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ABSTRACT

Real-world last-mile express datasets are crucial for research in logistics, sup-
ply chain management, and spatio-temporal data mining. Despite a plethora of
algorithms developed to date, no widely accepted, publicly available last-mile ex-
press dataset exists to support research in this field. In this paper, we introduce
LaDe, the first publicly available last-mile express dataset with millions of pack-
ages from the industry. LaDe has three unique characteristics: (1) Large-scale. It
involves 10,677k packages of 21k couriers over 6 months of real-world operation.
(2) Comprehensive information. It offers original package information, such as its
location and time requirements, as well as task-event information, which records
when and where the courier is while events such as task-accept and task-finish
events happen. (3) Diversity. The dataset includes data from various scenarios,
including package pick-up and delivery, and from multiple cities, each with its
unique spatio-temporal patterns due to their distinct characteristics such as pop-
ulations. We verify LaDe on three tasks by running several classical baseline
models per task. We believe that the large-scale, comprehensive, diverse feature
of LaDe can offer unparalleled opportunities to researchers in the supply chain
community, data mining community, and beyond. The dataset homepage is pub-
licly available at https://anonymous.4open.science/r/Anonymous-64B3/.

1 INTRODUCTION

Driven by increasing urbanization and e-commerce development, last-mile delivery has emerged as
a critical research area with growing interest from scholars and practitioners. Last-Mile Delivery, as
illustrated in Figure 1, is the package transport process that connects the depot and the customers, in-
cluding both the package pick-up (Macioszek, 2018; Ranathunga et al., 2021) and delivery (Boysen
et al., 2021; Ratnagiri et al., 2022) process. In addition to being a key to customer satisfaction, last-
mile delivery is both the most expensive and time-consuming part of the shipping process (Olsson
et al., 2019; Mangiaracina et al., 2019). Consequently, researchers from different fields, from logis-
tics operation management to spatio-temporal data mining, have been consistently shedding light on
problems in last-mile delivery in recent years. These problems include route planning (Zeng et al.,
2019; Li et al., 2021; Almasan et al., 2022), Estimated Time of Arrival (ETA) prediction (Wu &
Wu, 2019; de Araujo & Etemad, 2021; Gao et al., 2021), and route prediction (Zhang et al., 2019;
Wen et al., 2021; 2022), etc. A quick search for “last-mile delivery” on Google Scholar returns over
19,400 papers since 2018.

Recent endeavors (Wu & Wu, 2019; de Araujo & Etemad, 2021; Gao et al., 2021) focus on lever-
aging machine/deep learning techniques for problems in last-mile delivery research. A critical pre-
requisite for those researches is the availability of high-quality, large-scale datasets. Since such
datasets have the potential to significantly accelerate advancements in specific fields, such as Ima-
geNet (Deng et al., 2009) for computer vision and GLUE (Wang et al., 2018) for natural language
processing. Nonetheless, in the domain of last-mile background research, a multitude of algorithms
have been devised, but there is still an absence of a widely recognized, publicly accessible dataset.
Consequently, research in this field has become concentrated within a limited number of industrial
research laboratories, thereby restricting transparency and hindering research progress. Moreover,
the lack of public datasets also poses a hurdle for industry practitioners to develop advanced algo-
rithms for last-mile delivery.
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Figure 1: Overview of LaDe from last-mile express (better viewed in color), which includes two
sub-datasets: LaDe-P from package pick-up process (i.e., couriers pick up packages from senders
and return the depot) and LaDe-D from delivery process (i.e., couriers deliver packages from the
depot to receivers).

To meet the rising calling for a public dataset, we propose LaDe, the first comprehensive Last-
mile Express dataset collected by (company name blinded). It contains both package pick-up and
delivery data as depicted in Figure 1. LaDe has several merits: (1) Large-scale, covering 10,677k
packages of 21k couriers across 6 months. To the best of our knowledge, this is the largest publicly
available dataset. (2) Comprehensive, providing detailed information on package, location, task-
event, and courier. (3) Diverse, collecting data from both pick-up and delivery processes across
various cities. By virtue of these advantages, LaDe can be employed to evaluate a wide spectrum
of last-mile-related tasks. In this paper, we investigate its properties by three tasks, including route
prediction (Zhang et al., 2019; Wen et al., 2021; 2022), estimated time of arrival prediction (Wu
& Wu, 2019; de Araujo & Etemad, 2021; Gao et al., 2021), and spatio-temporal graph forecasting
(Li et al., 2018; Yao et al., 2018; Bai et al., 2020). Beyond these tasks, it is easy to integrate
some of the aforementioned features to support additional tasks. We believe that such a large-scale
dataset like LaDe is a critical resource for developing advanced algorithms under the context of
last-mile delivery, as well as for providing critical training and benchmarking data for learning-
based algorithms. Overall, we identify three key contributions of this work:

• A New Dataset. We collect, process, and release LaDe. The dataset boasts large-scale,
comprehensive, and diverse characteristics. To the best of our knowledge, it is the first
exhaustive, industry-scale last-mile express dataset. The dataset is publicly accessible at
https://anonymous.4open.science/r/Anonymous-64B3/.

• Comprehensive Data Analysis. Extensive data analysis is conducted to depict and highlight the
properties of the dataset. Based on the analysis, we introduce potential tasks supported by LaDe,
from logistics operation management to spatio-temporal data mining, and beyond.

• Benchmark on Real-World Tasks. We benchmark this dataset by performing three represen-
tative tasks, including service route prediction, estimated time of arrival prediction, and spatio-
temporal graph forecasting. The source codes for these tasks are provided to promote research in
this field.

The remainder of this paper is structured as follows. Section 2 discusses related work, and Section
3 introduces the details of the dataset, including the methodology used to construct the dataset, and
the statistics and properties of the dataset. In Section 4, we benchmark the dataset on three tasks and
discuss the potential use of the data in related research fields.

2 RELATED WORK

Dataset Perspective. To the best of our knowledge, there is no publicly available last-mile dataset
containing both package pick-up and delivery data. The most relative effort comes from Amazon
(Merchán et al., 2022) (named AmazonData in this paper). It is a courier-operated sequence dataset
proposed for a last-mile routing research challenge hosted by Amazon. Specifically, this dataset
contains 9,184 historical routes performed by Amazon couriers in 2018 in five metropolitan areas
in the United States. Despite the contribution of AmazonData to the research field, it still has three
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limitations: 1) Without pick-up data, it only contains data generated in the package delivery pro-
cess; 2) Small scale, in terms of spatio-temporal range and the number of trajectories; 3) Lack of
courier-related and task-event-related information, which prevents it from benefiting a wider group
of researchers with different interests. In light of the above issues, we introduce an industry-scale,
comprehensive dataset (i.e., LaDe) for researchers to develop and evaluate new ideas on real-world
instances in last-mile delivery. The scale of LaDe is 5 times of AamazonData in terms of package
number and 50 times in terms of trajectory number. We provide a detailed comparison of Aamazon-
Data and LaDe in Table 1.

