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ABSTRACT
Many modern large-scale longitudinal neuroimaging studies, such as the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) study, have collected/are collecting asynchronous scalar and functional variables
that are measured at distinct time points. The analyses of temporally asynchronous functional and scalar
variables pose major technical challenges to many existing statistical approaches. We propose a class of
generalized functional partial-linear varying-coefficient models to appropriately deal with these challenges
through introducing both scalar and functional coefficients of interest and using kernel weighting methods.
We design penalized kernel-weighted estimating equations to estimate scalar and functional coefficients,
in which we represent functional coefficients by using a rich truncated tensor product penalized B-spline
basis. We establish the theoretical properties of scalar and functional coefficient estimators including
consistency, convergence rate, prediction accuracy, and limiting distributions. We also propose a boot-
strap method to test the nullity of both parametric and functional coefficients, while establishing the
bootstrap consistency. Simulation studies and the analysis of the ADNI study are used to assess the finite
sample performance of our proposed approach. Our real data analysis reveals significant relationship
between fractional anisotropy density curves and cognitive function with education, baseline disease
status and APOE4 gene as major contributing factors. Supplementary materials for this article are available
online.
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1. Introduction

This article is motivated by exploring the association between
neuroimaging measures and cognitive function in patients
with Alzheimer’s disease (AD) through the analysis of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study
(http://www.adni-info.org/). The ADNI is a large-scale multi-
site neuroimaging study that has collected clinical, imaging,
genetic and cognitive data at multiple time points from cognitive
normal (CN) subjects, subjects with mild cognitive impair-
ment (MCI), and AD patients. In ADNI, Mini-Mental State
Examination (MMSE) score has been used to assess cogni-
tive mental status over time, with lower scores indicating
impairment. The primary goal of ADNI is to test whether
genetic, structural and functional neuroimaging, and clinical
data can be integrated to assess the progression of MCI and
early AD.

We consider a subset of ADNI with n = 256 subjects over a
5-year follow-up to examine the association between the change
of diffusion weighted imaging (DWI) measures and cognitive
decline. Fractional anisotropy (FA) is one of the most popular
DWI measures that reflects fiber density, axonal diameter, and
myelination in white matter. Previous studies based on FA have
shown marked damage and dysfunction in the white matter in
AD (Bozzali et al. 2002; Zhang et al. 2009; Nir et al. 2013). For
each subject, we consider the log-hazard curves of FA in the
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whole brain and 20 regions of interest (ROIs) observed at 1–8
time points and the MMSE scores examined at 1–7 time points.
The observed FA curves and MMSE scores are mismatched over
time within individuals, leading to asynchronous longitudinal
functional and scalar data. In Figure 1, we display observations
of log hazard curves of FA along the whole brain and the
MMSE scores for two subjects over time. It is clear that the
observations times for the functional covariate and the outcome
are mismatched within and between subjects. Given this new
data structure, there is a particular need for the development
of longitudinal regression models for establishing the associ-
ation between asynchronous functional covariates and scalar
responses.

We formally introduce asynchronous dataset as follows. Sup-
pose that there are n subjects and we observe response and a set
of functional and scalar covariates over different time points for
each subject. Specifically, for i = 1, . . . , n and d = 1, . . . , D, we
observe

Yi(Tij), j = 1, . . . , Li, (1)

{Zi(Sik), Xdi(Sik, u)}, k = 1, . . . , Mi,

where Li and Mi are, respectively, the number of time points
for response and that for covariates, Zi(Sik) is a p-dimensional
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Figure 1. Structure of the ADNI dataset: MMSE scores for two subjects over several visits, the dotted vertical lines correspond to the observation times for log hazard
functions of FA.

vector of time varying covariates and Xdi(Sik, u)’s are D func-
tional covariates and can be observed on a set of dense grids
for a given Sik. Moreover, Tij’s are the observation times of
responses Yi(Tij) and Sik’s are those of the functional and scalar
covariates {Zi(Sik), Xdi(Sik, u)}. In practice, Tij’s are different
from Sik’s. In our ADNI dataset, d denotes a specific ROI and
D is the number of ROIs, Yi(Tij)’s are the MMSE scores, Zi(Sik)
includes various clinical variables, such as age and education,
and Xdi(Sik, u)’s are the log hazard curves of FA measured
repeatedly over time and ROI, leading to longitudinal functional
covariates. Although much has been done on the analyses of
the ADNI data (Diggle 2002; Leow et al. 2009; Weiner et al.
2013; Li et al. 2017; Wang, Zhu, and ADNI 2017; Zhu et al.
2017), almost all existing works consider synchronous data
setting and the related statistical methods cannot appropriately
handle asynchronous dataset (1). Research on asynchronous
data is very scarce with a few exceptions including Xiong
and Dubin (2010), Şentürk et al. (2013), Cao, Zeng, and Fine
(2015), Cao, Li, and Fine (2016), and Chen and Cao (2017).
Moreover, to the best of our knowledge, longitudinal functional
predictors have not been considered for asynchronous data
setting.

The observed dataset (1) consists of longitudinal functional
data, which are observed repeatedly for each subject at multiple
visits. Analysis of repeatedly measured functional outcome has
received much attention recently due to an increasing num-
ber of such data. There are vast majority of approaches based
on functional principal component analysis (FPCA), see, for
example, multilevel FPCA by Di et al. (2009); longitudinal
FPCA by Greven et al. (2011), Chen and Müller (2012), Park
and Staicu (2015), and Chen, Delicado, and Müller (2017);
FPCA of spatiotemporal point process by Li and Guan (2014);
multi-dimensional FPCA by Hasenstab et al. (2017); and hybrid
FPCA by Scheffler et al. (2020). Meanwhile, Morris et al.
(2003), Morris and Carroll (2006), Yang et al. (2017), and Lee
et al. (2019) combined Bayesian methods with longitudinal
functional mixed models. They defined mixed effects models
at the level of the basis coefficients and had to specify pri-
ors about the random effects and their covariance structure.

In contrast, Staicu, Lahiri, and Carroll (2015), Park et al.
(2018), and Zhu et al. (2019), among others, studied inference
for the fixed effects in longitudinal functional mixed effects
models.

The goal of this article is to develop a set of new longitudinal
regression models for the association analysis of asynchronous
functional covariates and scalar response and their related
estimations and inferences. We consider a set of generalized
functional partial linear varying-coefficient (GFPV) models as
follows:

E{Y(t)|X(t, u), Z(t)} = g

(
Z(t)�γ0 +

D∑
d=1

∫
Xd(t, u)β0d(t, u)du

)
, (2)

where γ0 is a p × 1 vector of regression coefficients, β0d(·, ·)’s
are functional regression coefficients, g(·) is a known, strictly
increasing and continuously twice-differentiable link function,
Z(t) is a p×1 vector of time varying covariates with each element
resides in L2([0, 1]), Xd(t, u) ∈ L2([0, 1]⊗2), d = 1, . . . , D are
bivariate stochastic processes, and Y(t) is a temporal response
process. At a fixed time t, Xd(t, u) is a random process of u for
each d = 1, . . . , D. Following Cao, Zeng, and Fine (2015) and
Lin and Ying (2001), the observation times of Xdi(s, u), Zi(s),
and Yi(t) can be viewed from a bivariate counting process
defined as

Ni(t, s) =
Li∑

j=1

Mi∑
k=1

I(Tij ≤ t, Sik ≤ s),

where I(A) is the indicator function of an event A. We are
interested in using asynchronous dataset (1) to estimate both
parametric regression coefficients in γ0 and functional regres-
sion coefficients {β0d(·, ·) : d = 1, . . . , D} in model (2).
Such asynchronous setting, however, greatly complicates model
estimations and inferences for model (2).

