Under review as a conference paper at ICLR 2026

INTERPRETABLE CLASSIFICATION VIA A RULE NET-
WORK WITH SELECTIVE LOGICAL OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Rule Network with Selective Logical Operators (RNS), a novel
neural architecture that employs selective logical operators to adaptively choose
between AND and OR operations at each neuron during training. Unlike existing
approaches that rely on fixed architectural designs with predetermined logical
operations, our selective logical operators treat weight parameters as hard selec-
tors, enabling the network to automatically discover optimal logical structures
while learning rules. The core innovation lies in our selective logical operators
implemented through specialized Logic Selection Layers (LSLs) with adaptable
AND/OR neurons, a Negation Layer for input negations, and a Normal Form Con-
straint (NFC) to streamline neuron connections. We demonstrate that this selective
logical operator framework can be effectively optimized using adaptive gradient
updates with the Straight-Through Estimator to overcome gradient vanishing chal-
lenges. Through extensive experiments on 13 datasets, RNS demonstrates superior
classification performance, rule quality, and efficiency compared to 23 state-of-the-
art alternatives, showcasing the power of RNS in rule learning. Code and data are
available at https://anonymous.4open.science/r/RNS_-4A67/.

1 INTRODUCTION

Unlike explainable models (Rudinl 2019)), which clarify black-box predictions by analyzing input
feature contributions, interpretable models (Molnar} 2020) are inherently transparent, enabling direct
human comprehension of their inference process (e.g., decision trees). This transparency is crucial
for ensuring reliability, safety, and trust, especially in high-stakes domains like healthcare, finance,
and law, where justifications for predictions are as important as the outcomes.

Rule-based models (Yin & Han, [2003; Frank & Witten, 1998} |Cohen, |[1995; |Quinlan, [2014; | Yang
et al.| [2017; Marton et al., [2023)) are widely recognized for their inherent interpretability. A range of
traditional approaches has been proposed, including example-based rule learning algorithms (Michal-
ski, |1973), systems for learning first-order Horn clauses and Conjunctive Normal Form (CNF)
or Disjunctive Normal Form (DNF) rules (Quinlan, [1990; |Cohen, (1995} [Frank & Witten, (1998}
Michalski, {1973} [Clark & Niblett,|1989; Mooney, |1995; Beck et al., 2023), ensemble methods and
fuzzy rule systems (Ke et al., {2017} [Breiman, 2001}, and Bayesian frameworks (Letham et al., 2015}
Wang et al.| [2017; [Yang et al., 2017). Despite extensive development, these traditional models often
struggle with limitations in prediction accuracy (Quinlan, [2014; Loh, [2011};|Cohen, |1995)), suboptimal
interpretability (Ke et al., 2017} |Breiman, |2001), or poor scalability to large datasets (Letham et al.|
2015;|Wang et al.l 2017} Yang et al.| 2017).

Neural networks offer significant potential for representing and learning interpretable logical rules
due to their expressiveness, generalization capability, robustness, and data-driven nature (Wang et al.,
2020520215 2024; |Yu et al.L|2023). This enables the automatic and efficient learning of complex rules
at scale, combining the computational power of neural methods with the clarity and interpretability
of rule-based reasoning.

A major limitation in current rule-based neural networks is their reliance on fixed logical
operators and non-learnable structural design. These models enforce a predetermined architecture,
with layers configured with static logical operations (either AND or OR) that cannot adapt during
training (Wang et al.| 2020; Beck et al.,|2023)). The inability to dynamically select optimal logical
operators significantly compromises both model performance and rule quality. Furthermore, their

https://anonymous.4open.science/r/RNS_-4A67/

Under review as a conference paper at ICLR 2026

training methods are often heuristic-driven (Beck et al., 2023)) or require repeated forward and
backward passes (Wang et al., [2020; 2021} 2024]), reducing efficiency. These constraints severely
limit the models’ ability to discover the most appropriate logical structures for different datasets and
generate sophisticated, high-quality rules for reliable interpretations.

{ Rule Network with Selective Logical Operators (RNS) \

Raw Features Input Features
(Binarized by conditions): Learned DNF: (C'R < 600 A IN < 30k) V (DR > 0.5)

CR = 720 (Credit Score) CR < 600 - False 4 4
IN = 65,000 (Income) 1N 60k — True # ” 2 o
IN < 30k — False A e “

DR =0.22 (Debt Ratio) (N
DR > 0.5 — False 4 “ Leamed CNF: (CR > 700 v IN > 60k) A (DR <0.5)

+1
V) %03+ (+1) *0.7 = 0.4
CR 2 700 — True “ N 03— Approval
-1

DR 05— True [DR<05]+
Y

Figure 1: Loan-application example of the RNS. Raw attributes are binarized and passed through
two learnable LSLs (AND/OR selected per neuron). The output layer learns class-specific weights
from each clause to Approval/Rejection and sums them. Aggregating with learned weights gives
Approval: 0.4 and Rejection: —0.6, yielding an Approved decision.

To address these fundamental limitations, we introduce the Rule Network with Selective Logical
Operators (RNS), which automatically learns neurons as AND or OR operators and simultane-
ously learns the connections between neurons, thereby forming CNF/DNF rules. RNS enables
the network to uncover optimal logical structures while learning rules in both CNF and DNF formats,
ensuring accurate classifications and interpretable insights through a transparent inference process.
Figure [T] illustrates this process with a loan application example: raw features are binarized and
passed through two learnable Logic Selection Layers (LSLs). The output layer assigns class-specific
weights to each rule and aggregates them into final decisions. In this example, aggregation yields
Approval 0.4 and Rejection —0.6, resulting in an Approved decision.

Key innovations of RNS include: two specialized Logic Selection Layers (LSLs), where weight
parameters serve as hard selectors to determine AND or OR operations at each neuron; a Negation
Layer for implementing logical negation; a Normal Form Constraint (NFC) to efficiently learn neuron
connections; and the use of the Straight-Through Estimator (STE) for optimizing the discrete network.
Through this design, RNS offers four unique advantages: (1) Adaptive Logical Structure: Neurons
dynamically select logical operations, enabling flexible CNF or DNF rule learning; (2) Complete
Logic Operation: Incorporates negation to achieve functional logic completeness; (3) Efficient Rule
Discovery: Efficiently identifies optimal rules within the large search space of neuron connections;
and (4) Reliable Optimization: Effectively optimizes discrete networks with non-differentiable
components, mitigating the risk of gradient vanishing. Unlike existing approaches that rely on
complex logical activation functions, RNS addresses the gradient vanishing problem through a
lightweight design that combines STE with carefully designed logical activation functions.

Experiments on 13 datasets against 23 baselines demonstrate that RNS achieves superior performance
in three critical aspects: (1) prediction performance, (2) rule quality, and (3) training efficiency.
Notably, RNS substantially outperforms state-of-the-art (SOTA) methods in rule quality, a
factor even more critical than prediction accuracy for interpretable classification. Its rule sets
are not only more accurate and diverse but also considerably lower in complexity. Code is
available athttps://anonymous.4open.science/r/RNS_—-4A67/.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

A set of instances is represented as &X', where each instance x € X is defined by a feature vector
X = |21, 22, ..., %,), comprising continuous or categorical features. Each instance is associated with
a discrete class label y. The classification task aims to learn a function f : x — y. In this work, we
design f as a rule-based model that automatically learns feature-based rules for prediction, with the
learned rules providing inherent interpretability.

https://anonymous.4open.science/r/RNS_-4A67/

Under review as a conference paper at ICLR 2026

2.2 FEATURE BINARIZATION

Logical rules operate on Boolean truth values, so each feature must be represented in a True/False
form. Since raw feature values cannot be directly evaluated as Boolean, we transform them into binary
literals using conditions such as thresholds for continuous features or one-hot encodings for categorical
features. For a categorical feature b;, we use one-hot encoding to produce the corresponding binary
vector b;. For a continuous feature c;, we adopt the feature binning method from (Wang et al.,
2021} 2024): a set of k upper bounds [#,1,...,H,] and k lower bounds [£;1,...,L;] is
randomly sampled from the value range of ¢;, and the binary representation of c; is then derived
as€ = [q(c; — Lj1),---,q(c; — Ljk),q(Hj1—c¢j)...,q(H;k — cj)], where g(z) = 1if 2 > 0
and ¢(x) = —1 otherwise. The full binarized input feature vector is X = [by,...,by, €1,...,¢].
Beyond this random binning strategy, other heuristic- and learning-based methods can also be applied:
Autolnt (Zhang et al.| [2023)) learns optimized bins jointly with model training, KInt (Dougherty et al.|
1995)) partitions values into clusters using K-means, and EntInt (Wang et al.| |2020)) selects bins that
minimize label uncertainty. Designing an algorithm for how to bin features is beyond the scope of
this work; instead, in Section[H| we empirically compare different binning strategies with RNS.

2.3 NORMAL FORM RULES AS MODEL INTERPRETATION

Propositional logic is crucial to mathematical logic, focusing on propositions—statements with
definite truth values — and logical connectives (e.g., A, V, =) to form logical expressions. Among
these, Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF) are fundamental
constructs: a formula z is in CNFif 2 = A\; \/, l;;, and in DNF if z = \/; A\ ; li;, where each literal
l;; represents an atom or its negation. These standardized formats simplify logical deduction and
analysis, facilitating efficient conversion of arbitrary logical expressions into forms suitable for both
theoretical and practical applications. Building on this foundation, our work develops a logical
rule-based classification model that predicts outcomes using automatically learned CNF and DNF
expressions (rules). Specifically, we learn a set of logical rules R = {z1, ..., z, }, where each rule
z is constructed from binary features and their negations as literals. For each rule, we also learn a
set of contribution scores {s 1,...,s, y} that quantify its impact on each class y € {1,...,Y}.
Given an input X, we evaluate the truth value of each rule in YR and compute the logit for class k as
Ui = 2211 2; X 8, 1. The learned rules thus provide a structured and mathematically transparent
representation of the inference process, ensuring both accurate predictions and interpretability.

Example: Loan Approval Decision. Consider Figure 1) where an applicant with a credit score
CR=720, income of IN=$65,000, and debt ratio DR=0.22 applies for a loan. The RNS first binarizes
these features into logical conditions using learned thresholds, yielding the +1 encoded values:
CR>700—+1, CR<600—-1, IN>60k—+1, IN<30k—-1, DR<0.5—+1, DR>0.5—-1. Two LSL
neurons then process these inputs: the first learns a DNF rule (CR < 600AIN < 30k)V (DR > 0.5)
capturing rejection conditions, which evaluates to -1 (false) since neither conjunction holds; the
second learns a CNF rule (CR > 700V IN > 60k) A (DR < 0.5) capturing approval conditions,
which evaluates to +1 (true) as both clauses are satisfied. The output layer aggregates these logical
decisions with learned weights, computing approval score (—1) x 0.3 + (4+1) x 0.7 = 0.4 and
rejection score (—1) x 0.8 + (+1) x 0.2 = —0.6. Since the approval score exceeds the rejection
score, the model outputs “Approved”—a decision fully traceable through interpretable logical rules
rather than opaque neural computations.

