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Abstract
It is widely believed that noise conditioning is
indispensable for denoising diffusion models to
work successfully. This work challenges this be-
lief. Motivated by research on blind image denois-
ing, we investigate a variety of denoising-based
generative models in the absence of noise con-
ditioning. To our surprise, most models exhibit
graceful degradation, and in some cases, they even
perform better without noise conditioning. We
provide a theoretical analysis of the error caused
by removing noise conditioning and demonstrate
that our analysis aligns with empirical observa-
tions. We further introduce a noise-unconditional
model that achieves a competitive FID of 2.23
on CIFAR-10, significantly narrowing the gap to
leading noise-conditional models. We hope our
findings will inspire the community to revisit the
foundations and formulations of denoising gener-
ative models.

1. Introduction
At the core of denoising diffusion models (Sohl-Dickstein
et al., 2015) lies the idea of corrupting clean data with
various levels of noise and learning to reverse this process.
The remarkable success of these models has been partially
underpinned by the concept of “noise conditioning” (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020):
a single neural network is trained to perform denoising
across all noise levels, with the noise level provided as a
conditioning input. The concept of noise conditioning has
been predominantly incorporated in diffusion models and is
widely regarded as a critical component.

In this work, we examine the necessity of noise conditioning
in denoising-based generative models. Our intuition is that,
in natural data such as images, the noise level can be reliably
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Figure 1: (a) A denoising generative model takes a noisy
data z and a noise level indexed by t (such as σt) as the
inputs to the neural network NNθ . (b) This work investigates
the scenario of removing noise conditioning in the network.

estimated from corrupted data, making blind denoising (i.e.,
without knowing the noise level) a feasible task. Notably,
noise-level estimation and blind image denoising have been
active research topics for decades (Stahl et al., 2000; Salmeri
et al., 2001; Rabie, 2005), with neural networks offering
effective solutions (Chen et al., 2018; Guo et al., 2019;
Zhang et al., 2023). This raises an intriguing question:
can related research on image denoising be generalized to
denoising-based generative models?

Motivated by this, in this work, we systematically com-
pare a variety of denoising-based generative models —
with and without noise conditioning. Contrary to common
belief, we find that many denoising generative models per-
form robustly even in the absence of noise conditioning. In
this scenario, most methods exhibit only a modest degrada-
tion in generation performance. More surprisingly, we find
that some relevant methods—particularly flow-based ones
(Lipman et al., 2023; Liu et al., 2023), which originated
from different perspectives—can even produce improved
generation results without noise conditioning. Among all
the popular methods we studied, only one variant fails dis-
astrously. Overall, our empirical results reveal that noise
conditioning may not be necessary for denoising generative
models to function properly.

We present a theoretical analysis of the behavior of these
models in the absence of noise conditioning. Specifically,
we investigate the inherent uncertainty in the noise level dis-
tribution, the error caused by denoising without noise condi-
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tioning, and the accumulated error in the iterated sampler.
Put together, we formulate an error bound that can be com-
puted without involving any training, depending solely on
the noise schedules and the dataset. Experiments show that
this error bound correlates well with the noise-unconditional
behaviors of the models we studied—particularly in cases
where the model fails catastrophically, its error bound is
orders of magnitudes higher.

Because noise-unconditional models have been rarely con-
sidered, it is worthwhile to design models specifically for
this underexplored scenario. To this end, we present a sim-
ple alternative derived from the EDM model (Karras et al.,
2022). Without noise conditioning, our variant can achieve a
strong performance, reaching an FID of 2.23 on the CIFAR-
10 dataset. This result significantly narrows the gap between
a noise-unconditional system and its noise-conditional coun-
terpart (e.g., 1.97 FID of EDM).

Looking ahead, we hope that removing noise conditioning
will pave the way for new advancements in denoising-based
generative modeling. For example, only in the absence of
noise conditioning can a score-based model learn a unique
score function and enable the classical, physics-grounded
Langevin dynamics.1 Overall, we hope that our findings
will motivate the community to re-examine the fundamental
principles of related methods and explore new directions in
the area of denoising generative models.

2. Related Work
Noise Conditioning. The seminal work of diffusion mod-
els (Sohl-Dickstein et al., 2015) proposes iteratively perturb-
ing clean data and learning a model to reverse this process.
In this pioneering work, the authors introduced a “time de-
pendent readout function”, which is an early form of noise
conditioning.

The modern implementation of noise conditioning is popu-
larized by the introduction of Noise Conditional Score Net-
works (NCSN) (Song & Ermon, 2019). NCSN is originally
developed for score matching. This architecture is adopted
and improved in Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020), which explicitly formulate gen-
eration as an iterative denoising problem. The practice of
noise conditioning has been inherited in iDDPM (Nichol
& Dhariwal, 2021), ADM (Dhariwal & Nichol, 2021), and
nearly all subsequent derivatives.

DDIM (Song et al., 2021a) and EDM (Karras et al., 2022)
reformulate the reverse diffusion process into an ODE solver,
enabling deterministic sampling from a single initial noise.
Flow Matching (FM) models (Lipman et al., 2023; Liu et al.,

1Otherwise, it relies on the annealed Langevin dynamics (Song
& Ermon, 2019)) that does not correspond to a unique underlying
probability distribution independent of noise levels.

2023; Albergo et al., 2023) reformulate and generalize the
framework by learning flow fields that map one distribution
to another. In all these methods, noise conditioning (also
called time conditioning) is the de facto choice.

Beyond diffusion models, Consistency Models (Song et al.,
2023) have emerged as a new family of generative models
for non-iterative generation. It has been found (Song &
Dhariwal, 2024) that noise conditioning and its implementa-
tion details are critical for the success of consistency models,
highlighting the central role of noise conditioning.

Blind Image Denoising. In the field of image processing,
blind image denoising has been studied for decades. It refers
to the problem of denoising an image without any prior
knowledge about the level, type, or other characteristics of
the noise. Relevant studies include noise level estimation
from noisy images (Stahl et al., 2000; Shin et al., 2005; Liu
et al., 2013; Chen et al., 2015), as well as directly learning
to perform blind denoising from data (Liu et al., 2007; Chen
et al., 2018; Batson & Royer, 2019; Zhang et al., 2023).
Modern neural networks, including the U-Net (Ronneberger
et al., 2015) commonly used in diffusion models, have been
shown highly effective for these tasks.

Our research is closely related to classical work on blind
denoising. However, the iterative nature of the generative
process, where errors can accumulate, introduces new chal-
lenges. In addressing these challenges, our work opens up
new research opportunities that extend classical approaches.

3. Formulation
In this section, we present a reformulation that can summa-
rize the training and sampling processes of various denoising
generative models. The core motivation of our reformula-
tion is to isolate the neural network NNθ, allowing us to
focus on its behavior with respect to noise conditioning.

3.1. Denoising Generative Models

Training Objective. During training, a data point x is
sampled from the data distribution ppxq, and a noise ϵ is
sampled from a noise distribution ppϵq, such as a normal
distribution N p0, Iq. A noisy image z is given by:

z “ aptqx ` bptqϵ. (1)

Here, aptq and bptq are schedule functions that are method-
dependent. The time step t, which can be a continuous
or discrete scalar, is sampled from pptq. Without loss of
generality, we refer to bptq, or simply t, as the noise level.

In general, a denoising generative model involves minimiz-
ing a loss function that can be written as:

Lpθq “ Ex,ϵ,t

”

wptq
›

›NNθpz|tq ´ rpx, ϵ, tq
›

›

2
ı

. (2)
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Table 1: Schedules used by different models in our reformu-
lation. Notations and details are in Appendix D.

iDDPM, DDIM EDM FM

aptq
a

ᾱptq 1
b

t2`σ2
d

1 ´ t

bptq
a

1´ᾱptq t
b

t2`σ2
d

t

cptq 0 t

σd
b

t2`σ2
d

´1

dptq 1 ´
σd

b

t2`σ2
d

1

Here, NNθ is a neural network (e.g., U-Net) to be learned,

rpx, ϵ, tq is a regression target, and wptq is a weight. The
regression target r can be written as:

rpx, ϵ, tq “ cptqx ` dptqϵ, (3)

where cptq and dptq are also method-specific schedule func-
tions. Common choices of r include ϵ-prediction (Ho et al.,
2020), x-prediction (Salimans & Ho, 2022), or v-prediction
(Salimans & Ho, 2022; Lipman et al., 2023).

The specifics of the schedule functions of several existing
methods are in Table 1. It is worth noting that, in our refor-
mulation, we concern the regression target r with respect to
the neural network NNθ’s direct output.2

Sampling. Given trained NNθ, the sampler performs it-
erative denoising. Specifically, with an initial noise x0 „

N p0, bptmaxq2Iq, the sampler iteratively computes:

xi`1 :“ κixi ` ηiNNθpxi|tiq ` ζiϵ̃i. (4)

Here, a discrete set of time steps ttiu is pre-specified and
indexed by 0 ď i ă N . The schedules, κi, ηi, and ζi,
can be computed from the training-time noise schedules in
Table 1 (see their specific forms in Appendix D). In Eq. (4),
ϵ̃i „ N p0, Iq is a sampling-time noise that only takes effect
in SDE-based solvers; there is no noise added in ODE-based
solvers, i.e., ζi “ 0.

Eq. (4) is a general formulation that can encapsulate many
first-order samplers, such as (annealed) Langevin sampling
and Euler-based ODE solver. Higher-order samplers (e.g.,
Heun) can be formulated similarly with extra schedules. In
this paper, our theoretical analysis is based on Eq. (4), and
higher-order cases are evaluated empirically.

3.2. Noise Conditional Networks

In existing methods, the neural network NNθpz|tq is con-
ditioned on the noise level specified by t. See Fig. 1

2For methods like EDM where the network output is wrapped
with a precondition, we rewrite the schedules to expose the term
of NNθ (see Appendix D.3). This network NNθ is called the “raw
network” in EDM (see Eq. (8) in (Karras et al., 2022)).

rpx1, ϵ1, t1q

Rpzq
z

rpx2, ϵ2, t2q

Figure 2: Illustration of the effective target Rpzq. A given
z corresponds to multiple triplets px, ϵ, tq. Here, we take
Flow Matching (Lipman et al., 2023) as an example. On the
left are the samples of ϵ, and on the right are samples of x.
For a noisy sample z “ p1 ´ tqx ` tϵ, it can be produced
by different triplets. Each triplet gives a different regression
target r. The effective target Rpzq is the expectation of all
possible r.

(left). This is commonly implemented as t-embedding, such
as Fourier (Tancik et al., 2020) or positional embedding
(Vaswani, 2017). This t-embedding provides time-level in-
formation as an additional input to the network. Our study
concerns the influence of this noise conditioning, that is,
we consider NNθpzq vs. NNθpz|tq. See Fig. 1 (right). Note
that NNθpzq or NNθpz|tq involves all learnable parameters
in the model, while the schedules (aptq, bptq, etc.) are pre-
designed and not learned.

4. Analysis of Noise-Unconditional Models
Based on the above formulation, we present a theoretical
analysis of the influence of removing noise conditioning.
Our analysis involves both the training objectives and the
sampling process. We first analyze the effective target of
regression at the training stage and its error in a single
denoising step (Sections 4.1 to 4.3), and then give an upper
bound on the accumulated error in the iterative sampler
(Section 4.4). Overall, our analysis provides an error bound
that is to be examined by experiments.

4.1. Effective Targets

While the loss function is often written in a form like Eq. (2),
the underlying unique regression target for NNθpz|tq is not
rpx, ϵ, tq. The function NNθpz|tq, which is w.r.t. z and t, is
regressed onto multiple r values corresponding to different
possible triplets px, ϵ, tq that produce the same z (see Fig. 2).
Intuitively, the unique effective target, denoted as Rpz|tq to
emphasize its dependence on z and t, is the expectation of
r over all possible triplets.