Table 1: Comparison between LaDe and the related dataset.
Dataset Time span #Trajectories #Couriers #Packages Delivery Data Pick-up Data Courier Info Task-event Info

AmazonData 4 months 9k - 2,182k ✓ × × ×
LaDe 6 months 619k 21k 10,677k ✓ ✓ ✓ ✓

Application Perspective. Overall, last-mile logistics is an emerging interdisciplinary research area
connecting transportation and AI technology, in which deep learning methods have long been the
most popular model (Olsson et al., 2019). Broadly speaking, there are four branches in this field:
1) Emerging trends and technologies, which focus on technological solutions and innovations in
last-mile logistics, such as courier’s route and arrival time prediction (Wen et al., 2022; Gao et al.,
2021), self-service technologies (Vakulenko et al., 2018), drone-assisted delivery (Taniguchi et al.,
2020). 2) Last-mile-related data mining (Ruan et al., 2022b; 2020a), which aims to excavate the
underlying patterns of knowledge from data generated by real-world operations for better logistics
management. 3) Operational optimization, which focuses on optimizing last-mile operations and
making better operational decisions, such as vehicle routing problem (Zeng et al., 2019; Breunig
et al., 2019), delivery scheduling (Han et al., 2017), and facility location selection (Jahangiriesmaili
et al., 2017; Kedia et al., 2020). 4) Supply chain structures, which focused on designing structures
for last mile logistics, such as the network design (Lim & Srai, 2018). We refer readers to the paper
(Olsson et al., 2019) for a more detailed, systematic classification of last-mile-related research. The
proposed LaDe contains instances based on real operational data that researchers can use to advance
the state-of-the-art in their fields and to expand its applications to industry settings.

3 PROPOSED DATASET: LADE

In this section, we formally introduce the LaDe Dataset. First, we describe the data collection
process, followed by a detailed discussion of LaDe’s data fields and dataset statistics. Finally, we
conduct a comprehensive analysis to highlight its unique properties. The dataset can be freely down-
loaded at https://anonymous.4open.science/r/Anonymous-64B3/ and noncommercially used with a
custom license CC BY-NC 4.01.

3.1 DATA COLLECTION

This dataset is collected by (company name blinded), one of China’s largest logistics platforms,
which handles a tremendous volume of packages each day. A typical process for shipping a package
involves the following steps: 1) The customer (sender) places a package pick-up order through the
online platform. 2) The platform dispatches the order to an appropriate courier. 3) The courier
picks up the package within the specified time window and returns to the depot (this constitutes the
package pick-up process). 4) The package departs from the depot and traverses the logistics network
until it reaches the target depot. 5) At the target depot, the delivery courier retrieves the package and
delivers it to the recipient customer (known as the package delivery process). Among these steps,
step 3 and 5 are referred to as the last-mile delivery, where couriers pick up/deliver packages from/to
customers. Note that there is a notable difference between the pick-up and delivery scenarios. In
the package delivery process, packages assigned to a particular courier are determined prior to the
courier’s departure from the depot. Conversely, in the pick-up process, packages assigned to a
courier are not settled at the beginning. Rather, they are revealed over time, as customers can request
pick-ups at any time. The dynamic nature of package pick-up presents substantial challenges in the

1https://creativecommons.org/licenses/by-nc/4.0/
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research field. To advocate more efforts for the challenge and make the data more diverse, LaDe
contains two sub-datasets in both pick-up and delivery scenarios, named LaDe-P and LaDe-D,
respectively.

Region-Level

AOI

Courier 1

Courier 1

AOI-Level

Courier 2

Figure 2: Region-level and
AOI-level data.

Specifically, we collect millions of package pick-up/delivery data
generated in 6 months from different cities in China. To increase
the diversity, we carefully selected 5 cities - Shanghai, Hangzhou,
Chongqing, Jilin, and Yantai - which possess distinct characteris-
tics such as populations, more details can be found in Table 9 of
Appendix 7.2. A city contains different regions, with each region
composed of several AOIs (Area of Interest) for logistics manage-
ment. And a courier is responsible for picking up / delivering pack-
ages in several assigned AOIs. We give a simple illustration of the
region-level and AOI-level segmentation of a city in Figure 2. To
collect the data for each city, we first randomly select 30 regions in
the city. Subsequently, we randomly sample couriers in each region
and pick out all the selected couriers’ picked-up/delivery packages during the 6 months. Note that
when a courier is chosen, all his packages get selected. At the same time, all his packages fall within
the randomly selected regions. Because a courier is responsible for several AOIs, they all belong to
one of the selected regions.

Privacy. For the privacy issue, inspired by operations in geo-related data release work Merchán
et al. (2022); Joshi et al. (2022), no customer-related information (such as the address, name, and
ID) is contained in the dataset. And for the couriers, they are our staff, we have got their permission
to collect, and analyze the dataset. Specifically, the following operations are adopted to further
protect privacy: 1) a package is not linked to a customer in the dataset to protect the privacy of
customers. 2) Instead of using the latitude and longitude, we utilize the coordinate of a package
in a two-dimensional space (x, y) to represent a package’s location. The relative distance of two
locations in real geographical space is preserved in the two-dimensional space. In this way, (x, y)
cannot be projected back to a real-world location, thus largely migrating the privacy issue. 3) For
couriers, no sensitive information (e.g., gender and age) is included either.

3.2 DATASET DETAILS & STATISTICS

In this subsection, we present the dataset details and its basic statistics. A brief information on the
data field is illustrated in Figure 1. And the detailed data field description of LaDe-P and LaDe-D
can be found in Table 7 and Table 8 in Appendix 7.1 due to the page limitation.

To facilitate the utilization and analysis of the dataset, we transform and arrange each sub-dataset
into tabular data presented in CSV format. Each record in this format contains relevant informa-
tion pertaining to a picked-up or delivered package, primarily addressing the “who, where, when”
aspects. Specifically, the record specifies which courier picked up or delivered the package, the
location of the package, and the corresponding time. The recorded information can be broadly cat-
egorized into four types: 1) package information, which records the package ID and time windows
requirements (if applicable); 2) stop information, recording the package’s location information such
as coordinates, AOI ID, and AOI type; 3) courier information, recording the courier’s ID, and each
courier is equipped with a personal digital assistant (PDA), which will consistently report the status
of a courier (e.g., GPS) to the platform; 4) task-event information, recording the features of package
accept, pick-up or delivery event, including when the event happens and the courier’s location.