3 METHOD
3.1 OVERALL STRUCTURE

To achieve the goal in Section we propose a rule network that supports logical rule computation
and can be trained end-to-end. We identify four key challenges: (1) How to enable each neuron to
dynamically select a logical operator? (2) How to incorporate negation, ensuring functional logic
completeness? (3) How to efficiently learn logical connections within a large search space? (4) How
to support effective optimization despite non-differentiable operations and gradient vanishing?

Model Structure. To address the first challenge, we design the Logic Selection Layer (LSL) with
neurons that are learnable to select AND or OR logical operations, enabling connections to represent
rules. To address the second challenge, a Negation Layer with learnable gates that flip the sign of
input features when necessary. For the third challenge, we propose a Normal Form Constraint (NFC)
that restricts valid connections across LSLs to reduce the search space. These components are trained

Under review as a conference paper at ICLR 2026

Back propagation
Negation

Normal Form Constraint — —f« >
|

Prediction Layer

Linear
Logicgl Operation fxample:
+ -

7777777777777777777777777 5 "7 tearnable max min
.. e . Wap —— | Logical Operator
_______________________________ - on nodes
NFL M

w2
oo 41 -1 41 41 -1 +1
1

O ‘V / /\‘9 O Wop =| [tearnable -
Connections Model Interpretation:

1

Weoonn —— on edges :

i Learnable .
Negation Layer = , Waeg - ——| Negation Gates

v on edges
Ve
Binarized input ________ P — (,,,. ,,,,,,,,,,,,,,,,, X To a2 T Ty 5T

Corresponding rules:(zg V =3 V x3) A @

Figure 2: Overall Structure.

using the proposed logical activation functions described in Section[3.4] which enables faithful logical
computation with robust gradient flow. Non-differentiable steps such as sign(-) are handled using the
Straight-Through Estimator (STE). The overall architecture of RNS is shown in Figure

Given an input sample, the input feature vector x is binarized into X and passed through the first
LSL, where conjunction or disjunction operations are applied depending on the neuron’s operator
selector. The Negation Layer operates on these connections to produce literals using original or
negated features. The second LSL applies the next level of logic, generating a set of interpretable
rules R, with each output neuron representing a learned logical clause. These rule outputs are then
linearly combined with learned weights to produce class logits.

Binary Neuron Values. A key characteristic of RNS is that all neuron values (excluding predicted
logits) are constrained to +1, as is the binarized feature input described in Section [2.2] Unlike
existing works (Wang et al., 20205 2021} 2024) that use 0/1, this design avoids the gradient vanishing
problem, significantly improving the optimization process, detailed in Section [3.4]and Appendix [J|

3.2 LoGIC SELECTION LAYER (LSL)

Neuron Operator Selection. To implement the nested structure of CNF and DNF, we stack two Logic
Selection Layers (LSLs). Each LSL contains K neurons u1, ..., %k, each as a learnable AND (A) or
OR (V) operator. The selection for the K neurons is parameterized by a weight vector w,,, € R,
For a neuron u;, the operator is determined by the sign of its weight: W/, = sign(w?) € {+1, —1}.
The selection mechanism is defined as:

A, ifwl, =1
i = . 1
“ {\/, otherwise M

Neuron Connection. Similar to an MLP, we learn a weight matrix W ,,,,, to model connections
between neurons in consecutive layers, where W¢J € R denotes the weight from neuron u; to u;.

RNS uses two such matrices: one for the (input layer, 1st LSL) and another for the (st LSL, 2nd
LSL). We binarize the weights via sign: W%J = = sign(W%J) € {+1,—1}. A connection exists

conn conn

if W% = 1; otherwise, it is inactive. The output v; of a neuron wu; in the LSL is defined as:
/\ Vj, if u; = N
Widnn=1
P conn] 2
! \/ v, ifu; =V @
Wi’ojnn:

where v; are the outputs of neurons from the previous layer connected to ;.

Logical Activation Functions. In propositional logic with m inputs, the AND operation outputs +1
only if all connected neurons are +1, while the OR operation outputs +1 if at least one connected
neuron is +1. Based on these principles, we use min and max functions as logical activation functions
in RNS. The AND (A) operation is defined as the minimum of connected inputs, and the OR (V)
operation as the maximum:
_min v, ifu; =A
wzg71n =1

. 3)
_max w;, ifu; =V
Wednn=1

V; =

Under review as a conference paper at ICLR 2026

Compared to the accumulative-multiplication-based activation functions proposed in prior
works (Wang et al., [2020; [2021; |2024), this min-max-based method is more friendly for back-
propagation and prevents gradient vanishing, detailed in Section [3.4]

3.3 NEGATION LAYER

Most existing works (Wang et al., [2020; 2021; 2024) support only {AND, OR}, which is not
functionally complete for propositional logic (Mendelson/ [1997; [Enderton| [2001). To enable RNS to
theoretically express any logical rule, we include the functionally complete set of operators { AND,
OR, NEGATION} by introducing a negation layer to perform negation operations on features.

Since negation operates on input features, we apply the negation layer after the input layer. For each
connection between v; (from x) and a neuron u; in the 1st LSL, we add a negation gate to decide
whether to input the original value v; or its negation —v; to u;. Each gate is parameterized by a

weight W57 € R, and its binary version is obtained as W5/ = sign(W}7,) € {+1,—1}. The

negation operation is then defined as: Neg(v;, Wil) = v; x Wi .

3.4 OPTIMIZATION

Learning a binary neural network is difficult because its discrete functions—sign(-), max(-), and
min(-)—are non-differentiable, making gradient computation challenging.

Gradient of the Sign Function. Inspired by the approach of searching for discrete solutions in
continuous space (Courbariaux et al.| 2015), we use the Straight-Through Estimator (STE) algorithm
to propagate gradients through non-differentiable operations during backpropagation. The STE
assumes that the derivative of the sign function with respect to its input is 1, enabling the gradient to

3 2 : : : . Osi, n(a:) _
pass through” the non-differentiable operation unchanged: % =1

Gradient of Logical Activation Functions. The max and min operations identify the maximum
or minimum value across input neurons. While prior work (Lowe et al., 2022) primarily applies
these functions in continuous pairwise scenarios, we extend them to handle discrete and multiple
inputs. In pairwise cases, logical operators select one or two inputs, making gradient assignment and
parameter updates straightforward. For multiple inputs, logical operators may involve several input
neurons simultaneously, requiring careful gradient distribution to ensure proper updates. During
the backward pass, uniform gradient updates are applied when multiple neurons share the same
maximum or minimum value. This ensures fairness by equally distributing gradients among these
neurons, promoting stability during optimization. Formally, for an input vector x with elements
1, T3, ..., the gradient of an input element x; is:

0 max(x) _ 1 0 min(x) _ 1 @
Ox; > Uz = max(x))’ Ox; > Uz = min(x))’

Gradient Vanishing. Our design addresses the gradient vanishing problem that affects existing
methods (Wang et al., 2020; [2021), caused by two main factors. First, these methods use binary states
{0, 1}, resulting in many neurons outputting 0. These zero outputs propagate during the forward pass,
nullifying gradients in the backward pass. Second, these methods rely on cumulative multiplications
for logical activation functions like AND and OR. For instance, the AND operation is defined as:
AND(x) =[], ; when ; € {0, 1}. The gradient of the AND operation with respect to an input x;
is given by: 0AND(x)/0x; = [[,;,; ®;. If any z; = 0, then the gradient becomes 0.

In contrast, we adopt £1 for defining binary states in the neural network, preventing the generation of
0 outputs and 0 gradients. Furthermore, instead of designing complex continuous activation functions,
our simple yet effective max/min functions avoid the use of multiplication. The straightforward
uniform gradient update introduced in Equation] alleviates the problem of gradient vanishing. A
more detailed analysis is provided in Appendix

3.5 NORMAL FORM CONSTRAINT (NFC)

Next, we turn our attention to a critical challenge in RNS — learning the connections between the
two LSLs is computationally intensive. With K neurons in each LSL, learning and determining K2

Under review as a conference paper at ICLR 2026

potential connections significantly reduces the model’s efficiency and efficacy. To mitigate this, we
design a normal form constraint that maintains the learned rules in CNF and DNF while reducing
the search space for learning the connections between two LSLs. Specifically, since CNF and DNF
have a nested structure — where operations at the two levels must differ (CNF is a conjunction of
disjunction rules, while DNF is a disjunction of conjunction rules) — we enforce a constraint that only
neurons of different types from the two LSLs can be connected. For neurons u; and u; from two
LSLs, we define a mask parameter M%7 as:

M* = Wép & ng = —Wép‘w,p, Q)
Where & denotes the XOR operation. A connection exists between u; and u; if M7 x WhJ =1,

otherwise, no connection is formed. During optimization, we update W%J, only when M*J = 1,
ensuring that connections are limited to valid neuron pairs and reducing the computational complexity

of the learning process.

Assuming there are C'; and C5 conjunction neurons in two LSLs respectively, and D; and D
disjunction neurons respectively (C; + D1 = C2 + Dy = K), then potential connections under NFC
are C1 Dy + Co Dy < K?2. The empirical study in Section [H|demonstrates that NFC benefits both the
efficiency and efficacy of the model while guaranteeing the learned rules are in CNF and DNF.

4 EXPERIMENT

We conduct comprehensive experiments to evaluate RNS and answer the following research questions:
RQ1: Learning high-quality rules is the core goal of an interpretable model. Can RNS learn high-
quality rules? RQ2: How does RNS perform w.r.t. classification accuracy compared to SOTA
baselines? RQ3: How efficient is RNS in terms of model complexity and training time? RQ4:
How do the proposed Negation Layer, NFC, and different binning functions impact RNS? Note that
detailed ablation studies for RQ4 are provided in Appendix[HHRQS: What are the impacts of different
hyperparameters in RNS?

4.1 EXPERIMENTAL SETTINGS

Datasets. Extensive experiments are conducted on nine small datasets (adult, bank-marketing, ban-
knote, chess, c-4, letRecog, magic04, wine, tic-tac-toe) and four large datasets (activity, dota2,
facebook, fashion-mnist). These datasets are widely used for evaluating classification perfor-
mance (Letham et al.| 2015;|Wang et al.| 2017} |Yang et al.,2017). Details are provided in TableE}
Datasets are categorized as ‘Discrete’ or ‘Continuous’ based on whether their features are exclusively
of one type, while datasets containing both feature types are classified as ‘Mixed’.

Performance Evaluation. We assess classification performance using the F1 score (Macro-average
for multi-class cases) with 5-fold cross-validation, reporting the average over five iterations. To pro-
vide a comprehensive evaluation, we compare models across all datasets using average rank (Demsar}
2006) (Iower is better) and normalized mean (Marton et al., [2023) (higher is better) as metrics.