Formally, optimizing the loss in Eq. (2) is equivalent to
optimizing the following loss, where each term inside the
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expectation Er¨s has a unique effective target:

Lpθq “ Ez„ppzq,t„ppt|zq

”

›

›NNθpz|tq ´ Rpz|tq
›

›

2
ı

. (5)

Here, ppzq is the marginalized distribution of z:“aptqx `

bptqϵ in Eq. (1), under the joint distribution ppx, ϵ, tq :“
ppxqppϵqpptq.3 It is easy to show that:

Rpz|tq “ Epx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰

, (6)

that is, the expectation over all px, ϵq subject to the condi-
tional distribution. One can show (Appendix C.1) that mini-
mizing Eq. (5) is equivalent to minimizing Eq. (2), and sim-
ilar analysis has also been done in previous work(Lehtinen
et al., 2018).

Effective Targets without Noise Conditioning. Similarly,
if the network NNθpzq does not accept t as the condition, its
unique effective target Rpzq should depend on z only. In
this case, the loss is:

Lpθq “ Ez„ppzq

”

›

›NNθpzq ´ Rpzq
›

›

2
ı

, (7)

where the unique effective target is:

Rpzq “ Et„ppt|zq

“

Rpz|tq
‰

. (8)

Eq. (8) suggests that if the conditional distribution ppt|zq is
close to a Dirac delta function, the effective target would be
the same with and without conditioning on t. If so, assuming
the network is capable enough to fit the target, the noise-
unconditional variant would produce the same output as the
conditional one.

4.2. Concentration of Posterior ppt|zq

Next, we investigate how similar ppt|zq is to a Dirac delta
function. For high-dimensional data such as images, it
has been long realized that the noise level can be reliably
estimated (Stahl et al., 2000; Salmeri et al., 2001; Shin et al.,
2005), implying a concentrated ppt|zq. We note that the
concentration of ppt|zq depends on data dimensionality:

Statement 1 (Concentration of ppt|zq). Consider a single
datapoint x P r´1, 1sd, ϵ„N p0, Iq, t„Ur0, 1s, and z “

p1 ´ tqx ` tϵ (the Flow Matching case). Given a noisy
image z “ p1 ´ t˚qx ` t˚ϵ produced by a given t˚, the
variance of t under the conditional distribution ppt|zq, is:

Vart„ppt|zqrts «
t2˚
2d

, (9)

when the data dimension d satisfies 1
d ! t˚ and 1

d ! 1´ t˚.
(Derivation in Appendix C.2)

3For simplicity, we consider wptq“1, which happens to be the
case for all methods in Table 1 when we expose NNθ explicitly.
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Figure 3: The Posterior distribution ppt|zq is concen-
trated. We picked z “ p1´ t˚qx` t˚ϵ with t˚ from 0.1 to
0.9 for illustration. This plot is empirically simulated from
15,000 images in the AFHQ-v2 dataset with a size 64ˆ64
(see Appendix A.2).

Intuitively, this statement suggests that high-dimensional
data induces a sharply peaked ppt | zq. In Appendix C.2, we
derive a rigorous upper bound on this variance and extend
the analysis to the multi–data–point setting. To corroborate
these theoretical findings, we empirically run a simulation
on a real dataset and plot ppt|zq (see Fig. 3). The empiri-
cal distribution of ppt|zq is well concentrated. Moreover,
a smaller t˚ leads to a more concentrated ppt|zq, as also
indicated by Eq. (9).

4.3. Error of Effective Regression Targets

With ppt|zq, we investigate the error between the effective
regression targets Rpzq and Rpz|tq. Formally, we consider:

Epzq :“ Et„ppt|zq

”

}Rpz|tq ´ Rpzq}2
ı

. (10)

We show that this error Epzq is substantially smaller than
the norm of Rpzq:

Statement 2 (Error of effective regression targets). Con-
sider the scenario in Statement 1 and the Flow Matching
case. The error defined in Eq. (10) satisfies:

Epzq «
1

2
p1 ` σ2

dq (11)

when the data dimension d satisfies 1
d ! t˚ and 1

d ! 1´ t˚.
Here, σd denotes the per-pixel standard deviation of the
dataset. (Derivation in Appendix C.3)

Intuitively, Statement 2 suggests that for sufficiently high-
dimension d, the error Epzq is substantially smaller («1)
than the L2 norm of the target Rpzq («d). In our real-data
verification, we find that Epzq is at the order of 1{103 of
Rpzq (see Appendix A.2). In this case, regressing to Rpz|tq
can be reliably approximated by regressing to Rpzq.
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4.4. Accumulated Error in Sampling

Thus far, we have been concerned with the error of a sin-
gle regression step. In a denoising generative model, the
sampler at inference time is iterative. We investigate the
accumulated error in the iterative sampler.

To facilitate our analysis, we assume the network NNθ is
sufficiently capable of fitting the effective regression target
Rpz|tq or Rpzq. Under this assumption, we replace NNθ in
Eq. (4) with R. This leads to the following statement:

Statement 3 (Bound of accumulated error). Consider
a sampling process, Eq. (4), of N steps, starting from the
same initial noise x0 “ x1

0. With noise conditioning, the
sampler computes:

xi`1 “ κixi ` ηiRpxi|tiq ` ζiϵ̃i,

and without noise conditioning, it computes:

x1
i`1 “ κix

1
i ` ηiRpx1

iq ` ζiϵ̃i.

Assuming }Rpx1
i|tiq ´ Rpxi|tiq} { }x1

i ´ xi} ď Li and
}Rpx1

iq ´ Rpx1
i|tiq} ď δi, it can be shown that the error

between the sampler outputs xN and x1
N is bounded:

}xN´x1
N } ď A0B0 ` A1B1 ` . . . ` AN´1BN´1, (12)

where:

Ai “

N´1
ź

j“i`1

pκi ` |ηi|Liq and Bi “ |ηi|δi.

depend on the schedules and the dataset. (Derivation in
Appendix C.4)

Here, the assumption on δi can be approximately satisfied as
per Statement 2. The assumption on Li models the function
Rp¨|tq as Lipschitz-continuous. Although it is unrealistic for
this assumption to hold exactly in real data, we empirically
find that an appropriate choice of Li can ensure the Lipchitz
condition holds with high probability (Appendix A.3).

Statement 3 suggests that the schedules κi and ηi are influ-
ential to the estimation of the error bound. With different
schedules across methods, their behavior in the absence of
noise conditioning can be dramatically different.

Discussions. Remarkably, the bound estimation can be
computed without training the neural networks: it can be
evaluated solely based on the schedules and the dataset.

Furthermore, our analysis of the “error” bound implies
that the noise-conditional variant is more accurate, with
the noise-unconditional variant striving to approximate it.
In fact, there is no reason to assume that the former should
be a more accurate generative model. Nonetheless, in ex-
periments, we find that the noise-unconditional case can
outperform its noise-conditional counterpart in some cases.

5. A Noise Unconditional Diffusion Model
In addition to investigating existing models, we also design
a diffusion model specifically tailored for noise uncondition-
ing. Our motivation is to find schedule functions that are
more robust in the absence of noise conditioning, while still
maintaining competitive performance. To this end, we build
upon the highly effective EDM framework (Karras et al.,
2022) and modify its schedules.

A core component of EDM is a “preconditioned” denoiser:

cskipptqẑ ` coutptqNNθ

`

cinptqẑ | t
˘

Here, ẑ :“ x ` tϵ is the noisy input before the nor-
malization performed by cinptq,4 which we simply set as
cinptq “ 1?

1`t2
. The main modification we adopt for the

noise unconditioning scenario is to set:

coutptq “ 1.

As a reference, EDM set coutptq “ σdt?
σ2

d `t2
where σd is the

data std. As coutptq is the coefficient applied to NNθ, we
expect setting it to a constant will free the network from
modeling a t-dependent scale. In experiments (Section 6.2),
this simple design exhibits a lower error bound (Statement 3)
than EDM. We name this model as uEDM, which is short
for (noise-)unconditional EDM. For completeness, the re-
sulting schedules of uEDM are provided in Appendix D.5.

6. Experiments
Experimental Settings. We empirically evaluate the im-
pact of noise conditioning across a variety of models:

• Diffusion: iDDPM (Nichol & Dhariwal, 2021), DDIM
(Song et al., 2021a), ADM (Dhariwal & Nichol, 2021),
EDM (Karras et al., 2022), and uEDM (Sec. 5)

• Flow-based Models: we adopt the implementation of
Rectified Flow (1-RF) (Liu et al., 2023), which is a
form of Flow Matching (Lipman et al., 2023) (FM).

• Consistency Models: iCT (Song & Dhariwal, 2024)
and ECM (Geng et al., 2025).

Our main experiments are on class-unconditional gener-
ation on CIFAR-10 (Krizhevsky et al., 2009), with extra
results on ImageNet 32ˆ32 (Deng et al., 2009), and FFHQ
64ˆ64 (Karras et al., 2019). We evaluate Fréchet Inception
Distance (FID) (Heusel et al., 2017) and report Number
of Function Evaluations (NFE). For a fair comparison, all
methods are based on our re-implementation as faithful as
possible (see Appendix B.3): with and without noise condi-
tioning are run in the same implementation for each method.

4To make notations consistent with our reformulation in Eq. (2),
we denote z “ cinptqẑ. See details in Appendix D.3.
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Table 2: Changes of FID scores in the absence of noise
conditioning, for different methods on CIFAR-10. Here
‘w/o t’ means without noise conditioning. A color of yellow
denotes a non-disastrous (and often decent) degradation;
green denotes improvement; red denotes failure.

model sampler NFE FID
w/ t Ñ w/o t

iDDPM SDE 500 3.13 Ñ 5.51
iDDPM (x-pred) SDE 500 5.64 Ñ 6.33

DDIM
ODE 100 3.99 Ñ 40.90
SDE 100 8.07 Ñ 10.85
SDE 1000 3.18 Ñ 5.41

ADM SDE 250 2.70 Ñ 5.27

EDM Heun 35 1.99 Ñ 3.36
Euler 50 2.98 Ñ 4.55

FM (1-RF)
Euler 100 3.01 Ñ 2.61
Heun 99 2.87 Ñ 2.63
RK45 „127 2.53 Ñ 2.63

iCT - 2 2.59 Ñ 3.57
ECM - 2 2.57 Ñ 3.27

uEDM (Sec. 5) Heun 35 2.04 Ñ 2.23

6.1. Main Observations

Table 2 summarizes the FID changes in different generative
models, with and without noise conditioning, denoted as
“w/ t” and “w/o t”. Fig. 5 shows some qualitative results.
We draw the following observations:

(i) Contrary to common belief, noise conditioning is not an
enabling factor for most denoising-based models to function
properly. Most variants can work gracefully, exhibiting
small but decent degradation ( yellow ).

(ii) More surprisingly, some flow-based variants can achieve
improved FID ( green ) after removing noise conditioning.
In general, flow-based methods investigated in this paper are
insensitive to whether we use noise conditioning or not. We
hypothesize that this is partially because FM’s regression
target is independent on t (see Table 1: c “ ´1, d “ 1)

(iii) The uEDM variant (Sec. 5) achieves a competitive FID
of 2.23 without noise conditioning, narrowing the gap to the
strong baseline of the noise-conditional methods (here, 1.99
of EDM, or 1.97 reported in Karras et al. (2022)).

(iv) Consistency Models (here, iCT and ECM), which are re-
lated to diffusion models but present a substantially different
objective function, can also perform gracefully. While iCT
was found highly sensitive to the subtleties of t-conditioning
(see Song & Dhariwal (2024)), we find that removing it does
not lead to disastrous failure.