Overall, the package and task-event information can be recorded once the courier accepts the order,
or finishes the order. Information about the stop comes from the geo-decoding system used in (com-
pany name blinded), which can parse the input location address into its corresponding coordinates
with a given accuracy. Table 2 shows the statistics of the LaDe-P. Due to the page limitation, please
refer to Table 10 in Appendix 7.2 for the statistics of the LaDe-D. Moreover, to intuitively illustrate
the spatio-temporal characteristics of the dataset, we draw the spatial and temporal distribution of
one city (Shanghai) in Figure 3 for one sub-dataset LaDe-P. From the Figure, we have the follow-
ing observations. Obs1: Figure 3(a) shows that couriers’ work time starts from 8:00 and ends at
19:00. The volume of package pick-up has a peak at 9:00 am and 5:00 pm, respectively. Obs2:
Figure 3(b) and Figure 3(c) shows the spatial distribution of packages, where the distance between
consecutive packages in a courier’s route is usually within 1km. Obs3: Figure 3(d) shows the dis-
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Table 2: Statistics of LaDe-P. AvgETA stands for the average arrival time per package. AvgPackage
means the average package number of a courier per day. The unit of AvgETA is minute.

City Time span Spatial span #Trajectories #Couriers #Packages #Location points AvgETA AvgPackage

Shanghai 6 months 20km×20km 96k 4,502 1,450k 1,785k 151 15.0
Hangzhou 6 months 20km×20km 119k 5,347 2,130k 2,427k 146 17.8
Chongqing 6 months 20km×20km 83k 2,982 1,172k 1,475k 140 14.0

Yantai 6 months 20km×20km 71k 2,593 1,146k 1,641k 137 16.0
Jilin 6 months 20km×20km 18k 665 261k 399k 123 13.8

(d) (e) (f)

data 
profile

Finish Time Distribution

Top-5 AOI Type Distribution

Spatial Distribution

Feature of CouriersArrival Time Distribution of 10 Couriers
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Figure 3: Spatial and temporal distribution of data in Shanghai of LaDe-P.

tribution of the top 5 AOI types in the data, illustrating that over 70% packages come from type 1.
Obs4: Figure 3(e) shows the actual arrival time of 10 randomly selected couriers, from which we
observed differences in the work efficiency of different couriers. It also shows that a majority of
packages are picked up within 3 hours. Obs5: Figure 3(f) depicts the profile of two couriers in the
dataset, where different characteristics such as work days, and average orders per day are observed.

3.3 DATASET PROPERTIES & CHALLENGES

In this subsection, we present our primary data analysis to highlight its properties and the challenges
they entail.

Large scale. LaDe contains in total 10,667k packages and 619k trajectories that consist of 16,755k
locations generated by 21k couriers, covering 5 cities over a total span of 6 months. The maximal
package number of a courier one trip in the pick-up scenario and delivery scenario reaches 95 and
121, respectively. Such large scale brings a significant challenge to algorithms in last-mile delivery.
To the best of our knowledge, this is the largest clean delivery dataset available to the research
community, in terms of spatio-temporal coverage, the total number of packages, and the number of
couriers’ trajectories.

Comprehensity. LaDe aims to offer a wealth of information pertaining to last-mile delivery, en-
compassing various types of data such as detailed package information, task-event logs, courier
trajectory details, and contextual features. The objective is to facilitate a broader range of research
endeavors. How to effectively leverage these comprehensive features to improve existing or inspire
new tasks remains an open problem for researchers from different communities.

Diversity. We increase the data’s diversity from two perspectives: (1) scenario diversity – we intro-
duce scenario diversity by collecting two sub-datasets representing both pick-up and delivery sce-
narios; (2) city diversity – we collect data from different cities to increase the diversity of the dataset.
The cities in the dataset have different characteristics, leading to various spatio-temporal patterns in
the dataset, where we give an illustration in Figure 4. For more information about the selected cities,
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please refer to Table 9 in Appendix 7.1. Such diversity brings the challenge of designing advanced
models that can generalize well under cities with different characteristics.

(a) (b) (c)

Figure 4: Diversity of cities. We select two cities, Hangzhou and Jilin, as an example to reveal
their different spatio-temporal distributions. (a) The time distribution of packages in a day; (b) The
ETA distribution of packages; (c) The distribution of the average distance between two consecutive
packages in a courier’s route. A significant difference is observed in the above illustration.

Dynamism (only for LaDe-P). Compared to LaDe-D, the tasks of a courier in LaDe-P are not
settled at the beginning of the day. Rather, they are revealed along with the pick-up process as
customers can place an order at any time. Such dynamism in courier tasks poses significant technical
challenges in various research areas, with one notable example being dynamic route optimization
Yao et al. (2019); Li et al. (2021).

Eqquiped with the above unique properties, LaDe offers the most extensive compilation of data for
various research purposes background by last-mile delivery. It encompasses a variety of information
across multiple domains, such as package details, event-based information, and courier information.
Our aspiration is to make this abundant resource accessible to a broad spectrum of researchers,
enabling them to undertake diverse and innovative studies.

4 APPLICATIONS

To prove LaDe’s ability to support multiple tasks, we benchmark the dataset in three learning-
based tasks, including route prediction, estimated time of arrival prediction, and spatio-temporal
graph forecasting. Those tasks all come from the real-world application and we illustrate them in
Figure 5. The code is released at https://anonymous.4open.science/r/Anonymous-64B3/. Note that
the dataset can support far more than the three tasks, which we envision more possible applications
from different research fields at the end of the section. All methods were implemented with PyTorch
1.10.1 and Python 3.6.13, and deep learning methods were trained with an A40 GPU. The platform
utilized is Ubuntu 23.04.

4.1 ROUTE PREDICTION

A crucial task in last-mile delivery services (such as logistics) is service route prediction Gao et al.
(2021); Wen et al. (2022), which aims to estimate the future service route of a worker given his
unfinished tasks at the request time.

Problem Definition. Formally, at a certain time t, a worker (i.e., courier) w can have n unfin-
ished tasks, denoted by Xw

t = {x1,x2, . . . ,xn}, where xi corresponds to the feature vector of
a task i. Given a worker w’s unfinished tasks at time t and route constraints C (such as pick-
up then delivery constraints), route prediction aims to learn a mapping function FC to predict
the worker’s future service route π̂ which can satisfy the given route constraints C, formulated
as: FC(X

w
t ) = [π1, π2 · · ·πn], where πi means that the i-th node in the route is task πi. And

πi ∈ {1, · · ·n} and πi ̸= πj if i ̸= j.
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Figure 5: Illustration of three real-world applications. (a): Route prediction predicts the future pick-
up route of a courier. (b): ETA prediction estimates the courier’s arrival time for picking up or de-
livering packages. (c): STG forecasting predicts the future package number in given regions/AOIs.

