2.06
SPG-M+LMP 0.55 0.68 11.1 0.16 0.19 20.0
GPT-4V+VRF 0.66 0.75 6.8 0.16 0.46 12.0

MCTS Variants for Concept Learning. Figure 5 com-
pares the program accuracy for the three methods of plan
search. For the MCTS-L+P method, the program accuracy
is expected to be independent of expansion steps as it greed-
ily chooses the action for which πneural gives the highest
probability. For the MCTS+L based methods the accuracy
increases beyond 0.6 with time, which demonstrates that
having a composable library of concepts allows us to learn a
much richer class of inductive concepts. MCTS+P+L satu-
rates to a program accuracy of 0.933 in just 4000 expansion
steps compared to MCTS+L-P taking 512000 expansion
steps, which demonstrates a significant increase in learning
efficiency via use of the neural pruner. For very low number
of expansions steps (<40) accuracy of MCTS+L based meth-
ods is lower than MCTS-L as the former expends expansion
steps on UCB exploration (instead of greedy actions).

Figure 5: MCTS Variants. Num. of expansion steps in search
(log scale) (X-axis) vs Program accuracy (Y-axis).

Significance of MCTS in SPG. To assess the necessity and
importance of MCTS, we carry out an ablation study where
we replace it with an LLM planner during the planning
stage, referred to as SPG-M+LMP. In the "plan" stage of
our pipeline, GPT-4V is prompted to output a plan given the
concept library and RGB keyframes from the demonstration.
Our experiment shows that GPT-4V struggles to generate
correct plans, particularly for complex structures like pyra-
mids, arch_bridge and boundaries, resulting in significantly
lower performance than SPG (Table 5). Additionally, some
plans generated by GPT-4V are not physically grounded,
leading to errors in both the planning and generalization
stages, which compounds the inaccuracies. This demon-
strates that combining symbolic search with LLMs offers a
substantial advantage over using only LLMs. Ablating with
Pre-trained Models + Visual Reward Filter In line with

8

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

program synthesis techniques using LLMs (Li et al., 2022;
Chen et al., 2021), we sample five programs from GPT-4V
and rank them according to the visual reward obtained from
their execution. Furthermore, we provide the ground-truth
programs of the concepts that are needed to learn the given
new concept, thus employing a form of teacher forcing in
program generation. Even with these measures, it performs
significantly worse than SPG, see Table 5 (GPT-4V+VRF).
While this performance is better than that of GPT-4V, it still
unable to generate correct programs, especially for complex
structures.

Q4: Incorporating Constraints into learnt concepts

Instructions with Discrete Constraints:Consider the in-
struction λ1: “Construct a staircase of size 5 such that all
blocks have the same color as the block to their left. No
block should have the same color as the block on top of it.”
This example highlights the interpretive & compositional
strength of our pipeline. We model the constraints as a CSP
problem & use the Z3 solver (De Moura et al., 2008) to
resolve them. The resulting grounded program for λ1 is
executed via the planner, producing the desired 3D structure.
Fig 6 shows the executed output in the simulator, satisfying
both the structural concept and the imposed constraints.

Figure 6: Constructed staircase obeying all constraints in λ1,
which are extracted via an LLM and solved via Z3 CSP-solver.

For simpler instructions such as λ2: ”Construct a tower of
green die having the same height as the existing tower of
white die.” and λ3 :”Construct a tower of total 6 blocks
using alternating blue and red blocks.”, the LLM (GPT-4)
is able to understand the structural requirements (through
the library L) as well as the (simpler) constraints. There-
fore, the pipeline (with access to tower through L or via
SPG framework), generates Python code in terms of these
functions, which on execution generates the required action
sequence as shown in Fig. 7. (also see app. D.3).

Efficient Plan Synthesis for Grounded Goals: As detailed
in sec. 6 and App. D.5 , we demonstrate the ability to per-
form goal-conditioned planning using the acquired concepts.
Fig 8 demonstrates the results of our approach for the tasks
of constructing a staircase beginning from adversarial and
assistive initial states.

Figure 7: Using an LLM to solve the constraints in a novel task
and generate executable code, given the concept definitions.

Figure 8: Integrating a neuro-symbolic planner over the concepts.
Top: The planner is able to optimally replace the green cube from
the adversarial initial state by unstacking and re-stacking the faulty
tower. Bottom: The planner is able to complete a staircase from
an initially constructed row by layering rows upon rows, a method
of construction it has not seen while learning staircase.

9. Conclusion
This paper introduces a novel approach for learning induc-
tive representation of grounded spatial concepts as neuro-
symbolic programs via language-guided demonstrations.
Our approach factors program learning as: Sketch: gener-
ating the high-level program signature via an LLM, Plan:
searching for a grounded plan that maximises the total dis-
counted reward with the respect to the demonstration, and
Generalize: abstracting the grounded plan into an induc-
tively generalize-able abstract plan via an LLM. Continual
learning is achieved via learning of modular programs by
giving preference to shorter programs through composition
of learnt ones. Extensive evaluation demonstrates accurate
program learning and stronger generalization in relation
to purely LLM based as well as purely neural baselines.
Grounding of learned concepts in visual data facilitates rea-
soning and planning for embodied instruction following.
Limitations include reliance on perfect demonstrations, as-
sumption of full observability of all objects and experiments
confined to simulation. Incorporating noisy demonstrations,
reasoning with beliefs and interleaving planning and execu-
tion remains part of future work.

9

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., et al. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

Boularias, A., Duvallet, F., Oh, J., and Stentz, A. Grounding
spatial relations for outdoor robot navigation. In 2015
IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1976–1982. IEEE, 2015.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Collins, J., Robson, M., Yamada, J., Sridharan, M., Janik, K.,
and Posner, I. Ramp: A benchmark for evaluating robotic
assembly manipulation and planning. IEEE Robotics
and Automation Letters, 9(1):9–16, January 2024. ISSN
2377-3774. doi: 10.1109/lra.2023.3330611. URL http:
//dx.doi.org/10.1109/LRA.2023.3330611.

De Moura, L., Bjørner, N., and Bjørner, N. Z3: an efficient
smt solver. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum, J.
Learning to infer graphics programs from hand-drawn im-
ages. Advances in neural information processing systems,
31, 2018.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum,
J. B. Dreamcoder: Bootstrapping inductive program
synthesis with wake-sleep library learning. In Proceed-
ings of the 42nd acm sigplan international conference on
programming language design and implementation, pp.
835–850, 2021.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Howard, T. M., Tellex, S., and Roy, N. A natural language
planner interface for mobile manipulators. In 2014 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 6652–6659. IEEE, 2014.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I.
Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. ArXiv,
abs/2201.07207, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P. R., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y.,
Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S.,
Hausman, K., and Ichter, B. Inner monologue: Embodied
reasoning through planning with language models. In
Conference on Robot Learning, 2022b.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax, 2017.

Kalithasan, N., Singh, H., Bindal, V., Tuli, A., Agrawal, V.,
Jain, R., Singla, P., and Paul, R. Learning neuro-symbolic
programs for language guided robot manipulation. 2023.

Kalithasan, N., Tuli, A., Bindal, V., Singh, H. G., Singla,
P., and Paul, R. Learning to recover from plan execu-
tion errors during robot manipulation: A neuro-symbolic
approach, 2024. URL https://arxiv.org/abs/
2405.18948.

Khandelwal, P., Liebman, E., Niekum, S., and Stone, P. On
the analysis of complex backup strategies in monte carlo
tree search. In Proceedings of the 33rd International Con-
ference on International Conference on Machine Learn-
ing - Volume 48, ICML’16, pp. 1319–1328. JMLR.org,
2016.

Kim, D., Oh, N., Hwang, D., and Park, D. Lingo-space:
Language-conditioned incremental grounding for space.
arXiv preprint arXiv:2402.01183, 2024.

Lachmy, R., Pyatkin, V., Manevich, A., and Tsarfaty, R.
Draw me a flower: Processing and grounding abstraction
in natural language. Transactions of the Association for
Computational Linguistics, 10:1341–1356, 2022.

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://dx.doi.org/10.1109/LRA.2023.3330611
http://dx.doi.org/10.1109/LRA.2023.3330611
https://arxiv.org/abs/2405.18948
https://arxiv.org/abs/2405.18948

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Li, R., Jabri, A., Darrell, T., and Agrawal, P. Towards
practical multi-object manipulation using relational rein-
forcement learning. In 2020 ieee international conference
on robotics and automation (icra), pp. 4051–4058. IEEE,
2020.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Sutherland Robson, E., Kohli, P., de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-
level code generation with alphacode. Science, 378
(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.
org/10.1126/science.abq1158.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control, 2023.