(v) Among all variants we investigate, only “DDIM w/ ODE
sampler” results in a catastrophic failure ( red ), with FID
significantly worsened to 40.90. Fig. 5 (a) demonstrates its
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uEDM

Model accum. bound FID w/ t Ñ w/o t

DDIM 3e6 3.99 Ñ 40.90
EDM 1e3 2.34 Ñ 3.80
FM (1-RF) 1e2 3.01 Ñ 2.61
uEDM (Sec. 5) 1e2 2.62 Ñ 2.66

Figure 4: Error bound and the influence of noise con-
ditioning. ODE with N “ 100 steps is applied for each
variant. The plot shows the per-step error bound AiBi in
Eq. (12), and the table shows the accumulated error bound.
The y-axis is log-scale.

qualitative behavior: the model is still able to make sense
of shapes and structures; it is “overshoot” or “undershoot”,
producing over-saturated or noisy results.

Summary. Our experimental findings highlight that noise
conditioning, though often helpful for improving quality, is
not essential for the fundamental functionality of denoising
generative models.

6.2. Analysis

Error Bound. In Fig. 4, we empirically evaluate the error
bound in Statement 3 for different methods under a 100-step
ODE sampler. The computation of the bound depends only
on the schedules for each methods, as well as the dataset
(detailed in Appendix A.3).

Fig. 4 shows a strong correlation between the theoretical
bound and the empirical behavior. Specifically, DDIM’s
catastrophic failure can be explained by its error bound that
is orders of magnitudes higher. On the other hand, EDM,
FM, and uEDM all have small error bounds throughout.
This is consistent with their graceful behavior in the lack of
noise conditioning.

These findings suggest that the error bound derived in our
analysis serves as a reliable predictor of a model’s robust-
ness to the removal of noise conditioning. Importantly, the
bound can be computed solely based on the model’s for-
mulation and dataset statistics, without training the neural
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(a) DDIM (FID: 3.99 Ñ 40.90) (b) EDM (FID: 1.99 Ñ 3.36)

(c) FM (1-RF) (FID: 3.01 Ñ 2.61) (d) uEDM (FID: 2.04 Ñ 2.23)

Figure 5: Samples of noise-conditional vs. noise-unconditional models. Samples are generated by (a) DDIM, (b)
EDM, (c) FM (1-RF), and (d) uEDM, on the CIFAR-10 class-unconditional case. For each subfigure, the left panel is the
noise-conditional case, and the right panel is the noise-unconditional counterpart, with the same random seeds. The change
of FID is from “w/ t” to “w/o t”. See also Table 2 for more quantitative results.
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Figure 6: Influence of Stochasticity on DDIM, in the lack
of noise conditioning. The level of stochasticity is specified
by λ, with λ “ 0 denoting the ODE case. Here, the number
of sampling steps is fixed as 500.

network. Consequently, it can provide a valuable tool for
estimating whether a given denoising generative model can
function effectively without noise conditioning, prior to
model training.

Level of Stochasticity. In Table 2, DDIM only fails with
the deterministic ODE sampler (the default sampler in (Song
et al., 2021a)); it still performs decently with the SDE sam-
pler (i.e., the DDPM sampler). With this observation, we

further investigate the level of stochasticity in Fig. 6.

Specifically, with the flexibility of DDIM (Song et al.,
2021a), one can introduce a parameter λ that interpolates be-
tween the ODE and SDE samplers by adjusting ηi and ζi in
Eq. (4) (see Eq. (56) in Appendix D.2). As shown in Fig. 6,
increasing λ (more stochasticity) consistently improves FID
scores. When λ “ 1, DDIM behaves similarly to iDDPM.

We hypothesize that this phenomenon can be explained
by error propagation dynamics. Our theoretical bound in
Statement 3 assumes worst-case error accumulation, but
in practice, stochastic sampling enables error cancellation.
The ODE sampler’s consistent noise patterns lead to cor-
related errors, while the SDE sampler’s independent noise
injections at each step promote error cancellation. This error
cancellation mechanism can improve performance with in-
creasing stochasticity, as further evidenced by iDDPM and
ADM’s results (Table 2) produced by SDE.

Alternative Noise-conditioning Scenarios. Thus far, we
have focused on removing noise conditioning from existing
models. This is analogous to blind image denoising in the
field of image process. Following the research topic on noise
level estimation, we can also let the network explicitly or
implicitly predict the noise level. Specifically, we consider
the following four cases (Fig. 7):

7
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(a) (b) (c) (d)

Model (a) (b) (c) (d)

iDDPM 2.69 4.91 4.95 4.68
EDM 1.99 3.27 3.39 3.36
FM (1-RF) 3.01 2.58 2.65 2.61

Figure 7: Alternative Noise-conditional Scenarios. (a)
Noise-conditional baseline. (b) Noise-conditional, but on
t1 predicted by a noise level predictor P . (c) Similar to (b),
but the noise level predictor is not supervised and is trained
jointly. (d) Noise un-conditional baseline. For iDDPM,
EDM, and FM, all of (b), (c), and (d) perform similarly.

(a) The standard noise-conditioning baseline, which is
what we have been comparing with. See Fig. 7(a).

(b) A noise-conditioning variant, in which the noise level
is predicted by another network. In this variant, the
noise predictor P is a small network pre-trained to
regress t. This predictor is then frozen when training
NNθ , and NNθ is conditioned on the predicted t1, rather
than the true t. See Fig. 7(b).

(c) An “unsupervised” noise-conditioning variant. This
architecture is exactly the same as the variant (b), ex-
cept that the noise predictor P is trained from scratch
without any ground-truth t. If we consider P and NNθ

jointly as a larger network, this also represents a design
for noise-unconditional modeling. See Fig. 7(c).

(d) The standard noise-unconditional baseline, which is
what we have been investigating. See Fig. 7(d).

Fig. 7 compares all four variants. Notably, consistent be-
havior is observed for all models (iDDPM, EDM, and FM)
studied here: the results of (b), (c), and (d) are similar. This
suggests that (b), (c), and (d) could be subject to the same
type of error, that is, the uncertainty of t estimation. Note
that even in the case of (b) where the noise predictor is
pre-trained with the true t given, its prediction cannot be
perfect due to the small yet inevitable uncertainty in ppt|zq

(see Section 4.2). As a result, the supervised pre-trained
noise predictor (b) does not behave much different with the
unsupervised counterpart (c).

Table 3: Changes of FID scores in the absence of noise
conditioning, on class-unconditional ImageNet 32ˆ32 and
FFHQ 64ˆ64, and class-conditional CIFAR-10.

Model Sampler NFE FID
w/ t Ñ w/o t

ImageNet 32ˆ32
FM (1-RF) Euler 100 5.15 Ñ 4.85
FFHQ 64ˆ64
EDM Heun 79 2.64 Ñ 3.59
CIFAR-10 Class-conditional
EDM Heun 35 1.76 Ñ 3.11
FM (1-RF) Euler 100 2.72 Ñ 2.55

6.3. Extra Datasets and Tasks.

Thus far, our experiments have been on the CIFAR-10 class-
unconditional task. To show the generalizability of our
findings, we further evaluate class-unconditional generation
on ImageNet 32ˆ32, FFHQ 64ˆ64, and class-conditional
generation on CIFAR-10. See Table 3.

The behavior is in general similar to that in our previous
experiments. Specifically, removing noise conditioning can
also be effective for other datasets or the class-conditional
generation task. FM can exhibit improvement in the absence
of noise conditioning; EDM has a decent degradation, but
experience no catastrophic failure.

6.4. Classifier-Free Guidance

We further examine the impact of omitting noise condition-
ing when using classifier-free guidance (CFG) (Dhariwal &
Nichol, 2021), a standard technique for significantly improv-
ing sample quality in class-conditional diffusion models.

Our experiments with CFG are conducted on the ImageNet
256ˆ256 dataset on SiT (Ma et al., 2024), which is a flow-
matching variant of DiT (Peebles & Xie, 2023). For com-
parison, we train SiT-B/2 under the original paper’s configu-
ration for both noise-conditional and unconditional model.
At inference, we employ an Euler sampler with 250 steps
and vary the CFG scale. See more details in Appendix B.

The results in Fig. 8 indicate that removing the noise condi-
tioning incurs almost no degradation at different guidance
scales, corroborating our analysis.

7. Discussion and Conclusion
We hope that rethinking the role of noise conditioning will
open up new opportunities. Modern diffusion models are
closely related to Score Matching (Hyvärinen & Dayan,
2005; Song & Ermon, 2019; Song et al., 2021b), which pro-
vides an effective solution to Energy-Based Models (EBM)
(Hopfield, 1982; Ackley et al., 1985; LeCun et al., 2006;
Song & Kingma, 2021). The key idea of EBM is to represent
a probability distribution ppxq by ppxq “ e´Epxq{Z, where

8
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Figure 8: Classifier-free guidance results for SiT-B/2 on
ImageNet 256ˆ256. We use an Euler sampler with 250
steps. The best guidance scale in each setting is marked
with a star. All other experimental details follow the original
paper. Removing noise conditioning leads to almost no
degradation regardless of guidance scale.

Epxq is the energy function. With the score function of ppxq

(that is, ∇xEpxq), one can sample from the underlying ppxq

by Langevin dynamics. This classical formulation models
the data distribution ppxq by a single energy function Epxq

that is solely dependent on x. Therefore, a classical EBM
is inherently t-unconditional. However, with the presence
of t-conditioning, the sampler becomes annealed Langevin
dynamics (Song & Ermon, 2019), which implies a sequence
of energy functions tEpx, tqut indexed by t, with one sam-
pling step performed on each energy. Our study suggests
that it is possible to pursue a single energy function Epxq,
aligning with the goal of classical EBM.

Our study also reveals that certain families of models, e.g.,
Flow Matching (Lipman et al., 2023; Liu et al., 2023; Al-
bergo et al., 2023), can be more robust to the removal of
t-conditioning. Although these models are closely related to
diffusion, they can be formulated from a substantially differ-
ent perspective—estimating a flow field between two distri-
butions. While these models can inherit the t-conditioning
design of diffusion models, their native formulation does not
require the flow field to be dependent on t. Our study sug-
gests that there exists a single flow field for these methods
to work effectively.

In summary, noise conditioning has been predominant in
modern denoising-based generative models and related ap-
proaches. We encourage the community to explore new
models that are not constrained by this design.
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Appendices
A. Details of Numerical Experiments
In this section, we provide additional details on all our real dataset numerical experiments. By first computing the value of
some relevant quantities (e.g. the underlying time distribution ppt|zq, effective target Rpz|tq, Rpzq), we are able to evaluate
Epzq, which is average error introduced by removing noise conditioning. See Appendix A.1.

As we introduce single data point assumption in our theoretical framework, we verify the accuracy of this assumption
by comparing the empirical values of ppt|zq and Epzq with the theoretical values derived from our estimations. See
Appendix A.2.

Finally, in Appendix A.3, we show how we derive the numbers in Fig. 4 by detailing on our estimation of bound values Ai

and Bi in Statement 3.

A.1. Computation of Relavent Quantities

We consider the data distribution pdata constituted solely from the data points in the dataset: pdatapxq “ 1
N

řN
i“1 δpx ´ xiq,

where xi P Rd are the images in the dataset, and δp¨q is the delta distribution. We denote N as the number of data points in
the dataset, and d as the dimension of the image.

Calculation of ppt|zq (Section 4.2). First, we calculate ppz|tq by marginalizing over all the data points:

ppz|tq “

ż

ppz|t,xqppxqdx “
1

N

N
ÿ

i“1

ppz|t,xiq.