We evaluate RNS against two categories of models: interpretable and non-interpretable complex meth-
ods. The interpretable models include rule-based approaches such as RRL (Wang et al.| [2021}; [2024)),
RIPPER (Cohen, [1995), CRS (Wang et al., 2020), C4.5 (Quinlan, |[2014), CART (Breiman, [2017),
SBRL (Yang et al.,|2017), CORELS (Angelino et al., [2018)), Logistic Regression (LR) (Kleinbaum
et al.| 2008)), and KNN (Peterson, [2009). The non-interpretable models include BNN (Courbariaux
et al., |2016b), PLNN (Chu et al., 2018), SVM (Scholkopt & Smola, |2002), RF (Breiman, [2001)),
LightGBM (LGBM) (Ke et al.| 2017, XGBoost (XGB) (Chen & Guestrin, [2016), FT (Gorishniy;
et al.|[2021), SAINT (Somepalli et al.,[2021), NODE (Popov et al.,2019), STG (Yamada et al.| 2020),
TabNet (Arik & Pfister, [2021), TabTransformer (Huang et al., 2020), and VIME (Yoon et al., 2020).

4.2 RULE QUALITY (RQ1)

The primary advantage of rule learning models over black-box methods is their ability to provide
transparent and interpretable insights. However, this advantage is entirely dependent on the quality
of the rules they generate. Learned rules must be of high quality, possessing characteristics like
simplicity, accuracy, and generalizability. Such rules are crucial for fostering user trust, facilitating
debugging, and discovering meaningful knowledge from data. Poorly constructed or overly complex
rules defeat the purpose of using an interpretable model in the first place.

Under review as a conference paper at ICLR 2026

Model | adult bank banknote chess c-4 letRecog magic tic-tac-toe wine | activity dota2 fb fashion | N-Mean 1 AvgRank |
Non-interpretable Models
BNN 7726 7249 99.64 7855 6194 8106 79.50 98.92 95.77| 97.86 5476 8594 85.33 0.803 14.85
FT 79.01 77.04 99.93 80.64 7245 97.17 8595 97.84 94.63 | 98.56 59.70 86.52 89.23 0.938 8.54
LGBM 80.36 7528 99.48 80.58 70.53 96.51 86.67 99.40 98.44 | 99.41 5881 8587 89.91 0.955 7.38
NODE 80.55 77.16 99.93 80.64 7190 9720 86.20 100.0 97.78 | 97.70 60.01 87.93 89.63 0.979 5.69
PLNN 73.55 7240 1000 77.85 64.55 9234 83.07 100.0 76.07 | 98.27 59.46 89.43 89.36 0.804 11.31
RF 7922 72.67 9940 7500 6272 9659 86.48 100.0 9831 | 97.80 5739 8749 88.35 0.904 10.38
SAINT 79.31 75.60 99.04 79.37 72.85 96.72 85.46 96.95 95.50 | 98.94 59.58 88.79 89.69 0.919 8.69
STG 76.38 6024 9049 6033 62.17 78.18 6838 93.43 9439 | 84.89 41.02 60.18 8I.15 0.451 21.23
SVM 63.63 66.78 100.0 79.58 69.85 9557 79.43 100.0 96.05 | 98.67 57.76 8720 84.46 0.800 12.15
TabNet 80.94 77.54 9634 80.78 72.13 9344 85.08 100.0 98.37 | 96.07 59.16 86.53 88.98 0.938 7.77
TabTransformer | 79.35 75.67 9378 77.64 7124 8175 81.03 95.77 95.16 | 93.07 59.12 86.86 87.65 0.795 14.15
VIME 78.24 7659 9891 7627 5227 80.05 83.19 93.48 92.18 | 9237 57.01 8852 8I.12 0.732 16.00
XGB 80.64 74.71 99.55 80.66 70.65 96.38 86.69 99.48 97.78 | 99.38 58.53 8890 89.82 0.955 6.31
Interpretable Models
C4.5 7777 7124 9845 7990 61.66 8820 82.44 98.45 9548 | 9424 52.08 80.71 80.49 0.790 16.23
CART 77.06 7138 97.85 79.15 61.24 87.62 8120 97.85 9439 | 9335 5191 8150 79.61 0.762 17.54
CORELS 70.56 66.86 9849 2486 51.72 61.13 7737 98.49 9743 | 51.61 4621 3493 38.06 0.401 20.46
CRS 80.95 7334 9493 80.21 6588 8496 80.87 94.93 9778 | 95.05 5631 91.38 66.92 0.611 15.62
KNN 77.57 75.61 100.0 7521 65.18 91.92 77.92 92.33 96.24 | 97.09 51.61 68.61 8235 0.748 15.08
LORD 80.72 7490 99.51 80.61 70.77 9632 86.52 99.45 97.85| 99.32 58.61 8875 89.76 0.955 6.92
LR 78.43 69.81 98.82 33.06 49.87 72.05 7572 98.82 95.16 | 98.47 5934 88.62 84.53 0.668 15.77
RIPPER 74.69 69.76 96.00 7095 64.78 9294 77.92 97.79 89.16 | 88.08 55.67 64.18 78.66 0.698 18.92
RRL 80.42 77.18 100.0 79.66 72.01 96.14 86.24 100.0 98.37 | 9896 60.08 90.11 89.64 0.982 4.54
SBRL 79.88 72.67 9444 2644 4854 6432 8252 94.44 95.84 | 11.34 3483 31.16 47.38 0.352 19.62
RNS (Ours) 81.24 77.62 1000 8119 7293 9582 86.68 100.0 98.80 | 99.49 60.17 90.93 90.04 0.997 1.69

Table 1: F1 scores (%) across 13 datasets. The top rows show non-interpretable models; the bottom
rows show interpretable models. Bold denotes best performance. N-Mean and AvgRank are computed
across all methods.

10 0.7 0.9,

10 010 o ans
0.6 o8 3 | = RRL
0s or 2.
05 o6 28 £
2 o 70 ¢ o
Zos 0. fos g E°
s g H 9 £
204 303 goa * o,
a S, o3 34 o
02 0.2 £,
w01 ml gn A | = | o |
- mlo =nE g i i
O O G o b 00 5 b 00T 5 B 3 \\ L ey ‘{“ 9 o
R R o P oA ook o P oA ook B B (o o o
S s \\ﬂ ,.@\«‘Lygﬁi N,(P\c o ,cc\“\‘é\! \\' ,‘\,g\«"ygﬁ ‘@"o\‘ o aﬂ\‘é\! \\' ,‘\,g\«"ygﬁ ,@c * %5 v' Ao" o \«“} o ‘\"’ .<§o“c.v‘°f\\\“.c S

Figure 3: (a) Diversity. (b) Coverage. (c) Accuracy. (d) Avg Rule Length. (e) Training Time.

In this section, we evaluate the quality of the learned rules. Specifically, we benchmark RNS against
RRL, the SOTA rule-based neural network, as a comparative baseline. The evaluation is conducted in
two parts: (1) a comparison of the rules generated by these models using various existing rule quality
metrics, and (2) a simulation experiment to assess the models’ ability to recover the underlying rules
behind the data.

4.2.1 RULE QUALITY METRICS

Following prior work |Yu et al.|(2023); Lakkaraju et al.| (2016), we evaluate rule quality using three key
metrics: diversity, coverage, and single-rule accuracy. Extensive experiments are conducted across 10
datasets. Accuracy measures the prediction accuracy of a single rule for the instances it covers. As
shown in Figure [3|and Figure[TT] RNS achieves higher or comparable single-rule accuracy on nearly
all datasets. Coverage quantifies the proportion of data instances covered by a rule. Lower coverage
indicates that rules are more specific and easier for human experts to understand. As depicted in
Figure [3] and Figure [T0] RNS consistently yields rules with lower average coverage across most
datasets, indicating that its rules focus on more localized, less redundant patterns. Diversity measures
the overlap ratio between pairs of rules, with higher diversity reflecting that rules capture distinct,
non-redundant logic. In Figure [3|and Figure 9] RNS consistently achieves higher diversity scores
across all tested datasets. The diversity gap is especially prominent for more complex datasets such
as facebook and dota2, demonstrating RNS’s ability to extract a set of rules that cover a wider variety
of patterns with minimal redundancy.

In summary, RNS produces rule sets that are not only more accurate but also more diverse and
interpretable due to their reduced coverage and increased diversity. This improvement in rule qual-
ity—across accuracy, coverage, and diversity—demonstrates the effectiveness of RNS in generating
more meaningful and distinct rules compared to previous approaches.

Under review as a conference paper at ICLR 2026

adult

facebook

810,
90
80.5
[

= 80.0/ = 89

v]
@A 795 .
= 79.0

w

I
w
78.5 87

78.0

86
[

[

100 30 00 500 600 [] 2 400 800 1000
Number of Generated Rules Number of Generated Rules

200 400 600 800
Number of Generated Rules

Figure 4: Comparison of F1 Scores for RNS and RRL with Different Numbers of Generated Rules.

Ground-Truth Rules | RNS RRL RRL w naive negation
(3}1\/432)/\—‘1’3 xr1 N\ —x3, T2 N\ T3 xr1 ANx2 Nx3, T1, T2 N\ T3 xr1 N\ X2 N\ T3, T1, T3
J,’l\/(—!wg/\—'xg) —x2 A\ T3, T1 xg\/l’z\/(xz\/ml) X1, T2, x1 N\ T2 N\ T3

x1 N\ X2 N\ X3 xr1 A X2 N\ X3 r1 N\ x3, T2, (Il /\1‘3)/\1‘1 x1, T2, T1 N\ T2 N\ T3
xr1V xe VI3 x1 V xo V I3 T2 N\ T3, (ZEQ /\l’3) N T2 x1 N\ 7x3, T2 A I3

Table 2: Logical rules learned by RNS, RRL, and RRL with naive negation on synthetic data.

4.3 CLASSIFICATION PERFORMANCE (RQ2)

Table |1{ demonstrates the superior performance of RNS compared to both interpretable and non-
interpretable baseline models across 13 datasets. RNS achieves the highest Normalized Mean
(N-Mean) score of 0.997, outperforming all baselines, and its average rank of 1.69 further highlights
its dominance, as it consistently ranks first or near the top across most datasets. Among interpretable
baselines, RRL is the strongest competitor, yet RNS consistently outperforms it across the majority
of datasets—for example, on the bank dataset, RNS achieves 77.62%, a 0.44% improvement over
RRL, and on fashion, RNS attains 90.04%, compared to RRL’s 89.64%. Although complex models
such as LightGBM and XGBoost are recognized for their strong performance, RNS surpasses them
on several benchmarks, achieving 72.93% on the c-4 dataset (exceeding LightGBM and XGBoost
by 2.40% and 2.28%, respectively) and 99.49% on the activity dataset (outperforming LightGBM
at 99.41% and XGBoost at 99.38%). These results highlight that RNS is not only interpretable but
also matches or exceeds the performance of the strongest black-box baselines across diverse tabular
datasets, with some baseline results drawn from Wang et al.|(2024) to ensure fair comparison with a
consistent experimental setup.

4.3.1 SIMULATION EXPERIMENT

We conduct a controlled simulation experiment to assess RNS’s ability to learn the exact logical rules
used to generate synthetic data.