Liu, W., Du, Y., Hermans, T., Chernova, S., and Paxton, C.
Structdiffusion: Language-guided creation of physically-
valid structures using unseen objects, 2023.

Liu, W., Chen, G., Hsu, J., Mao, J., and Wu, J. Learn-
ing planning abstractions from language. arXiv preprint
arXiv:2405.03864, 2024.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision, 2019.

Mao, J., Lozano-Pérez, T., Tenenbaum, J., and Kaelbling, L.
Pdsketch: Integrated domain programming, learning, and
planning. Advances in Neural Information Processing
Systems, 35:36972–36984, 2022.

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D.,
Arenas, M. G., Rao, K., Sadigh, D., and Zeng, A. Large
language models as general pattern machines, 2023.

Parakh, M., Fong, A., Simeonov, A., Chen, T., Gupta, A.,
and Agrawal, P. Lifelong robot learning with human
assisted language planners, 2023.

Paul, R., Arkin, J., Aksaray, D., Roy, N., and Howard,
T. M. Efficient grounding of abstract spatial concepts for
natural language interaction with robot platforms. The
International Journal of Robotics Research, 37(10):1269–
1299, 2018.

Shah, A., Kamath, P., Shah, J. A., and Li, S. Bayesian infer-
ence of temporal task specifications from demonstrations.
Advances in Neural Information Processing Systems, 31,
2018.

Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., and
Tenenbaum, J. Few-shot bayesian imitation learning with
logical program policies, 2019.

Silver, T., Chitnis, R., Kumar, N., McClinton, W., Lozano-
Pérez, T., Kaelbling, L., and Tenenbaum, J. B. Predicate
invention for bilevel planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 12120–12129, 2023.

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling,
L., and Katz, M. Generalized planning in pddl domains
with pretrained large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 20256–20264, 2024.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. arXiv preprint arXiv:2209.11302,
2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee,
A. G., Teller, S., and Roy, N. Approaching the symbol
grounding problem with probabilistic graphical models.
AI magazine, 32(4):64–76, 2011.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and
Goodman, N. D. How to grow a mind: Statis-
tics, structure, and abstraction. Science, 331
(6022):1279–1285, 2011. doi: 10.1126/science.
1192788. URL https://www.science.org/
doi/abs/10.1126/science.1192788.

Wan, W., Zhu, Y., Shah, R., and Zhu, Y. Lotus: Continual
imitation learning for robot manipulation through unsu-
pervised skill discovery, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, H., Gonzalez-Pumariega, G., Sharma, Y., and Choud-
hury, S. Demo2code: From summarizing demonstrations
to synthesizing code via extended chain-of-thought. arXiv
preprint arXiv:2305.16744, 2023b.

Wang, R., Mao, J., Hsu, J., Zhao, H., Wu, J., and Gao, Y. Pro-
grammatically grounded, compositionally generalizable

11

http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.1192788
https://www.science.org/doi/abs/10.1126/science.1192788

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

robotic manipulation. arXiv preprint arXiv:2304.13826,
2023c.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N., and
Goodman, N. D. Hypothesis search: Inductive reason-
ing with language models. In The Twelfth International
Conference on Learning Representations, 2024a.

Wang, Z., Cai, S., Liu, A., Jin, Y., Hou, J., Zhang, B.,
Lin, H., He, Z., Zheng, Z., Yang, Y., et al. Jarvis-1:
Open-world multi-task agents with memory-augmented
multimodal language models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024b.

12

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

A. Additional Details on Technical Approach
Figure 9 illustrates the pipeline for online inference to realize to realize construction of novel structures.

Figure 9: SPG: Inference First the library of concept L is loaded with the corresponding set of learnt programs. Then the
given instruction is converted into task-sketch Hs, which is grounded in the initial scene. The required program is fetched
from the library, and the grounded task-sketch is executed based on the semantics of the learnt program.

A.1. Symbolic Constructs and their Semantics used in Programs

Table 6 defines the types of the signature and semantics of all the operators. Table 7, includes the type definition of various
symbols. Standard Python constructs such as for loops, if else · · ·) as assumed in addition to the constructs defined here.

Table 6: Symbols and Semantics Signature and semantics for the primitive concepts and operations that are used in the
construction of the programs used to express inductive spatial concepts.

Function Signature Semantics
filter (VisualConcept, ObjSet)→ ObjSet Returns the objects that con-

tain the VisualConcept
move_head (Head, Dir)→ Head Moves the head to the given

direction (May or may not
take input/return the head,
based on a flag)

assign_head a.k.a
move_head(overloaded)

(Head, ObjIdx)→ Head Given the index/one-hot rep-
resentation for an object, it
moves the head to the posi-
tion corresponding to that ob-
ject

keep_at_head (ObjSet, Head)→ None Keeps the argmax of ObjSet
at the head

reset_head None→ Head Sets the head to the top posi-
tion of stack and pops this po-
sition from the stack as well

store_head Head→ None Pushes the current position
of head into the stack

A.2. Curriculum Learning

We follow a curriculum approach where the visual concepts are trained first from simpler linguistically-described demon-
strations (t0 in figure 10). This is followed by learning of action concepts through sequentially composed pick and place
tasks. Its essential to use such long range sequential instructions in order to ensure that the semantics of action concepts are
learnt for placement of objects at a height much above the tabletop (t1 in figure 10). After the pre-training phase, the agent
can continually learn new inductive concepts and visual attributes. (t2, t3 in figure 10)

13

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Table 7: Symbolic representation. The table lists the type definitions used in the implementation of SPG programs.

Defined Types Python Type Usage
IntArg int Argument for the structures that de-

fines the size (height, length etc)
Obj torch.Tensor One-hot vector whose non-zero in-

dex represents the selected objects
ObjSet torch.tensor Probability mask over the selected

objects
Dir string Primitive directions like left, right,

front, top, etc
ConceptName string name of the visual, action or induc-

tive concept
Head torch.Tensor Bounding box with depth. 3D

cuboidal space.

Figure 10: Continual learning through curriculum: Using simple pick and place demonstrations we learn visual attributes
such as blue cube, yellow lego (t0). Using long range instructions which are sequentially concatenated descriptions of pick
and place tasks we train our action concepts such as left, right, top (t1). After pre-training the agent can perform continual
learning of concepts such as learning generalized representation for tower (t2). Because of disentangled representation
of neural and symbolic concepts, interspersed learning of new visual attributes such as chocolate color are also possible
through few demonstrations of structure creation(t3).

A.3. Details for Plan-Search and Generalization

Modifications to the Simulation and Reward Back propagation Steps: Next, we outline the modifications in the
simulation and the reward back propagation steps of the standard MCTS algorithm for our setting. During program search
we assume access of intermediate scenes in the demonstration. This allows us to provide intermediate rewards that can
guide the search well. We observed that making the following changes in simulation and back propagation step increased
the efficiency of our search procedure. Fig 11 illustrates the possible states explored by MCTS and the reward calculation.

• Simulation: Rather than performing Monte Carlo simulations at each newly expanded leaf node (to estimate its value)
we completely avoid these simulation steps. This was motivated by the fact that our reward is not completely sparse

14

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

and the intermediate IoU rewards for each object we place allow us to guide the search effectively.

• Back propagation: We perform off policy Q-learning updates during back propagation similar to one indicated by
(Khandelwal et al., 2016) :

V (st) = maxa∈AQ(st, a). (4)

τ(st, a) = st+1 (5)

Q(st, a) = rt + γV (st+1) (6)

Figure 11: A sample MCTS search tree outlining the states explored and the calculation of reward.

Improving Modularity and Scalability of MCTS procedure: We present additional details on the MCTS procedure for
searching for a plan conditioned on a program signature and guided by the demonstration.

In order to incorporate the objective of searching for physically realizeable plans and facilitating generation via re-use of
concepts, the following conceptual changes are incorporated in the standard MCTS procedure (Sutton & Barto, 2018).