The random variable z is given by Eq. (1), which implies

ppz|t,xq “ N
`

z; aptqx, bptq2Id
˘

, (13)

where N pz;µ,Σq denotes the probability density function of the Gaussian distribution with mean µ and covariance Σ.
This leads to

ppz|tq “
1

N

N
ÿ

i“1

N
`

z; aptqxi, bptq
2Id

˘

, (14)
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and we can finally obtain:

ppt|zq “
pptq

ppzq
ppz|tq “

pptq
N
ř

i“1

N
`

z; aptqxi, bptq
2Id

˘

ż 1

0

pptq
N
ÿ

i“1

N
`

z; aptqxi, bptq
2Id

˘

dt

. (15)

Note that there is an integral to evaluate in Eq. (15). In practice, the calculation is performed in a two-step manner for a fixed
z. In the first step, we use a uniform grid of 100 t values in r0, 1s (i.e. t “ 0.00, 0.01, . . . , 0.99). We calculate the value of
pptqppz|tq for each t value.

Typically, we observe that within an interval rl, rs (where 0 ď l ă r ď 1), the value of pptqppz|tq is significantly larger than
for other t P r0, 1s 5. We then approximate the integral as:

ż 1

0

pptq
N
ÿ

i“1

N
`

z; aptqxi, bptq
2Id

˘

dt «

ż r

l

pptq
N
ÿ

i“1

N
`

z; aptqxi, bptq
2Id

˘

dt. (16)

In the second step, we evaluate the integral by using a uniform grid of 100 t values in rl, rs. This two-step procedure
effectively reduces computational costs while maintaining low numerical error.

Calculation of Rpz|tq and Rpzq (Section 4.1). By definition,

Rpz|tq :“ Ex,ϵ„ppx,ϵ|z,tqrrpx, ϵ, tqs “ Ex„ppx|z,tq

„

cptqx ` dptq
z ´ aptqx

bptq

ȷ

.

Notice that ppx|z, tq “
ppxq

ppz|tq
ppz|x, tq, and ppz|x, tq is given in Eq. (13). Consequently, we have

Rpz|tq “

1
N

n
ř

i“1

ppz|xi, tq
”

cptqxi ` dptqz´aptqxi

bptq

ı

1
N

n
ř

i“1

ppz|xi, tq
“

dptq

bptq
z `

ˆ

cptq ´
aptqdptq

bptq

˙

n
ř

i“1

N
`

z; aptqxi, bptq
2Id

˘

xi

n
ř

i“1

N pz; aptqxi, bptq2Idq

, (17)

which can be then explicitly calculated by scanning over all the data points xi.

Once we obtain Rpz|tq, using Theorem 2 and ppt|zq, Rpzq can be calculated by

Rpzq “ Et„ppt|zqrRpz|tqs “

ż 1

0

ppt|zqRpz|tqdt. (18)

For the integration, we utilize the selected time steps in rl, rs that were used when computing ppt|zq. On another word, we
ignore the parts where ppt|zq is negligible.

Calculation of Epzq (Section 4.3). Epzq can be computed simply utilizing ppt|zq, Rpz|tq and Rpzq:

Epzq :“ Et„ppt|zq}Rpz, tq ´ Rpzq}2 “

ż 1

0

ppt|zq}Rpz|tq ´ Rpzq}2 dt. (19)

We again use the same time steps for estimating the integral term and reuse the terms of ppz|xi, tq. This ensures computational
efficiency while maintaining accuracy.

5Actually, this exactly matches our observation that ppt|zq is concentrated, since ppt|zq9pptqppz|tq for a fixed z.

14



Is Noise Conditioning Necessary for Denoising Generative Models?

Table 4: The variance and E values on the CIFAR-10 dataset. The empirical values are calculated by scanning the entire
dataset, while the (theoretical) estimated values are derived from Statements 1 and 2. For reference, the values for }Rpzq}2

are also included to illustrate that Epzq is significant smaller than }Rpzq}2. The results show that our approximation is
generally accurate, except for the E value in the very noisy case, where the single data point approximation becomes less
accurate.

t˚ Vart„ppt|zqrts Epzq }Rpzq}
2

Empirical (ˆ10´4) Estimation (ˆ10´4) Empirical Estimation Empirical

0.1 0.0143 ˘ 0.0002 0.0163 0.558 ˘ 0.005 0.628 3894 ˘ 87

0.3 0.1280 ˘ 0.0002 0.1465 0.561 ˘ 0.006 0.628 3953 ˘ 102

0.5 0.3695 ˘ 0.0004 0.4069 0.556 ˘ 0.006 0.628 3878 ˘ 108

0.7 0.7008 ˘ 0.0010 0.7975 0.564 ˘ 0.005 0.628 3968 ˘ 88

0.9 1.3085 ˘ 0.0007 1.3184 1.822 ˘ 0.245 0.628 3310 ˘ 71

A.2. Numerical Experiments

Verification of the Single Data Point Assumption. Recall that Statements 1 and 2 assume that the dataset contains
a single data point. In this section, we conduct numerical experiments on CIFAR-10 dataset to demonstrate that this
assumption provides a reasonable approximation of the variance of ppt|zq and the error between the effective targets in
practice.

For both ppt|zq and Epzq, we calculate their values by scanning the entire dataset as shown in the previous section, and
compare them with our estimated theoretical values.

For the CIFAR-10 dataset, we have N “ 50000 and d “ 3 ˆ 322 “ 3072, from which we can derive the estimated values
of ppt|zq and Epzq in Table 4.

As for empirical calculation, we compute the desired values via Monte Carlo sampling. Specifically, we select 5 time levels
t˚ “ 0.1, 0.3, 0.5, 0.7, 0.9. For each t˚, we sample M “ 25 noisy images zj by zj “ apt˚qxIj ` bpt˚qϵj , j “ 1, 2, . . . ,M .
Here, ϵj are independent samples from N p0, Idq, and Ij are independent random integers from r1, N s. We then compute
Vart„ppt|¨qrts, }Rp¨q}2 and Ep¨q for each zj as we specified in Appendix A.1. Finally, we average the M values to obtain
the empirical values along with their statistical uncertainties. Results are shown in Table 4.

Table 4 shows that our estimations closely align with the observed values, except when t gets very close to 1 (i.e. in highly
noisy images), where the single data point approximation becomes less precise. However, even in these cases, the estimated
values remain within the same order of magnitude, providing acceptable explanations for the concentration of ppt|zq and the
small error between the two effective targets.

Visualization of ppt|zq. We plot the value of ppt|zq in Fig. 3 for one z and t˚ from 0.1 to 0.9. This is carried out exactly in
the same manner as the variance calculation for t, but with AFHQ-v2 dataset at 64ˆ64 resolution for a better visualization
quality. Fig. 3 functions as a reliable visual verification of the concentration of ppt|zq.

A.3. Evaluation of the Bound Values

In this section, we provide additional experiment details on how we compute the bound values and present the plot of the
bound terms AiBi in Fig. 4. For reference, we also include separate plots for Ai and Bi in Figs. 9a and 9b 6.

Recall that in Statement 3, we define Ai and Bi as

Ai “

N´1
ź

j“i`1

pκi ` |ηi|Liq, Bi “ |ηi|δi. (20)

6An interesting fact in Fig. 9b is that, for EDM, there is a “phase change” at around i “ 50, which is caused by a non-smooth δ value.
We hypothesize that this transition occurs at a noise level high enough that the data distribution can no longer be approximated as a point
distribution, leading to a noticeable shift in behavior.
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(a) The values of Ai for different denoising generative models.
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(b) The values of Bi for different denoising generative models.

Figure 9: The bound applied on DDIM, EDM, FM and our uEDM model with a first-order ODE sampling process of
N “ 100 steps. The figures visualize the different terms Ai and Bi in the bound.

Since κi and ηi are already given by the configurations for each model (see Table 8), we only have to evaluate Li and δi.
Statement 3 requires the following condition to hold:

$

’

&

’

%

}Rpx1
iq ´ Rpx1

i|tiq} ď δi

}Rpx1
i|tiq ´ Rpxi|tiq}

}x1
i ´ xi}

ď Li

(21)

Now we are going to pick reasonable values of δi and Li. As mentioned in Section 4.4, it is unrealistic for this assumption
to hold exactly in real data due to bad-behaviors of the effective target R when the noisy image is close to pure noise or pure
data. However, we aim to make the conditions hold with high probability instead of considering worst case. As a result, our
choice of δi, Li corresponds to high probability case.

Estimation of δi. We estimate δi using a maximum among different samples:

δi “ max
j

}Rpzi,j |tiq ´ Rpzi,jq}. (22)

where we sample 10 different z from ppz|tq. Rpz|tq and Rpzq values are computed as specified in Appendix A.1. We use a
maximum value across different samples to ensure that the condition holds with high probability.

Estimation of Li. The condition of Li is similar to “Lipchitz constant” of Rp¨|tiq. Inspired by this, we evaluate the value

of
}Rpx1

i|tiq ´ Rpxi|tiq}

}x1
i ´ xi}

for xi and x1
i that are close to each other.

To model this, we sample xi from ppz|tiq, and let x1
i “ xi ` δϵ̃. Here, we pick δ “ 0.01, and ϵ̃ „ N p0, Iq represents a

random direction, which serves as a first-order estimation.

Based on this, we sample 10 different pairs of xi and x1
i for each ti, and evaluate the max value of the “Lipchitz constant”.

In another word, we are calculating

Li “ max
j

}Rpzi,j ` δϵ̃j |tiq ´ Rpzi,j |tiq}

δ}ϵ̃j}
(23)

for j “ 1, 2, . . . , 10. Again, here we use the maximum value across different samples to ensure that the condition holds with
high probability.
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Bound Values of the uEDM Model. It is worth noticing that our uEDM model (see Section 5) has a non-constant
weighting wptq ‰ 1, which doesn’t match our assumption when deriving the effective target Rpz|tq and Rpzq (as we did in
Section 4.1). However, we choose not to introduce more mathematical complexities, and instead use the formulas above to
calculate the bound value for uEDM. This implies that the bound for uEDM is no longer mathematically strict, but it can
still serve as a reasonable intuition for the choice of our uEDM configuration.

Absolute Magnitude of the Bound Values. As shown in Fig. 4, one might observe that the magnitude of the bound (around
102 to 106) is actually significantly larger compared to the typical magnitude of }xN } (which is around σd

?
d „ 101). We

hypothesize that this is because of the following two reasons:

(1) We are assuming the error accumulating on each step, which might not be the case in practice, as studied in our discussion
of SDE samplers in Section 6.2.

(2) When the noisy image approaches clean data, some properties of the effective target R become bad (e.g. the Lipchitz
constant Li will be very big). This leads to a large error estimation, but in real cases, as the neural network will smooth the
learned function, the error is typically smaller. If we consider ignoring the last 10 steps in our bound value, the bound will
be in a reasonable range (approximately 10 for FM and uEDM, 140 for EDM, and ą 105 for DDIM).

B. Additional Experimental Details
B.1. General Experiment Configurations

We implement our main code base using Google TPU and the JAX (Bradbury et al., 2018) platform, and run most of our
experiments on TPU v2 and v3 cores. As the official codes are mostly provided as GPU code, we re-implemented most of
the previous work in JAX. For the faithfulness of our re-implementation, please refer to Appendix B.3.

FID Evaluation. For evaluation of the generative models, we calculate FID (Heusel et al., 2017) between 50,000 generated
images and all available real images without any augmentation. We used the pre-trained Inception-v3 model provided by
StyleGAN3 (Karras et al., 2021) and converted it into a model class compatible with JAX. As we have reproduced most of
the results in Appendix B.3, we believe that our FID calculation is reliable.