Setup. We generate synthetic data using predefined logical rules to evaluate rule reconstruction ability.
Three probability parameters p = (p1, pa2, p3) correspond to feature variables {z1, 22, 3}, each
drawn from U (0, 1). Using these as Bernoulli parameters, we generate X g, € R3*59090 through
Bernoulli sampling, resulting in n = 50000 binary vectors where each element is sampled from
Bernoulli(p;). Labels are assigned based on logical rules (e.g., 21 A z2 A x3 — 1 assigns label 1
if all features are 1). We define four rule types presented in Table [2| and split the data evenly into
training/test sets. Both RNS and RRL use logical layer dimensions of 64Q64.

Results. Table 2] shows RNS achieves near 100% accuracy while recovering exact ground-truth rule
structures. RRL produces overly simplified, redundant, or logically incomplete rules despite using
naive negation settings. Detailed analysis is provided in Appendix [G]

4.4 EFFICIENCY (RQ3)

We evaluate learning efficiency based on the number of learned rules, the length of the learned
rules, and computational time. Large rule sets with lengthy conditions are difficult to interpret, so
smaller rule sets with concise rules are preferred. Figure dand Figure[7]illustrate the relationship
between the number of learned rules and the F1 score. RNS consistently outperforms RRL, achieving
higher performance with fewer rules. Additionally, Figure3|and Figure [§]show that RNS produces
shorter rules, averaging fewer than eight conditions, improving comprehensibility. In terms of
computational time, as shown in Figure |3} RNS converges faster than the best baseline across all

Under review as a conference paper at ICLR 2026

LSL Dimension Impact on F1 Performance L2 Regularization Impact on F1 Performance
Activity Dataset Bank Dataset Activity Dataset Bank Dataset
99 a 100 77.50
98 NGO 2 s ; 77.25 %)
_ D A " S TR
Yo7 /",r .\ z 77.00 sewn, ~——_(s5%
< o 2 o6 s -
= ey e < ¥ 76.75
096 o~ e o
Sos ./ e \ g % 76.50
0 766] 76.25
o /Tl - 92
T O i w 07%) 76.00(75.9%
s 04l B 89.7% T L4
93 90 0/ 75.75
92 762
32 6% 2% 996 42 b _a® 32 6% 2% 996 42 b _a® 8 75.50
320%°60% 0077, 55@15\1@':01“@2:“&@10 3207600077, 56@1511@z01h@.}§ﬂﬁ@1“ 3o 4e0® 01 08 o9 PO O B
Logic Selection Layer (LSL) Dimensions K L2 Regularization A

Figure 5: Impact of LSL dimension K and L2 regularization for both activity and bank.

Contributionto | Contribution to
Rules Negative Class | Positive Class | CoVerage
(duration > 146.71 A~ job « {nousemaid, entrepreneur) A = month & {nov, mar, feb} A v
(duration <850.875 A~ job = & ian A month = mar) v (duration > 146.719 A~ month = jan - contact = unknown) v
(duration >19.057 A - age > 67.57 A month = oct A = day <5.569) v
-0.4150 03929 0.4236
(~ duration <850.975 A age < 66.97 A - job = housemald A = month = jan A = poutcome = success) v
(duration >59.781 » - job = unknown) v (duration > 18.057 A = & 3.949) v
(duration> 59.781 A - age > 67.87 A - o f-employed, housemaid) A ~month & {oct, nov} » ~loan = yes A ~default = yes)
| (duration > 58.781 » ~ month € {jul, aug} » A previous > 1.028 pdays < 229.326) v
0.3314 -0.3539 0.3617
(< month = mar A = poutcome = success 102.083 < pdays <304.124 previous <6.754)
(~month = aug - ac A campaign > 0.066 A day <33.738 1 pdays <244.262) -0.5581 05437 0.3319

Figure 6: Logical rules from RNS on the bank-marketing dataset.

datasets. In general, RNS is more efficient than the baseline as it consistently produces fewer rules of
a more concise size, using shorter training time.

4.5 HYPERPARAMETER STUDY (RQ5)

We evaluate LSL dimension K and L2 regularization in Figure[5] For the activity dataset, F1 improves
steadily with larger K, peaking at 1024@1024, while the bank dataset achieves its best performance
earlier at 128@128. Similarly, moderate L2 values (around 10~7—10~%) yield the highest scores,
with activity reaching 98.4% and bank stabilizing near 77.2%. These results suggest that activity
dataset benefits from larger architectures and balanced regularization, whereas bank saturates with
smaller models and is less sensitive to A.

4.6 MODEL INTERPRETATION

RNS provides interpretable rules that capture meaningful patterns in the bank-marketing dataset,
such as seasonal effects, the link between longer calls and successful deposits, and demographic or
age-related tendencies. These insights illustrate how RNS reflects plausible customer behaviors while
remaining non-causal, as detailed in Appendix [I]

5 ADVANTAGES AND LIMITATIONS OF RNS

Advantages. RNS advances interpretable rule learning via (i) learnable AND/OR operator selection
per neuron, (ii) functional completeness with NOT via a Negation Layer, and (iii) robust optimization
using max/min logical activations, +1 states, and STE. These yield superior prediction, rule quality,
and efficiency over prior work (e.g., RRL).

Limitations. Although more efficient than prior neural rule learners, RNS is heavier than heuristic
algorithms (e.g., C4.5, RIPPER). Future work includes improved scalability for extremely high-
dimensional or streaming data and integrating domain priors.

6 CONCLUSION

We proposed RNS, a selective discrete neural network that learns CNF/DNF rules via two Logic
Selection Layers with learnable AND/OR neurons, a Negation Layer, and an NFC for valid, ef-
ficient connections. With STE-enabled training and logical max/min activations, RNS achieves
strong performance, rule quality, and efficiency across diverse datasets. Future directions include
recommendations and text applications.

Under review as a conference paper at ICLR 2026

REFERENCES

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
certifiably optimal rule lists for categorical data. Journal of Machine Learning Research, 18(234):
1-78, 2018.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 6679-6687, 2021.

Florian Beck, Johannes Fiirnkranz, and Van Quoc Phuong Huynh. Layerwise learning of mixed
conjunctive and disjunctive rule sets. In International Joint Conference on Rules and Reasoning,
pp. 95-109. Springer, 2023.

Leo Breiman. Random forests. Machine learning, 45:5-32, 2001.
Leo Breiman. Classification and regression trees. Routledge, 2017.
Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Pengyu Cheng, Chang Liu, Chunyuan Li, Dinghan Shen, Ricardo Henao, and Lawrence Carin.
Straight-through estimator as projected wasserstein gradient flow, 2019.

Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. Exact and consistent interpretation
for piecewise linear neural networks: A closed form solution. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1244—-1253,
2018.

Peter Clark and Tim Niblett. The cn2 induction algorithm. Mach. Learn., 3(4):261-283, mar 1989.
ISSN 0885-6125. doi: 10.1023/A:1022641700528. URL https://doi.org/10.1023/A/
1022641700528.

William W Cohen. Fast effective rule induction. In Machine learning proceedings 1995, pp. 115-123.
Elsevier, 1995.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations, 2016a.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1 or
-1, 2016b.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
learning research, 7:1-30, 2006.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
continuous features. In Machine learning proceedings 1995, pp. 194-202. Elsevier, 1995.

Anton Dries, Luc De Raedt, and Siegfried Nijssen. Mining predictive k-cnf expressions. [EEE
Transactions on Knowledge and Data Engineering, 22(5):743-748, 2009.

Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001.
Eibe Frank and Ian H Witten. Generating accurate rule sets without global optimization. 1998.
Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv

preprint arXiv:1711.09784, 2017.

10

https://doi.org/10.1023/A:1022641700528
https://doi.org/10.1023/A:1022641700528

Under review as a conference paper at ICLR 2026

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932—18943,
2021.

Tzung-Pai Hong and Shian-Shyong Tsang. A generalized version space learning algorithm for noisy
and uncertain data. IEEE Transactions on Knowledge and Data Engineering, 9(2):336-340, 1997.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. In arXiv preprint arXiv:2012.06678, 2020.

Arcchit Jain, Clément Gautrais, Angelika Kimmig, and Luc De Raedt. Learning cnf theories using
mdl and predicate invention. In IJCAI, pp. 2599-2605, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Minje Kim and Paris Smaragdis. Bitwise neural networks, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David G Kleinbaum, K Dietz, M Gail, M Klein, and M Klein. Logistic regression. A Self-Learning
Tekst, 2008.

Fayez Lahoud, Radhakrishna Achanta, Pablo Marquez-Neila, and Sabine Siisstrunk. Self-binarizing
networks, 2019.

Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1675-1684, 2016.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan. Interpretable classifiers
using rules and bayesian analysis: Building a better stroke prediction model. The Annals of
Applied Statistics, 9(3), September 2015. ISSN 1932-6157. doi: 10.1214/15-a0as848. URL
http://dx.doi.org/10.1214/15-A0AS8438.

Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classification based on multiple
class-association rules. In Proceedings 2001 IEEE international conference on data mining, pp.
369-376. IEEE, 2001.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining. In
Proceedings of the fourth international conference on knowledge discovery and data mining, pp.
80-86, 1998.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm, 2018.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and
knowledge discovery, 1(1):14-23, 2011.

Scott C. Lowe, Robert Earle, Jason d’Eon, Thomas Trappenberg, and Sageev Oore. Logical activation
functions: Logit-space equivalents of probabilistic boolean operators, 2022.

Sascha Marton, Stefan Liidtke, Christian Bartelt, and Heiner Stuckenschmidt. Grande: Gradient-based
decision tree ensembles. arXiv preprint arXiv:2309.17130, 2023.

Elliott Mendelson. Schaum’s outline of theory and problems of beginning calculus. McGraw-Hill,
1997.

Ryszard S. Michalski. Aqgval/l-computer implementation of a variable-valued logic system vl
and examples of its application to pattern recognition. In International Joint Conference on
Artificial Intelligence, 1973. URL https://api.semanticscholar.org/CorpusID:
60492559.

11

http://dx.doi.org/10.1214/15-AOAS848
https://api.semanticscholar.org/CorpusID:60492559
https://api.semanticscholar.org/CorpusID:60492559

Under review as a conference paper at ICLR 2026

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Raymond J Mooney. Encouraging experimental results on learning cnf. Machine Learning, 19:79-92,
1995.

Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning. Machine
Learning, 5:71-99, 1990. URL https://api.semanticscholar.org/CorpuslID:
5661437.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ali Payani and Faramarz Fekri. Learning algorithms via neural logic networks. arXiv preprint
arXiv:1904.01554, 2019.

Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision trees for deep
learning on tabular data. In Advances in Neural Information Processing Systems, pp. 6285—6295,
2019.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266, 1990.
URL https://api.semanticscholar.org/CorpusID:6746439.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135-1144, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead, 2019. URL https://arxiv.org/abs/1811.10154/

MICHALSKIR. S. On the quasi-minimal solution of the general covering problem. Proceedings
of the 5th International Symposium on Information Processing, 3:125-128, 1969. URL https:
//cir.nii.ac.jp/crid/1571135649817801472,

Charbel Sakr, Jungwook Choi, Zhuo Wang, Kailash Gopalakrishnan, and Naresh Shanbhag. True
gradient-based training of deep binary activated neural networks via continuous binarization. In

2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp.
2346-2350. IEEE, 2018.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

William Sverdlik. Dynamic version spaces in machine learning. Wayne State University, 1992.

Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. A
bayesian framework for learning rule sets for interpretable classification. The Journal of Machine
Learning Research, 18(1):2357-2393, 2017.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Transparent classification with multilayer
logical perceptrons and random binarization, 2020.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation learning
for interpretable classification, 2021.

12

https://api.semanticscholar.org/CorpusID:5661437
https://api.semanticscholar.org/CorpusID:5661437
https://api.semanticscholar.org/CorpusID:6746439
https://arxiv.org/abs/1811.10154
https://cir.nii.ac.jp/crid/1571135649817801472
https://cir.nii.ac.jp/crid/1571135649817801472

Under review as a conference paper at ICLR 2026

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Learning interpretable rules for scalable data
representation and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(2):1121-1133, February 2024. ISSN 1939-3539. doi: 10.1109/tpami.2023.3328881. URL
http://dx.doi.org/10.1109/TPAMI.2023.3328881.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
stochastic gates. In International Conference on Machine Learning, pp. 10648—10659. PMLR,
2020.

Hongyu Yang, Cynthia Rudin, and Margo Seltzer. Scalable bayesian rule lists. In International
conference on machine learning, pp. 3921-3930. PMLR, 2017.

Xiaoxin Yin and Jiawei Han. Cpar: Classification based on predictive association rules. In Proceed-
ings of the 2003 SIAM international conference on data mining, pp. 331-335. SIAM, 2003.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the success of
self-and semi-supervised learning to tabular domain. In Advances in Neural Information Processing
Systems, volume 33, pp. 11033-11043, 2020.

Lu Yu, Meng Li, Ya-Lin Zhang, Longfei Li, and Jun Zhou. Finrule: Feature interactive neural
rule learning. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pp. 3020-3029, 2023.

Wei Zhang, Yongxiang Liu, Zhuo Wang, and Jianyong Wang. Learning to binarize continuous features
for neuro-rule networks. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pp. 45844592, 2023.

13

http://dx.doi.org/10.1109/TPAMI.2023.3328881

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work presents RNS, a rule-based neural network for interpretable classification. We acknowledge
and adhere to the ICLR Code of Ethics in all aspects of this research. Our work focuses on developing
interpretable machine learning methods that can provide transparent decision-making processes,
which aligns with ethical Al principles of explainability and accountability.

Data and Experimental Ethics: All datasets used in our experiments are publicly available bench-
mark datasets commonly used in machine learning research. We did not collect new data involving
human subjects, and our use of existing datasets follows standard academic practices with proper
attribution. The datasets include UCI Machine Learning Repository datasets and other established
benchmarks that have been widely used in prior interpretable machine learning research.

Potential Applications and Societal Impact: While our method improves interpretability in machine
learning, we acknowledge that rule-based models, like all Al systems, can potentially encode or
amplify biases present in training data. We encourage practitioners to carefully evaluate fairness
and bias when applying RNS to sensitive domains such as healthcare, finance, or criminal justice.
The interpretable nature of our model can actually aid in identifying and addressing such biases by
making decision logic transparent and auditable.

Research Integrity: We have conducted all experiments with scientific rigor, reported results
honestly, and made efforts to ensure reproducibility by providing implementation details and planning
to release code. We have appropriately cited prior work and clearly distinguished our contributions
from existing methods. Our experimental comparisons use established baselines and evaluation
metrics to ensure fair assessment.

8 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for text polishing and improving the clarity of our
writing. All technical contributions, experimental design, implementation, analysis, and scientific
insights are entirely our own work. The LLMs were not used for generating ideas, conducting
experiments, writing code, or producing any substantive content. Specifically, LLMs assisted only
with grammar corrections, sentence structure improvements, and enhancing the readability of our
manuscript. The mathematical formulations, algorithmic innovations, experimental methodology,
and all results interpretation remain exclusively the product of the authors’ research efforts.

9 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. Implementation Details:
Section “Reproducibility” in the Appendix provides comprehensive hyperparameter settings, training
procedures, and architectural specifications for RNS. We specify the number of Logic Selection
Layer neurons (grid-searched from 32 to 4096), regularization coefficients (10~° to 10~), binning
strategies, batch sizes, learning rates, and training schedules for both small and large datasets.

Code and Data Availability: All datasets used are publicly available from the UCI Machine Learning
Repository and other standard sources, with complete statistics provided in Table 2 of the Appendix.
We will release our PyTorch implementation of RNS along with experimental scripts upon paper
acceptance. The anonymous code repository is currently available at the URL provided in the paper.

Experimental Reproducibility: Our experiments use 5-fold cross-validation with multiple random
seeds to ensure statistical reliability. We provide detailed baseline configurations following prior
work citations, use established evaluation metrics (F1 scores, rule quality measures), and specify
all preprocessing steps, including feature binarization methods. The simulation experiments use
controlled synthetic data generation procedures that are fully specified to enable exact replication.

Baseline Comparisons: We use implementations and settings from established prior work, particu-
larly following the high-quality codebase from Wang et al. (2024) for fair comparison with existing
rule-based neural networks. All hardware specifications (NVIDIA A100 80GB GPU, Linux server)
and software dependencies (PyTorch) are documented to facilitate reproduction of computational
results.

14

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 TRADITIONAL RULE LEARNING METHODS

Historically, example-based rule learning algorithms (S.}{1969; [Michalskil 1973} |[Pagallo & Haussler|
1990) were initially proposed by selecting a random example and finding the best rule to cover it.
However, due to their computational inefficiency, CN2 (Clark & Niblett, |1989) explicitly changed
the strategy to finding the best rule that covers as many examples as possible. Building on these
heuristic algorithms, FOIL (Quinlan, [1990), a system for learning first-order Horn clauses, was
subsequently developed. While some algorithms learn rule sets directly, such as RIPPER (Cohen,
1995)), PART (Frank & Witten, [1998)), and CPAR (Yin & Hanl [2003), others post-process a decision
tree (Quinlan, 2014) or construct sets of rules by post-processing association rules, like CBA (Liu
et al.,[1998) and CMAR (Li et al.,|2001)). All these algorithms use different strategies to find and use
sets of rules for classification.

Most of these algorithms are based on Disjunctive Normal Form (DNF) (S.}|1969; Michalskil [1973};
Pagallo & Haussler, [1990;|Clark & Niblett, 1989; Liu et al.,[1998} |Li et al.,[2001} [Frank & Witten)
1998} [Yin & Hanl 2003}, |Cohen, |1995) expressions. CNF learners have been shown to perform
competitively with DNF learners (Mooney, [1995), inspiring a line of CNF learning algorithms (Dries
et al.}2009; Jain et al.| 2021; Beck et al.| 2023} |Sverdlikl [1992; Hong & Tsang,|1997)). Traditional
rule-based models are valued for their interpretability but struggle to find the global optimum due to
their discrete, non-differentiable nature. Extensive exploration of heuristic methods (Quinlan} 2014;
Lohl 2011} |Cohen} [1995)) has not consistently yielded optimal solutions.

In response, recent research has turned to Bayesian frameworks to enhance model structure (Letham
et al.l2015;|Wang et al.l 2017} Yang et al., 2017), employing strategies such as if-then rules (Lakkaraju
et al., 2016) and advanced data structures for quicker training (Angelino et al.|[2018). Despite these
advancements, extended search times, scalability challenges, and performance issues limit the
practicality of rule-based models compared to ensemble methods like Random Forest (Breiman),
2001) and Gradient Boosted Decision Trees (Chen & Guestrinl 2016} Ke et al.,[2017), which trade
off interpretability for improved performance.

A.2 RULE LEARNING NEURAL NETWORKS

Neural rule learning-based methods integrate rule learning with advanced optimization techniques,
enabling the discovery of complex and nuanced rules that combine the interpretability of symbolic
models with the generalization power of neural networks. Unlike tree-based models, which explicitly
follow feature-condition rules, neural approaches rely on weight parameters to control the rule
learning process, offering improved robustness and scalability through data-driven training. However,
existing approaches such as neural decision trees and rule extraction from neural networks (Frosst &
Hinton, [2017; Ribeiro et al.l 2016; Wang et al.| 2020; 2021}; |[Zhang et al., [2023)) face challenges in
fidelity and scalability. In particular, RRL (Wang et al., 2021} 2024)), a state-of-the-art rule-based
neural network, requires a predefined structure of CNF and DNF layers, which limits flexibility, leads
to inefficient rule discovery, and exacerbates optimization issues such as gradient vanishing (Wang
et al.,|2020). Our proposed Rule Network with Selective Logical Operators (RNS) addresses these
challenges through its novel architecture and optimization strategies, improving scalability, rule
quality, and training stability, as detailed in Section [3]

A.3 BINARIZED NEURAL NETWORK

A related topic to this work is Binarized Neural Networks (BNNs), which optimize deep neural
networks by employing binary weights. The deployment of deep neural networks typically requires
substantial memory storage and computing resources. To achieve significant memory savings and
energy efficiency during inference, recent efforts have focused on learning binary model weights
while maintaining the performance levels of their floating-point counterparts Courbariaux et al.| (2015}
20164a)); Rastegari et al.|(2016)); Bulat & Tzimiropoulos|(2019); Liu et al.|(2018). Innovations such
as bit logical operations Kim & Smaragdis|(2016) and novel training strategies for self-binarizing
networks [Lahoud et al.[(2019), along with integrating scaling factors for weights and activations |Sakr]
et al.[(2018)), have advanced BNNs. However, due to the binary nature of their weights, BNNs face
optimization challenges. The Straight-Through Estimator (STE) method |Courbariaux et al.| (2015}

15

Under review as a conference paper at ICLR 2026

Dataset #instances #classes #features feature type
adult 32561 2 14 mixed
bank 45211 2 16 mixed
chess 28056 18 6 discrete
connect-4 67557 3 42 discrete
letRecog 20000 26 16 continuous
magic04 19020 2 10 continuous
wine 178 3 13 continuous
activity 10299 6 561 continuous
dota2 102944 2 116 discrete
facebook 22470 4 4714 discrete
fashion 70000 10 784 continuous

Table 3: Datasets statistics.

2016a);|Cheng et al.| (2019) allows gradients to "pass through” non-differentiable functions, making
it particularly effective for discrete optimization.

Despite both using binarized model weights and employing STE for optimization, our work diverges
significantly from BNNs. First, RNS adopts specialized logical activation functions to perform logical
operations on features, whereas BNNs typically use the Sign function to produce binary outputs.
Second, BNNs are fully connected neural networks, while RNS features a learning mechanism for
its connections. Most importantly, these distinctions enable RNS to learn logical rules for both
prediction and interpretability, setting it apart from BNNs, which are primarily designed to enhance
model efficiency.