Modularity (MCTS + L): We want to allow learning of novel inductive concepts in terms of existing ones. This would
ensure that the plan H∗

P corresponding to a given demonstration is concise and can be easily generalized to the H∗
G. C.3 in

appendix give example of two plans for the structure Pyramid one which is modular and can be successfully generalized by
GPT-4, other for which GPT-4 fails in generalization due to lack of modularity. This can be seen as a form of regularization
in terms of the length of concept description, by making the prior P (H) ∝ |H|−α (where α > 0) in equation (2)

H∗ = arg min
H∈H

[Loss({S1..Sg}, H(Λ)) + α log |H|] (7)

In order to allow modular learning of programs, for every inductive concept already stored in the library we define
corresponding action instantiations which can be a potential candidate actions during our search. As an example, for

15

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

the concept Tower we have one of the action instantiation as Make_Tower(3, objects) which would be the
action of constructing desired tower. This can be visualized as a compound/macro-action which is composed of prim-
itive actions keep_at_head(objects), move_head(‘top’). We define Ac as the space of such compound
actions, and Ap as the space of primitive action/function consisting reset_head(), move_head(direction),
keep_at_head(objects), store_head(). Realization of equation (6) (increased preference of macro-actions
over primitive ones) is done through discounted IoU rewards during our search (Make_Tower(3) would have a reward of
1+1+1, as compared to 1 + γ2(1) + γ4(1) for a sequence of 3 (keep_at_head(objects), move_head(’top’)0)).
We refer to MCTS using concept instantiations from L as macro actions in search as MCTS+L.

Scalablility (MCTS+P): as more concepts are added to the library L the action space of our search A (specifically Ac,
the space of compound concepts) increases, therefore we want to prune the search space effectively. For this during the
pre-training phase we train a reactive policy πneural which given the current state, s̃t and the next expected state st+1

(part of the demonstration) would output one of the primitive action, a∗t ∈ Ap where Ap is the primitive action space,
i.e. a∗t = πneural(at|s̃t, st+1), at ∈ Ap Note that while expanding our search tree we only search among the space
of compound actions Ac and the action a∗t , thereby reducing the branching factor of search from |Ac ∪ Ap| to |Ac| + 1.
We refer to MCTS using neural pruning as MCTS+P. Therefore our MCTS algorithm is modular through hierarchical
composition of learnt concepts and efficient through pruning of action space and is referred to as MCTS+L+P.

Generalization: GIven multiple equal length plans for a given demonstration, we seek to recover a plan one that can be
easily generalized by the LLM. 5 shows a plan which could be correctly abstracted out into a generic program by GPT-4.
Whereas 15 shows another plan with similar semantics, for which GPT-4 is unable to correctly find the generalized program
(Note that row or column of size 1 is equivalent to keep_at_head). We tackle this problem in the following manner.

1. Rather than getting a single plan from the plan search we get the top k plans {HP,i}i=k
i=1 . In order to get these top k

plans we expand the complete tree (based on UCB criteria) starting from the root node corresponding to the initial
state, till a predefined budget of expansions. Then we select the top k paths(potential plans) from the root node to all
the leaf nodes (where the top k ones are those that give the highest accumulated IoU reward with respect to the given
demonstration).

2. Later we abstract out each of these k plans into corresponding generalized programs, {HG,i}i=k
i=1 using GPT-4. We

again run each of these programs on the given demonstration and then choose the one which gives the highest IoU
reward (resolving ties based on predefined order). Note that some program HG,i upon execution may result in a plan
H̃P,i different from the original plan HP,i using which it was generalized. This can be attributed to potential errors in
GPT-4s program generalization process.

A.4. Additional Details: Learning with Increasing Number of Demonstrations

Given k demonstrations for a novel inductive concept, we independently find k task sketch {H∗
S,i}i=k

i=1 and grounded plans
{H∗

P,i}i=k
i=1 . During the generalization phase we give these k pair of task-sketch and corresponding plans to GPT-4 and ask

into infer a single abstraction over them. C.5 in appendix gives a concrete example. Equation for generalize step (getting
H∗

G from H∗
P , H

∗
S) can be modified as follows.

H∗
G ← Generalize(HG | {H∗

P,i, H
∗
S,i}

i=k

i=1
; θG), HG ∈ HG (8)

A.5. Detailed Experimental Methodology

Input to the Method: The input consists of a language instruction and a human demonstration represented as a sequence of
RGBD keyframes.

Output/Aim of the Model: The goal is to learn a representation of the unknown concept in the instruction, assuming there
is only one unknown concept. If the unknown concept is inductive (e.g., "tower"), the model learns a program definition
deftower() and stores it in the program library. If the unknown concept is a primitive concept, a concept embedding is
learned through backpropagation.

Evaluation: The learned model is evaluated based on the correctness of the program representation for inductive concepts
and the correctness of object placements, measured through the Intersection over Union (IoU) metric (see Metrics, line 262).

16

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

d. Examples: Suppose the current library contains the concepts “red”, “tower”. Given the instruction “construct a staircase
of height 3 using red blocks,” the process is as follows:

Parsing: The instruction is parsed into a sketch: Staircase(height=3, objects=filter(red, blocks)).

Grounding: The “objects” parameter is grounded using the visual grounder, which identifies the indices of the red blocks,
e.g., [1, 2, 3, 4, 5, 6]. That is, filter(red, blocks) = [1,2,3,4,5,6].

Planning: The planning step uses the demonstrations (sequence of keyframes) to identify the sequence of actions that best
explains the demonstrations. In this case, the plan might be: Tower(height=1, objects=[1,2,3,4,5,6]), move_head(right),
Tower(height=2, objects=[2,3,4,5,6]), move_head(right), Tower(height=3, objects=[4,5,6]

Generalization: The generalization step abstracts the plan obtained from three such demonstrations into a program. The
resulting program would be:

1 def staircase(height, objects):
2 for i in range(height):
3 tower(height=i, objects)
4 move_head(right)

Note: Whenever an object is placed, the objects list is modified in place, and the index of the placed object is removed.
primitive actions: The movement of any object is achieved by first determining the placement position by moving the
head (an imaginary bounding box) in specific directions and then placing the object to be moved at the head. The head is
implemented as a 3D bounding box defined by coordinates (x1, y1, x2, y2, d), where x1, y1, x2, and y2 are the 2D corners
of the bounding box, and d is the depth at the center. The primitive action move_head(direction) shifts the bounding box in
the required direction. The action keep_at_head(object_list) picks the first object in the list and places it at the center of the
bounding box. Two other primitives, store_head and reset_head, are used to save the current position of the head, allowing
the search to return to useful positions later if needed.

B. Additional details regarding datasets
Figure 12 demonstrates the kind of inductive concepts for which we want to learn generic (i.e instance agnostic) representa-
tions.

Figure 12: Illustration of the inductive concepts.

17

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Dataset for Pre-training: We use 5k examples of constructing twin-towers i.e. 2 towers adjacent to each other, for learning
semantics of move_head(dir), a basic set of visual attributes, reactive policy πneural, and neural modules required for
grounded planning. The twin towers allow us to learn various action semantics for all possible configurations of blocks in
3D-space (and not being limited to blocks placed directly on table top surface). Since we are not aware of the underlying
semantics of tower during pre-training phase the corresponding natural language instruction consists of step by step pick
and place actions. 13 gives example demonstrations from this dataset.

Figure 13: Example from pre-training dataset.

Dataset for Inductive Structures: We learn a variety of structures which we have divided into Simple and Complex
structures. A structure is considered complex if it can be expressed as an inductive composition of simpler structures. As
an example, we can express a staircase to be a composition of towers of increasing height. The structures are listed in the
Table 8. Figure 14 shows the hierarchical relationship among these structures in the form of a DAG (directed acyclic graph).
F.3 gives the ground truth program representations for each structure.

Table 8: Structure Types. Examples of simple and complex structures considered in this work for the robot to construct.

Simple Structures Complex Structures
Row, Column, Tower X (cross-shape), Staircase

Inverted-Row, Inverted-Column Inverted-Staircase, Pyramid
Diagonal-45, Diagonal-135 Arch-Bridge, Boundary
Diagonal-225, Diagonal-315

C. Prompting Strategy and Examples
This section gives various prompting examples for our approach and baselines, along with examples motivating particular
design decisions in our approach.

C.1. Prompt Example for Task Sketch Generation Stage (Sketch)

In order to get a program representation (high level task sketch) of the given natural language instruction, we prompt GPT-4
with few shot examples in a manner similar to (Liang et al., 2023). Code segment 1 gives an example of getting the task
sketch given the demonstration for constructing a staircase. We first import the available primitive operators and functions
and also give examples in order to demonstrate the signature of the available primitives(line 1-8). Then we give incontext

18

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 14: Hierarchy of the structures/programs. This diagram shows the hiearchical nature of the structures in our
dataset. MH is abbrevation for move_head and KH is abbreviation for keep_at_head

examples of how to parse various natural language instructions in a program representation(line 10-14). We append to this
prompt the instruction for current task(line 16-17).