Dataset. We choose LaDe-P as the dataset to conduct the experiment. The training, validation, and
test set is split chronologically using a ratio of 6:2:2. Due to the space limit, we select three out of
the five cities for conducting experiments, including Shanghai, Chongqing, and Yantai.

Baselines & Hyperparameters. We run six baselines on LaDe. 1) Basic methods: TimeGreedy
Zhang et al. (2019) and DistanceGreedy Zhang et al. (2019). 2) Machine learning method: Osqure
Zhang et al. (2019). 3) Deep learning models: DeepRoute Wen et al. (2021), FDNET Gao et al.
(2021), Graph2Route Wen et al. (2022), and DRL4Route Mao et al. (2023). Hyperparameters search
is performed on the validation set by evaluating hidden size in {16, 32, 64, 128}. We set the learning
rate to 0.0001 and batch size to 64 for all deep-learning models. More details about the baselines
and metrics can be found in Appendix 8.1.

Results. Following Wen et al. (2022), we adopt HR@k, KRC, LMD, and ED to evaluate model
performance. Higher KRC, HR@k, and lower LSD and ED mean better performance. The number
of packages in each sample is in (0, 25]. Table 3 shows the results of different methods on LaDe. It
can be observed that basic models perform poorly since they can only make use of distance or time
information. Deep models generally achieve better performance than shallow models, because of
their ability to model abundant spatial and temporal features. This further proves the importance of
the comprehensive information provided by LaDe for building more powerful models. Among deep
models, Graph2Route performs well due to its ability to model the underlying graph correlation of
different packages, while DRL4Route performs best since it utilizes deep reinforcement learning to
solve the mismatch between the training and test criteria. More detailed and in-depth analysis can
be found in Appendix 8.

Table 3: Experimental results of route prediction. We use bold and underlined fonts to denote the
best and runner-up model, respectively.

Method Chongqing Shanghai Yantai
HR@3 ↑ KRC ↑ LSD ↓ ED ↓ HR@3 ↑ KRC ↑ LSD ↓ ED ↓ HR@3 ↑ KRC ↑ LSD ↓ ED ↓

TimeGreedy 63.86 44.16 3.91 1.74 59.81 39.93 5.20 2.24 61.23 39.64 4.62 1.85
DistanceGreedy 62.99 41.48 4.22 1.60 61.07 42.84 5.35 1.94 62.34 40.82 4.49 1.64

OR-Tools 64.19 43.09 3.67 1.55 62.50 44.81 4.69 1.88 63.27 42.31 3.94 1.59
Osquare 71.55 54.53 2.63 1.54 70.63 54.48 3.27 1.92 70.41 52.90 2.87 1.59
FDNET 69.98 ± 0.32 52.07 ± 0.38 3.36 ± 0.04 1.51 ± 0.02 69.05 ± 1.41 52.72 ± 1.98 4.08 ± 0.29 1.86 ± 0.03 69.08 ± 0.61 50.62 ± 1.20 3.60 ± 0.15 1.57 ± 0.02

DeepRoute 72.09 ± 0.39 55.72 ± 0.40 2.66 ± 0.06 1.51 ± 0.01 71.66 ± 0.11 56.20 ± 0.27 3.26 ± 0.08 1.86 ± 0.01 71.44 ± 0.28 54.74 ± 0.49 2.80 ± 0.02 1.53 ± 0.02

Graph2Route 72.31 ± 0.20 56.08 ± 0.14 2.53 ± 0.01 1.50 ± 0.01 71.69 ± 0.12 56.53 ± 0.12 3.12 ± 0.01 1.86 ± 0.01 71.52 ± 0.14 55.02 ± 0.10 2.71 ± 0.01 1.54 ± 0.01

DRL4Route 73.12 ± 0.09 57.23 ± 0.17 2.43 ± 0.02 1.48 ± 0.01 72.18 ± 0.18 57.20 ± 0.20 3.06 ± 0.02 1.84 ± 0.01 72.21 ± 0.08 55.94 ± 0.13 2.62 ± 0.01 1.51 ± 0.01

4.2 ESTIMATED TIME OF ARRIVAL PREDICTION

Estimated Time of Arrival (ETA) prediction aims to forecast when the task is going to be finished,
e.g., the delivery time of a package. It is one of the most important tasks in many delivery platforms
since it directly influences customers’ experience Wu & Wu (2019).

Problem Definition. Given an ETA query of worker w at time t, i.e., q = {t,Xw
t }, where Xw

t =
{x1,x2, . . . ,xn} is the courier’s unfinished packages, ETA prediction aims to build a model F that
can map the input query to the arrival time (i.e., pick-up/delivery time) Y for the unfinished package
set: F(q) 7→ Y = {y1, . . . , yn}, where yi = tactuali − t and tactual is task i’s actual arrival time.
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Dataset. LaDe-D is utilized for this experiment (note that LaDe-P can also be used for this task).
We split the data into training, validation, and test sets chronologically in a ratio of 6:2:2.

Baselines & Hyperparameters. Six baselines are evaluated for the task, including a simple speed-
based method SPEED, machine learning methods LightGBM Ke et al. (2017) and KNN Song et al.
(2019), and deep models Multi-Layer Perceptron (MLP), FDNET Gao et al. (2021), and RAN-
KETPA Wen et al. (2023). We also perform hyperparameters search on the validation set by hidden
size in {16, 32, 64, 128} for all deep models. The learning rate and batch size are set to 0.00005 and
32 for all models. See more details in Appendix 8.2.

Results. MAE, RMSE, and ACC@20 are used to evaluate the performance of time prediction mod-
els. Higher ACC@20 and lower MAE and RMSE indicate better performance. From the results
shown in Table 4, we can see that learning-based models outperform SPEED by a large margin
because of their ability to model multiple spatio-temporal factors. We also observe a huge per-
formance gap of the same method in different cities. For example, the best model, RANKETPA,
achieves 70% in terms of ACC@20 in Shanghai, while it gets a much lower accuracy of 51% in the
other two datasets. It deserves further study to build a more powerful model that can generalize well
in cities with different properties.