B DATASET STATISTICS

In Table E], the first nine data sets are small, while the last four are large. The “Discrete” or
”Continuous” feature type indicates that all features in the data set are either discrete or continuous,
respectively. The "Mixed” feature type indicates that the corresponding data set contains both discrete
and continuous features.

C REPRODUCIBILITY

Reproducibility. RNS includes two Logic Selection Layers (LSLs), with the number of logical
neurons grid-searched from 32 to 4096 based on dataset complexity. For training, we use cross-
entropy loss with L2 regularization to control model complexity, with the regularization coefficient
searched in the range 10~° to 10~°. The number of bins in the feature binarization layer is selected
from {15, 30, 50}. The model is trained using the Adam optimizer (Kingma & Ba,|2014) with a batch
size of 32. For small datasets, training runs for 400 epochs, with the learning rate reduced by 10%
every 100 epochs. For large datasets, training is conducted for 100 epochs with a similar learning
rate schedule, decreasing every 20 epochs. Baseline settings follow those described in (Wang et al.
20215 2024). RNS is implemented in PyTorch (Paszke et al. [2019), and we use the high-quality
code base from (Wang et al., [2021}; [2024) for baseline comparisons. Experiments are performed
on a Linux server equipped with an NVIDIA A100 80GB GPU. All code and data are available at
https://anonymous.4open.science/r/RNS_—-4A67/l

D HYPERPARAMETER STUDY

LSL Dimension K. We analyze the effect of layer dimension K (number of neurons) in the two LSLs.
A larger K increases model complexity, potentially improving performance but risking overfitting. We
test dimensions K in {32@32, 64@64, 128@128, 256@256, 512@512,1024@1024, 2048@2048} on
a small dataset (bank) and a large dataset (activity) shown in Figure[5] The F1 score initially rises
and then falls as K increases, peaking at 1024@1024 for the activity dataset and 128@Q128 for the
bank dataset. This indicates that the activity dataset benefits from larger models, while the bank

16

https://anonymous.4open.science/r/RNS_-4A67/

Under review as a conference paper at ICLR 2026

dataset performs best with smaller models, suggesting that optimal model size depends on dataset
complexity.

L2 Regularization \. We examine the impact of the L2 regularization weight A, which controls RNS
complexity. A larger A reduces model complexity, resulting in fewer and simpler logical rules. We
vary A from 10~° to 10~ and show the model’s performance in Figure[5]. The F1 score initially
rises and then falls as A increases, indicating that performance improves with an appropriately chosen
A. Balancing A is essential to avoid overfitting or underfitting and achieve optimal model complexity.

E EFFICIENCY

We evaluate learning efficiency by the number and length of learned rules across all datasets, as
shown in Figure [7]and Figure [8] respectively. Figure [7] presents scatter plots of F1 score against
log(#edges) across 10 datasets. The boundary connecting the results of different RNS architectures
separates the upper left corner from the best baseline methods. This indicates that RNS consistently
learns fewer rules while achieving high prediction accuracy across various scenarios. The average
length of rules in RNS trained on different datasets is shown in Figure 8] The average rule length is
less than 6 for all datasets except fashion and facebook, which are unstructured datasets and have
more complex features. These results indicate that the rules learned by RNS are generally easy to
understand across different scenarios.

activity connect-4

o 200 400 600 800 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000
Number of Generated Rules Number of Generated Rules Number of Generated Rules Number of Generated Rules Number of Generated Rules

fashion facebook dota2 letRecog magicoa

¢ N § ¢
100 200 300 400 500 600 o 1000 200 400 600 800 1000 " 0 1000 7000 3000 4000 5000 0 200 400 600 800 1000 1200 1400 100
Number of Generated Rules Number of Generited Rules Number of Generated Rules Number of Generated Rules Number of Generated Rules

Figure 7: Rule Number comparison across different architectures.

adult activity bank chess connect-4

onso@5 R

log(#edges)
onsoab R
log(#edges)
log(#edges)
onvsaabh
onsamB8 R

2
0]
8
6
a
2
o

log(#edges)
log(#edges)

Illllll BURENRIREEY IV IT LY AREREE
U 1% nig n* U 1% nig n* U 1% nig 2> ‘ P o
R ,@* oy .,@‘J & RO ,@* oy .,@‘J & R ,@* oy .,@‘J & _5@31..@@ ‘@‘,,-11@6@“ -w:@-» e ‘@‘f o 1@5_9@ Bn‘@-::" o
12 fashion : 12 facebook 12 dota2 on letRecog : 12 magic04 :
710 =" F10 710 = F10 =" Z10 -
S5e S5e S5e 5 5
T T T T T
£ £ £ £ £
3 3 3 3 3
2 2 e | e e I l l I I I
o s ° ° o 3 o 2 5 o ° a o ®
O n® PR = s b o® S N N o RS d! o o o o o
4687 @ -@ @“ @1 > P C @" ~° 1“ > o8 367 % @ @" s x“ e @, @" 26> (e ot
o % 6 5887 6 ‘)\,1- i " 1 o oy 5‘1 ! e oy 5‘1 ! e

Figure 8: Rule Length comparison across different architectures.

F RULE QUALITY

Rule Quality Metrics. Following prior work Yu et al.|(2023)); Lakkaraju et al.| (2016)), we evaluate
rule quality using three key metrics: diversity, coverage, and single-rule accuracy. Let I, denote the

17

Under review as a conference paper at ICLR 2026

set of data instances covered by rule r, and D denote the complete dataset. The metrics are defined
as:

Single-rule Accuracy measures the prediction accuracy of a single rule for the instances it covers:

|{i € I, : rule prediction matches y; }|
|1y |

This metric evaluates how accurately a single rule classifies the data instances it covers when used
independently for prediction. It measures the proportion of correctly classified instances among all
instances that satisfy the rule’s conditions. Higher single-rule accuracy indicates that the rule is more
reliable for making predictions on its own, without relying on other rules in the rule set. Coverage
quantifies the proportion of data instances covered by a rule:

(6)

Single-rule Accuracy =

| 7|
Coverage = @)
D]
This metric measures the scope or generality of a rule. Lower coverage indicates that rules are more
specific and easier for human experts to understand, as they apply to a smaller, more focused subset
of the data. Very high coverage may suggest overly general rules that lack specificity.

Diversity measures the overlap ratio between pairs of rules, with higher diversity reflecting that rules
capture distinct, non-redundant logic:

[N 1|

—_— 8
|1; U 1| ®

Diversity = 1 —
This metric quantifies how different rules are from each other by measuring their overlap. Higher
diversity values indicate that rules capture different patterns in the data with minimal redundancy,
leading to a more comprehensive and non-redundant rule set. Low diversity suggests that multiple
rules are covering similar data instances, which reduces the interpretability and efficiency of the rule
set.

Results. We conduct extensive experiments across 10 datasets, as shown in Figure 0] Figure[T0] and
Figure[TT] RNS consistently produces rules with superior results: higher accuracy, greater diversity,
and lower coverage deviation. This indicates that the rules learned by RNS are easier to distinguish
and exhibit better prediction and generalization power.

adult activity bank chess connect-4
B & e i § & - 5 & &

Qo2 Qo2 Qo2 Qo2 Qo2
o
o

.0 0.0 0.0 0.0 7
0 o oo 5© ﬁ o p° o oo 5© ﬁ o p° o oo 5© ﬁ o 0 o3 g6 18 90 oy 088,00°
R 1‘@x o ga & RO 1‘@x 5 @a & RO _L‘@x e @c» & ,5@31@@@1‘@&6@1 &@ &‘. S

o © & o 0®
e"@ e e"@ o e"@ e 7 ‘,ﬂ@ o 1°@ s“@ ,,ﬁ@ 1a©’ ,,e@:w.,

- fashioT 1 l S facebook S I dfﬂ:azl ;) y ; Iethecog -
L0 I 1 o8 | 1 o8 LE s i1 I o8Il
SHEEHHE = 4444444 4 L &

1TagiCO4All
il

0.0 0.0
o @ 25° o o o o° o 2 25° o o o o°
o 10@ 55 Q@ 226 L.,@.“_,(,@ o 10@ 66® Q@ 226 L.,@.“_,(,@

B0 ‘
So.a) I So.a)
Qo2 Qo2 Qo2 Qo2 Qo2

00 00 00
6 0 2 - o o8
R AR o o o @ @ o

598 5 8 6, @&- e 2 S 6V " \1. 1-@" ‘»@‘L @ 50 ‘,‘,- &@ e

Figure 9: Rule Diversity comparison across different architectures.

G SIMULATION EXPERIMENT

We conduct a controlled simulation experiment to assess RNS’s ability to learn the exact logical rules
used to generate synthetic data.

Setup. We generate synthetic data based on predefined logical rules and train rule-based models to
evaluate their ability to reconstruct these ground-truth rules. The dataset is synthesized by defining
three probability parameters, p = (p1, p2, p3), corresponding to feature variables {z1, 2, z3}, each
drawn independently from a uniform distribution U (0, 1). Using these as Bernoulli parameters, we
generate X g, € R3*50000 by repeating Bernoulli sampling, resulting in n = 50000 binary vectors
of length 3, where each element is sampled from Bernoulli(p;). Labels are assigned to these binary

18

Under review as a conference paper at ICLR 2026

08 adult . 08 activity . 08 bank . 08 chess o connect-4
07 T 07 ! i o7 5 o7 o7 b o
20,6, 206, 20,6, 206, 20,6,
§os R] §os IR RE [B
Soa [] l Soa Soa Soa Soa ; l
203 203 203 203 203 N N
3 3 3 3 3
303 l | [303 | 303 b | 393 i l[303 i i
Shikhhh SLEEDEER S LLEEEEEEE S LLERE
R s S e e S O o e P S g I S P e PP S e Y
A0 P oo ® S 2O G ooF P S 2O G ooF P S ® 556 3T b (98 o 0® 9
B T Ly \“L@‘) ol B T Ly \“L@‘) ol B T Ly \“L@‘) fCie 5858 a’@,,e@\:,e@‘b@ ,@*“ S @ .Le@‘ e ‘1@” s n>‘°@1° o*°
08 fashion . 08 . facebook . 08 . dota2 : 08 X letRecog . 08 mag|c94 .
206, 206, 20,6, 206, 206,
205 |) 205 N 205 205 205
Loa 1 ‘ | Loa Loa l l l Lol if l Loa l
203 203 203 203 1 203
& 1] & L L j ‘ b Ep | Fl ‘ & 0 ‘ LEE
01 01 0a b 01 01 [i
ol NN ool e e L M. ool H L L g i Sy L g g ey
Yo > ©° 2 5" 32 1 L a® 4950 oy Y 02 ’l 02 v 5’ e g ' e
198 007 60 g0 6P 36% P 90”6, 1@" e @ 00 ‘,«,@ «»‘@" @*“ @1° @ 0%, e@‘ 1@" b@*“»‘, 7 @ @ 0%, e@‘ 1@" b@*“»‘, 7 @
A 2 2 2

Figure 10: Rule Coverage comparison across different architectures.