Noise Conditioning Removal. When we refer to “removing noise conditioning”, technically we set the scalar before
passing into the time-embedding to zero. Alternatively, we can also set the embedded time vector to zero. The results turn
out to have negligible differences.

iDDPM (x-pred). We design a x-prediction version of iDDPM to show the generalizability of our theoretical framework.
During training time, we simply change the target rpx, ϵ, tq or rpx, ϵq to be x. The sampling algorithm has to be modified
accordingly, and we directly translate the x-prediction to ϵ-prediction by Eq. (1).

ADM. In the original work of ADM, Dhariwal & Nichol (2021) don’t provide result on the CIFAR-10 dataset in class-
unconditional settings. In our implementation of ADM, we keep the main method of learning ϵ-prediction and the variance
Σ simultaneously, but employ it on the class-unconditional CIFAR-10 task. Notice that this ADM formulation is also not
included in our theoretical framework, but it still gives a reasonable result after removing noise conditioning (see Table 2).

Hyperparameters. A table of selected important hyperparameters can be found in Table 5. For ICM and ECM we use the
RAdam (Liu et al., 2020) optimizer, while for all other models we use the Adam (Kingma & Ba, 2015) optimizer. Also, we
set the parameter β2 to 0.95 to stabilize the training process.

For all CIFAR-10 experiments, we used the architecture of NCSN++ in Song et al. (2021b), with 56M parameters. For
the ImageNet 32ˆ32 experiment, we used the same architecture but a larger scale, with a total of 210M parameters. For
experiments on classifier-free guidance on ImageNet 256ˆ256, we strictly follow the SiT-B/2 model with 400k training
steps in Ma et al. (2024).

We highlight that for all experiments, we only tune hyperparameters on the noise-conditional model, and then directly use
exactly the same hyperparameters for the noise-unconditional model and don’t perform any further hyperparameter tuning.
Thus, we expect that tuning these hyperparameters may further improve the performance of the noise-unconditional model.
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Class-Conditional Generation on CIFAR-10. For the class-conditional CIFAR-10 experiments, we use exactly the
same configurations and hyperparameters of EDM and FM with the unconditional generation case, except that we train the
network with labels. For the conditioning on labels, we use the architecture in Karras et al. (2022). We do not apply any
kind of guidance at inference time.

FFHQ 64ˆ64 Experiments. For FFHQ 64ˆ64 experiments, we directly use the code provided by Karras et al. (2022)
and run it on 8 H100 GPUs. We keep all hyperparameters the same as the original code in the experiments. For the removal
of noise-conditioning, we simply set the cnoise variable in the code to zero.

Table 5: Selected important hyperparameters in our main experiments.

Experiment Duration Warmup Epochs Batch Size Learning Rate EMA Schedule EMA Half-life Images Dropout

iDDPM & ADM 100M 200 2048 8ˆ10´4 EDM 50M 0.15

iDDPM(x-pred) 200M 200 2048 1.2ˆ10´3 EDM 50M 0.15

DDIM 100M 200 512 4ˆ10´4 EDM 50M 0.1

FM 100M 200 2048 8ˆ10´4 EDM 50M 0.15

FM ImageNet32 256M 64 2048 2ˆ10´4 EDM 50M 0

EDM 200M 200 512 1ˆ10´3 EDM 0.5M 0.13

uEDM (ours) 200M 200 512 4ˆ10´4 EDM 0.5M 0.2

ICM & ECM 400M 0 1024 1ˆ10´4 Const(0.99993) - 0.3

SiT-B/2 100M 0 256 1ˆ10´4 Const(0.9999) - 0

B.2. Special Experiments

This section covers the specific experiment details in Section 6.2.

DDIM-iDDPM Interpolate Sampler. In the analysis of stochasticity, we examine VP diffusion models with cosine and
linear ᾱptq schedule with and without noise conditioning, using a customized interpolate sampler featured by λ, which is
given by Eq. (56). For the cosine schedule, we use 500 sampling steps, while for the linear schedule, we use 100 sampling
steps. As discussed in Appendix D.2, when λ “ 1, the model with the cosine schedule has the same setting as “iDDPM” in
Table 2; when λ “ 0, the model with the linear schedule has the same setting as “DDIM ODE 100” in Table 2.

Results for the experiment are shown in Table 6, and the result for the cosine schedule model is visualized in Fig. 6.
From Table 6 one can also find a consistent trend that as λ increase, the degradation of FID becomes smaller for the
noise-unconditional model, regardless of the specific schedule of ᾱptq.

Alternative Architectures: Noise Level Predictor and Noise-like Condition. In our experiment of Noise Level Predictor,
we train a very lightweight network to predict the noise level t given the input z. To be specific, our predictor network only
contains two convolutional layers with relu activation, followed by a global average pooling layer and a linear layer. The
network has no more than 30K parameters, so it hardly affects the expressiveness of the whole model.

It’s worth noticing that directly predicting the input t is usually not desirable, as the value of t may have different ranges for
different models. Instead, for each specific model we choose a customized target for the prediction.

Training objectives for different models are shown below (Pϕ represents the predictor network):

• FM: L “ Ex„pdata,ϵ„N p0,IqEt„Ur0,1s rPϕpp1 ´ tqx ` tϵq ´ ts
2
.

• VP models: L “ Ex„pdata,ϵ„N p0,IqEt„Ur0,1s

“

Pϕp
?
1 ´ tx `

?
tϵq ´ t

‰2
.

• EDM models: L “ Ex„pdata,ϵ„N p0,IqEt„expN p´1.2,1.22q

”

1
Pϕpcinptqpx`tϵqq`1 ´ 1

1`t

ı2

.

Here, for EDM, we apply a transformation y Ñ 1
1`y , mapping the original noise level t P p0,`8q in EDM to r0, 1s.
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Table 6: Comparison of inference performance between noise-conditional and noise-unconditional models. The left panel
uses a cosine noise schedule, while the right panel uses a linear noise schedule. Both panels compare the performance of
noise-conditional and noise-unconditional settings across different values of the ablation sampler coefficient λ, ranging from
0.0 to 1.0.

cosine schedule linear schedule
λ FID Change FID Change

0.0 2.98 Ñ 34.56 +31.58 3.99 Ñ 40.90 +36.91
0.2 2.60 Ñ 30.34 +27.74 4.09 Ñ 36.04 +31.95
0.4 2.52 Ñ 21.33 +18.81 4.45 Ñ 28.08 +23.63
0.6 2.59 Ñ 12.47 + 9.88 4.95 Ñ 18.32 +13.37
0.8 2.77 Ñ 7.53 + 4.76 5.90 Ñ 10.36 + 4.46
1.0 3.13 Ñ 5.51 + 2.38 8.07 Ñ 10.85 + 2.78

Experimentally, the MSE loss for all these settings all have a magnitude on the order of 10´4, which means that even our
very lightweight predictor can predict the noise level with a mean error of about 0.01.

In our Noise-like Conditioning experiment, the same lightweight network as mentioned above is connected to a noise-
conditional U-Net, as visualized in Fig. 7c. This joint training architecture is noise-unconditional. The main difference
between this experiment and the “Noise Level Predictor” experiment is that there is no supervision on the intermediate
output, so it may not be the noise level t itself.

For the experiments in Fig. 7 column (b) and (c), we again use the same set of hyperparameters and configurations as the
noise-conditional and noise-unconditional experiments (in columns (a) and (d)), to ensure a fair comparison. However, a
subtle detail is that in the implementation of iDDPM in Fig. 7, the results for noise-conditional and noise-unconditional
experiments are not the same as the results in Table 2. This is due to that we use T “ 500 instead of T “ 4000 for the
training process.

B.3. Our Reimplementation Faithfulness

As we have mentioned, we reimplement most of the models in the platform of JAX and TPU. Table 7 shows the comparison
of our reimplementation and the original reported results.

For some models, the reproduction doesn’t meet our expectations. For example, since the official code for iCT is currently
not open-sourced, we can only follow all configurations mentioned in their work, and get a best FID score of 2.59 (compared
with the originally reported score of 2.46). For EDM on FFHQ-64, we directly run the given official code with the VP
configuration on 8 H100 GPUs, but still can’t reproduce the result. We suspect that the difference may come from random
variance or different package versions used in the experiments.

Note that iDDPM (Nichol & Dhariwal, 2021) only reports results with 1000 and 4000 training steps. Due to computational
constraints, we only evaluate the model with 500 sampling steps. Since our 500-step result has already been better than the
1000-step result reported in their work, we believe that we successfully reproduced the model.

After all, our goal is to compare the performance of noise-conditional and noise-unconditional models, and the absolute
performance is not the focus of our work. Thus, even though we haven’t fully reproduced some of the results, we believe
that our comparison is still meaningful.

C. Supplementary Theoretical Details
C.1. Proof of the Effective Target

Theorem 1. The original regression loss function with t condition shown in Eq. (2) with wptq “ 1

Lpθq “ Ex,ϵ,t

”

›

›NNθpz|tq ´ rpx, ϵ, tq
›

›

2
ı

is equivalent to the loss function with the effective target shown in Eq. (5)

L1pθq “ Ez„ppzq,t„ppt|zq

”

›

›NNθpz|tq ´ Rpz|tq
›

›

2
ı
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Table 7: Comparison of our reimplementation and the original reported results.

Model Sampler NFE FID
Reproduced Original

CIFAR-10

iDDPM (Nichol & Dhariwal, 2021) -
500 3.13 -

1000 - 3.29
4000 - 2.90

DDIM (Song et al., 2021a) ODE 100 3.99 4.16
ODE 1000 2.85 4.04

EDM (Karras et al., 2022) Heun 35 1.99 1.97

1-RF (Liu et al., 2023) RK45 „127 2.53 2.58

iCT (Song & Dhariwal, 2024) - 2 2.59 2.46

CIFAR-10 Class-conditional

EDM (Karras et al., 2022) Heun 35 1.79 1.76

ImageNet 32ˆ32

FM (Lipman et al., 2023) Euler 100 5.15 -
FM (Lipman et al., 2023) RK45 „125 4.30 5.02

FFHQ 64ˆ64

EDM (Karras et al., 2022) Heun 79 2.64 2.39

only up to a constant term that is independent of θ, where

Rpz|tq “ Epx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰

.

Here, ppzq is the marginalized distribution of z:“aptqx ` bptqϵ in Eq. (1), under the joint distribution ppx, ϵ, tq :“
ppxqppϵqpptq.

Proof. The original regression loss function with t condition can be rewritten as

Lpθq “ Ez„ppzq,t„ppt|zqEpx,ϵq„ppx,ϵ|z,tq

”

›

›NNθpz|tq ´ rpx, ϵ, tq
›

›

2
ı

“ Ez„ppzq,t„ppt|zq

”

}NNθpz|tq ´ Epx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰
›

›

2
` Vpx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰

ı

“ Ez„ppzq,t„ppt|zq

”

}NNθpz|tq ´ Rpz|tq
›

›

2
` const

ı

“ Ez„ppzq,t„ppt|zq

”

}NNθpz|tq ´ Rpz|tq
›

›

2
ı

` const “ L1pθq ` const. (24)

This finishes the proof.

Theorem 2. The original regression loss function without noise conditioning

Lpθq “ Ex,ϵ,t

”

›

›NNθpzq ´ rpx, ϵ, tq
›

›

2
ı

is equivalent to the loss function with the effective target shown in Eq. (7)

L1pθq “ Ez„ppzq

”

›

›NNθpzq ´ Rpzq
›

›

2
ı

only up to a constant term that is independent of θ, where

Rpzq “ Et„ppt|zq

“

Rpz|tq
‰

.