Table 4: Experiment results of ETA prediction.
Method Shanghai Chongqing Yantai

MAE ↓ RMSE ↓ ACC@20 ↑ MAE ↓ RMSE ↓ ACC@20 ↑ MAE ↓ RMSE ↓ ACC@20 ↑
LightGBM 17.48 20.39 0.68 24.78 28.64 0.47 23.16 27.29 0.52

SPEED 23.75 27.86 0.58 33.42 39.45 0.45 31.41 37.09 0.46
KNN 21.28 25.36 0.60 30.05 35.49 0.42 28.96 34.48 0.44
MLP 18.58 ± 0.37 21.54 ± 0.34 0.66 ± 0.02 29.75 ± 0.92 34.62 ± 1.25 0.51 ± 0.01 25.84 ± 0.23 29.67 ± 0.19 0.45 ± 0.01

FDNET 18.47 ± 0.31 21.44 ± 0.34 0.67 ± 0.02 28.17 ± 1.30 32.60 ± 1.52 0.46 ± 0.02 27.08 ± 3.24 31.15 ± 4.01 0.45 ± 0.01

RANKETPA 17.18 ± 0.06 20.18 ± 0.08 0.70 ± 0.01 24.00 ± 0.31 27.89 ± 0.33 0.51 ± 0.01 23.62 ± 0.03 27.52 ± 0.04 0.51 ± 0.01

4.3 SPATIO-TEMPORAL GRAPH (STG) FORECASTING

LaDe contains the package data with information that records when and where the package order
is placed. Based on this, the package number of a region within a certain period can be calculated.
In this way, LaDe also contributes as a new dataset to another well-known task – spatio-temporal
graph forecasting Li et al. (2018); Yao et al. (2018); Simeunović et al. (2021), which aims to predict
future graph signals given its historical observations.

Problem Definition. Let G = {V, E ,A} represent a graph with V nodes, where V , E are the node
set and edge set, respectively. A ∈ RV×V is a weighted adjacency matrix to describe the graph
topology. For V = {v1, . . . , vV }, let xt ∈ RF×V denote F -dimentional signals generated by the
V nodes at time t. Given historical graph signals xh = [x1, · · · ,xTh

] of Th time steps and the
graph G as inputs, STG forcasting aims at learning a function F to predict future graph signals xp,
formulated as: F : (xh;G) → [xTh+1, · · · ,xTh+Tp ] := xp, where Tp is the forecasting horizon.

Dataset. LaDe-P is used to conduct this experiment. More experiment details can be found in
Appendix 8.3. Each node corresponds to a region within the city. The signal of each node represents
the number of packages picked up during a particular time stamp. We set the time interval to be 1
hour. Our objective is to leverage the data from the previous 24 hours to predict the package volume
for the subsequent 24 hours. We use the ratio of 6:2:2 for training, evaluation, and testing sets based
on the chronological order of the timestamps.

Baselines & Hyperparameters. We evaluate eight baselines, including a traditional method (i.e.,
HA Zhang et al. (2017)), and recent deep learning models, including DCRNN Li et al. (2018),
STGCN Yu et al. (2018), GWNET Wu et al. (2019), ASTGCN Guo et al. (2019), MTGNN Wu et al.
(2020), AGCRN Bai et al. (2020), STGNCDE Choi et al. (2022) and GMSDR Liu et al. (2022). We
set the hidden size, learning rate, and batch size to 32, 0.001, and 32 for all models.

Results. MAE and RMSE are used as the metrics, and results are shown in Table 5. According
to the results, the traditional HA model consistently shows suboptimal results across all regions,
indicating its limitations in the STG forecasting tasks. In the Shanghai dataset, STGCN emerges as
the most effective, emphasizing the utility of Temporal Convolutional Networks (TCNs) in this con-
text. In Hangzhou, AGCRN displays commendable accuracy, surpassing its predecessor, DCRNN,
underscoring the advancements in RNN-based predictions. In Chongqing, while the newer models
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like STGNCDE, and GMSDR, introduced in 2022, are promising, they don’t always outperform
the established methodologies, which suggests that the optimal model choice is closely tied to the
specific dynamics and characteristics of each region.

Table 5: Experimental results of spatio-temporal graph prediction.
Method Shanghai Hangzhou Chongqing

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
HA Zhang et al. (2017) 4.63 9.91 4.78 10.53 2.44 5.30
DCRNN Li et al. (2018) 3.69 ± 0.09 7.08 ± 0.12 4.14 ± 0.02 7.35 ± 0.07 2.75 ± 0.07 5.11 ± 0.12

STGCN Yu et al. (2018) 3.04 ± 0.02 6.42 ± 0.05 3.01 ± 0.04 5.98 ± 0.10 2.16 ± 0.01 4.38 ± 0.03

GWNET Wu et al. (2019) 3.16 ± 0.06 6.56 ± 0.11 3.22 ± 0.03 6.32 ± 0.04 2.22 ± 0.03 4.45 ± 0.05

ASTGCN Guo et al. (2019) 3.12 ± 0.06 6.48 ± 0.14 3.09 ± 0.04 6.06 ± 0.10 2.11 ± 0.02 4.24 ± 0.03

MTGNN Wu et al. (2020) 3.13 ± 0.04 6.51 ± 0.13 3.01 ± 0.01 5.83 ± 0.03 2.15 ± 0.01 4.28 ± 0.05

AGCRN Bai et al. (2020) 3.93 ± 0.03 7.99 ± 0.08 4.00 ± 0.03 7.88 ± 0.06 2.46 ± 0.00 4.87 ± 0.01

STGNCDE Choi et al. (2022) 3.74 ± 0.15 7.27 ± 0.16 3.55 ± 0.04 6.88 ± 0.10 2.32 ± 0.07 4.52 ± 0.07

GMSDR Liu et al. (2022) 3.70 ± 0.10 7.16 ± 0.91 3.73 ± 0.28 7.18 ± 0.38 2.38 ± 0.09 4.88 ± 0.21

4.4 DISSCUSSION OF OTHER POTENTIAL TASKS

In addition to primary tasks, the dataset can provide substantial support for a wide range of other
tasks in different research fields. Firstly, LaDe can be used for spatial-temporal data (STD) repre-
sentation learning, which involves many topics that can be broadly classified by the representation
object: i) POI (Point of Interest) representation learning Lin et al. (2021), i.e., to learn the rep-
resentation of the pickup/delivery location. ii) trajectory representation learning, i.e., to learn the
representation of courier trajectory Fu & Lee (2020); ii) AOI representation learning Yue et al.
(2021). The models developed in LaDe can also be generalized to other fields such as food delivery
and riding sharing. Secondly, LaDe can be utilized to verify algorithms for optimization problems,
such as the vehicle route problem Zeng et al. (2019), delivery scheduling problem Han et al. (2017).
Thirdly, it can be used to data mining tasks within the context of last-mile delivery Ji et al. (2019);
Ruan et al. (2022b) and sptial crowding sourcing Han et al. (2017); Chen et al. (2020).

Moreover, benefited by its large data volume and detailed information, LaDe shows great potential
to support the development of foundation models Bommasani et al. (2021) in geo-related domains
Wu et al. (2023). In summary, we present a list of tasks supported by LaDe in Table 6, highlighting
the minimal required information necessary for performing each task using LaDe. This effectively
showcases LaDe’s remarkable multi-task support capability. In the future, we plan to explore a
wider range of applications on LaDe.