1 # importing the available functions
2 from visual_operators import filter
3 from inductive_operators import get_parameters, find_structure
4

5 # function signature of the imported functions
6 filter(color, cube) # filter the objects that are cubes and color ..
7 get_parameters(structure) # parameters of the structure ...
8 find_structure(type, description) # finding structure of given type, description
9

10 # examples:
11 # instruction: Find the tower with green cubes
12 find_structure(type = tower, description = filter(green, cube))
13 # instruction: Construct a tower of height 3 with yellow cubes
14 Tower(height = 3, objects = filter(yellow, cubes))
15

16 # current task: Construct a staircase of 4 steps using cyan legos
17

18 # (GPT-4s output)
19 Staircase(steps = 4, filter(cyan, legos))

Listing 1: Task Sketch Generation Using GPT-4 (Sketch)

C.2. Prompt Example for Generalizing a sequence of actions/plan to a general program (Generalize)

Code segment 2 give an example of getting the general Python program from the plan found using MCTS. We first
provide a base prompt giving details to GPT-4 about the desired task (line 1-2). Then we give the input arguments and the
corresponding output/plan for a given demonstration (line 3-5). We expect the GPT-4 to output the final Python program
(line 7-10)staircase (line 6-8).

1 # Write a general python code which on the given input produces the desired output, do not
output anything other than the function description.

2

3 # input: n = 4, objects = ObjSet
4 # output: tower(1, ObjSet), move_head(‘right’), tower(2, ObjSet), move_head(‘right’),

tower(3, ObjSet), move_head(‘right’), tower(4, ObjSet)
5

6 # Program (GPT-4s output)
7 def staircase(n, objects):
8 for i in range(n):

19

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

9 tower(i+1, objects)
10 move_head(’right’)

Listing 2: Plan to Program using GPT-4 (Generalize)

C.3. Benefit of Estimating Modular/Smaller Plans

The below examples demonstrate the benefit of learning new inductive concepts in terms of already acquired inductive
concepts (more modular representation). The program 3 is obtained through generalization of plan Hp that represents
pyramid in terms of rows of decreasing size. The generated program generalizes to pyramid of different height.

1 # input: n = 3, objects = ObjSet
2 # output: row(5, ObjSet), move_head(’right’), move_head(’top’), row(3, ObjSet), move_head

(’right’), move_head(’top’), row(1, ObjSet)
3

4 # Program (GPT-4s output)
5 def pyramid(n, objects)
6 for i in range(n, 0, -1):
7 # Calculate the number of objects in the current row
8 row_count = 2 * i - 1
9

10 # Perform actions for the current layer
11 row(row_count, objects)
12 if i > 1: # No need to move head after the last row
13 move_head(’right’)
14 move_head(’top’)

Listing 3: Pyramid in terms of rows

On the other hand program 4 which is obtained in an attempt to generalize the plan expressed in terms of primitives is
incorrect.

1 # input: n = 3, objects = ObjSet
2 # output: store_head(), keep_at_head(ObjSet), move_head(’right’), keep_at_head(ObjSet),

move_head(’right’), keep_at_head(ObjSet), move_head(’right’), keep_at_head(ObjSet),
move_head(’right’), keep_at_head(ObjSet), reset_head(), move_head(’top’), move_head(’
right’), store_head(), keep_at_head(ObjSet), move_head(’right’), keep_at_head(ObjSet),
move_head(’right’), keep_at_head(ObjSet), reset_head(), move_head(’right’), move_head

(’top), keep_at_head(ObjSet)
3

4 # Program (GPT-4s output)
5 def pyramid(n, objects)
6 # Store initial position
7 store_head()
8

9 # Initial sequence of placing and moving right
10 for _ in range(n):
11 keep_at_head(objects)
12 move_head(’right’)
13

14 # Reset and move to top right position
15 reset_head()
16 move_head(’top’)
17 move_head(’right’)
18

19 # Store again and repeat placing and moving right
20 store_head()
21 for _ in range(n):
22 keep_at_head(objects)
23 move_head(’right’)
24

25 # Reset and adjust final position
26 reset_head()
27 move_head(’right’)

20

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

28 move_head(’top’)
29 keep_at_head(objects)

Listing 4: Pyramid in terms of primitive actions

C.4. Comparing Same-length Plans in terms of Generalizability

Below we illustrate plan to program generalization for 2 different plans which are correct and have same length, but LLMs
find it difficult to generalize the second one as compared to first. (Note that row and column of size 1 are equivalent to
keep_at_head)

1 # input: n = 3, objects = ObjSet
2 # output: keep_at_head(ObjSet), move_head(’top’), keep_at_head(ObjSet), move_head(’top’),

keep_at_head(ObjSet)
3

4

5 # Program
6 def tower(n, objects):
7 for _ in range(n):
8 keep_at_head(objects)
9 move_head(’top’)

Listing 5: Plan for tower that can be easily generalized (correct generalization)

1 # input: n = 3, objects = ObjSet
2 # output: row(1, ObjSet), move_head(’top’), keep_at_head(1, ObjSet), move_head(’top’),

column(1, ObjSet)
3

4

5 # Program
6 def tower(n, objects):
7 for i in range(1, n + 1):
8 row(i, objects)
9 move_head(’top’)

10 keep_at_head(objects)
11 move_head(’top’)
12 if i < n:
13 column(i, objects)
14 move_head(’top’)

Listing 6: Plan for tower that is difficult to generalize (Incorrect generalization)

C.5. Generalizing via Multiple Demonstrations

Given multiple demonstrations we independently find task sketch and corresponding grounded plans for each demonstration.
These are further given to GPT-4 for generalization. Code segment 7 gives an example of getting a single Python program
from multiple demonstrations. Note that we explicitly prompt the LLM that some of the grounded plans might be incorrect
(which may lead to more robust generalization in case of noisy demonstrations).

1

2 # Function Call: wor(height = 3, objects = ObjSet_1)
3 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(obj =

ObjSet_1), move_head(dir = right), keep_at_head(obj = ObjSet_1),
4 # Function Call: wor(height = 3, objects = ObjSet_1)
5 # Execution: keep_at_head(obj = ObjSet_1), move_head(dir = right), keep_at_head(obj =

ObjSet_1), move_head(dir = right), keep_at_head(obj = ObjSet_1),
6 # Function Call: wor(height = 3, objects = ObjSet_1)
7 # Execution: column(size=1, obj = ObjSet_1), move_head(dir = right), keep_at_head(obj =

ObjSet_1), move_head(dir = right), keep_at_head(obj = ObjSet_1),
8

9 #Write the function definition, which generalizes the above executions. Note that some of
the executions can be partially wrong.

10 ‘‘‘python

21

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

11 def wor(height, objects):
12 ‘‘‘
13

14 GPT-4s Output

Listing 7: Generalizing through multiple plans

C.6. Prompt Examples for Learning Programs using LLM/VLM Models

Below we describe the prompting methodologies for learning programs through LLM/VLM models. Note that although the
prompt examples described below are for the case of learning novel structure from 1 demonstration, we use 3 demonstration
per novel structure in our main results (for both our approach and LLM/VLM baseline).

LLM/GPT-4 Code segment 8 depicts our prompting methodology given a demonstration for a new concept tower. For
this baseline we aim to check demonstration following and spatial reasoning abilities of LLMs (GPT-4). We provide
supervision of the intermediate scenes by using tokenized spatial relations between objects in the scene (Given in the form
of Scene = [right(1, 0) ...]). We further assume that only those objects that are required to perform the task are present in
the scene (no distractor objects). For every structure (that needs to be learned at time t) we give LLM a prompt providing
in-context example on how to generalize (line 19-35), the set of primitive operators (line 4) available and the set of structures
learnt/present in library (till time t-1) (line 5-18). Finally we append to this prompt the expected declaration (arguments and
keywords arguments) of the inductive concept that is to be learnt along with the spatial relations for each scene of the given
demonstration (36-51). Note that we assume absence of distractor objects for this baseline.