Defintions on ppzq and ppt|zq are the same as in Theorem 1.
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Proof. The original regression loss function without noise conditioning can be rewritten as

Lpθq “ Ez„ppzqEpx,ϵ,tq„ppx,ϵ,t|zq

”

›

›NNθpzq ´ rpx, ϵ, tq
›

›

2
ı

“ Ez„ppzq

”

}NNθpzq ´ Epx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰
›

›

2
` Vpx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰

ı

“ Ez„ppzq,t„ppt|zq

”

}NNθpzq ´ Epx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰
›

›

2
` const

ı

“ Ez„ppzq,t„ppt|zq

”

}NNθpzq ´ Epx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰
›

›

2
ı

` const (25)

And notice that

Epx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰

“ Et„ppt|zqEpx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰

“ Et„ppt|zqRpz|tq. (26)

So

Lpθq “ Ez„ppzq,t„ppt|zq

”

}NNθpzq ´ Epx,ϵ,tq„ppx,ϵ,t|zq

“

rpx, ϵ, tq
‰
›

›

2
ı

` const

“ Ez„ppzq,t„ppt|zq

”

}NNθpzq ´ Rpzq
›

›

2
ı

` const “ L1pθq ` const.

This finishes the proof.

C.2. Approximation of the Variance of ppt|zq

We claim in Statement 1 that, for a fixed noisy image z whose true noise level is t˚, the posterior variance of ppt|zq scales
like t2˚{2d. In this section, we first derive a Opt2˚{dq upper bound on the variance under minimal technical assumptions.
While obtaining the exact constant requires delicate optimizations, our Big-O presentation keeps the proof accessible. We
then present a concise, intuitive argument to recover the t2˚{2d scaling, which— as confirmed by our numerical results in
Appendix A.2—serves as an accurate and practical estimate of Varppt|zqrts.

C.2.1. RIGOROUS UPPER BOUND ON VARIANCE.

Single Data Point Case. We first consider the case where N “ 1. For brevity, write x “ x1. Recall that our goal is to
bound, with high probability over the randomness in z „ ppzq, the posterior variance Vart|zrts.

Note that some ill-behaved z can lead to strange distribution of t. Thus we work under the high-probability regime in which
z concentrates around its typical behavior.

Because ϵ „ N p0, Idq is rotationally invariant, we may, without loss of generality, assume x to only have 1 nonzero
coordinate.

Theorem 3. Assume that

x “ px, 0, 0, ¨ ¨ ¨ , 0q, x P

”

´
?
d,

?
d

ı

z “ p1 ´ t0qx ` t0ϵ, ϵ “ pϵ0, ϵ
1q

Here, ϵ0 is a scalar that is the first coordinate of ϵ, and ϵ1 is its other coordinates.

We further assume that

t0 P

„

1

d
, 1 ´

1

d

ȷ

, ||ϵ12| ´ d| “ Op
?
d log dq, |ϵ0|2 ď log d (27)

Then, we have Vart|zptq “ Opt20{dq.

Note that Eq. (27) occur with probability 1 ´ Op 1
d q, due to the norm-concentration properties of the Gaussian distribution.

Proof. We directly compute the probability density functions as follows.
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Firstly, we have

ppt|zq 9 ppz|tqpptq 9
1

td
exp

˜

´
1

2

ˆ

|z ´ p1 ´ tqx|

t

˙2
¸

since the distribution ppz|tq is simply a Gaussian with mean p1 ´ tqx and variance t2 per dimension.

Looking into the exponent, it can be simplified as
ˆ

|z ´ p1 ´ tqx|

t

˙2

“

ˆ

|pt ´ t0qx ` t0ϵ|

t

˙2

“

ˇ

ˇ

ˇ

ˇ

ˆ

1 ´
t0
t

˙

x `
t0
t
z

ˇ

ˇ

ˇ

ˇ

2

“

ˆˆ

1 ´
t0
t

˙

x `
t0
t
ϵ0

˙2

`

ˆ

t0
t

˙2

|ϵ1|2

which is a quadratic function on
t0
t

. We write it as a
ˆ

t0
t

´ µ

˙2

` C for some constants a, µ, C independent of t, where

a “ px ´ ϵ0q2 ` |ϵ1|2 “ x2 ´ xOp
a

log dq ` d ` Op
?
d log dq

“ x2 ` d ` Op
?
d log dq (28)

and

aµ “ xpx ´ ϵ0q “ x2 ´ Opx
a

log dq (29)

by the assumption Eq. (27).

Substituting back, we get

ppt|zq 9
1

td
exp

˜

´
1

2
a

ˆ

t0
t

´ µ

˙2
¸

We find its maximum by differentiating its log-density:

B log p pt|zq

Bt
“ ´

d

t
` a

ˆ

t0
t

´ µ

˙

t0
t2

“
1

t

˜

a

ˆ

t0
t

˙2

´ aµ
t0
t

´ d

¸

Let λ1 ą 0, λ2 ă 0 be the two roots of the equation fpXq :“ aX2 ´ aµX ´ d “ 0 (since a and d are both positive).

Notice that λ1λ2 “ ´
d

a
. We claim that

λ1 “ 1 ` O
ˆ

log d
?
d

˙

, λ2 “ ´
d

a

ˆ

1 ` O
ˆ

log d

d

˙˙

“ ´Θp1q (30)

This is because
fp1q “ Op

?
d log dq, f 1p1q “ x2 ` 2d ` Op

?
d log dq

by Eq. (28) and Eq. (30), from which we derive the desired root bounds.

Using the factorization into roots, we have

B log ppt|zq

Bt
“

1

t

˜

a

ˆ

t0
t

˙2

´ aµ
t0
t

´ d

¸

“
1

t
a

ˆ

t0
t

´ λ1

˙ ˆ

t0
t

´ λ2

˙

“
1

t

ˆ

t0
t

´ λ1

˙

Ωpdq

by Eq. (28) and Eq. (30).
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Denote t˚ “
t0
λ1

as the unique maximizer of log ppt|zq. As a first step, we show that in range p0, 3t˚s, the probability

density of ppt|zq is more concentrated than a Gaussian with variance Opt20{dq. Intuitively, it is due to the fact that in this
range,

B log ppt|zq

Bt
“

1

t

ˆ

t0
t

´
t0
t˚

˙

Ωpdq “
t0pt˚ ´ tq

t2t˚
Ωpdq “ pt˚ ´ tqΩ

ˆ

d

t20

˙

utilizing Eq. (30). This inequality implies that in this range, the gradient of this probability density is sharper than
N pt˚,Opt20{dqq.

To be specific, when 0 ă t ă t1 ď t˚ or t˚ ď t1 ă t ď 3t˚, we have

log ppt1|zq ´ log ppt|zq “

t1
ż

t

B log ppt|zq

Bt
dt “ Ω

ˆ

d

t20

˙

¨

´

pt ´ t˚q2 ´ pt1 ´ t˚q
2
¯

(31)

where the RHS is exactly the difference in log-probability density of N pt˚,Opt20{dqq at t and t1. This fact supports that in
this range, ppt|zq is sharper than N pt˚,Opt20{dqq, or

Et„p1 rpt ´ t˚q2s ď Et„qrpt ´ t˚q2s “ Opt20{dq

where p1, q denotes the distribution of ppt|zq and N pt˚,Opt20{dqq restricted on p0, 3t˚s, respectively.

Finally, we only need to consider the part when 3t˚ ă t ď 1, where we are going to prove that

Pr
t„ppt|zq

rt ą 3t˚s

is small. In this case, according to Eq. (31), for any t1 P rt˚, 2t˚s:

ppt|zq

ppt1|zq
ď exp

ˆ

´Ω

ˆ

d

t20

˙

¨ p4t˚2
´ t˚2

q

˙

“ expp´Ωpdqq

which is actually exponentially small. This implies that

Pr
t„ppt|zq

rt ą 3t˚s ď expp´Ωpdqq ¨ min
t1Prt˚,2t˚s

ppt1|zq ď expp´Ωpdqq ¨
1

t˚
“ O

ˆ

1

d3

˙

Consequently, the contribution of this tail to the variance is Op1{d3q, which is negligible compared to Opt20{dq. Combining
the two regimes, we conclude that

Varppt|zqrts ď Et„ppt|zqrpt ´ t˚q2s “ Opt20{dq

Multiple Data Points Case. We now turn to the setting of N ą 1 data points. Intuitively, one can identify the ground-truth
clean image that generates the given noisy image, as long as the noise is not too large to swamp all signal. This can be done
simply by comparing inner product: the noisy observation z will correlate most strongly with its corresponding clean sample
xi, and only weakly with all others.
Lemma 1. Suppose that x1,x2, . . . ,xN are i.i.d Gaussian samples from N p0, Idq, and z “ p1 ´ t0qxi ` tϵ for some i.

Then, we have the following two properties hold with probability 1 ´ 1
d :

#

| ⟨xj , z⟩ | “ Op
?
dplogN ` log dqq, @j ‰ i

| ⟨xi, z⟩ ´ p1 ´ t0q|xi|
2| “ Op

?
d log dq
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Proof. We first deal with the second inequality. We have

⟨xi, z⟩ ´ p1 ´ t0q|xi|
2 “ ⟨xi, p1 ´ t0qxi ` tϵ⟩ ´ p1 ´ t0q|xi|

2 “ t0 ⟨xi, ϵ⟩ „ N p0, |xi|Idq

Using standard Gaussian tail bounds, this probability that | ⟨xi, z⟩ ´ p1 ´ t0q|xi|
2| ě k

?
d log d is at most

exp

ˆ

´
k2d log d

|xi|
2

˙

“ expp´k2 log dq “ d´Ωpk2
q

Therefore, there exists a constant k such that the probability above is at most
1

dN
.

For the first inequality, notice that

⟨xj , z⟩ “ p1 ´ tq ⟨xi,xj⟩ ` t ⟨xj , ϵ⟩

each term is the dot product of two normal Gaussian variables, which is still sub-exponential.

In this way, we derive that each term is at most OpdplogN ` log dqq with probability 1 ´
1

dN
, so union bound over all the i

gives the desired result.

Theorem 4. There exists a constant C such that when 1 ´ t0 ě C

c

logN ` log d

d
, we can recover the correct i with

probability at least 1 ´
1

d
.

Proof. Using Lemma 1, we can compute the dot products of all xi with z and take the largest one.

This theorem implies that the concentration property of ppt|zq can be extended to multiple data points case, even when
there are exponentially-many data points. By first recovering the correct clean image, the multi–data–point setting reduces
immediately to the single–point analysis, and hence the posterior variance bound Opt20{dq extends to the case of exponentially
many candidates.

C.2.2. INTUITIVE DERIVATION OF THE APPROXIMATE CONSTANT

In this section, we show the reason why we estimate the variance as t20{2d.

Firstly, as we have seen in Theorem 4, the ground-truth clean image can be recovered with high confidence, even with a
prior of exponentially-many data points. As a result, we revert to the single data point setting.

For simplicity, we restrict attention to the bulk regime t P

„

1

d
, 1 ´

1

d

ȷ

, postponing edge–case analysis to future work.

Now, we can still view the data point x as px, 0, . . . , 0q due to symmetry, where x stands for the norm of x. Because the
dominant contribution to the likelihood comes from the d ´ 1 noise dimensions when d is large, we further approximate by
neglecting the signal component in the first coordinate (i.e., assume x “ 0).