Model (2) falls within a general functional linear regres-
sion modeling framework, which can characterize the associ-
ation between scalar (or functional) response and functional
and scalar covariates. See Ramsay and Silverman (2005) and
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references therein for an extensive overview of functional lin-
ear models. Recently, there is an increasing interest in the
development of longitudinal functional regression models for
the analyses of synchronous functional/scalar covariates and
responses. Goldsmith et al. (2012) proposed a longitudinal
penalized functional regression model, and explored the rela-
tionship between cerebral white matter tracts and cognitive
impairment over time. Gertheiss et al. (2013) extended the
study of Goldsmith et al. (2012) and applied their model to
a brain diffusion tensor imaging tractography study. Kundu,
Harezlak, and Randolph (2016) considered time-varying coeffi-
cient functions in longitudinal functional regression models to
analyze the neurocognitive impairment of human immunodefi-
ciency virus patients and its association with structural imaging
curves. Staicu et al. (2020) developed a longitudinal dynamic
functional regression to study time-varying association between
Gaussian or non-Gaussian responses and functional covari-
ates. Scheipl, Staicu, and Greven (2015), Scheipl, Gertheiss, and
Greven (2016), and Greven and Scheipl (2017) also considered
bivariate coefficients in (generalized) functional additive mixed
models for functional responses and expanded the bivariate
functional coefficient by using the tensor product of spline bases
with a smooth penalty. Although all existing methods provide
a convenient vehicle for synchronous longitudinal data with
functional covariates, they are inapplicable to asynchronous
dataset (1).

In this article, we propose the GFPV model (2) to charac-
terize the relationship between asynchronous longitudinal func-
tional covariates and scalar responses. Compared with the exist-
ing literature discussed above, we make several major contribu-
tions as follows. (i) It is the first time that we conduct associa-
tion analysis between the asynchronous longitudinal functional
covariates and scalar responses. We construct penalized kernel-
weighted estimating equations by using penalized B-splines to
represent functional coefficients and develop a relatively fast
algorithm for solving such estimating equations. (ii) We sys-
tematically carry out the theoretical analyses of all scalar and
functional estimators including consistency, convergence rate,
prediction accuracy, and their limiting distributions. We also
establish the bootstrap consistency of our proposed test statis-
tics. (iii) The novel application of GFPV to the ADNI dataset
reveals that the deterioration of intelligence is associated with
the well-known factors, such as education and APOE4 gene, as
well as the decreasing of the top quantiles of FA at the whole
brain and across 5 specific ROIs. (iv) The package for GFPV
along with its documentation is freely accessible from our lab’s
github website.

The rest of the article is organized as follows. Section 2.1
gives the detailed procedure for our estimation method. Sec-
tion 2.2 discusses the computational complexity of our estima-
tion method. In Section 2.3, we present a hypothesis testing
procedure for testing the nullity of both parametric and func-
tional coefficients. In Section 3, we show the consistency and
convergence rates of parameter and functional estimators under
some mild assumptions. Section 4 investigates the finite sample
performance of the proposed method in simulations. We apply
our methods to a real dataset obtained from the ADNI study in
Section 5. All proofs and additional figures can be found in the
supplementary materials.

2. GFPV Models

2.1. Estimation

We propose penalized kernel-weighted estimating equations to
obtain the estimators of γ0 and β0d(t, u) as follows. Kernel-
weighted estimating equations have been widely used in han-
dling longitudinal synchronous data (Carroll et al. 1997; Lin
and Carroll 2001). Cao, Zeng, and Fine (2015) and Chen and
Cao (2017) have shown that the kernel-weighted estimating
equation method can be efficient for handling asynchronous
data by borrowing information from all possible pairings of
response and covariate observations.

Without loss of generality and for notation simplicity, we
assume D = 1 and drop the subscript d. Penalized spline
approach offers a number of computational advantages and can
produce consistent estimators with a potentially large number of
knots (Yu and Ruppert 2002). Let m be the order of the B-splines.
Without loss of generality, it is assumed that the numbers of
knots are the same in the t and u directions. It can be easily
extended to different number of knots for the two directions. To
be more specific, let 0 = t0 < t1 < · · · < tM < tM+1 = 1 and
0 = u0 < u1 < · · · < uM < uM+1 = 1 be the sequences
of knots on intervals [0, 1] and [0, 1], respectively. This gives
K = M + m basis functions for each direction.

We represent β(t, u) by using a tensor product penalized
spline basis as follows:

β(t, u) ≈
K∑

k=1

K∑
l=1

bklηk(t)θl(u) = η(t)�Bθ(u), (3)

where η(t) and θ(u) are two K × 1 basis vectors corre-
sponding to the K basis functions evaluated in the t and
u directions, and B is a spline coefficient matrix. Denote
X̃(t) = (X̃11(t), . . . , X̃K1(t), . . . , X̃1K(t), . . . , X̃KK(t))� and b =
Vec(B) as the vectorization of the matrix B, where X̃kl(t) =
ηk(t)

∫ 1
0 X(t, u)θl(u)du. Model (2) can be approximated by

E{Y(t)|X(t, u), Z(t)} = g
(

Z(t)�γ0 + X̃(t)Tb
)

. (4)

We introduce a roughness penalty on ηk(t) and θl(u). Similar
to Wood (2006), we choose the roughness penalty as follows:

P ≡ P(λt , λu) = λt(Pt ⊗ IK) + λu(Pu ⊗ IK),

where λt and λu are smoothing parameters and Pt and Pu are
the fixed and known marginal penalty matrices for the t and
u directions, respectively. One example of the marginal penalty
matrices is

Pt(β) =
∫ ∫

[Ltβ(t, u)]2dtdu and

Pu(β) =
∫ ∫

[Luβ(t, u)]2dtdu

with Lt and Lu being linear differential operators. One of the
commonly used linear differential operators is the curvature
operator with Lt = ∂2/∂t2 and Lu = ∂2/∂u2.

We use the idea of penalized estimating equations (Fu 2003)
to construct penalized kernel-weighted estimating equations
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below. Specifically, the penalty added to the estimation equa-
tions takes the form ∂P/∂b given by

∂P
∂b

= λt
∂(Pt ⊗ IK)

∂b
+ λu

∂(Pu ⊗ IK)

∂b
= (λtJθθ ⊗ R + λuS ⊗ Jηη)b,

where R = ∫ [Ltη(t)][Lsη�(t)]dt, S = ∫ [Luθ(u)][Lsθ
�(u)]du,

Jθθ = ∫
θ(u)θ�(u)du, and Jηη = ∫

η(u)η�(u)du. One may
refer to Ramsay and Silverman (2005) for more details about
various penalty functions. Denote Pλt ,λu = λtJθθ ⊗R+λuS⊗Jηη

and ζ = (γ �, M−1b�)�, our penalized estimating equations
for b and γ , denoted as 	n(ζ ), are given by

1
n

n∑
i=1

Li∑
j=1

Mi∑
k=1

Kh(Tij − Sik)Z̃i(Sik) (5)

[Yi(Tij) − g{Zi(Sik)
�γ + X̃i(Sik)

�b}] − P̃,

where Z̃i(t) = (Zi(t)�, X̃i(t)�)� and P̃� = (0�, (Pλs,λu b)�)).
Moreover, Kh(t) = K(t/h)/h is the kernel weighting function,
where K(t) is a symmetric kernel function and h is the band-
width. Following Fan, Yao, and Cai (2003), we choose K(t) to be
the Epanechnikov kernel K(t) = 0.75(1 − t2)+. Subsequently,
applying the Newton–Raphson algorithm to (5) leads to the
estimator of ζ , denoted as ζ̂ = (γ̂ �, M−1b̂�)�.

Although response and covariates are mismatched, the ker-
nel weighting function enables the use of all covariate obser-
vations for each observed response by down-weighting those
observations far away in time. Observation times Tij and Sik for
i = 1, . . . , n are required to be close for some but not all subjects.
We use all covariates for each observed response through the
use of the kernel weighting function Kh(t) = K(t/h)/h. As long
as there exist time points Tij and Sik with distance smaller then
h, we can estimate the unknown parameters. Theoretically, we
explicitly impose the condition h > mini minj,k |Tij−Sik|. Thus,
all possible pairings of response and covariate observations with
the time differences smaller than h contribute to our estimating
equations, making the estimation possible.

2.2. Computational Complexity

The computational complexity of our estimation procedure
is extremely important for asynchronous longitudinal func-
tional data, which usually contain a large number of points in
the time domain and the functional domain. Denote Nt =
max{Li, Mi, i = 1, . . . , n} and Nu as the maximal number of
points in the t direction and u direction for all subjects.

We discuss the computational complexity of our estimating
procedure as follows. First, we calculate X̃kl(s) for each k, l and
each s, which is computationally straightforward. The computa-
tional complexity is O(Nu) for each time point s, so overall it is
O(NuNtK2) for calculating all X̃kl(s). Second, the computational
complexity of calculating the matrix Pλs,λu is O(K4). Third, the
computational complexity of calculating the estimators in (5) is
O(nhN2

t K4 + K6). Hence, taking the computational complexity
of the above three steps together, the computational complexity
of our estimating procedure in Section 2.1 is O(nhN2

t K4 +
K6 + NuNtK2). If we choose the tuning parameters {λs, λu, h}

by a grid search method, then the computational complex-
ity increases by a factor of the number of the set of tuning
parameters.