1 # Consider a block world domain Given a structure creation task along with
intermediate scnes complete a general Python function for it. The function should be
in terms of primitive operators and already learnt structures that are present in the
program library. Enclose the function within backtick (‘‘‘)

2

3 primitive_operators = [keep_at_head, move_head ..]
4 # this would be our program library
5 learnt_structures = {
6 "row": {
7 "program_tree":
8 ’’’
9 def row(size, objects):

10 for i in range(size):
11 keep_at_head(obj = objects)
12 move_head(dir = ’right’)
13 ’’’,
14 },
15

16
17 }
18 # the example task
19 Example task:- Place all the objects to the right of each other.
20 Final state :- [right(1, 0), right(2, 1), right(3, 2), right(4, 3)]
21 Intermediate scenes :-
22 Scene 0 = []
23 Scene 1 = []
24 Scene 2 = [right(1, 0)]
25 Scene 3 = [right(1, 0), right(2, 1)]
26 Scene 4 = [right(1, 0), right(2, 1), right(3, 2)]
27 Scene 5 = [right(1, 0), right(2, 1), right(3, 2), right(4, 3)]
28 Python function :-
29 ‘‘‘python
30 def placing_all_right(objects):
31 for i in range(len(objects)):
32 keep_at_head(objects) # select one object from the objects set and keep the head

at this location
33 move_head(dir = ’right’) # move the head to the right of the previous position
34 ‘‘‘
35 # The current task for which program needs to be found
36 Current task:- Construct a tower of size 6.

22

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

37 Final state :- [top(1, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
38 Intermediate scenes :-
39 Scene 0 = []
40 Scene 1 = []
41 Scene 2 = [top(1, 0)]
42 Scene 3 = [top(1, 0), top(2, 1)]
43 Scene 4 = [top(1, 0), top(2, 1), top(3, 2)]
44 Scene 5 = [top(1, 0), top(2, 1), top(3, 2), top(4, 3)]
45 Scene 6 = [top(1, 0), top(2, 1), top(3, 2), top(4, 3), top(5, 4)]
46 Python function :-
47 ‘‘‘python
48 def tower(size, objects):
49 ??
50 ‘‘‘

Listing 8: Prompting Strategy for LLM baselines (GPT-4)

VLM/GPT-4-V Unlike LLM, VLMs have the abilities to process the demonstration as a sequence of visual frames. Therefore
rather than providing the symbolic spatial relations between every scene we instead directly provide all the intermediate
scenes for the given demonstration. Further we also relax the assumption that there are no distractor objects. As shown in
figure 15 We first give information about the set of primitive operators and the structures that we have already learnt (library
of concepts). In order to visually ground the semantics of our primitive actions we give 3 example tasks (natural language
instruction and intermediate scenes) that do not directly refer to any structure, along with corresponding sequence of actions
taken (# Demonstration for visual grounding). We further provide another example (without scenes) demonstrating how to
write generalizable Python function for a given task using our operators (# Example for generalization). Finally we give the
natural language instruction and corresponding scenes for the current task along with signature of the program to be learnt
(# Current task description).

23

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 15: Prompt example for VLM-baseline. Figure shows the prompting strategy for GPT-4-V that includes the
primitive actions, the example tasks for visual grounding, example of writing generalizable Python functions and the
demonstration frames.

D. Supplementary Results
Out-of-Distribution Performance:

Table 9: Out-of-Distribution Performance (mean ± std-error)

Model Simple Complex

IoU MSE IoU MSE

SPG(Ours) 0.892 ± 0.065 4.386e-4 ± 2.387e-4 0.804 ± 0.025 0.001 ± 5.391e-4
GPT-4 0.776 ± 0.023 0.006 ± 0.001 0.131 ± 0.019 0.019 ± 1.498e-3
GPT-4V 0.575 ± 0.026 0.013 ± 0.001 0.290 ± 0.016 0.011 ± 1.316e-3
SD 0.236 ± 0.005 0.006 ± 7.495e-4 0.150 ± 0.011 0.011 ± 2.860e-3
SD+G 0.273 ± 0.004 0.006 ± 6.180e-4 0.154 ± 0.010 0.014 ± 2.958e-3

Performance Dataset II (i.e. name reversed evaluation): Table 4 gives the corresponding program accuracies, while
Table 10 give the corresponding IoU/MSE metrics along with standard errors.

24

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Table 10: Performance on Dataset II(Names Reversed)

Model Simple Complex

IoU MSE (1e-3) IoU MSE (1e-3)

SPG(Ours) 0.86 ± 0.03 1.74 ± 0.45 0.78 ± 0.02 3.93 ± 1.09
GPT-4 0.78 ± 0.03 3.16 ± 0.51 0.00 ± 0.00 22.73 ± 1.48
GPT-4V 0.71 ± 0.01 3.92 ± 0.45 0.09 ± 0.02 21.29 ± 1.59

D.1. Qualitative Comparison between Purely-neural (Struct-Diff+Grounder) vs. Ours(SPG)

Figure 16 gives compares the qualitative results for our approach against Struct-Diffusion with grounder on both in-
distribution, Dataset I and out-of-distribution (larger size), Dataset III. In in-distribution setting the our method performs
slightly better in terms of structure creation for both simple and complex structures, but the difference is not significant.
However for out-of-distribution setting structures created by our approach are much better than those created by Struct-
Diffusion+Grounder. Further for this setting structure creation by Struct-Diffusion seems to be much worse for complex
structures than simple ones.

D.2. Continual Learning of Neural Concepts

Having a disentangled representations allows us to (i) intersperse learning of new visual attributes with learning of new
inductive concepts (ii) avoid catastrophic forgetting of already learnt attributes. For example, the model can learn the
chocolate from an instruction “construct a tower using chocolate blocks of size 4”, even if it has not seen the color in the
pretraining phase. Because of our modular architecture, we can learn the color as a new embedding in the space of visual
attributes. The plot in Fig. 17 demonstrates the benefit of having such disentangled representations. As the training proceeds
the probability of being able to select the chocolate blocks when required increases with time, while keeping the ability of
selecting a magenta colored object (when required) remains the same.

Figure 17: Disentanglement. The acquisition of new visual concepts. Plot shows an increase in the likelihood of correct grounding of
an object referenced with a new neural concept (chocolate color) with training iterations.

Given demonstration for the task “Construct a tower of height 4 using chocolate cubes”, we would like to learn the neural
embedding for the unknown color chocolate (where we assume that tower has already been learnt and stored in the library L).
First the instruction is converted into corresponding plan sketchHS = tower(4, Filter(chocolate, cubes)), which is passed
to the visual grounder. The grounder detects the presence of an unknown attribute chocolate as an argument to filter, and
randomly initializes a new neural embedding for it. Using this new embedding along with the already present embedding of
cube and the visual features found through ResNet-34, the quasi-symbolic executor outputs a grounded task-sketch. The
executor executes the grounded task-sketch by getting the semantics of the underlying function i.e. tower from the library L.
MSE+IoU loss computed over the final scene obtained and the expected final scene is backpropogated through the network.
Note that during backpropogation all the neural modules (action semantics, visual attributes, ResNet-34) are frozen, except
for the newly initialized embedding for chocolate. For the purpose of differentiable sampling during tower construction we
use gumbel-softmax (Jang et al., 2017) with masking. Figure 18 illustrates our approach.

25

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 16: Structure creation comparison between SPG(Ours), and Struct-Diff+Grounder

D.3. Details for Inference on Novel Tasks using an LLM

Below we show the (Liang et al., 2023) inspired prompting methodology that we use to get the executable code corresponding
to a language specified manipulation task. We initially begin by importing the helper functions, spatial direction, primitive
functions, and learnt inductive concepts/structures (line 5-11). Then we give few examples for how to use and compose the
various functions for different tasks (line 16-83). Finally we give the instruction of current task, and expect GPT-4 to output
the corresponding executable code.