adult activity bank chess connect-4
- g 0.2 = -
2 an-a an.m >,
Bo.6! Bo.20 B0 go.08. Boa
3 o086 3o.
& Soo g Go.0s So2
0.05 0.2 0.02 0.1

. 00 o0 oo
56 P o a8 0 S gb 56 G 8 e D gb 56 P o 8 e S gb @ o b 8 90 Db S
390 587 6 gV, ,1@9 o 398 128”00 Vo™ 1@" & 596 8 8 6V 6, ,1@9 o e@ﬂ@v@ @‘a@%@" @x@*° o o ,a@‘ S 0@” @*“,ﬁ@::q o

LA

0,200 fashion : 10— facebook 10 dota2 - letRecog 10 magic04
0175,] E -
20150 an'! aﬂ.\! 30.10 5“-5
goazs Fos Fos go.08 go.6,
0,100,
Zo.07s Zoa Zoa 30.06 P
g g g o.0a g
< 0.050! <, <, < <,
0.025| 0.02
0,000 . 0.0 o ool L T o 0.0
P e W® as® o ot P o 1° %0 o ot o e @ 65 O ™ o 1® 0 9 o o P° 50 o ot s
56836 e»@ i 77 o T e 08 007 68706 0 0 @ 07 \1@ o 3@:&, Ay "89S 31@ ,@»0“, - _,(,@-“’
FCE’

Figure 11: Rule Accuracy comparison across different architectures.

vectors based on specific logical rules. For example, a rule z; A x2 A x3 — 1 assigns a label of 1 if
all three features are 1. We define four different types of rules, presented as ”Ground-Truth Rules” in
Table 2] The dataset is split evenly into training and test sets. Both RNS and RRL are configured
with logical layer dimensions of 64@64.

Results. As shown in Table[2] RNS not only achieves near 100% accuracy but also recovers the exact
structure of the ground-truth rules. In contrast, RRL, even with a naive negation setting, tends to
produce overly simplified, redundant, or logically incomplete rules.

For example, RNS is able to precisely recover rules such as 1 A =22 A 3 and xo A —z3, faithfully
mirroring the underlying logic used to generate the data. RRL, on the other hand, often produces
rules that are either too general (e.g., x1, x2) or combine terms in a way that does not fully reflect the
intended logic (e.g., (1 A x3), x2). This pattern holds even when RRL is augmented with the naive
negation setting: RNS consistently recovers all ground-truth rules, whereas RRL fails to identify
several rules in their correct logical form and often outputs multiple trivial or repeated variants for a
single ground-truth pattern.

H ABLATION STUDY (RQ4)

Negation Layer and NFC. To evaluate the effectiveness of the Negation Layer and Normal Form
Constraint (NFC), we compare RNS trained with and without these components. The Negation
Layer enables functional completeness by supporting negation operations in learned rules, while NFC
narrows the search space for learning connections between logical layers, improving performance.
Table[z_f] shows F1 scores for RNS and its variants on the bank (small) and activity (large) datasets.
The F1 score decreases without these components, highlighting their importance. NFC also improves
learning efficiency. With all other factors constant, training time decreases by 11.22% and 25% for
the activity and bank datasets, respectively, as shown in Table [5] emphasizing its utility.

Binning Function. We evaluate RNS’s performance with different binning functions introduced
in Section F1 scores for RNS with these methods are shown in Table [6] RNS exhibits strong
flexibility, with Ranlnt performing the best due to its stochastic diversity, which helps prevent
overfitting. Additionally, its computational efficiency and simplicity are advantageous. Klnt, in
contrast, clusters based solely on feature values, neglecting target variables, which can reduce its

19

Under review as a conference paper at ICLR 2026

Model Variant | Activity Bank
RNS w/o Negation Layer 97.68 76.92
RNS w/o NFC 97.81 76.36
RNS (Full) | 9837 77.18

Table 4: Ablation study: F1 Score (%) of RNS and its variants on two datasets.

Configuration | Activity Bank

RNS w/o NFC 1h38m9s 1h 24m 50s
RNS (with NFC) | 1Th27m 3s 1h 3m 56s

Table 5: Training efficiency: Impact of Normal Form Constraint (NFC) on training time.

Binning Method | Activity Bank
KlInt (K-means) 92.71 74.37
EntInt (Entropy) 97.09 77.02
Autolnt (Auto-interval) 95.62 75.59
RanInt (Random) | 98.80 77.18

Table 6: Feature preprocessing: F1 Score (%) comparison of different binning methods.

effectiveness. Entlnt incorporates label information to minimize entropy within bins, potentially
improving accuracy. Autolnt, while adaptable, incurs significant computational overhead due to its
parameter optimization, posing challenges in practice.

I MODEL INTERPRETATION

Figure [0] presents the three most discriminative rules extracted from RNS, trained on the bank-
marketing dataset to identify customer profiles likely to subscribe to a term deposit through telesales.
These rules provide detailed profiles by highlighting specific conditions that increase subscription
likelihood. ‘Coverage’ denotes the proportion of training samples satisfying a rule.

The transparent interpretations reveal several insights. Subscriptions are less likely during colder
seasons, possibly due to reluctance to make financial decisions during holidays. The model identifies
a correlation between longer call durations and successful marketing, suggesting that extended
dialogues often indicate interest in deposits. It also highlights that housemaids, entrepreneurs,
and self-employed individuals are less inclined towards term deposits, potentially due to financial
constraints or the need for liquidity. Additionally, the analysis shows age-related trends in call
duration, with younger individuals having shorter calls and middle-aged clients engaging in longer
discussions. These findings demonstrate the model’s ability to reflect plausible real-world behaviors
while avoiding direct causal assertions.

J GRADIENT VANISHING

Despite the high interpretability of discrete logical layers, training them is challenging due to
their discrete parameters and non-differentiable structures. This challenge is addressed by drawing
inspiration from the training methods used in binary neural networks, which involve searching for
discrete solutions within a continuous space. Wang et al.|(2021)) leverages the logical activation
functions proposed by |Payani & Fekri|(2019) in RRL:

AND(h, W) = [Felhy, Wi) ©)

j=1

20

Under review as a conference paper at ICLR 2026

OR(h, W},,,,) = H 1— Fy(hj, Wi ;) (10)

where F.(h,w) =1 — w(l — h) and Fy(h,w) = h - w.

If h and W; are both binary vectors, then Conj(h, W;) = Aw, ;=1h; and Disj(h, W;) = Vi, .=1h;.
F.(h,W) and F;(h, W) decide how much h; would affect the operation according to W; ;. After
using continuous weights and logical activation functions, the AND and OR operators, denoted by R
and S, are defined as follows:

r = AND D, W) (11)
= OR(!D, W) (12)

Although the whole logical layer becomes differentiable by applying this continuous relaxation,
the above functions are not compatible with RNS. In this setting, the output of the node h € [0, 1]
conflicts with our binarized setting, where all logical parameters are either —1 or +1. This not only
breaks the inherently discrete nature of RNS but also suffers from the serious vanishing gradient
problem. The reason can be found by analyzing the partial derivative of each node with respect to its
directly connected weights and with respect to its directly connected nodes as follows:

or (z 1) z 1) (z 0)
Fio(WD) (13)
or (-1 (z 0)
P =i HF W (14)
U k#j

Since u§l_1) and Wi(l,;O) fall within the range of 0 to 1, the values of F.(-) also lie within this

range. If the number of inputs is large and most F,(-) are not 1, the gradient tends toward 0 due to

multiplications. Additionally, in the discrete setting, only when u(Yand 1 — Fy(-) are all 1, can
the gradient be non-zero, which is quite rare in practice.

J.1 DETAILED ANALYSIS

Training discrete logical layers in neural networks is challenging due to their binary parameters
and non-differentiable operations. A common approach to make such models trainable is to relax
the logical functions to a continuous, differentiable form Wang et al.[(2024). These relaxations
enable gradient-based training, but they often suffer from severe vanishing gradient problems due to
the multiplicative structure of the logical functions. Moreover, the RRL activations output values
in [0, 1], which conflicts with a fully binarized +1 logic setting (such as our RNS approach) and
breaks the discrete semantics of the network. We detail below why vanishing gradients occur in such
formulations and describe the solutions proposed in RRL as well as the different strategy taken by
RNS to overcome these issues.

J.2 VANISHING GRADIENTS IN MULTIPLICATIVE LOGICAL ACTIVATIONS (RRL)

In a conventional formulation of a logical AND gate Payani & Fekri| (2019)), the output is the product
of its binary inputs. For binary z; € {0, 1}, one can write

AND(z1, ..., zn) = [2, (15)

and similarly, a logical OR can be written (using De Morgan’s law) as

n

OR(z1,...,2,) =1 — (1 —). (16)

i=1

21

Under review as a conference paper at ICLR 2026

While these expressions are correct for binary values, their direct use in a neural network leads to
zero gradients almost everywhere — a phenomenon known as gradient vanishing. The gradient of the
AND with respect to one input is

ox j -
i#]
which is zero whenever any other input z; is zero. More generally, if x; are in [0, 1], this derivative
equals the product of the other (n — 1) inputs. As n grows or if the inputs are often fractional
values < 1, this product becomes extremely small — decaying exponentially with n — thus severely
diminishing the gradient signal. In the case of OR (product of (1 — x;) terms), the same issue arises
by symmetry (the gradient will contain a product of many factors in [0, 1]). The consequence is
that standard product-based logic units have large regions of the input space where the gradient is
essentially zero, hampering learning.

In a fully discrete setting, if a conjunction has more than one false literal, changing any single input
from O to 1 does not alter the output (since at least one false remains to make the AND false). Thus,
the gradient at that point is exactly zero in all those input directions — creating broad “dead zones”
where the network cannot learn.

To enable gradient-based training, RRL replaces the hard logical operations with differentiable
approximations that produce continuous outputs. Let b = (hy,...,h,) be the input vector to a
logical neuron (with /; € [0, 1] as relaxations of Boolean values) and let W; = (W; 1,...,W;) be
a set of weights indicating which inputs are involved in the i-th clause (for example, W, ; € {0,1} or
[0, 1], with 1 meaning the jth input is included in the clause). RRL defines smoothed conjunction and
disjunction functions as:

n

COHj(h,WL') = H FC(hja Wi,j)a Fc(h’aw) =1- w(l - h)a (18)
=1
Disj(h, W) =1 - [(1 — Fy(hy, Wi,j)), Fa(h,w) = h - w, (19)
j=1

where Fi.(h,w) and F;(h,w) are specific smooth blending functions for inputs h and weights w.
If h € {0,1}"™ and W} is binary, Conj(h, W;) reduces to the logical AND of the selected inputs
(those with W; ; = 1), and Disj(h, W;) becomes the logical OR. For continuous h and W;, these
give differentiable outputs in [0, 1].