2.3. Hypothesis Testing

Although estimation and prediction are interesting, it is also
important to test the nullity of β and γ . For instance, in the
ADNI data analysis, we are interested in examining whether the
FA values across the ROIs and other covariates have significant
effects on the MMSE decline. Therefore, we propose to test two
sets of null and alternative hypotheses as follows:

H0,β : β0(t, u) = 0, for any (t, u) vs.
H1,β : β0(t, u) �= 0, for some (t, u), (6)
H0,γ : γ0 = 0, vs. H1,γ : γ0 �= 0. (7)

To test (6) and (7), we propose two statistics as follows:

Tβ = nh
M2 ||β̂(·, ·)||2 = nh

M2

∫ ∫
β̂2(t, u)dtdu and

Tγ = (nh)||γ̂ ||2 = (nh)γ̂ �γ . (8)

The statistic Tβ is to measure the L2 distance between β̂(·, ·) and
0, whereas Tγ is to measure the Euclidean distance between γ̂

and 0. Since β(t, u) is approximated by a B-spline tensor product
in (3), Tβ can be rewritten as

Tβ = (nh/M2)
K∑

k=1

K∑
l=1

b̂2
kl. (9)

Under the null hypotheses, the two statistics are expected to be
close to zero. One can reject H0,β for large Tβ and reject H0,γ for
large Tγ .

Although we can derive the null limiting distributions of Tβ

and Tγ based on the limiting distributions with respect to γ̂

and b̂ in Section 3, it is challenging to estimate their critical
points involved. Thus, a resampling procedure is proposed to
approximate the null limiting distributions of the two statistics.
Chatterjee and Bose (2005) proposed a generalized bootstrap for
estimators by solving estimating equations. Cheng and Huang
(2010) showed that the bootstrap is asymptotically consistent
in estimating the distribution of the M-estimate of Euclidean
parameter. We modified the bootstrap methods by Chatterjee
and Bose (2005) and Cheng and Huang (2010) to account for
functional variables and asynchronous data setting. Specifically,
we bootstrap our estimating equations as follows.

• Step 1. Solve estimating Equation (5) to obtain the estimators
b̂ and γ̂ .

• Step 2. For each a, generate n iid random variables W(a)
n =

(W(a)
n1 , . . . , W(a)

nn ) with E(W(a)
ni ) = 1, E(W(a)

ni −1)2 → 1, and
E(W(a)

ni )8 < ∞ for i = 1, . . . , n, where → denotes the limit
as n → ∞.

• Step 3. Solve the following W(a)
n -weighted estimating equa-

tions and denote their solutions as b̂(a) and γ̂ (a),
n∑

i=1
W(a)

ni
( Li∑

j=1

Mi∑
k=1

Kh(Tij − Sik)Z̃i(Sik)

[Yi(Tij) − g{Zi(Sik)
�γ + X̃i(Sik)

�b}] − P̃
) = 0.
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The tuning parameters are the same as those selected in
Step 1.

• Step 4. Repeat Steps 2 and 3 for A times. Calculate

T(a)
β = (nh/M2)

K∑
k=1

K∑
l=1

(b̂(a)

kl − b̂kl)
2 and

T(a)
γ = (nh)(γ̂ (a) − γ̂ )�(γ̂ (a) − γ̂ ).

• Compute p̂β = A−1 ∑A
a=1 I(T(a)

β > Tβ) and p̂γ =
A−1 ∑A

a=1 I(T(a)
γ > Tγ ). The null hypothesis H0,β is rejected

if p̂β is smaller than a prefixed significance level α, and H0,γ
is rejected if p̂γ is smaller than α.

The estimation and testing procedures depend on the selec-
tion of the smoothing parameters λs and λu and the bandwidth
h. Since response and covariate observations are mismatched,
the widely adopted tuning parameter selection methods such
as generalized cross-validation are inapplicable here. Following
the tuning parameter selection procedure in Cao, Zeng, and
Fine (2015) and Chen and Cao (2017), we propose to use a
data-driven tuning parameter selection method by minimizing
the roughly estimated mean-squared error for ζ̂ . We calculate
the squared bias and variance of ζ̂ separately. Denote λ =
max(λs, λu). For variance, we randomly split the data into two
sub samples and derive the estimates ζ̂1 and ζ̂2, and then the
sum of the variance of each estimate in ζ̂ is given by V̂(λ, h) =∑p+K2

i=1 (ζ̂1i − ζ̂2i)2/4. According to Theorem 1 shown later, the
squared bias of ζ̂ is of the order Op(λ + M2h4 + M−2r) as
λM4 = Op(1). In practice, although the order of smoothness
r is often unknown, we may use the same M for different tuning
parameters, indicating that M−2r is the same over different
tuning parameters. Then λ and h are selected to minimize

Criterion = M2h4 + λ + V̂(λ, h). (10)

3. Theoretical Results

In this section, we study the asymptotic properties of all esti-
mators. Prior to presenting the theoretical results, we need to
introduce some notations. For any matrix A, let ||A|| denote
the modulus of the largest singular value of A. Let ||a|| be the
Euclidean norm for any vector a, and ||β|| be the L2 norm for
any functional process β .

Define Cr([0, 1]⊗2) as the space of all bivariate functions
h(t, u) on [0, 1]⊗2 such that D(r1,r2)h = ∂r1+r2 h/(∂r1 t∂r2 u) is
continuous and Lipschitz of order q, that is, for any T1, T2 ∈
[0, 1]⊗2 and r ≥ r1 + r2 + q,

|D(r1,r2)(T1) − D(r1,r2)(T2)| ≤ W0||T1 − T2||q,

where W0 is a finite constant.
We assume that β ∈ Cr([0, 1]⊗2) holds for some r ≥ 1.

According to Theorem 12.7 of Schumaker (1981), there exists
a constant W > 0 such that

sup
s,u

|β0(s, u) − η(s)�B0θ(u)| ≤ WM−r , (11)

where B0 is a K × K-dimensional matrix depending on β0. Let
the vectorization of B0 be b0, and the true value of γ be γ0.

Assumptions and proofs of all theoretical results can be
found in the supplementary materials. The following the-
orem studies the estimation error of the estimators ζ̂ =
(γ̂ �, M−1b̂�)� and the estimation error of the functional esti-
mator.

Theorem 1. Suppose that Assumptions 1–9 in the supplemen-
tary materials hold. If M = o(n), λM4 = O(1), λ → 0, Mh2 →
0, and M2(nh)−1/2 → 0 hold as n → ∞, then∫ ∫

{β̂(s, u) − β0(s, u)}2dsdu = Op(M2/(nh))

+ Op(λ + λM4−2r + M−2r + M2h4), (12)

and ||ζ̂ − ζ0||2 = Op(M2/(nh)) + Op(λ + λM4−2r + M−2r +
M2h4).

The proof of the convergence rate of ||ζ̂ − ζ0||2, which
depends on the theory of Z-estimation tailored to asynchronous
data, is much more complex than that of Cao, Zeng, and Fine
(2015) and Chen and Cao (2017). The estimation error of
β̂(s, u) consists of three parts including the bias of the estimators
λ + λM4−2r + M−2r + M2h4, the variance of the B-spline
coefficient estimators M2(nh)−1, and the approximation error
M−2r . The bias, which is caused by the representation and the
penalty, of β̂ is similar to that for functional regression models
in Cardot, Ferraty, and Sarda (2003) and Cardot and Sarda
(2005). If we set h = O(n−1/5), M = O(n2/{5(r+1)}), and λ =
O(n−4r/{5(r+1)}), which leads to a minimal convergence rate in
(12), then we can achieve a convergence rate of Op(n−4r/{5(r+1)})
or Op((nh)−r/(r+1)), which is slower than the optimal nonpara-
metric rate of convergence Op(n−r/(r+1)) in Stone (1982). The
loss of efficiency is due to the asynchronous data setting.

Denote η0(t, β) = Z(t)�γ0 + ∫
X(t, u)β(t, u)du and

η̂0(t, β) = Z(t)�γ̂ + ∫
X(t, u)β̂(t, u)du. For a given t, let

g′(η0(t, β)) be the first-order derivative of g with respect to
η0(t, β). The following theorem details the prediction error of
the estimator of g{η0(t, β)}.