26

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 18: Continual learning of visual primitives

1 # Given a task you have to provide Python code for executing the task
2

3 # importing available functions
4

5 from spatial_directions import top, front, back, left, right
6

7 from primitives import assign_head, move_head, keep_at_head
8 # HEAD is a imaginary pointer keeping track of the current spatial location in

consideration
9

10 from helpers import find_size, filter
11 from structures import row, column, tower
12

13

14 #function signature of the imported functions
15 # finds all the objects with the given color and shape, returns a mask denoting the

probability of object selection
16 filter(color, shape)
17

18 # finds the size of the structure struct_name that is formed with objects of the given
type, returns the size of the structure (whose type is integer), arguments for this
should be provided as kwargs

19 find_size(struct_name = str_name, objects = ObjSet)
20

21 # assigns the head to the location of the object
22 assign_head(at_obj_loc)
23

24 # moves the head in the given dir
25 move_head(dir)
26

27 # keeps the object obj at the head
28 keep_at_head(obj)
29

30

31 #Examples:
32 #Instruction: Move the green block to the left of the red dice
33 assign_head(at_obj_loc = filter(red, dice))
34 move_head(left)
35 keep_at_head(obj = filter(green, cube))
36

37 # Instruction: Find the size of the tower made of yellow legos
38 find_size(struct_name = tower, objects = filter(yellow, lego))
39

40 #Instruction: Find the size of the row made of orange cubes
41 find_size(struct_name = row, objects = filter(orange, cube))
42

43 # Instruction: Find the size of the column made of cyan cubes
44 find_size(struct_name = column, objects = filter(cyan, cube))
45

27

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

46 # Instruction: Move the green block to the left of the red dice and the yellow block to
the top of the green block

47 assign_head(at_obj_loc = filter(red, dice))
48 move_head(left)
49 keep_at_head(obj = filter(green, cube))
50 assign_head(at_obj_loc = filter(green, cube))
51 move_head(top)
52 keep_at_head(obj = filter(yellow, cube))
53

54 # Instruction: Construct a row of green legos of length 3 to the right of the blue block
55 assign_head(at_obj_loc = filter(blue, block))
56 move_head(right)
57 row(length = 3, objects = filter(green, legos))
58

59

60 # Instruction: Construct a tower of size 3 using red cubes
61 tower(height = 3, objects = filter(red, cube))
62

63 # Instruction: Construct a row of size 5 using blue legos
64 row(length = 5, objects = filter(blue, lego))
65

66 # Instruction: Construct a column of size 6 using green die
67 column(length = 6, objects = filter(green, dice))
68

69 # Instruction: Place 3 green blocks so that one block is to the right of the other
70 green_blocks = filter(green, block)
71 keep_at_head(green_blocks)
72 move_head(right)
73 keep_at_head(green_blocks)
74 move_head(right)
75 keep_at_head(green_blocks)
76

77 # Instruction: Place 3 red legos on top of one another
78 red_legos = filter(red, lego)
79 keep_at_head(red_legos)
80 move_head(top)
81 keep_at_head(red_legos)
82 move_head(top)
83 keep_at_head(red_legos)
84

85

86 # CURRENT TASK
87 # Instruction: Construct tower of white cubes to the same height as
88 # existing tower of green die
89

90 # GPT-4s output
91 #First, we have to find the height of the tower of green dice,
92 #then construct a tower of white cubes of the same size
93

94 tower_size = find_size(struct_name = tower, objects = filter(green, die))
95 tower(height = tower_size , objects = filter(white, cube))

Listing 9: Prompting method for the task of constructing tower of white cubes to the same height as existing tower of green
die

1 # Given a task you have to provide Python code for executing the task
2

3 # importing available functions
4 from spatial_directions import top, front, back, left, right
5 from primitives import assign_head, move_head, keep_at_head
6 # HEAD is a imaginary pointer keeping track of the current spatial location in

consideration
7 from helpers import find_size, filter
8 from structures import row, column, tower
9 #function signature of the imported functions

28

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

10 # finds all the objects with the given color and shape, returns a mask denoting the
probability of object selection

11 filter(color, shape)
12 # finds the size of the structure struct_name that is formed with objects of the given

type, returns the size of the structure (whose type is integer), arguments for this
should be provided as kwargs

13 find_size(struct_name = str_name, objects = ObjSet)
14 # assigns the head to the location of the object
15 assign_head(at_obj_loc)
16 # moves the head in the given dir
17 move_head(dir)
18 # keeps the object obj at the head
19 keep_at_head(obj)
20

21 #Examples:
22 #Instruction: Move the green block to the left of the red dice
23 assign_head(at_obj_loc = filter(red, dice))
24 move_head(left)
25 keep_at_head(obj = filter(green, cube))
26

27 # Instruction: Find the size of the tower made of yellow legos
28 find_size(struct_name = tower, objects = filter(yellow, lego))
29

30 #Instruction: Find the size of the row made of orange cubes
31 find_size(struct_name = row, objects = filter(orange, cube))
32

33 # Instruction: Find the size of the column made of cyan cubes
34 find_size(struct_name = column, objects = filter(cyan, cube))
35

36 # Instruction: Move the green block to the left of the red dice and the yellow block to
the top of the green block

37 assign_head(at_obj_loc = filter(red, dice))
38 move_head(left)
39 keep_at_head(obj = filter(green, cube))
40 assign_head(at_obj_loc = filter(green, cube))
41 move_head(top)
42 keep_at_head(obj = filter(yellow, cube))
43

44 # Instruction: Construct a row of green legos of length 3 to the right of the blue block
45 assign_head(at_obj_loc = filter(blue, block))
46 move_head(right)
47 row(length = 3, objects = filter(green, legos))
48

49

50 # Instruction: Construct a tower of size 3 using red cubes
51 tower(height = 3, objects = filter(red, cube))
52

53 # Instruction: Construct a row of size 5 using blue legos
54 row(length = 5, objects = filter(blue, lego))
55

56 # Instruction: Construct a column of size 6 using green die
57 column(length = 6, objects = filter(green, dice))
58

59 # Instruction: Place 3 green blocks so that one block is to the right of the other
60 green_blocks = filter(green, block)
61 keep_at_head(green_blocks)
62 move_head(right)
63 keep_at_head(green_blocks)
64 move_head(right)
65 keep_at_head(green_blocks)
66

67 # Instruction: Place 3 red legos on top of one another
68 red_legos = filter(red, lego)
69 keep_at_head(red_legos)
70 move_head(top)

29

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

71 keep_at_head(red_legos)
72 move_head(top)
73 keep_at_head(red_legos)
74

75

76 # CURRENT TASK
77 # Instruction: Construct a tower of height 6 using red and blue blocks that are

alternating
78

79 # GPT-4s output
80 # Python code:
81

82 # Define the red and blue blocks
83 red_blocks = filter(’red’, ’block’)
84 blue_blocks = filter(’blue’, ’block’)
85

86 # Start at the bottom and alternate building the tower
87 for i in range(6):
88 if i%2 == 0: # if the stack position is even
89 keep_at_head(red_blocks)
90 else: # if the stack position is odd
91 keep_at_head(blue_blocks)
92 if i != 5: # if not at the top of the tower
93 move_head(top)

Listing 10: Prompting method for the task of constructing tower of alternating red and blue cubes

To find the size of a given structure in the given scene we define the function find_size, which takes the name of
structure, all the objects in the initial scene, mask of the objects (a distribution over the objects based on the attributes), and
the initial state. (we assume that this function has access to the semantics of all the concepts learnt so far, through a transition
function). Algorithm ?? gives the pseudocode for the function find_structure. Below we provide a brief explanation for it.

1. First we assign our head to every block in the available blocks (line 6)

2. Then we begin constructing/visualizing the corresponding structure from that block beginning with a size of 1. (line 7)

3. For each structure created/visualized we compare the blocks moved for the structure creation with corresponding blocks
originally present in the scene, and perform a matching between these blocks and a subset of the blocks originally
present (line 11-26).

4. If we are able to find a mapping for each moved block, such that each mapped pair has an IoU greater than a threshold,
we increase the next potential size to test by 1 (line 26-27).

5. The final size is the size corresponding to 2nd last iteration, before termination (line 28).

6. We return the maximum of all the possible structures that are found (line 34)

D.4. Details on MCTS Variants for Plan Search

Here we provide the details for 3 different plan search methods, that search over the space A = Ac ∪ Ap

• MCTS+L+P: This is the approach that we describe in section 4.2. For every concept say Tower ∈ L we have a
corresponding set of macro action say Make_Tower(3, objects) (L). Further we use a neural pruner πneural that
outputs a primitive action a∗p (given current state and next expected state). We only consider the actions Ac ∪ {a∗p}
during our search from the given state. This helps to reduce the effective branching factor and allows to search longer
length plans within the same computational budget.

• MCTS+L-P: Here we do not use the reactive policy, therefore the branching factor for every node becomes A =
Ac ∪ Ap.