Table 6: Supported tasks with the minimal required information.
Task Package Info Stop Info Courier Info Task-event Info Context
STD Representation Learning Lin et al. (2021) ✓ ✓
Vehicle Routing Zeng et al. (2019) ✓ ✓ ✓
Delivery Scheduling Han et al. (2017) ✓ ✓ ✓
Last-Mile Data Mining Ji et al. (2019); Ruan et al. (2022b) ✓ ✓ ✓ ✓ ✓
Spatial Crowdsourcing Han et al. (2017); Chen et al. (2020) ✓ ✓ ✓ ✓
Time Prediction Ruan et al. (2020b; 2022a) ✓ ✓ ✓ ✓
Route Prediction Gao et al. (2021); Wen et al. (2022) ✓ ✓ ✓ ✓
STG Forecasting Yao et al. (2018); Simeunović et al. (2021) ✓ ✓ ✓

5 CONCLUSION

In this paper, we introduced LaDe, the first comprehensive industry-scale last-mile express dataset,
addressing the lack of a widely accepted, publicly available dataset for last-mile delivery research.
LaDe provides a critical resource for researchers and practitioners to develop advanced algorithms
in the context of last-mile delivery, with its large-scale, comprehensive, diverse, and dynamic char-
acteristics enabling it to serve as a new and challenging benchmark dataset. We have also demon-
strated the versatility of LaDe by benchmarking it on three real-world tasks, showcasing its potential
applications in various research fields. The source code is released along with the dataset to drive
the development of this area. By releasing LaDe, we aim to promote further research and collabo-
ration among researchers from different fields, encouraging them to utilize it for developing novel
algorithms and models, as well as comparing and validating their methods against state-of-the-art
approaches. We believe that LaDe will significantly contribute to ongoing efforts to improve effi-
ciency, cost-effectiveness, and customer satisfaction in last-mile delivery, ultimately benefiting the
research community and logistics industry.
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6 APPENDIX

7 DETAILED DATASET DESCRIPTION

7.1 DATA FIELD

Table 7: Description of data fields of LaDe-P.
Data field Description Unit/format

Package information

package id Unique identifier of each package Id
time window start start of the required time window Time
time window end end of the required time window Time

Stop information

x/y Coordinates of each stop in the two-dimensional space Float
city City String

region id Id of the Region String
aoi id Id of the AOI (Area of Interest) Id

aoi type Type of the AOI Categorical
Courier Information

courier id Id of the courier Id
Task-event Information

accept time The time when the courier accepts the task Time
accept gps time The time of the GPS point whose time is the closest to accept time Time

accept gps x/accept gps y Coordinates when the courier accept the task Float

pickup time The time when the courier picks up the task Time
pickup gps time The time of the GPS point whose time is the closest to the pickup time Time

pickup gps x/pickup gps y Coordinates when the courier picks up the task Float
Context information

ds the date of the package pickup Date

Table 8: Description of data fields of LaDe-D.
Data field Description Unit/format

Package information

package id Unique identifier of each package Id
Stop information

x/y Coordinates of each stop in the two-dimensional space Float
city City String

region id Id of the region Id
aoi id Id of the AOI Id

aoi type Type of the AOI Categorical
Courier Information

courier id Id of the courier Id
Task-event Information

accept time The time when the courier accepts the task Time
accept gps time The time of the GPS point whose time is the closest to accept time Time

accept gps x/accept gps y Coordinates when the courier accept the task Float

delivery time The time when courier finishes delivering the task Time
delivery gps time The time of the GPS point whose time is the closest to the got time Time

delivery gps x/delivery gps y Coordinates when the courier finishes the task Float
Context information

ds the date of the package delivery Date
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Table 9: Information of different selected cities.
City Description

Shanghai One of the most prosperous cities in China, with a large number of orders per day.
Hangzhou A big city with well-developed online e-commerce and a large number of orders per day.
Chongqing A big city with complicated road conditions in China, with a large number of orders.

Jilin A middle-size city in China, with a small number of orders each day.
Yantai A small city in China, with a small number of orders every day.

7.2 DATA STATISTICS

Table 10 shows the detailed statistics of LaDe-D.

Table 10: Statistics of LaDe-D. AvgETA stands for the average arrival time per package. AvgPack-
age means the average package number of a courier per day. The unit of AvgETA is minute.

City Time span Spatial span #Trajectories #Couriers #Packages #GPS points AvgETA AvgPackage

Shanghai 6 months 20km×20km 70k 1,733 1,483k 2,967k 102 21.1
Hangzhou 6 months 20km×20km 71k 1,392 1,861k 3,723k 147 25.9
Chongqing 6 months 20km×20km 68k 1,494 931k 1,862k 182 13.5

Yantai 6 months 20km×20km 17k 205 206k 410k 244 11.5
Jilin 6 months 20km×20km 2k 57 31k 61k 203 16.2

8 EXPERIMENTS DETAILS

8.1 EXPERIMENT DETAILS OF ROUTE PREDICTION

Methods. We adopt the following methods for experiments:

• TimeGreedy Zhang et al. (2019): A greedy algorithm, which ranks all the candidate tasks by
sorting their remaining time.

• DistanceGreedy Zhang et al. (2019): A greedy algorithm, which chooses to take the nearest pack-
age at each step, regardless of time requirements and other factors.

• OR-Tools Bello et al. (2017) adopts a heuristic strategy to search the route with the minimum
travel distance as worker’s future route.

• Osqure Zhang et al. (2019): A machine learning method, which predicts the next package at each
time step through a machine learning algorithm, by considering it as a multi-class classification
problem.

• DeepRoute Wen et al. (2021): A deep learning method, equipped with a Transformer encoder and
Pointer Net decoder.

• FDNET Gao et al. (2021): A deep learning method, equipped with a Bi-LSTM encoder and
Pointer Net decoder.

• Graph2Route Wen et al. (2022): A deep learning method, equipped with a dynamic graph encoder
and personalized route decoder.

• DRL4Route Mao et al. (2023): A deep reinforcement learning method that introduces the non-
differentiable metric as the reward for training the route prediction agent.

Metrics. Following the setting in Wen et al. (2022), the following metrics are utilized to evaluate
the performance of route prediction methods:

• KRC: Kendall Rank Correlation Kendall (1938) is a statistical metric to measure the ordinal
association between two sequences. Let Ŷ and Y be two sequences and RŶ (i) ∈ [1, |Y |] be the
position of item i in Y , a node pair (i, j) is said to be concordant if and only if both RŶ (i) >
RŶ (j) and RY (i) > RY (j), or both RŶ (i) < RŶ (j) and RY (i) < RY (j). Otherwise, it is
said to be discordant. To calculate this metric, nodes in the prediction are first divided into two
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sets: i) nodes in label Vin = {ŷi|ŷi ∈ Y }, and ii) nodes not in label Vnot = {ŷi|ŷi ̸∈ Y }.
The order of items in Vin is available, while it is hard to tell the order of items in Vnot. Still,
we know that all items in Vin are ahead of that in Vnot. Therefore, we compare the nodes pairs
{(i, j)|i, j ∈ Vin and i ̸= j} ∪ {(i, j)|i ∈ Vin and j ∈ Vnot}. To this end, KRC is defined as:

KRC =
Nc −Nd

Nc +Nd
, (1)

where Nc is the number of concordant pairs, and Nd is the number of discordant pairs.