Theorem 2. Under the conditions of Theorem 1,
for a given time point t and β in a neighborhood
of β0, if E[g′2(η0(t, β))Z(t)�Z(t)] < ∞ and
E[g′2(η0(t, β))

∫
X2(t, u)du] < ∞ hold, then we have[

g
{
η̂0(t, β)

} − g {η0(t, β)}]2

= Op(M2/(nh)) + Op(λ + λM4−2r + M−2r + M2h4).

Theorem 2 shows that under some mild conditions, the
prediction error of g

{
η̂0(t, β)

}
is of the same order as the esti-

mation error. Inspecting Theorem 1 might reveal that the rate
of convergence for γ̂ would be the same as that for β̂ . However,
the convergence rate for γ̂ is supposed to be a faster one. For
example, in Cheng, Zhang, and Chen (2009), the parametric
component enjoys a parametric convergence rate whereas the
estimator of the nonparametric component has a nonparametric
one. So a different convergence rate of γ̂ is investigated in
Theorem 3.

We need to assume that for s, t ∈ [0, 1],
var{Y(t)|X(t, u), Z(t)} = σ(t, X(t, u), Z(t))2 and there
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exists a twice-continuous differentiable function λ(t, s)
such that E{dNi(t, s)} = λ(t, s)dtds. Let AZ =∫

E{Z̃i(s)g′{η0(s, β0)}Z̃i(s)�}λ(s, s)ds and

�Z =
∫

K(z)2dz
∫

E
{

Z̃i(s)Z̃i(s)�
}
σ(s, X(s, u), Z(s))2λ(s, s)ds.

Also, denote 
n and �n as


n = Mn−1
n∑

i=1

∫ ∫
Kh(t − s)X̃i(s)g′{η0(s, β0)}

Zi(s)�dNi(t, s) and (13)

�n = M2n−1
n∑

i=1

∫ ∫
Kh(t − s)X̃i(s)g′{η0(s, β0)}

X̃i(s)�dNi(t, s), (14)

respectively. Moreover, Z̃i(s) = Zi(s) − M
�
n �−1

n X̃i(s), where
M
�

n �−1
n X̃i(s) can be viewed as a projection of the scalar

variables to the functional space.

Theorem 3. Suppose that the conditions of Theorem 1 are
satisfied. Also, nh5 = o(1), nhλM−2 → 0, nhM−(2r+2) → 0,
and AZ and �Z are positive definite. Then as n → ∞, we have

√
nh(γ̂ − γ0)

d→N(0, �γ0),

where �γ0 = limn→∞ A−1
Z �Z(A−1

Z )� and d→ denotes the
convergence in distribution.

Theorem 3 presents a different rate of convergence of γ̂ com-
pared with that in Theorem 1. We also extend the asymptotic
normality result for the parametric estimator in Cao, Zeng, and
Fine (2015) and Chen and Cao (2017) to the GFPV models.
The rate of convergence (nh)1/2 is the same, but the asymptotic
variance of the parametric estimator is different and more com-
plicated than that in Cao, Zeng, and Fine (2015) and Chen and
Cao (2017). Specifically, we have to adjust for the dependence
between the scalar variables and the functional variables, which
is an additional complication arising in functional partial linear
models and is more challenging under the longitudinally asyn-
chronous data setting.

We will present the asymptotic distribution with respect to b̂
below.

Theorem 4. Assume that the conditions of Theorem 3 hold, and
nh5M = o(1). Moreover, the eigenvalues of

�β0 = var
( ∫ ∫

Mh1/2Kh(t − s)X̃i(s)[Yi(t) − g(η0(s, β0))]dNi(t, s)
)

are bounded away from 0 and infinity. As n → ∞, we have

(nh/M2)(b̂ − b0)
��2

n(b̂ − b0) − tr(�β0)√
2tr(�2

β0
)

d→N(0, 1).

To the best of our knowledge, it is the first time that the
asymptotic normality has been proved for the quadratic form
of b̂ − b0 under generalized functional partial linear models. A
similar asymptotic distribution result about a Wald-type statistic

was obtained in Kong, Staicu, and Maity (2016). However, it
is targeted for functional partial linear models with normal
distribution error structure, which is too restrictive and hard to
be satisfied in practice. Meanwhile, the mismatched observation
times and a more general structure bring additional difficulties
in deriving the distribution. We also present the point-wise
limiting distribution of β̂ and extension to D > 1 func-
tional variables of Theorem 4 in the supplementary materials.
Although we can derive the asymptotic distributions of Tβ

and Tγ in Theorems 3 and 4, we resort to the bootstrapping
procedure to approximate them. In Theorem 5, we will show
that the bootstrap distributions of the proposed two statistics,
conditional on the observations, asymptotically imitate their
corresponding null limiting distributions.

Theorem 5. Suppose that the conditions of Theorems 3 and 4 are
satisfied. Also, for i = 1, . . . , n and a = 1, . . . , A, the bootstrap
weights satisfy

E(W(a)
ni ) = 1, E(W(a)

ni − 1)2 → 1 and E(W(a)
ni )8 < ∞.

The conditional distribution of T(a)
β = (nh/M2)||b̂(a) − b̂||2

given the observed data converges almost surely to the null
limiting distribution of Tβ = (nh/M2)||b̂−b0||2. Similar result
also holds for T(a)

γ = (nh)||γ̂ (a)−γ̂ ||2 and Tγ = (nh)||γ̂ −γ0||2.

Theorem 5 validates the bootstrapped processes of T(a)
β and

T(a)
γ .

4. Simulation Studies

In this section, we investigate the finite sample performance of
the proposed method in two most commonly encountered cases
including the linear regression case and the logistic regression
case. We present the empirical estimation and prediction errors
in Example 1, and explore the finite sample performance of the
proposed testing procedure in Examples 2 and 3.

Example 1. To obtain different observation times for the
response and the covariates, the number of observation times
of Y(t) and Z(t) was generated from a Poisson distribution with
the intensity rate λPoisson. Once we had the two numbers of
observation times, the observation times for the response as well
as the covariates were generated from the uniform distribution
U(0, 1), independently.

For the ith subject, the process Zi(t) was generated from a
Gaussian process with values at fixed time points being multi-
variate normal distribution with mean 0, variance 1, and corre-
lation structure exp(−|tij−tik|), where tij is the jth measurement
time and tik is the kth measurement time within the same
subject. The observations times for X(t, u) are the same as
those for Z(t) in the t direction, while 200 observation times
from the uniform distribution were included throughout the
simulation in the u direction. We mixed the observation times
of the response with those of the covariates when generating the
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covariates, but we computed Y(t) only at the specific measure-
ment times of Y(t). The functional process X(t, u) is of the form

X(t, u) =
50∑

k=1
(−1)k+1k−1Mk(t)ϑ(u, k),

where each Mk(t) is the same Gaussian process as Z(t), and
ϑ(u, k) = 1 if k = 1 and

√
2 cos((k − 1)πu) otherwise. For the

coefficient function β0(t, u), we set

β0(t, u) = 4 ∗
50∑

k=1
(−1)k+1k−2ϑ(t, k)ϑ(u, k).

In the linear regression case, responses were generated from

Y(t) = Z(t)γ0 +
∫ 1

0
X(t, u)β0(t, u)du + ε(t),

where ε(t) is a Gaussian process, with mean 0, variance 1 and
cov{ε(s), ε(t)} = 2−|t−s|. In the logistic regression case, the
responses were generated from

P(Y(t) = 1|Z(t), X(t, u))

=
exp

(
Z(t)γ0 + ∫ 1

0 X(t, u)β0(t, u)du
)

1 + exp
(

Z(t)γ0 + ∫ 1
0 X(t, u)β0(t, u)du

) .

We set γ0 = 1 and chose the Poisson parameter λPoisson to be
10, 15, and 20, respectively. All simulation results were based on
200 replications and the sample size n was in {100, 200, 400} by
using R (version 3.3.2) on a linux server (equipped with Intel(R)
Xeon(R) CPU E5-2643 v4 @ 3.40GHz, 10GB RAM).