On this assumption, we have

z1 “ p1 ´ tqx1 ` tϵ1 “ tϵ.

and denote |z| “ t0
?
d. We have

ppt|zq 9
1

td
exp

ˆ

´
dt20
2t2

˙

The variance of this distribution can be calculated exactly from integration, as long as we extend the distribution from r0, 1s

to the whole R:
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Eppt|zqrts “

ż 8

´8

1

td´1
exp

ˆ

´
dt20
2t2

˙

ż 8

´8

1

td
exp

ˆ

´
dt20
2t2

˙ “

1

2

ˆ

2

dt20

˙

d´2
2

Γ

ˆ

d ´ 2

2

˙

1

2

ˆ

2

dt20

˙

d´1
2

Γ

ˆ

d ´ 1

2

˙

“

c

d

2
t0

Γ

ˆ

d ´ 2

2

˙

Γ

ˆ

d ´ 1

2

˙

and similarly

Eppt|zqrt2s “
dt20
2

Γ
`

d´3
2

˘

Γ
`

d´1
2

˘ “ dt20 ¨
1

d ´ 3

which yields

Varppt|zqrts “
dt20
2

¨

¨

˝

2

d ´ 3
´

˜

Γpd´2
2 q

Γpd´1
2 q

¸2
˛

‚. (32)

Again, here we extend the distribution of ppt|zq from r0, 1s to R, as this relaxation will only increase the variance.

Finally, we use the Stirling’s expansion for the gamma function to get

Γ
`

d´2
2

˘

Γ
`

d´1
2

˘ “
e´

d´2
2

`

d´2
2

˘

d´3
2

`

1 ` 1
12 ¨ 2

d ` op 1
d q

˘

e´
d´1
2

`

d´1
2

˘

d´2
2

`

1 ` 1
12 ¨ 2

d ` o
`

1
d

˘˘

“

c

2

d ´ 1

ˆ

1 `
3

4pd ´ 1q
` o

ˆ

1

d

˙˙

. (33)

Plugging Eq. (33) into Eq. (32), we derive our final estimation:

Varppt|zqrts “
dt20
2

¨

ˆ

2

d ´ 3
´

2

d ´ 1

ˆ

1 `
3

2pd ´ 1q
` o

ˆ

1

d

˙˙˙

“
t20
d

ˆ

1

2
` o

ˆ

1

d

˙˙

,

which aligns with our Statement 1.

C.3. Approximation of Epzq

Statement 1 (Error of effective regression targets). Consider a single datapoint x P r´1, 1sd, ϵ „ N p0, Iq, t „ Ur0, 1s,
and z “ p1 ´ tqx ` tϵ (as in Flow Matching). Define Rpzq and Rpz|tq with the Flow Matching configuration in Table 8.
Given a noisy image z “ p1 ´ t˚qx ` t˚ϵ produced by a given t˚, the mean squared error Epzq in Eq. (10) can be
approximated by

Epzq «
1

2
p1 ` σ2

dq (34)

under the situation that the data dimension d satisfies 1
d ! t˚ and 1

d ! 1 ´ t˚. Here, σ2
d denotes the mean of squared pixel

values of the dataset.

Derivation. We start by the definition of Epzq:

Epzq :“ Et„ppt|zq}Rpz|tq ´ Rpzq}2

“ Et„ppt|zq

›

›Rpz|tq ´ Et1„ppt1|zqrRpz|t1qs
›

›

2
(35)

Next, we compute Rpz, tq using its definition under the Flow Matching configuration:

Rpz|tq :“ Epx,ϵq„ppx,ϵ|z,tq

“

rpx, ϵ, tq
‰

“ Epx,ϵq„ppx,ϵ|z,tq

“

ϵ ´ x
‰

“
z ´ x

t
. (36)
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Using Eq. (36), we obtain

Epzq “ }z ´ x}2 ¨ Vart„ppt|zq

„

1

t

ȷ

. (37)

We now compute the two terms separately. For the first term, we can rewrite it as

}z ´ x}2 “ t2˚}x ´ ϵ˚}2

« t2˚
`

}x}2 ` }ϵ˚}2
˘

« t2˚
`

dσ2
d ` d

˘

“ t2˚dp1 ` σ2
dq. (38)

Here, we employ the fact that x ¨ ϵ˚ ! }x}}ϵ˚}, and that }ϵ˚} «
?
d with high probability. Also, σ2

d “ }x}2{d, since we
assume that the dataset contains only a single data point.

For the second term, note that the variance of ppt|zq, given in Statement 1, is significantly smaller than the concentrated
mean t˚ of ppt|zq. Thus, we approximate the variance using a first-order expansion:

Vart„ppt|zq

„

1

t

ȷ

« Vart„ppt|zq

„

1

t˚

´
pt ´ t˚q

t2˚

ȷ

“
1

t4˚
Vart„ppt|zqrts «

1

t2˚d
. (39)

Combining Eqs. (38) and (39), we get the estimation in Eq. (34).

C.4. Bound of Accumulated Error

Statement 2 (Bound of accumulated error). Starting from the same noise x0 “ x1
0, consider a sampling process

(Eq. (4)) of N steps, with noise conditioning:

xi`1 “ κixi ` ηiRpxi|tiq ` ζiϵ̃i

and without noise conditioning:

x1
i`1 “ κix

1
i ` ηiRpx1

iq ` ζiϵ̃i.

If }Rpx1
i|tiq ´ Rpxi|tiq} { }x1

i ´ xi} ď Li and }Rpx1
iq´Rpx1

i|tiq} ď δi, it can be shown that the error between the sampler
outputs xN and x1

N is bounded:

}xN ´ x1
N } ď A0B0 ` A1B1 ` . . . ` AN´1BN´1, (40)

where

Ai “

N´1
ź

j“i`1

pκi ` |ηi|Liq, Bi “ |ηi|δi.

Proof. Define ai :“ κi ` |ηi|Li and bi :“ |ηi|δi. Then, we have:

}x1
i`1 ´ xi`1} “

›

›

›
κipx

1
i ´ xiq ` ηi

`

Rpx1
iq ´ Rpxi|tiq

˘

›

›

›
(41)

as we assume that the same noise ϵ̃i is added in the sampling process with and without noise conditioning.

Using the triangle inequality, this can be bounded as:

}x1
i`1 ´ xi`1} ď κi}x

1
i ´ xi} ` |ηi|}Rpx1

iq ´ Rpx1
i|tiq} ` |ηi|}Rpx1

i|tiq ´ Rpxi|tiq} ď ai}x
1
i ´ xi} ` bi. (42)

We now use induction on n to establish the bound:

}x1
n ´ xn} ď

n´1
ÿ

j“0

˜

n´1
ź

k“j`1

ak

¸

bj , (43)
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where
śN´1

k“j`1 ak is defined as 1 for j “ N ´ 1.

For the base case n “ 1, we need to show:

}x1
1 ´ x1} ď b0, (44)

which follows directly from Eq. (42) with i “ 0.

Now, assume the bound holds for some n, i.e.

}x1
n ´ xn} ď

n´1
ÿ

j“0

˜

n´1
ź

k“j`1

ak

¸

bj `

˜

n´1
ź

k“0

ak

¸

}x1
0 ´ x0}. (45)

We prove it holds for n ` 1. Applying Eq. (42), we obtain:

}x1
n`1 ´ xn`1} ď an}x1

n ´ xn} ` bn. (46)

Substitute the inductive hypothesis for }x1
n ´ xn}:

}x1
n`1 ´ xn`1} ď an

n´1
ÿ

j“0

˜

n´1
ź

k“j`1

ak

¸

bj ` bn “

n
ÿ

j“0

˜

n
ź

k“j`1

ak

¸

bj . (47)

Thus, the bound holds for n ` 1. By induction, the bound holds for all n. Taking n “ N yields the desired result.

D. Derivation of Coefficients for Different Denoising Generative Models
In this section, we build upon our formulation in Section 3.1 to express common diffusion models—iDDPM (Nichol &
Dhariwal, 2021), DDIM (Song et al., 2021a), EDM (Karras et al., 2022), Flow Matching (FM) (Lipman et al., 2023; Liu
et al., 2023), and our uEDM Model—using a unified notation. The coefficients corresponding to each model are summarized
in Table 8 and Table 9, followed by a concise derivation of their formulations.

D.1. iDDPM

The loss function of iDDPM (Nichol & Dhariwal, 2021) in DDPM (Ho et al., 2020)’s notation is

Lsimple “ Et,x0,ϵ

”

›

›ϵ ´ ϵθp
?
ᾱtx0 `

?
1 ´ ᾱtϵ, tq

›

›

2
ı

.

This can be directly translated into our notation:

Lpθq “ Ex,ϵ,t

”

wptq}NNθpz|cnoiseptqq ´ rpx, ϵ, tq}2
ı

,

where we have the coefficients

aptq “
a

ᾱptq, bptq “
a

1 ´ ᾱptq, cptq “ 0, dptq “ 1 (48)

and with the training weighting and distribution of t being

wptq “ 1, and pptq “ Ut1, . . . , T u. (49)

Notice the presence of the diffusion schedule ᾱptq inside the coefficients. We adapt a modified version of the cosine schedule
in Nichol & Dhariwal (2021):

ᾱptq “
1

2

ˆ

1 ` cos
πt

T

˙

, (50)

27



Is Noise Conditioning Necessary for Denoising Generative Models?

Table 8: The coefficients of different models. For iDDPM, we assume a cosine diffusion schedule ᾱptq. For both iDDPM
and DDIM we follow the original notation of DDPM (Ho et al., 2020). Also note that for EDM, all coefficients are calculated
according to first-order ODE solver, and in the final step we need to multiply the output by σd to get the final image. See
Appendix D for more details and derivations.

iDDPM DDIM EDM FM
Training
aptq

a

ᾱptq
a

ᾱptq 1?
t2`σ2

d

1 ´ t

bptq
a

1 ´ ᾱptq
a

1 ´ ᾱptq t?
t2`σ2

d

t

cptq 0 0 t

σd

?
t2`σ2

d

´1

dptq 1 1 ´
σd?
t2`σ2

d

1

wptq 1 1 1 1

pt Ut1, . . . , T u Ut1, . . . , T u expN p´1.2, 1.22q
7 Ur0, 1s

Sampling

κi

b

ᾱi`1

ᾱi

b

ᾱi`1

ᾱi

c

σ2
d

`t2i
σ2
d

`t2i`1

´

1´
tipti´ti`1q

t2i `σ2
d

¯

0

ηi
1?

1´ᾱi

´

b

ᾱi
ᾱi`1

´

b

ᾱi`1

ᾱi

¯ ?
1 ´ ᾱi`1´

b

ᾱi`1

ᾱi
p1 ´ ᾱiq

σdpti´ti`1q
b

pt2i `σ2
d

qpt2i`1`σ2
d

q
ti`1 ´ ti

ζi

c

´

1´
ᾱi

ᾱi`1

¯

1´ᾱi`1

1´ᾱi
0 0 0

Schedule t0„N ti “ N´i
N

¨ T ti “ N´i
N

¨ T ti “

ˆ

t
1
ρ
max` i

N

ˆ

t
1
ρ

min´t
1
ρ
max

˙˙ρ

ti “ 1 ´ i
N

Parameters

ᾱptq “ 1
2

`

1 ` cos πt
T

˘

ᾱptq “
t´1
ś

i“0

´

1´k1´k2
i

T´1

¯

σd “ 0.5, ρ “ 7

ᾱi :“ ᾱptiq ᾱi :“ ᾱptiq tmax “ 80, tmin “ 0.002

T “ 4000 T “ 1000

k1 “ 10´4, k2 “ 2 ˆ 10´2

where T “ 4000 is the total number of diffusion steps during training.