30

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

• MCTS-L+P: We only search among the space of primitive actions i.e Ap. Given a state s̃t and corresponding next
expected state st+1 we greedily pick the action a∗p = πneural(s̃t, st+1). This method is much more faster than the
previous 2 methods as there is no explicit search. However the corresponding policy is trained only to output an
action a ∈ Ap and lacks the ability to output modular plans composed of macro actions such as Make_Tower(3,
objects) ∈ Ac (the action space Ac is increasing with time and the architecture of network needs to be changed
accordingly). As a result the plans found are not modular and difficult to generalize. Further, the reactive policy is
not trained to output reset_head(), store_head() as additional annotated data is required in order to train a
classifier over them. This further decreases the space of grounded plans (and therefore corresponding generic programs)
such a policy can represent. Training a reactive policy that can handle actions such as reset_head() and an action
space Ac that grows with time is part of future work.

D.5. Goal-conditioned Planning with Learnt Concepts

Why is it difficult to hand encode a PDDL for our domain? Most of the PDDL description
of blocks world assume actions involving only the spatial relation onTop, which limits their applicabil-
ity to describing different structures like row that need spatial relations like onRight. Further a single
action might lead to varied effects/post-conditions based on the initial state. 19 gives 2 example of the
same action moveOnTop(A, B) which would end up giving adding different number of spatial relations.

Figure 19: Difficult to encode post-conditions.
Illustration of a domain where encoding a PDDL
for direct planning is challenging.

Approach Overview. Given an instruction Λ = “Construct a staircase
of magenta die having 3 steps”, we first convert it into corresponding
grounded task sketch H∗

S = staircase(3, [3, 2, 1, · · ·]).
Executing the corresponding program of staircase (by getting the se-
mantics from the library L) on the desired objects we get the expected
final scene S′

f in bounding box space. The initial scene Si and ex-
pected final scene S′

f are converted into scene graph SG′
i and SG′

f

(described in D.5). The relations between the task relevant objects in
SG′

f act as propositions/relations for goal check and the initial scene
graph act as the initial state. Then a neuro-symbolic planner is used
to obtain the optimal plan from the start state to a state that satisfies
the goal. Below we also detail different aspects of the approach.

Scene-graph Extraction. ?? gives the algorithm used for generating
scene graph from a given scene (set of bounding boxes). Suppose we need to check whether there exists a relation of the
form (i, j, direction) i.e. block i is in the direction direction of block j, in a given scene. We first initialize the head at
the position/bounding-box of block j (line 7). Then we move the head in direction direction (line 9). We claim that the
relationship would exists if bounding box for block i has IoU > 0.75 with the predicted_head (line 10-12).

Pre-conditions. We define the following 2 preconditions (and learn their grounding) in order to ensure that the generated
plans are physically possible.

1. is-clear(blk, dir): We need to check whether a block blk has some free space in direction dir. For this we
simply move the head in the direction dir with respect to the block blk. If the resulting position of head has 0 overlap
with bounding boxes of all the other objects the predicate is True otherwise False.

2. will-not-be-floating(pred_loc): We need to check whether the resultant/predicted location of an object
on taking an action would be dynamically stable or not. The location would be stable if either it is on top of some
already placed object or it is on the table surface. The former can be checked through the resultant scene graph itself
(that is obtained by applying the algorithm ??), while for the later we train an on-table classifier. This would take as
input a bounding box and predict whether the box is on the table or not. For training this classifier we use the dataset of
pretraining phase. The blockwise positive and negative sample annotation can be done automatically by giving GPT-4
the corresponding scene graph and then querying which objects are on the table and which aren’t. 20 gives an example.
(Though we have not taken this approach for the complete dataset of 5k samples due to high cost).

Actions. We define the following two types actions

31

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Figure 20: Method to get annotation for training on-table classifier.

1. place-random(blk): To place a block at a random free position on the table. For this we train a generative model
(VAE) which learns the underlying distribution of bounding boxes for all the blocks that lie on the table. Given a scene
we would sample position (bounding box) from this until we get a position that is not overlapping with the existing
blocks in the scene. For training the VAE we assume that for every demonstration in the pretraining data, the first
scene has all the objects randomly placed on the table (we could have also used the positive examples used for training
on-table classifier).

2. move(rel, blk1, blk2): This action corresponds to moving the blk1 in the direction rel of blk2, resulting
in the addition of a relation (rel, blk1, blk2) in the set of spatial relations. This action is defined as a sequential
composition of the actions assign_head(blk2), move_head(rel), keep_at_head(blk1) (blk1 is a
one hot tensor for the corresponding block).

Techniques and heuristic for efficient planning. Since the action space for the planner could be o(n2), where n is the
number of objects we adopt the following techniques to make planning scalable/efficient:

1. Heuristic - We define the heuristic value h(s) for a state s, as the number of relations that are present in the goal but are
absent in the scene graph corresponding to the state s. Even though this heuristic is not admissible (as it may over
overestimate the cost to goal), it was found to work optimally in most of the cases.

2. Greedy-pruning - We assume that all the actions resulting in states with higher or same heuristic value would be of the
form place-random(blk). This means among the actions of the form move(rel, blk1, blk2) we only
select those that lead to states with decreased heuristic value.

3. Relevant-object-set - Suppose O is the set of objects that are part of atleast one of the predicate in goal. We define O’
as the transitive closure of O with respect to the relation Related in the initial state si, where SG(si) is scene graph
for the initial state

Related(a, b, si) ⇐⇒ ∃dir((dir, a, b) ∈ SG(si) ∨ (dir, b, a) ∈ SG(si)) (9)

We assume O’ is the relevant set of object for completing the task and actions that move any other object should not be
taken.

32

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

E. Broader Impact
This work creates foundational knowledge in understanding human-like spatial abstractions. This work contributes
towards the development of explainable and interpret-able learning architectures that may eventually contribute towards the
development of embodied agents collaborating with and assisting humans in performing tasks. No negative impact of this
work is envisioned.

F. Hyperparameters, Architecture details and Ground Truth Concepts
F.1. Architecture for neural modules

Action Simulator:

1 import torch.nn as nn
2

3 class ActionSimulatorNetwork(nn.Module):
4 def __init__(self, bbox_mode, hidden_size = 256):
5 super(ActionSimulatorNetwork, self).__init__()
6 self.bbox_mode = bbox_mode
7 self.hidden_size = hidden_size
8

9 self.action_semantics_encoder = nn.Sequential(
10 nn.Linear(5, hidden_size),
11 nn.ReLU(),
12 nn.Linear(hidden_size, hidden_size),
13 nn.ReLU()
14)
15 self.argument_encoder = nn.Sequential(
16 nn.Linear(5, hidden_size),
17 nn.ReLU(),
18 nn.Linear(hidden_size, hidden_size),
19 nn.ReLU()
20)
21 self.decoder = nn.Sequential(
22 nn.Linear(hidden_size, hidden_size),
23 nn.ReLU(),
24 nn.Linear(hidden_size, 5),
25 nn.Tanh()
26)

Listing 11: Action Simulator Network in PyTorch

Reactive Policy(πneural):

1 import torch.nn as nn
2

3 class NeuralSearch(nn.Module):
4 def __init__(self, action_space=6):
5 super(NeuralSearch, self).__init__()
6 self.action_space = action_space
7 self.fc1 = nn.Linear(10, 256)
8 # self.bn1 = nn.BatchNorm1d(256)
9 self.bn1 = nn.Identity()

10 self.fc2 = nn.Linear(256, 256)
11 # self.bn2 = nn.BatchNorm1d(256)
12 self.bn2 = nn.Identity()
13 self.fc3 = nn.Linear(256, 256)
14 # self.bn3 = nn.BatchNorm1d(256)
15 self.bn3 = nn.Identity()
16 self.fc4 = nn.Linear(256, action_space)

Listing 12: Neural Search in PyTorch

Random Position predictor (for grounding of place-random(blk)):

33

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

1 import torch.nn as nn
2

3 class VAE(nn.Module):
4 def __init__(self, input_dim, latent_dim):
5 super(VAE, self).__init__()
6 self.input_dim = input_dim
7 self.latent_dim = latent_dim
8 # Encoder
9 self.fc1 = nn.Linear(input_dim, 512)

10 self.bn1 = nn.BatchNorm1d(512)
11 self.fc2 = nn.Linear(512, 512)
12 self.bn2 = nn.BatchNorm1d(512)
13 self.fc3 = nn.Linear(512, 512)
14 self.bn3 = nn.BatchNorm1d(512)
15 self.fc4 = nn.Linear(512, 512)
16 self.bn4 = nn.BatchNorm1d(512)
17 self.fc51 = nn.Linear(512, latent_dim) # Mean of the latent space
18 self.fc52 = nn.Linear(512, latent_dim) # Log-variance of the latent space (log-

var for numerical stability)
19

20 # Decoder
21 self.fc5 = nn.Linear(latent_dim, 512)
22 self.bn5 = nn.BatchNorm1d(512)
23 self.fc6 = nn.Linear(512, 512)
24 self.bn6 = nn.BatchNorm1d(512)
25 self.fc7 = nn.Linear(512, 512)
26 self.bn7 = nn.BatchNorm1d(512)
27 self.fc8 = nn.Linear(512, 512)
28 self.bn8 = nn.BatchNorm1d(512)
29 self.fc9 = nn.Linear(512, input_dim)