We used the penalized cubic spline to represent the coef-
ficient function β(t, u) and chose equally based knots. Then,
we chose the number of the basis functions K according to the
suggestions in Ruppert (2002). Specifically, the number of knots
is not a crucial parameter since smoothing is controlled by the
penalty parameter. So, throughout the simulation studies, we
chose 15 knots for both the t and u directions, respectively,
leading to K = 18 and 256 basis coefficients. To simplify the
procedure, we set λs = λu = λ. The tuning parameters λ and h
were selected to minimize the roughly estimated mean-squared
error in (10). We also included the results when choosing 5
knots (K = 8) without penalties (denoted as “No penalty”) to
investigate the effects of the penalties.

Following the suggestions from two reviewers, we compared
our method with three additional methods in linear cases in
terms of both estimation and prediction accuracy. The first
method, denoted as LDFRy, consists of pre-smoothing the
sparsely observed Y(t) by fpca.sc() function in the refund R
package, which leads to an estimated functional response, and
fitting a “synchronous” model using the functional dynamic
functional regression proposed by Staicu et al. (2020). The sec-
ond one, denoted as LDFRxz, consists of pre-smoothing Z(t) by
fpca.sc() function, pre-smoothing X(t, u) by longitudinal FPCA
(Park and Staicu 2015), and fitting a “synchronous” model.
The third method, denoted as LFPCA, consists of fitting the
longitudinal functional principal component (FPCA), that rep-
resents the bivariate coefficient function by features extracted

from the functional predictors, and fitting a standard asyn-
chronous longitudinal regression (Cao, Zeng, and Fine 2015).
Moreover, the numbers of FPCA scores in the t and u direc-
tions were truncated by the 90% and 95% overall variation,
respectively.

We computed the empirical MSEs of γ̂ and β̂ as well as the
empirical relative MSE of β̂ , denoted as RMSE, as follows:

MSE(γ̂ ) = E{||γ̂ − γ0||2} and

MSE(β̂) = E
{∫ ∫

(β̂(t, u) − β0(t, u))2dtdu
}

,

RMSE(β̂) = E
{∫ ∫

(β̂(t, u) − β0(t, u))2dtdu

/ ∫ ∫
(β0(t, u))2dtdu

}
.

The prediction mean squared error (PMSE) is also reported
based on 200 new test samples. In contrast, in the logistic
regression case, we predict the probability of Y(t) = 1 and
present the classification error as the misclassification rate of the
testing data. Furthermore, we calculated the computation time
(in minutes).

Table 1 presents the estimation accuracy and prediction
results and their computation times under the linear regression
setting. Our method outperforms all the other methods in terms
of MSEs of β and γ and PMSE, even though the computa-
tion times of all methods except the “No penalty” method are
comparable with each other. As expected, MSEs and PMSEs
decrease as the sample size and/or the number of observa-
tion times increase, confirming our theoretical results. For our
method, it costs more time to match all covariates with each
response and search grid points of the tuning parameters. In
contrast, LDFRy, LDFRxz, and LFPCA are not computationally
stable since they may require interpolating a large number of
time points. Specifically, when n = 400, the computation pro-
grams of LDFRy, LDFRxz, and LFPCA may crash due to out
of memory. Figure S2 in the supplementary materials presents
images of the true β0 and the estimated β0 from a randomly
selected dataset with n = 100 and λPoisson = 20. Inspecting
Figure S2 reveals that our estimate is closer to the true coefficient
function than all the other three methods. Additional simula-
tion results about a further discussion on LDFRy and LDFRxz
are included in Section 2 of the supplementary materials.

The estimation and prediction results in the logistic cases
are summarized in Table 2, showing similar patterns to those
in the linear case. Although our method without penalty gives
smaller computation time than that using the roughness penalty,
it gives inaccurate estimation accuracy and prediction results.
The roughness penalty not only controls the smoothness of the
functional estimator, but also enables stable computation.

Example 2. In this example, we evaluated the Type I and
II error rates of the proposed testing statistics. Data set-
tings were the same as those in Example 1 except that
we set γ ∈ {0, 0.1, 0.3, 0.5} and β0(t, u) = B ∗∑50

k=1(−1)k+1k−2ϑ(t, k)ϑ(u, k), where B ∈ {0, 0.1, 0.3, 0.5}.
For each case, we used 1000 simulated datasets with 1000 boot-
strap samples. The bootstrap weights were simulated from the

liting
高亮
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Table 1. Results from a simulation study of the linear case in Example 1 for five methods, 3 λPoisson values {10, 15, 20}, and 3 sample sizes n ∈ {100, 200, 400}.

n λPoisson MSEβ RMSEβ MSEγ PMSE Time (min)

100 10 Proposed 0.632(0.210) 0.037(0.012) 0.022(0.029) 1.270(0.187) 4.730(0.386)
No penalty 13.100(5.830) 0.753(0.333) 0.017(0.022) 1.520(0.200) 0.481(0.087)
LDFRy 5.890(6.260) 0.340(0.362) 0.157(0.155) 3.850(1.160) 0.990(0.299)
LDFRxz 1.790(1.310) 0.103(0.075) 0.065(0.151) 1.820(1.240) 4.550(4.990)
LFPCA 5.620(2.390) 0.324(0.138) 0.031(0.042) 2.120(0.438) 1.590(0.655)

15 Proposed 0.480(0.130) 0.027(0.007) 0.014(0.021) 1.160(0.124) 7.590(0.773)
No penalty 7.910(2.590) 0.456(0.148) 0.012(0.017) 1.320(0.143) 0.682(0.054)
LDFRy 3.830(1.540) 0.221(0.089) 0.138(0.103) 3.360(0.964) 1.260(0.134)
LDFRxz 1.070(0.532) 0.062(0.031) 0.031(0.055) 1.350(0.205) 12.500(5.780)
LFPCA 4.030(0.709) 0.232(0.041) 0.003(0.003) 1.820(0.281) 17.500(18.100)

20 Proposed 0.401(0.101) 0.023(0.006) 0.012(0.018) 1.110(0.117) 11.60(1.330)
No penalty 6.090(2.250) 0.351(0.129) 0.013(0.021) 1.240(0.115) 0.872(0.085)
LDFRy 3.260(0.993) 0.188(0.057) 0.106(0.074) 3.080(0.719) 1.950(0.199)
LDFRxz 0.862(0.390) 0.050(0.023) 0.012(0.017) 1.260(0.122) 17.000(6.220)
LFPCA 3.200(1.230) 0.184(0.071) 0.035(0.026) 1.900(0.199) 27.400(26.200)

200 10 Proposed 0.517(0.136) 0.030(0.008) 0.014(0.017) 1.200(0.149) 11.400(1.280)
No penalty 5.740(2.230) 0.331(0.127) 0.009(0.011) 1.270(0.133) 0.835(0.098)
LDFRy 3.260(0.998) 0.188(0.058) 0.139(0.082) 3.380(0.974) 2.060(0.582)
LDFRxz 0.896(0.777) 0.052(0.045) 0.061(0.141) 1.440(0.587) 8.920(9.320)
LFPCA 3.420(1.580) 0.197(0.0915) 0.013(0.016) 1.740(0.183) 7.760(3.070)

15 Proposed 0.388(0.075) 0.022(0.004) 0.009(0.012) 1.100(0.101) 22.800(3.100)
No penalty 3.720(1.330) 0.215(0.076) 0.007(0.011) 1.170(0.106) 1.200(0.181)
LDFRy 2.590(0.735) 0.150(0.042) 0.100(0.058) 2.850(0.643) 15.700(16.700)
LDFRxz 0.599(0.384) 0.035(0.022) 0.014(0.034) 1.210(0.298) 25.400(7.710)
LFPCA 2.930(0.877) 0.169(0.0506) 0.010(0.013) 1.640(0.176) 23.300(1.880)

20 Proposed 0.319(0.060) 0.018(0.003) 0.006(0.009) 1.070(0.094) 33.600(6.480)
No penalty 2.960(0.991) 0.171(0.057) 0.006(0.007) 1.120(0.102) 1.630(0.294)
LDFRy 2.230(0.552) 0.129(0.032) 0.091(0.053) 2.650(0.515) 23.500(22.300)
LDFRxz 0.446(0.195) 0.026(0.011) 0.006(0.010) 1.130(0.105) 34.900(9.440)
LFPCA 2.670(1.010) 0.154(0.0581) 0.008(0.009) 1.580(0.184) 45.700(3.700)

400 10 Proposed 0.435(0.098) 0.025(0.007) 0.009(0.008) 1.150(0.121) 36.000(1.370)
No penalty 2.920(1.090) 0.168(0.062) 0.006(0.008) 1.160(0.115) 1.930(0.767)

15 Proposed 0.308(0.068) 0.018(0.004) 0.006(0.007) 1.090(0.103) 71.500(6.490)
No penalty 1.910(0.615) 0.110(0.035) 0.005(0.007) 1.110(0.096) 2.580(0.497)

20 Proposed 0.255(0.049) 0.015(0.003) 0.004(0.006) 1.050(0.095) 147.000(33.100)
No penalty 1.430(0.475) 0.083(0.027) 0.003(0.004) 1.070(0.091) 3.960(0.687)

NOTE: We include the empirical means of MSE(γ̂ )’s, MSE(β̂)’s, RMSE(β̂)’s, PMSEs, and computation times in minutes with their standard errors in the parentheses. Results
for LDFRy , LDFRxz and LFPCA with n = 400 are not available due to out of memory. For each case, 200 simulated datasets were used.