Next, consider the sampling process, which in their notations is iteratively given by

xt´1 “
1

?
αt

ˆ

xt ´
1 ´ αt

?
1 ´ ᾱt

ϵθpxt, tq

˙

`

c

1 ´ ᾱt´1

1 ´ ᾱt
βtz,

and z „ N p0, Iq is a standard Gaussian random noise. It is also straightforward to translate this sampling equation into our
notation:

κi “

c

ᾱi`1

ᾱi
, ηi “

1
?
1 ´ ᾱi

ˆc

ᾱi

ᾱi`1
´

c

ᾱi`1

ᾱi

˙

, ζi “

d

ˆ

1 ´
ᾱi

ᾱi`1

˙

1 ´ ᾱi`1

1 ´ ᾱi
, (51)

and

ti “
N ´ i

N
¨ T. (52)

This will give the first column in Table 8.
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D.2. DDIM

DDIM (Song et al., 2021a) shares the training process with DDPM (Ho et al., 2020). However, we choose to use the linear
schedule for ᾱptq, to demonstrate the generality of our scheme. This schedule has the form

ᾱptq “

t´1
ź

i“0

ˆ

1 ´ k1 ´ k2
i

T ´ 1

˙

, (53)

where k1 “ 10´4 and k2 “ 2 ˆ 10´2, and T “ 1000 is the total number of diffusion steps during training.

The sampling process is given by

xt´1 “
?
ᾱt´1

ˆ

xt ´
?
1 ´ ᾱtϵθpxt, tq

?
ᾱt

˙

`
a

1 ´ ᾱt´1ϵθpxt, tq

which is obtained by substituting σt “ 0 in their notation. This is again straightforward to translate into our notation:

κi “

c

ᾱi`1

ᾱi
, ηi “

a

1 ´ ᾱi`1 ´

c

ᾱi`1

ᾱi
p1 ´ ᾱiq, ζi “ 0, (54)

and

ti “
N ´ i

N
¨ T. (55)

These give the second column in Table 8.

Moreover, we can consider the generalized sampler proposed by Song et al. (2021a), which contains an adjustable parameter
λ P r0, 1s. In their original notation, the sampler can be written as

xt´1 “
?
ᾱt´1

ˆ

xt ´
?
1 ´ ᾱtϵθpxt, tq

?
ᾱt

˙

`

b

1 ´ ᾱt´1 ´ λ2σ2
t ϵθpxt, tq ` λσtϵt,

where

σt :“

d

pᾱt´1 ´ ᾱtqp1 ´ ᾱt´1q

ᾱt´1p1 ´ ᾱtq

and ϵt is an independent Gaussian random noise. In our formulation, it can be equivalently written as

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

κi “

c

ᾱi`1

ᾱi

ηi “

d

1 ´ ᾱi`1 ´ λ2
pᾱi`1 ´ ᾱiqp1 ´ ᾱi`1q

ᾱi`1p1 ´ ᾱiq
´

c

ᾱi`1

ᾱi
p1 ´ ᾱiq

ζi “ λ

d

pᾱi`1 ´ ᾱiqp1 ´ ᾱi`1q

ᾱi`1p1 ´ ᾱiq

. (56)

These expressions are used in our experiment of the “interpolate sampler” in Section 6.2. One can verify that when λ “ 1,
the coefficients κi, ηi and ζi will be the same as iDDPM (Eq. (51)); and when λ “ 0, the coefficients will be the same as
DDIM (Eq. (54)).

7Here, we use the notation expN pµ, σ2
q to denote the distribution of exppuq, where u „ N pµ, σ2

q.
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D.3. EDM

The original EDM (Karras et al., 2022) training objective is given by

Lpθq “ Ex,ϵ,t

”

λptq}Dθpx ` tϵ|tq ´ x}2
ı

, (57)

where Dθ is formed by the raw network NNθ wrapped with a precondition:

DθpzD|tq “ cskipptqzD ` coutptqNNθpcinptqzD|tq

where zD “ x ` tϵ. Here we directly use t instead of cnoiseptq in the original notation.

As mentioned in Section 3.1, we will consider the regression target with respect to NNθ instead of Dθ and absorb the
coefficients cskipptq, cinptq and coutptq into the training process. To achieve that, we define z :“ cinptqpx ` tϵq. Then, we can
get an equivalent training objective for NNθ given by

Lpθq “ Ex,ϵ,t

”

wptq}NNθpz|tq ´ rpx, ϵ, tq}2
ı

,

where
$

’

’

&

’

’

%

z “ cinptqx ` tcinptqϵ

wptq “ λptqcoutptq
2

rpx, ϵ, tq “ 1
coutptq

¨ px ´ cskipptqpx ` tϵqq “
1´cskipptq
coutptq

x ´
tcskipptq
coutptq

ϵ

(58)

Now, we can plug in the specific expressions

cinptq “
1

a

σ2
d ` t2

, coutptq “
σdt

a

σ2
d ` t2

, cskipptq “
σ2
d

σ2
d ` t2

, λptq “
σ2
d ` t2

σ2
dt

2

and σd “ 0.5 to get the coefficients

aptq “
1

a

σ2
d ` t2

, bptq “
t

a

σ2
d ` t2

, cptq “
t

σd

a

σ2
d ` t2

, dptq “ ´
σd

a

σ2
d ` t2

, (59)

and wptq “ 1. Also note that pptq is given explicitly by the log-norm schedule expN p´1.2, 1.22q. This completes the
discussion of the training process.

The (first-order) sampling process is given by

xD,i`1 “ xD,i ` pti`1 ´ tiq
xD,i ´ pcskipptiqxD,i ` coutptiqNNθpcinptiqxD,i|tiqq

ti

Here we use the suffix D to denote this is the sampling process corresponding to Dθ. Since we also have to remove the
external conditioning in the sampling process, we should let xi “ cinptiqxD,i and rewrite the sampling equation using xi:

xi`1 “
ti`1

ti
¨
cinpti`1q

cinptiq

ˆ

1 ´
ti`1 ´ ti
ti`1

cskipptiq

˙

xi `
ti ´ ti`1

ti
coutptiqcinpti`1qNNθpxi|tiq

This then gives the general sampling coefficients

κi “
ti`1

ti
¨
cinpti`1q

cinptiq

ˆ

1 ´
ti`1 ´ ti
ti`1

cskipptiq

˙

, ηi “
ti ´ ti`1

ti
coutptiqcinpti`1q, ζi “ 0. (60)

Then, we can plug in the explicit expressions of cinptiq, cskipptiq and coutptiq to get the final coefficients

κi “

d

σ2
d ` t2i

σ2
d ` t2i`1

ˆ

1 `
tipti`1 ´ tiq

t2i ` σ2
d

˙

, ηi “ ´
σdpti`1 ´ tiq

b

pt2i`1 ` σ2
dqpt2i ` σ2

dq

, ζi “ 0. (61)

30



Is Noise Conditioning Necessary for Denoising Generative Models?

Moreover, notice that due to our change-of-variable during the removal of external conditioning, xN is defined as
cinptN qxD,N . But the sampling algorithm ensures xD,N to match the data distribution, instead of xN . Thus, we have to
multiply the output by σd to get the final image, as mentioned in the caption of Table 8.

Finally, the sampling time step is also explicitly given in Karras et al. (2022), so we can directly use it here:

ti “

$

’

&

’

%

ˆ

80
1
7 ¨pN´i´1q`0.002

1
7 ¨i

N´1

˙7

if i ă N

0 if i “ N

. (62)

These together give the coefficients for EDM, which are shown in the third column of Table 8.

D.4. Flow Matching

The training process of FM (Lipman et al., 2023) is given by

Lpθq “ Ex,ϵ,t

”

}vθptϵ ` p1 ´ tqx, tq ´ pϵ ´ xq}2
ı

.

This can be directly translated into our notation:

aptq “ 1 ´ t, bptq “ t, cptq “ ´1, dptq “ 1, (63)

and with wptq “ 1 and pptq “ Upr0, 1sq. The sampling process is given by solving the ODE

dx

dt
“ vθpx, tq

from t “ 1 to t “ 0. Since we assume using a first-order method (i.e. Euler method), the sampling equation is

xi`1 “ xi ` vθpxi, tiq ¨ pti`1 ´ tiq.

This will give

κi “ 0, ηi “ ti`1 ´ ti, ζi “ 0 (64)

as well as the sampling time

ti “
N ´ i

N
, (65)

as in the fourth column of Table 8.

D.5. Our uEDM Model in the Formulation

Introduced in Section 5, the uEDM model designed by us is a modified version of EDM (Karras et al., 2022). The only
modification is that we change cinptq and coutptq by

$

’

’

&

’

’

%

cinptq “
1

a

t2 ` σ2
d

coutptq “
tσd

a

t2 ` σ2
d

ÝÑ

$

&

%

cinptq “
1

?
t2 ` 1

coutptq “ 1

and remain all other configurations the same as the original EDM model.

In Appendix D.3, we have already derived the general form of the coefficients of EDM with functions cinptq, coutptq, cskipptq
and λptq in Eqs. (58) and (60). Plugging in the new set of these functions, we can then derive the coefficients of uEDM, as
shown in Table 9.
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Table 9: Comparison of coefficients of EDM and our uEDM.

Coefficients aptq bptq cptq dptq wptq κi ηi

EDM
1

b

t2 ` σ2
d

t
b

t2 ` σ2
d

t

σd

b

t2 ` σ2
d

´
σd

b

t2 ` σ2
d

1

d

σ2
d ` t2i

σ2
d ` t2i`1

˜

1´
tipti´ti`1q

t2i ` σ2
d

¸

σdpti ´ ti`1q
b

pt2i ` σ2
dqpt2i`1 ` σ2

dq

uEDM
1

?
t2 ` 1

t
?
t2 ` 1

t2

t2 ` σ2
d

´
tσ2

d

t2 ` σ2
d

σ2
d ` t2

σdt

d

t2i ` 1

t2i`1 ` 1

˜

1´
tipti´ti`1q

t2i ` σ2
d

¸

ti ´ ti`1

ti
b

t2i`1 ` 1

E. Additional Samples
Beyond the comparison shown in Fig. 5 for noise-conditional and noise-unconditional models, we also provide additional
samples for other models, on other datasets, or in class-conditional settings. We use the same configuration as in Table 2.
Figs. 10 and 11 show the samples of ICM and ECM on CIFAR-10 with both 1 and 2 inference steps. Fig. 12 show the
samples of FM on ImageNet 32ˆ32 with both Euler and EDM-Heun sampler. Fig. 13 shows the samples of FM and EDM
on CIFAR-10 in a class-conditional setting.
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(a) ICM 1 step (FID: 3.37 Ñ 12.03) (b) ICM 2 step (FID: 2.59 Ñ 3.57)

Figure 10: Samples generated by ICM on CIFAR-10. From left to right: 1 step w/ t, 1 step w/o t, 2 step w/ t, 2 step w/o t.
All corresponding samples use the same noise.

(a) ECM 1 step (FID: 3.49 Ñ 12.60) (b) ECM 2 step (FID: 2.57 Ñ 3.27)

Figure 11: Samples generated by ECM on CIFAR-10. From left to right: 1 step w/ t, 1 step w/o t, 2 step w/ t, 2 step w/o t.
All corresponding samples use the same noise.

(a) ImageNet FM, Euler Sampler (FID: 5.15 Ñ 4.85) (b) ImageNet FM, Heun Sampler (FID: 4.43 Ñ 4.58)

Figure 12: Samples generated by FM on ImageNet 32ˆ32 with Euler and EDM-Heun sampler. From left to right: Euler w/
t, Euler w/o t, Heun w/ t, Heun w/o t. All corresponding samples use the same noise.
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(a) Class-conditional FM (FID: 2.72 Ñ 2.55)

(b) Class-conditional EDM (FID: 1.76 Ñ 3.11)

Figure 13: Class-conditional samples generated by FM and EDM on CIFAR-10. In rasterized order: FM w/ t, FM w/o t,
EDM w/ t, EDM w/o t. All corresponding samples use the same noise and the same label.
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