Listing 13: VAE in PyTorch

On-table classifier (for grounding of will-not-be-floating(pred_loc):

1 import torch.nn as nn
2

3 class TableClassifier(nn.Module):
4 def __init__(self):
5 super(TableClassifier, self).__init__()
6 self.fc1 = nn.Linear(5, 16)
7 self.bn1 = nn.BatchNorm1d(16)
8 self.fc2 = nn.Linear(16, 16)
9 self.bn2 = nn.BatchNorm1d(16)

10 self.fc3 = nn.Linear(16, 16)
11 self.bn3 = nn.BatchNorm1d(16)
12 self.fc4 = nn.Linear(16, 1)
13 self.bn4 = nn.BatchNorm1d(1)
14 self.sigmoid = nn.Sigmoid()

Listing 14: Table Classifier in PyTorch

F.2. Hyperparameters used in experiment

As indicated in A.3 for the purpose of generalization through multiple candidate plans (from 1 demonstration) we chose the
top-k plans (as measured by overall IoU achieved). The k chosen for all our experiments involving MCTS was 5. (The
performance of our best approach was found to be the same for k=5 to 20). For every plan we obtain 3 programs from
GPT-4 by re-prompting it 3 times with the same input prompt (with temperature > 0). From the pool of these 3*k programs
we chose the one with highest IoU reward by running each of them on the given demonstration. The discount factor kept for
our search is γ = 0.95, and unless explicitly specified the number of expansions steps used = 5000.

F.3. Ground-Truth Inductive Concepts

34

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

1 ######
2 # row
3 def row(length, objects):
4 for i in range(length):
5 keep_at_head(obj = objects)
6 move_head(dir = "right")
7

8 ######
9 # tower

10 def tower(height, objects):
11 for i in range(height):
12 keep_at_head(obj = objects)
13 move_head(dir = ’top’)
14

15 ######
16 # column
17 def column(size, objects):
18 for _ in range(size):
19 keep_at_head(obj = objects)
20 move_head(dir = ’front’)
21

22 ######
23 # staircase
24 def staircase(steps, objects):
25 for step in range(1, steps+1):
26 tower(height = step, objects = objects)
27 move_head(dir = ’right’)
28

29 ######
30 # inverted_row
31 def inverted_row(num, objects):
32 for i in range(num):
33 keep_at_head(obj=objects)
34 move_head(dir=’left’)
35

36 ######
37 # inverted_column
38 def inverted_column(size, objects):
39 for _ in range(size):
40 keep_at_head(obj = objects)
41 move_head(dir = ’back’)
42 return None
43

44 ######
45 # inverted_staircase
46 def inverted_staircase(steps, objects):
47 for step in range(1, steps+1):
48 tower(height = step, objects = objects)
49 move_head(dir = "left")
50

51 ######
52 # diagonal_135
53 def diagonal_135(length, objects):
54 for i in range(length):
55 keep_at_head(obj = objects)
56 move_head(dir = ’front’)
57 move_head(dir = ’left’)
58 return
59

60 ######
61 # diagonal_315
62 def diagonal_315(length, objects):
63 for i in range(length):
64 keep_at_head(obj = objects)
65 move_head(dir = ’back’)

35

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

66 move_head(dir = ’right’)
67 return
68

69 ######
70 # diagonal_225
71 def diagonal_225(length, objects):
72 for _ in range(length):
73 keep_at_head(obj = objects)
74 move_head(dir = ’back’)
75 move_head(dir = ’left’)
76

77 ######
78 # diagonal_45
79 def diagonal_45(length, objects):
80 for _ in range(length):
81 keep_at_head(obj = objects)
82 move_head(dir = ’front’)
83 move_head(dir = ’right’)
84

85 ######
86 # boundary
87 def boundary(size, objects):
88 row(length=size-1, objects=objects)
89 for _ in range(size-1):
90 move_head(dir = ’right’)
91 move_head(dir = ’front’)
92

93 column(length=size-1, objects=objects)
94 for _ in range(size-1):
95 move_head(dir = ’front’)
96 move_head(dir = ’left’)
97

98 inverted_row(length=size-1, objects=objects)
99 for _ in range(size-1):

100 move_head(dir = ’left’)
101 move_head(dir = ’back’)
102

103 inverted_column(length=size-1, objects=objects)
104 for _ in range(size-1):
105 move_head(dir = ’back’)
106 move_head(dir = ’right’)
107

108 ######
109 # arch_bridge
110 def arch_bridge(height, objects):
111 staircase(steps = height, objects = objects)
112 move_head(dir = ’left’)
113 inverted_staircase(steps = height, objects = objects)
114 return
115

116 ######
117 # x-shaped structure
118 def x(size, objects):
119 diagonal_45(length = size, objects = objects)
120 move_head(dir = ’back’)
121 diagonal_315(length = size, objects = objects)
122 move_head(dir = ’left’)
123 diagonal_225(length = size, objects = objects)
124 move_head(dir = ’front’)
125 diagonal_135(length = size, objects = objects)
126

127 ######
128 # pyramid
129 def pyramid(height, objects):
130 for i in range(height):

36

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

131 row_length = (height * 2) - (i * 2) - 1
132 row(length = row_length, objects = objects)
133 if i != height - 1:
134 move_head(dir = ’top’)
135 move_head(dir = ’right’)
136 ######

Listing 15: Definition of inductive concepts

G. Computational Requirements: Details
All our experiments were run on a server with the following machine specifications.

CPU Specification:

Specification Value
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address sizes 46 bits physical, 57 bits virtual
Byte Order Little Endian
CPU(s) 112
On-line CPU(s) list 0-111
Vendor ID GenuineIntel
Model name Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family 6
Model 106
Thread(s) per core 2
Core(s) per socket 28
Socket(s) 2
Stepping 6
CPU max MHz 3100.0000
CPU min MHz 800.0000
BogoMIPS 4000.00

GPU Specification:

Specification Value
GPU 1

Description VGA compatible controller
Product Integrated Matrox G200eW3 Graphics Controller
Vendor Matrox Electronics Systems Ltd.
Physical ID 0
Bus Info pci@0000:03:00.0
Logical Name /dev/fb0
Version 04
Width 32 bits
Clock 66MHz
Capabilities pm vga_controller bus_master cap_list rom fb
Configuration depth=32 driver=mgag200 mingnt=16
Resources irq:16 memory:91000000-91ffffff memory:92808000-9280bfff

memory:92000000-927fffff memory:c0000-dffff
GPU 2

Description 3D controller

37

Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts

Product GA102GL [A40]
Vendor NVIDIA Corporation
Physical ID 0
Bus Info pci@0000:17:00.0
Version a1
Width 64 bits
Clock 33MHz
Capabilities pm bus_master cap_list
Configuration driver=nvidia latency=0
Resources iomemory:21000-20fff iomemory:21200-211ff irq:18

memory:9c000000-9cffffff memory:210000000000-210fffffffff
memory:212000000000-212001ffffff memory:9d000000-9d7fffff
memory:211000000000-211fffffffff memory:212002000000-212041ffffff

GPU 3
Description 3D controller
Product GA102GL [A40]
Vendor NVIDIA Corporation
Physical ID 0
Bus Info pci@0000:ca:00.0
Version a1
Width 64 bits
Clock 33MHz
Capabilities pm bus_master cap_list
Configuration driver=nvidia latency=0
Resources iomemory:28000-27fff iomemory:28200-281ff irq:18

memory:e7000000-e7ffffff memory:280000000000-280fffffffff
memory:282000000000-282001ffffff memory:e8000000-e87fffff
memory:281000000000-281fffffffff memory:282002000000-282041ffffff

Time Required: The time required for pretraining phase of all the neural modules is around 36 hours. For learning of
inductive concepts the time taken varies from 5 minutes to 1 day depending on the search method used and the specific set
of hyperparameters. However for our best approach we get the maximum performance in approx 12 minutes. Time taken for
our approach during inference is less than 2 minutes per dataset.

38