Table 2. Results from a simulation study of the logistic case in Example 1 for two methods, 3 λPoisson ∈ {10, 15, 20}, and 3 sample sizes n ∈ {100, 200, 400}.

n λPoisson MSEβ RMSEβ MSEγ PMSEg Classification error Time (min)

100 10 Proposed 3.230(0.852) 0.186(0.049) 0.169(0.101) 0.007(0.002) 0.228(0.018) 3.530(2.070)
No penalty 18.700(7.530) 1.080(0.433) 0.302(0.123) 0.028(0.006) 0.269(0.021) 0.761(0.381)

15 Proposed 2.370(0.626) 0.137(0.036) 0.123(0.069) 0.005(0.002) 0.216(0.016) 9.900(1.100)
No penalty 13.700(3.730) 0.789(0.212) 0.293(0.112) 0.023(0.005) 0.265(0.019) 0.984(0.432)

20 Proposed 1.750(0.526) 0.101(0.030) 0.082(0.054) 0.003(0.001) 0.208(0.013) 14.800(4.780)
No penalty 11.100(2.430) 0.642(0.139) 0.280(0.112) 0.020(0.005) 0.259(0.020) 1.410(0.577)

200 10 Proposed 2.860(0.650) 0.165(0.038) 0.154(0.065) 0.006(0.001) 0.224(0.017) 15.400(9.460)
No penalty 10.300(2.060) 0.595(0.117) 0.296(0.093) 0.020(0.004) 0.263(0.019) 1.020(0.377)

15 Proposed 2.020(0.478) 0.116(0.028) 0.103(0.049) 0.004(0.001) 0.211(0.013) 34.300(12.500)
No penalty 8.390(1.410) 0.484(0.081) 0.281(0.078) 0.017(0.004) 0.256(0.018) 1.490(0.302)

20 Proposed 1.600(0.360) 0.092(0.020) 0.073(0.033) 0.003(0.001) 0.205(0.011) 55.100(13.600)
No penalty 7.460(1.490) 0.431(0.086) 0.250(0.081) 0.014(0.004) 0.249(0.019) 1.570(0.698)

400 10 Proposed 2.600(0.484) 0.150(0.028) 0.130(0.044) 0.005(0.001) 0.218(0.013) 37.300(26.700)
No penalty 7.470(1.120) 0.431(0.063) 0.279(0.066) 0.016(0.003) 0.257(0.017) 2.560(0.603)

15 Proposed 1.720(0.428) 0.099(0.025) 0.085(0.037) 0.003(0.001) 0.207(0.012) 98.000(39.200)
No penalty 6.400(0.967) 0.369(0.055) 0.260(0.060) 0.014(0.003) 0.251(0.016) 4.080(0.423)

20 Proposed 1.370(0.287) 0.079(0.017) 0.060(0.023) 0.002(0.001) 0.200(0.012) 182.000(43.900)
No penalty 5.650(0.995) 0.326(0.057) 0.233(0.060) 0.012(0.004) 0.244(0.017) 4.800(2.550)

NOTE: We include the empirical means of MSE(γ̂ )’s, MSE(β̂)’s, RMSE(β̂)’s, PMSEs, and computation times in minutes with their standard errors in the parentheses. For each
case, 200 simulated datasets were used.
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Table 3. Simulation study in Example 2 for Tβ : estimates of rejection rates were reported at 3 different λPoisson’s (10, 15, 20), 2 different cases (linear and logistic), 4 B values
(B = 0, 0.1, 0.3, 0.5), and 3 different sample sizes (n = 100, 200, 400) at α = 5%.

Linear Logistic

n λPoisson B = 0 B = 0.1 B = 0.3 B = 0.5 B = 0 B = 0.1 B = 0.3 B = 0.5

100 10 6.8 8.2 29.1 76.7 5.2 6.8 21.0 70.0
15 6.5 7.8 34.2 87.9 5.5 9.0 45.4 96.8
20 6.7 8.2 39.1 91.6 5.2 9.0 59.8 99.4

200 10 6.2 8.8 50.5 98.7 5.5 5.0 39.0 96.2
15 6.5 10.1 69.5 100.0 5.4 9.8 68.4 100.0
20 5.5 9.8 76.5 100.0 5.0 11.4 83.8 100.0

400 10 5.0 10.0 92.9 100.0 5.5 7.8 61.8 100.0
15 5.3 13.3 98.3 100.0 5.0 10.4 82.6 100.0
20 5.5 15.1 99.9 100.0 5.8 9.42 93.4 100.0

NOTE: For each case, 1000 simulated datasets were used, while 1000 bootstrap samples were used for each simulated dataset.

Table 4. Simulation study for Tγ in Example 2: estimates of rejection rates were reported at 3 different λPoisson’s (10, 15, 20), 2 different cases (linear and logistic), 4 γ

values (γ = 0, 0.1, 0.3, 0.5), and 3 different sample sizes (n = 100, 200, 400) at α = 5%.

Linear Logistic

n λPoisson γ = 0 γ = 0.1 γ = 0.3 γ = 0.5 γ = 0 γ = 0.1 γ = 0.3 γ = 0.5

100 10 6.3 21.6 88.2 100.0 5.8 26.2 97.4 100.0
15 6.2 24.0 93.8 100.0 6.3 37.8 99.4 100.0
20 5.9 23.8 95.7 100.0 6.4 52.6 100.0 100.0

200 10 6.5 34.2 99.2 100.0 5.8 40.6 99.8 100.0
15 5.9 40.7 99.8 100.0 5.5 60.8 100.0 100.0
20 5.3 42.0 99.9 100.0 4.8 75.4 100.0 100.0

400 20 5.2 54.6 100.0 100.0 5.0 51.0 100.0 100.0
15 4.8 62.1 100.0 100.0 5.5 78.8 100.0 100.0
20 5.3 68.6 100.0 100.0 5.8 94.2 100.0 100.0

NOTE: For each case, 1000 simulated datasets were used, while 1000 bootstrap samples were used for each simulated dataset.

Multinomial distribution Multi(n, (n−1, . . . , n−1)). The signifi-
cant level is set at 5% throughout the simulation.

Tables 3 and 4 present the Type I and II error rates of testing
β0(t, u) = 0 and those of testing γ = 0, respectively.
Inspecting Tables 3 and 4 reveals that the proposed bootstrap
procedure performs well. For both test statistics, the Type I
error rates were relatively accurate, while the statistical power
for rejecting the null hypotheses was significantly increased with
sample size and signal. We also present the histograms of the p-
values corresponding to λPoisson = 10 for testing β0(t, u) = 0
and γ = 0 in the supplementary materials. These histograms
are close to the uniform distribution, demonstrating the validity
of the proposed test procedure.

Example 3. We are interested in assessing the finite sample
performance of the proposed test procedure for testing the
nullity of one functional coefficient with the presence of other
functional predictors. The datasets were generated from

Y(t) = Z(t)γ0 +
∫ 1

0
X1(t, u)β01(t, u)du

+
∫ 1

0
X2(t, u)β02(t, u)du + ε(t),

where Z(t) and ε(t) were generated in the same way as those
in Example 1, and X1(t, u) and X2(t, u) were generated in
the same way as X(t, u). To test the nullity of β01, we fix
γ0 = 1 and β02(t, u) = √

tu, and set β01(t, u) = B ∗∑50
k=1(−1)k+1k−2ϑ(t, k)ϑ(u, k), where B ∈ {0, 0.1, 0.3, 0.5}.