• ED: Edit Distance Nerbonne et al. (1999) (ED) is an indicator to quantify how dissimilar two
sequences Y and Ŷ are to one another, by counting the minimum number of required operations
to transform one sequence into another.

• LSD: Location Square Deviation (LSD) measures the degree that the prediction deviates from the
label, formulated as:

LMD =
1

m

m∑
i=1

|(RY (i)−RŶ (i))|. (2)

• HR@k: Hit-Rate@k quantifies the similarity between the top-k items of two sequences. It de-
scribes how many of the first k predictions are in the label, which is formulated as follows:

HR@k =
Ŷ[1:k] ∩ Y[1:k]

k
. (3)

Evaluation Results. We conduct route prediction experiments in three cities in China to analyze
the potential ability of LaDe to support intelligent last-mile express service, as well as provide the
community with the cookbook for designing advanced algorithms for downstream tasks in logistics.

Specifically, heuristic algorithms such as TimeGreedy and DistanceGreedy perform relatively poorly
since the worker’s route is influenced by various spatio-temporal factors such as distance and end of
the required time window. OR-Tools performs inferior in route prediction compared with machine
learning methods. It proves that the worker’s route is not always the shortest given a set of unfinished
tasks. Graph2Route performs relatively well because it leverages the spatio-temporal correlations
by graph neural networks and introduces graph structure information in the decoder.

However, deep learning methods such as FDNET, DeepRoute, and Graph2Route utilize cross en-
tropy as training criteria. In the test phase, the non-differentiable objective, such as LSD, is designed
to evaluate the predicted route. Thus, the training criteria are different from the test one, which could
trim down their performance when applied in a real-world system. To address this problem and
achieve more accurate route prediction, DRL4Route combines the power of reinforcement learning
methods in non-differentiable objective optimization with the abilities of deep learning models in
behavior learning.

8.2 EXPERIMENT DETAILS OF TIME PREDICTION

Methods. The following methods are chosen for experiments:

• SPEED, a simple speed-based method that utilizes distance/speed as the prediction value, where
speed is calculated based on each worker’s history trajectories. We set the speed for workers
without previous trajectories as the average speed calculated by all workers.

• LightGBM Ke et al. (2017), a popular machine-learning method for regression tasks.

• KNN Song et al. (2019), a machine-learning method that trains a regressor based on K-Nearest
Neighbors algorithm to predict the arrival time.

• MLP Popescu et al. (2009), a deep neural network model with 2 layers of MLPs.

• FDNET Gao et al. (2021), a deep model that predicts both route and time of unfinished tasks.

• RANKETPA Wen et al. (2023), a two-step model that first predicts the route, based on which the
time prediction is conducted.
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Metrics. MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error), and ACC@20
are utilized as metrics. Note that delivery platforms usually provide an interval of arrival time
for customer notification. Thus we compute the ratio of prediction where the time difference be-
tween predicted time and true time is less than 20 minutes (ACC@30), formulated as ACC@20 =
1
N

∑N
i=1 I(|ŷi − yi| < 30).

Evaluation Results. We conduct experiments using LaDe-D in three cities to analyze potential im-
provements for more accurate delivery time prediction. Table 4 summarizes the overall performance
comparison. Specifically, SPEED is intuitive and efficient but inaccurate since complex factors in-
fluencing the delivery time, such as accept time and type of the AOI, are not considered. Even
though the available features are more scarce in LaDe-D than in LaDe-P, learning-based methods
outperform SPEED by a lot margin. It further proves that mining spatio-temporal correlations help
better delivery time prediction.

It is also conducive to modeling the worker’s route first and then predicting the delivery time, as
suggested by the comparative results of RANKETPA. RANKETPA performs relatively better in the
dataset collected from Shanghai and Chongqing. However, in the dataset collected from Yantai,
LightGBM performs better than RANKETPA mainly because the number of trajectories is less
abundant and diverse in Yantai compared to Shanghai and Chongqing, which could be hard for
training a sophisticated deep learning model. From the results of the six methods, the error in time
prediction is still huge. More advanced algorithms are waiting to be explored to support delivery
time prediction.

8.3 EXPERIMENT DETAILS OF SPATIO-TEMPORAL GRAPH FORECASTING

Methods. For our Spatio-temporal Graph Forecasting experimental setup, we have selected the
following methods:

• HA Zhang et al. (2017): HA predicts future values of a time series by calculating the mean of past
observations that correspond to the same time periods.

• DCRNN Li et al. (2018): DCRNN employs a neural network architecture that incorporates dif-
fusion convolution and sequence-to-sequence mechanisms. This enables the model to effectively
learn spatial dependencies and temporal relations within the data.

• STGCN Yu et al. (2018): STGCN is a specialized spatio-temporal graph convolution network that
synergistically merges spectral graph convolution with 1D convolution. This unique combination
allows the model to effectively capture correlations between spatial and temporal dimensions,
enabling a comprehensive understanding of the interplay between space and time in the data.

• GWNET Wu et al. (2019): GWNET creates an adaptive adjacency matrix to capture spatial cor-
relations and uses 1D dilated causal convolution to capture temporal dependence.

• ASTGCN Guo et al. (2019): ASTGCN leverages the power of attention-based mechanisms and
a spatio-temporal convolution system to dynamically capture spatio-temporal correlations within
the data. By incorporating attention, the model can focus on relevant information and effectively
model various temporal properties of traffic flows.

• MTGNN Wu et al. (2020): MTGNN adopts a message-passing framework to effectively model
the temporal dynamics of graph-structured data. It achieves this by aggregating information from
spatially neighboring nodes and past time steps. By leveraging this approach, MTGNN captures
the interdependencies and changes over time, enabling a comprehensive understanding of the
data’s temporal dynamics.

• AGCRN Bai et al. (2020): AGCRN incorporates two key modules, namely Node Adaptive Pa-
rameter Learning and Data Adaptive Graph Generation, to automatically infer inter-dependencies
in traffic series and capture node-specific patterns.

• GMSDR Liu et al. (2022): GMSDR improves upon RNNs by incorporating the hidden states of
multiple historical time steps as input at each time unit.

• STGNCDE Choi et al. (2022): STGNCDE is an innovative spatio-temporal graph neural con-
trolled differential equation model that leverages two neural control differential equations to pro-
cess both spatial and sequential data.
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Metrics. To assess the performance of the above-mentioned models in spatio-temporal graph fore-
casting on our dataset, we employ the metrics of Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE).