Table 5. Simulation study in Example 3 for using Tβ to test the nullity of β01(t, u):
estimates of rejection rates were reported at 3 different λPoisson’s (10, 15, 20), 4 B
values (B = 0, 0.1, 0.3, 0.5), and 3 different sample sizes (n = 100, 200, 400) at α =
5%.

n λPoisson B = 0 B = 0.1 B = 0.3 B = 0.5

100 10 5.5 6.8 25.8 78.2
15 6.8 8.8 32.3 86.5
20 6.1 9.5 36.3 90.0

200 10 6.4 9.2 51.6 99.1
15 5.5 9.0 70.3 100.0
20 5.8 9.5 76.5 100.0

400 10 5.5 11.1 92.7 100.0
15 5.1 12.9 98.3 100.0
20 5.0 14.4 99.7 100.0

NOTE: For each case, 1000 simulated datasets were used, while 1000 bootstrap
samples were used for each simulated dataset.

Similar to the results in Example 2, Table 5 shows that
the proposed test maintains the Type I error rate reason-
ably well, while achieving high power in detecting alternative
hypotheses.

5. Application to the ADNI Data

Alzheimer’s disease as a chronic neurodegenerative disease is
the most common cause of dementia. AD usually starts slowly
and worsens over time with the degeneration and death of brain
cells and decline in thinking, behavioral and social skills that
disrupts a person’s ability to function independently. Although
much progress has been made on understanding the etiology
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of AD, the exact cause of Alzheimer’s disease remains not fully
understood.

We applied model (2) to the DWI dataset collected from
ADNI GO and ADNI2 in the ADNI study. One goal of the
ADNI study is to test whether genetic, structural, functional
neuroimaging and clinical data can be integrated to measure
the progression of MCI and early AD. The MMSE score ranging
from 0 to 30 measures global cognitive performance and is often
used as a screening test for dementia.

The DWI data were processed by using an FSL TBSS pipeline
(McMahon and Thompson 2017). We obtained maps of FA
by a diffusion tensor model after eddy current correction and
automatic brain extraction (Basser, Mattiello, and LeBihan 1994;
Smith 2002; Andersson and Sotiropoulos 2016). Then, we did
linear registration by FSL to register the individual FA images
to the ENIGMA FA template with 1 × 1 × 1 mm3 resolution.
We aligned the linearly registered FA images to the ENIGMA
FA template through nonlinear registration and masked the
registered FA with the template mask. Finally, we obtained the
FA density values within each of 20 ROIs contoured on white
matter of the FA template by the experienced clinical expert.
Index of the 20 ROIs are given in Table 7. Figure 2 shows the
spatial locations of the 20 ROIs in the brain. Since density func-
tions do not live in a linear space, the commonly used methods
for functional data analysis are not applicable. To address this
problem, we applied the log hazard transformation proposed in
Petersen and Müller (2016) and took the log hazard function of
FA density curves as functional variables.

The dataset includes n = 256 subjects over a 5-year follow-up.
For each subject, we consider log hazard function of FA along
the whole brain and log hazard functions of FA along 20 ROIs at
100 grid points observed at 1–8 time points, the MMSE scores
examined from 1 to 7 time points, diagnostic status at baseline
(NC, MCI, or AD), age ranging from 55 to 92 (years), the num-
ber of APOE4 gene copies, and education level ranging from to
11 to 20 (years). The measured time points of the log hazard

functions of FA and the MMSE scores were different between
and within subjects. The aim of this study is to establish the
association between the MMSE scores and log hazard functions
of FA across the whole brain and individual ROIs measured at
different ages, while accounting for demographic and clinical
covariates.

We first examine the effects of log hazard function of FA
along the whole brain, age, education level, and APOE4 on the
MMSE score by considering the following model

YMMSE(t) = γ0 + ZMCIγMCI + ZADγAD + Zage(t)γage

+ Zeduγedu + ZAPOE4(1)γAPOE4(1)

+ ZAPOE4(2)γAPOE4(2) +
∫ 1

0
FAWB(t, u)β(t, u)du

+ ε(t), (15)

where t denotes age rescaled to [0, 1] and FAWB(t0, u) denotes
the log hazard function along the whole brain at a given age
t0. Moreover, ZMCI, ZAD, ZAPOE4(1), and ZAPOE4(2) are, respec-
tively, the indicator variables for MCI, AD, one copy of APOE4,
and two copies of APOE4, respectively. We implemented the
estimation procedure in Section 2.1 to compute the estimates of
all coefficients and applied the testing procedure in Section 2.3
to assess the effects of possible covariates on the MMSE scores.
We also applied LDFRy, LDFRxz, and LFPCA to the same dataset
under model (15). Table 6 summarizes the coefficient estimates
and p-values of the scalar parameters for all the four estimation
methods. The p-values were obtained by using 1000 bootstrap
samples. Except for LDFRy, LDFRxz, LFPCA, and our method
produce similar results for the scalar parameters. Such differ-
ences between LDFRy and all the three other methods may be
caused by pre-smoothing the sparsely observed MMSE scores,
which may not be appropriate for this dataset. The estimation
results show that the disease MCI at baseline has a significant
negative effect on MMSE, and AD has a more serious effect

Figure 2. In the first row are the spatial locations of the 20 ROIs, in the second row are spatial locations of the 5 significant ROIs.
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Table 6. ADNI real data analysis results: estimates of scalar parameters and their p-values obtained from the four different methods under model (15).

γ0 γMCI γAD γage γedu γAPOE4(1) γAPOE4(2)

Proposed Estimate 1.467 −1.430 −5.915 0.303 0.130 −0.965 −1.306
p-value 0.944 0.001 0.001 0.268 0.012 0.001 0.023

LDFRy Estimate −3e+8 −0.448 −0.072 4e+6 −0.036 −0.156 1.084
p-value 0.001 0.001 0.667 0.333 0.333 0.001 0.667

LDFRxz Estimate 27.380 −1.477 −5.905 0.012 0.057 −1.289 −1.307
p-value 0.001 0.001 0.001 0.272 0.241 0.036 0.004

LFPCA Estimate 32.196 −1.365 −5.891 −0.072 0.134 −0.859 −1.122
p-value 0.001 0.001 0.001 0.001 0.008 0.034 0.002

Table 7. ADNI real data analysis results: the p-values and corrected p-values of the 20 ROIs.

p-value Corrected p-value Corrected

Left anterior limb internal capsule 0.298 0.362 Right anterior limb internal capsule 0.466 0.491
Genu corpus callosum 0.134 0.234 Left cerebellar peduncle 0.043 0.172
Left cerebral peduncle 0.202 0.289 Left cingulate gyrus 0.326 0.362
Left convexity 0.105 0.210 Left corona radiata 0.143 0.234
Left external capsule 0.065 0.200 Left orbital gyrus 0.04 0.172
Left posterior limb of the internal capsule 0.016 0.172 Right posterior limb of the internal capsule 0.07 0.200
Right cerebellar peduncle 0.104 0.210 Right cerebral peduncle 0.091 0.210
Right cingulate gyrus 0.800 0.800 Right convexity 0.019 0.172
Right corona radiata 0.152 0.234 Right external capsule 0.311 0.362
Right orbital gyrus 0.042 0.172 Splenium of the corpus callosum 0.310 0.360

NOTE: The regions with corrected p-values smaller than 0.2 (marked as bold values) in Table 7 are significant.

Figure 3. Estimates of β(t, u) along the whole brain in model(15) for the proposed method, LDFRy , LDFRxz , and LFPCA (from left to right).

Figure 4. Estimates and pointwise confidence intervals for β(t, u) along the whole brain at ages 60, 70, 80, and 90 in model (15).

than MCI, whereas education exhibits positive effect (Bekris
et al. 2010). The APOE4 allele has a negative effect on cognitive
ability, and two copies of APOE4 has a more serious effect than
one copy of APOE4. Age is not detected as a significant variable
based on our proposed method.

We estimated β(t, u), denoted as β̂(t, u), in model (15) and
tested its nullity by using all the four estimation methods. For
our method, the p-value is 0.001, which is significant at the
5% significance level. In contrast, by using a similar bootstrap

testing procedure, LDFRy, LDFRxz, and LFPCA give the p-
values of 0.999, 0.950, and 0.480, respectively. Figure 3 presents
the estimated functional coefficients of the log hazard function
of FA for all the four methods. The proposed method produces
more smoother functional coefficient than the three other meth-
ods. Inspecting β̂(t, u) reveals a positive relationship between
log hazard function and MMSE score at large FA values and a
negative relationship at small FA values. Furthermore, Figure 4
presents β̂(t, u)’s at four age values including t = 60, 70, 80, and
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90 with their 95% pointwise bootstrap confidence intervals. The
log hazard function of FA shows a positive effect on MMSE. This
finding is consistent with that in the existing literature (Boz-
zali et al. 2002) that lower FA values, which typically indicate
greater white matter deficits, are associated with lower MMSE
scores, and can be viewed as an indicator of great impairment.
Moreover, the effect of the log hazard function on the MMSE
scores varies across time, but with similar trends. Specifically,
when patients are at ages 60 and 70, the log hazard function at
FA values larger than 0.250 has a significant positive effect on the
MMSE scores, and such effect increases with FA. These results
reveal that only log hazard function at large FA values exhibits a
significant positive effect on cognitive ability, and the significant
range of FA values becomes smaller for older people.

To relate changes in cognitive status to the corresponding
changes in each specific ROI, we extended model (15) by replac-
ing the log hazard function of FA along the whole brain with
that along each specific ROI and then applied our method to
fit the model. Thus, we had 20 models corresponding to the
20 ROIs. Estimates of the functional coefficients of the 20 ROIs
are quite similar to the functional estimate of the whole brain.
This is reasonable because there exist correlations between the
log hazard functions along the 20 ROIs and that along the
whole brain. For example, correlations between the 25%, 50%,
and 75% quantiles of the log hazard function along the whole
brain and right corona radiata are 0.265, 0.323, and 0.432,
respectively.

We also carried out additional analyses by investigating the
effects of the log hazard function of FA along each ROI on
MMSE, while controlling that along the whole brain. For each
d = 1, . . . , 20, we consider the following model

YMMSE(t) = γ0 + ZMCIγMCI + ZADγAD + Zage(t)γage

+ Zeduγedu + ZAPOE4(1)γAPOE4(1)

+ ZAPOE4(2)γAPOE4(2) +
∫ 1

0
FAd(t, u)βd(t, u)du

+
∫ 1

0
FAWB(t, u)β(t, u)du + ε(t), (16)

where FAd(t, u) denotes the log hazard function along the dth
ROI at a given age t. By using the testing procedure in Section 2.3
with 1000 bootstrap samples, we obtained 20 p-values of testing
the nullity of the functional coefficients across the 20 ROIs. To
identify important ROIs from the 20 ROIs tested, we adopted
the false discovery rate correction procedure of Benjamini and
Hochberg (1995) with the commonly used level 0.2 (Han et al.
2010; Glickman, Rao, and Schultz 2014; Weinstein and Yekutieli
2020), and calculated their corresponding corrected p-values
by using the p.adjust(, method=“BH”) function in the stats R
package. ROIs with corrected p-values smaller than 0.2 are
declared to be significant. Table 7 presents the p-values and
corrected p-values of the 20 ROIs.

We also examined the 5 significant ROIs identified with
their corrected p-values smaller than 0.2 including left cerebellar
peduncle, left orbital gyrus, left posterior limb of the inter-
nal capsule, right convexity and right orbital gyrus. Figure 2
presents the spatial locations of the 5 ROIs, whereas Figure 5
presents the estimated functional coefficients corresponding to
the 5 significant ROIs. Log hazard functions along the 5 ROIs
exhibit positive effects on cognitive status at large FA values,
and their effects vary across age. Figure 6 gives the estimates
with 95% pointwise bootstrap confidence intervals at ages 60,
70, 80, and 90 for left cerebellar peduncle. We observe a pos-
itive effect of the log hazard function at FA values larger than
0.800 on the MMSE score for people between ages 80 and
90. We observe similar patterns for all the other four regions
and include their corresponding results in the supplementary
materials.

Figure 5. Estimates of β(t, u) in model (16) along left cerebellar peduncle, left orbital gyrus, left posterior limb of the internal capsule right convexity and right orbital
gyrus (from left to right).

Figure 6. Estimates and pointwise confidence intervals for β(t, u) along left cerebellar peduncle at ages 60, 70, 80, and 90 in model (16).
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Figure 7. Estimated functional coefficients in model (17) along whole brain (a), left cerebellar peduncle (b), left orbital gyrus (c), left posterior limb of the internal capsule
(d), right convexity (e), and right orbital gyrus (f ).

Table 8. ADNI real data analysis results: estimates of scalar parameters and their
p-values obtained from the proposed method under model (17).

γ0 γMCI γAD γage γedu γAPOE4(1) γAPOE4(2)

Estimate 9.054 −1.240 −5.786 0.201 0.113 −0.768 −1.028
p-value 0.668 0.001 0.001 0.488 0.021 0.039 0.002

Finally, we integrated all the log hazard functions of FA
along the 5 significant ROIs and along the whole brain into the
following model given by

YMMSE(t) = γ0 + ZADγAD + Zage(t)γage + Zeduγedu

+ ZAPOE4(1)γAPOE4(1) + ZAPOE4(2)γAPOE(2)

+
5∑

d=1

∫ 1

0
FAd(t, u)βd(t, u)du

+
∫ 1

0
FAWB(t, u)β(t, u)du + ε(t). (17)

Table 8 presents the estimates and p-values of all scalar esti-
mates. The p-values were also obtained by using the testing
procedure in Section 2.3 with 1000 bootstrap samples. The

results are similar to those for model (15). The p-values of
left cerebellar peduncle, left orbital gyrus, left posterior limb
of the internal capsule, right convexity, right orbital gyrus, and
the whole brain are, respectively, given by 0.031, 0.036, 0.020,
0.041, 0.019, and 0.001 and are significant at the 5% significance
level.

Figure 7 presents the estimated functional coefficients for the
5 ROIs and the whole brain in model (17). Additional results on
all estimates with 95% pointwise bootstrap confidence intervals
at ages 60, 70, 80, and 90 for the whole brain and the 5 ROIs can
be found in the supplementary materials. Inspecting Figure 7
reveals that the trends of the estimated functional coefficients for
the whole brain in model (17) are similar to those in model (15),
except that the estimate in model (15) has a stronger effect on the
MMSE score than that in model (17). The estimated coefficient
functions for the 5 ROIs and accompanying confidence intervals
at ages 60, 70, 80, and 90 are largely unchanged compared
with those in model (16). These findings may reveal that the
deterioration of intelligence is associated with the decreasing
of the top quantiles of FA at the whole brain, while for older
people (e.g., age > 80), the decreasing of the top quantiles of FA
at 5 specific ROIs exhibits additional effects on the intelligence
deterioration.
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6. Discussion

Motivated by the clinical studies where functional predictors
and the outcome are longitudinally observed at different times,
we proposed a GFPV model for asynchronous longitudinally
observed functional data. The time-varying functional coeffi-
cient β(t, u) was represented by a rich truncated tensor product
penalized B-spline basis. To address the asynchronous data set-
ting and the increasing dimension after representation, we pro-
posed local kernel-weighted estimating equations with penalty
to estimate all the coefficients. The estimators were shown to
be consistent and we derived the convergence rates of the esti-
mation error as well as the prediction error. Limiting distri-
butions were also established. The rate of convergence of the
functional estimator was slower than the optimal nonparamet-
ric rate of convergence owing to the loss of efficiency caused
by the mismatched observation times. Meanwhile, driven by
practical interest, we proposed a bootstrap testing procedure to
test the nullity of the parameters and established the bootstrap
consistency. Through the analyses of the ADNI study, we have
shown that the proposed method is a valuable statistical tool for
quantifying the complex relationship between the FA density
curves and the cognitive function under asynchronous data
setting. Our results show that the deterioration of intelligence
is associated with the decreasing of the top quantiles of FA at
the whole brain, while for older people, the decreasing of the
top quantiles of FA at 5 specific ROIs exhibits additional effects
on the intelligence deterioration.

There are several directions for future study. A useful area
for improvement would be to accommodate high-dimensional
scalar covariates, because many clinical studies record high-
dimensional scalar variables. Another interesting considera-
tion for future research would be to accommodate the com-
monly encountered situation where the observation times for
the response, covariate and functional data are all different. Such
extensions are worthy of further investigation.

Supplementary Materials

Assumptions, more explanations on the data structure, all the technical
proofs, and additional figures are provided in the supplementary materials.
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