9 DATASHEET OF DATASET

9.1 MOTIVATION

• For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.

To meet the rising calling for datasets in the field of last-mile delivery research, we propose LaDe,
the first industry-scale multipurpose real-world dataset. Compared with existing public datasets,
LaDe has serval merits: (1) large-scale, it consists of millions of packages, which can serve as a
data foundation for learning-based algorithms in last-mile delivery. (2) Comprehensive information,
the dataset contains more comprehensive features, which enables the data to support multiple re-
search tasks. (3) Scenario diversity, it contains the data from both the package pick-up and delivery
scenarios. Researchers can use the two sub-datasets to study the different work patterns of couriers
in different scenarios.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?

The dataset was created by Artificial Intelligence Department, (company name blinded).

• Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number.

No.

9.2 COMPOSITION

• What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.

The instances are packages picked up/delivered in the last-mile delivery.

• How many instances are there in total (of each type, if appropriate)?

There are 10,667k instances in LaDe, where an instance represents the features of a package.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).

The dataset is a sample of instances. We first randomly select serval regions in a city, then collect
all the packages in that region within a certain period. Note that for each region, the dataset contains
all possible instances within the given time period. To further increase the diversity of the dataset,
five cities with different populations are selected and recorded.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

The format of each instance in LaDe-P is (package id, time window start, time window end, lng,
lat, city, aoi id, aoi type, courier id, accept time, accept gps time, accept gps x, accept gps y,
pickup time, pickup gps time, pickup gps x, pickup gps y, ds).
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The format of each instance in LaDe-D is (package id, lng, lat, city, aoi id, aoi type, courier id,
accept time, accept gps time, accept gps x, accept gps y, delivery time, delivery gps time, deliv-
ery gps x, delivery gps y, ds).

For the detailed description of each field, please refer to Table 7 and Table 8 in Appendix 7.1.

• Is there a label or target associated with each instance? If so, please provide a description.

Since the dataset is proposed to support multiple tasks in last-mile delivery, for easy use and flexi-
bility, a label for a specific task is not contained in one instance. However, it is easy to construct the
label for different research purposes from the raw information. Take the estimated time of arrival
prediction as an example. The actual arrival time (in this case, the label) can be calculated by the
difference between the got time and query time.

• Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

Some instances lack the courier’s location when accepting/finishing the package, i.e., accept gps x,
accept gps y. The corresponding information is massing in the real system.

• Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.

For all the tasks conducted in the paper (i.e., route prediction, time prediction, and spatio-temporal
graph forecasting), we split the data into 6:2:2 according to the time as the training set, validation
set, and test set.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

No.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guar-
antees that they will exist, and remain constant, over time; b) are there official archival versions of
the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the exter-
nal resources that might apply to a dataset consumer? Please provide descriptions of all external
resources and any restrictions associated with them, as well as links or other access points, as
appropriate.

The dataset is entirely self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor–patient confidentiality, data that includes the content
of individuals’ nonpublic communications)? If so, please provide a description.

No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety? If so, please describe why.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.

No.
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Is it possible to identify individuals (i.e., one or more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from the dataset? If so, please describe how.

Our data has been strictly desensitized and cannot be linked to real individuals.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that re-
veals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? If so, please
provide a description.

No.

9.3 COLLECTION PROCESS

• How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or
language)? If the data was reported by subjects or indirectly inferred/derived from other data,
was the data validated/verified? If so, please describe how.

The data was observable from the courier’s pick-up/delivery data on the (company name blinded)
platform.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)? How were these
mechanisms or procedures validated?

The data is collected by the software program in the (company name blinded) platform.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)?

We pick out several cities and randomly select regions in different cities.

• Who was involved in the data collection process (e.g., students, crowd workers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?

The employees in (company name blinded).

• Over what timeframe was the data collected? Does this timeframe match the creation time-
frame of the data associated with the instances (e.g., recent crawl of old news articles)? If not,
please describe the timeframe in which the data associated with the instances was created.

This data was extracted from the (company name blinded) platform between May and November of
a recent year.

• Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

The data was collected from the (company name blinded) platform.

9.4 PREPROCESSING/CLEANING/LABELING

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, process-
ing of missing values)? If so, please provide a description. If not, you may skip the remaining
questions in this section.

For the privacy issue, no customer-related information (such as the address, name, and ID) is con-
tained in the dataset. And for the couriers, they are our staff, we have got their permission to collect,
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and analyze the dataset. Specifically, the following operations are adopted to further protect privacy:
1) a package is not linked to a customer in the dataset to protect the privacy of customers. 2) Instead
of using the latitude and longitude, we utilize the coordinate of a package in a two-dimensional
space (x, y) to represent a package’s location. The relative distance of two locations in real geo-
graphical space is preserved in the two-dimensional space. In this way, (x, y) cannot be projected
back to a real-world location, thus largely migrating the privacy issue. 3) For couriers, no sensitive
information (e.g., gender and age) is included either.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to sup-
port unanticipated future uses)? If so, please provide a link or other access point to the “raw”
data.

No.

9.5 USES

• Has the dataset been used for any tasks already? If so, please provide a description.

No.

• Is there a repository that links to any or all papers or systems that use the dataset? If so,
please provide a link or other access point.

Yes.

• What (other) tasks could the dataset be used for?

The dataset can be used for route prediction, estimated time of arrival prediction, spatio-temporal
graph forcasting, and route optimization. See section 4.4 for more details.

9.6 DISTRIBUTION

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?

The dataset will be made available on the internet. There will be a corresponding Hugging Face
repository associated with the dataset, and code on how to use the dataset and baseline methods.

• When will the dataset be distributed?

The dataset is available to the reviewers and the public along with the submission with a companion
Hugging Face repository.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions.

This dataset is licensed under a CC BY-NC 4.0 International License 2. There is a request to cite the
corresponding paper if the dataset is used.

Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

2https://creativecommons.org/licenses/by-nc/4.0/
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No.

9.7 MAINTENANCE

• Who will be supporting/hosting/maintaining the dataset?

The employee in (company name blinded) will host the dataset on Hugging Face.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The authors can be contacted via their emails mentioned in the paper.

• Is there an erratum? If so, please provide a link or other access point.

Not to our best knowledge.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated to
dataset consumers (e.g., mailing list, GitHub)?

The corresponding Hugging Face page will be updated regularly.

• Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset con-
sumers.

The old versions of the dataset will not be maintained. If we update the version of the dataset, we
will put the specific details of the dataset update on the relevant Hugging Face.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing
these contributions to dataset consumers? If so, please provide a description.

If others want to extend/augment/build on/contribute to the dataset, please contact the original au-
thors about incorporating fixes/extensions.
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