However, the gradient remains problematic. Consider r; = Conj(h, W;). Using the chain rule:

ar; OF(hj, Wi ;)
= Fo(hy, Wip)) ——2—=2= = (h; — 1) Fe(hi, Wik) , (20)
BWM (I:cl;[] ’) OWZ-_J- 7 kl;[J
8T'i - . 8Fc(hj, Wi,j) B o :
o = (!;gf%(hk,vvgk)) = = W g;gfz(hk,vvgk). @

Each partial derivative is proportional to a product of (n — 1) terms Fi(hy, W; 1), each of which
lies in [0, 1]. Unless all those terms are very close to 1, the product will be small; if any term is O,
the product (and thus the gradient) is zero. In other words, the magnitude of the gradient shrinks
multiplicatively with every additional input in the clause.

A similar calculation for s; = Disj(h, W;) yields, by symmetry (with G, := 1 — Fy(hg, Wi x)):

Js; 0s;
%T:%H%’ on. = Wi 1] Grs (22)
7 k#j 7 ki

which again contains a product of (n — 1) factors Gy € [0,1]. Thus, for large n or for typical
fractional values of h; and W; ;, these gradients vanish to near-zero. In practice, when many inputs

22

Under review as a conference paper at ICLR 2026

of an AND are not extremely close to 1, the gradient through that AND node becomes negligibly
small. And in the discrete limit (b, W € {0,1}), 3%? - and g}’;? are zero in almost all cases: only if
7 J

all other inputs of the AND are 1 (so that the output is sensitive to the remaining input/literal) will
a change in that input make a difference. Such a situation—e.g., a clause where all but one literal
is true—is rare, meaning the network spends most of its time in regimes where the loss gradient is
zero with respect to each individual parameter. This underscores the fundamental incompatibility of
naive multiplicative logical units with gradient-based learning: the more literals in a rule, the more
pronounced the vanishing gradient problem becomes.

Incompatibility with +1 Binarization (RNS). An additional issue is that the RRL activations
Conj(h, W) and Disj(h, W) produce outputs in the range [0, 1] (since they are essentially probabilities
or fractional truth values). This is incompatible with the design of RNS, where all internal logical
signals are meant to be binary {—1,+1} values at runtime. In RNS, we require a hard True or
False, encoded as +1 or —1. Using RRL’s continuous outputs inside an RNS network would break
the discrete semantics and require additional mechanisms to re-binarize the outputs at each layer.
Moreover, as discussed above, those continuous outputs suffer from vanishing gradients when used
in deep clauses. Thus, while RRL’s relaxation makes a logical layer differentiable, it does so at the
cost of deviating from binary £1 representation and encountering extremely small gradients for large
rules. These drawbacks motivate alternative approaches that maintain binary representations and
avoid multiplicative shrinkage.

J.3 RRL’S MITIGATIONS: LOG-DOMAIN SMOOTHING AND GRADIENT GRAFTING

RRL and related frameworks have proposed a couple of techniques to alleviate the vanishing gradient
and training difficulties while still using product-based logic. We briefly summarize two such
strategies: a log-domain scaled activation function, and a hybrid training method known as gradient
grafting.

Log-space smoothing of logical activations. One idea introduced with RRL is to modify the prod-
uct formulation by amplifying small values in the product through a log transformation. Specifically,
define a projection function P(v) that boosts a small product v:

o dP P(v)?
Plv) = 1—logwv ’ dv v 23)

Here v > 0 is a value (in practice, v will be a small positive number representing the product of
several terms). The function P(v) is chosen such that when v is small, — log v is large, so P(v) will
significantly exceed v (for example, if v = 1073, then P(v) ~ 1/(1 — (—6.9)) ~ 1/7.9 ~ 0.127,
whereas v itself is 0.001). In this way, P(v) stretches the lower end of the range upward.

RRL incorporates this into the logical units by first computing the product of inputs in log-space and
then projecting back. Using a small € > 0 to avoid log 0, the improved conjunction and disjunction
are defined as:

COI‘lj+(h,Wi) = P(H (Fc(hj,Wi,j) +E)) y (24)
j=1
DisjT(h,W;) = 1 — P(H (1—Fd(hj,Wi,j)+g)>. (25)
j=1

When € — 0 and h, W are binary, Conj* and Disj* recover the exact AND/OR as before. However,
for intermediate values, these use P(+) to prevent the product from becoming too small. If we let

n

v o= H (Fc(hjvwiyj) + E)

j=1

23

Under review as a conference paper at ICLR 2026

be the raw product inside P, then by the chain rule the gradient of Conj™ with respect to a parameter
becomes:

dConj™ B P(v)? OF.(hj, W; ;)
o, ~ o\ L W) | @)
’ k#j ’
OConj" _ P(v)? OF.(hj, Wi ;)
oh = u g(Fc(hk:Wz,k)+€) o 27)

Comparing these to the original gradients equation @—equation [21] we see that the pure product
term [, 4 F.(hy, W; 1) is now multiplied by @. For moderately small v, this factor can be
significantly larger than 1, thereby attenuating the vanishing effect. Intuitively, instead of the gradient
shrinking proportional to v (the product of many small terms), it shrinks proportional to P(v)?, and
since P(v) > v when v is small, the decay is slower. This log-space trick can appreciably increase
gradient magnitudes when the clause length n is not too large or the inputs are not too extreme.

Comparing these to the original gradients equation @—equation we see that the pure product

term Hk# F.(h, W; 1) is now multiplied by PO oy moderately small v, this factor can be

significantly larger than 1, thereby attenuating the vanishing effect.

To understand how the gradient shrinks, let’s analyze this mathematically. Consider the product term:
o= Felhy, Wig) = [T = Wis(1 = hy)) (28)
Jj=1 j=1

For typical intermediate values where h; ~ 0.5 and W; ; ~ 0.5, we have:

Fo(hj, Wy ;) ~1—0.5(1—0.5) = 0.75 (29)

Therefore, the product becomes:

v (0.75)" (30)
As n increases, this decays exponentially:
n=10: v~ 0.75'" ~ 0.056 (31)
n=20: v~0.75%" ~0.003 (32)
n=>50: v~0.75°"" ~57x1077 (33)
n=100: v~0.75'~32x10"% (34)

The gradient magnitude without log-smoothing is proportional to v:

n

xvaa® wherea <1 35)

aTZ'
BWL'J

With the log-space projection P(v), the gradient becomes:

dConj" | Pv)? 1 36)
oW, ; v v(l—logv)?
For small v, we have P(v) =~ #gv, SO:
P(v)? N 1 37)

Under review as a conference paper at ICLR 2026

Let’s evaluate this for different clause sizes:

P(v)? 1
—10: v~ 0.056 ~ ~2.15 38
" Y © o 0.056 x (—2.88)2 (38)
P(v)? 1
=20: v~ 0.003 ~ ~ 0.87 39
" ! ’ 0.003 % (—5.81)2 39
P(v)? 1

n=50: v~57x107", ~ 8.5 x 10° (40)

v BT x 1077 x (—14.4)2

While P(v)?/v grows as v shrinks, for very small v (large n), the growth is only polynomial in
log(1/v) =~ nlog(1/a), not enough to fully compensate for the exponential decay. Eventually, for
very large n:
P(v)? 1
lim) ~
n—00 v an -n?- (log Oé)2

—0 41)

While P(v)?/v grows as v shrinks, for very small v (large n), the growth is only polynomial in 7,
not enough to fully compensate for the exponential decay.

To see this clearly, recall that v ~ o™ where o < 1 (e.g., & = 0.75). Then:
1 1 1

) 1—logv 1-log(a®) 1—nloga “42)
Since a < 1, we have log o < 0, so —log v > 0. For large n:
1
Pv) " — 43
() n|log o “3)
Therefore:
P(v)? - 1/n?(log a)? _ 1 (ad)
v an a” - n? - (log a)?
The key observation is:
* The numerator grows as O(1/n?) (polynomial decay)
* The denominator decays as O(a™) (exponential decay)
Since exponential decay dominates polynomial growth:
1 1 1
lim ————— = lim —0 (45)

n—oo a” - n? - (log@)? n—oo n2(loga)? Can
because O%n approaches 0 much faster than # approaches infinity.
Thus, while the log-space trick delays the vanishing, it cannot prevent it for large n. Intuitively,
instead of the gradient shrinking proportional to v (the product of many small terms), it shrinks
proportional to P(v)?2, and since P(v) > v when v is small, the decay is slower. This log-space trick
can appreciably increase gradient magnitudes when the clause length n is not too large or the inputs
are not too extreme.

However, this modification does not fully eliminate the vanishing gradient problem. When n is
very large or many inputs are significantly below 1, the initial product v becomes extremely tiny
(e.g. 10719 or smaller), making log v a large negative number. In such extreme cases, P(v) itself
approaches 0 (since 1 — log v is huge), and consequently P(v)? /v can also become very small. In the
worst case, if any factor in the product is 0, v = 0 and no finite smoothing can help (P(0) is undefined
without e and effectively P(v)? /v remains near 0 for very small v). Thus, for very complex clauses
or highly non-saturated inputs, the gradients may still collapse to nearly zero. Moreover, once we
ultimately project the network to discrete weights and inputs (h, W € {0, 1}), the gradient at those
exact binary points is again zero in most directions (as discussed earlier). In summary, P(v)-based
smoothing improves gradient flow for moderately small signals but does not fundamentally overcome
vanishing gradients when training very large logical expressions. Additional strategies are required to
train purely discrete models.

25

Under review as a conference paper at ICLR 2026

Gradient Grafting for discrete training. Another technique used in RRL to handle training with
binary decisions is Gradient Grafting. The idea is to maintain two parallel models during training:
a continuous one that is used for backpropagation, and a discrete one that defines the actual loss. Let
6 denote the set of trainable continuous parameters (weights) and ¢(6) be a binarization function
that maps these to discrete values (for instance, thresholding each weight to 0 or 1). We denote by
Y = F(0, X) the output of the continuous model on input X, and by ¥ = F(¢q(0), X) the output of
the corresponding binarized model (i.e., the actual logical network with hard decisions). Training
proceeds by computing the loss L(Y") on the discrete model’s output, but then updating 6 using
gradients from the continuous model. In formula:

OL(Y)] [af/] 7 46)

9t+1:0t_n|:ay 8791‘

where 7 is the learning rate. In this update, agg) is the gradient of the loss with respect to the

discrete model’s output (this measures how the final loss would change if the discrete output changed),

and g—gf is the Jacobian of the continuous model’s output with respect to its parameters (which

is well-defined and non-zero because Y is produced by smooth activations). The chain of these
two terms provides an effective surrogate gradient for § that steers the discrete model’s loss L(Y")
downward, even though Y itself has zero or undefined gradients w.r.t. 6. In essence, the discrete

network’s error signal is “grafted” onto the continuous network’s sensitivity.

This approach circumvents the vanishing gradient at the discrete points by always following the
continuous proxy’s gradients, and can successfully optimize a logical network where direct backprop-
agation would fail. Gradient grafting, however, comes at the cost of increased training complexity.
The optimization is no longer a simple gradient descent on a single well-defined objective; instead,
it couples two _models (one binary, one continuous) and relies on their interplay. The update in
Eq. equationis not the true gradient of any single loss function with respect to 6, since L(Y") is
evaluated on a different forward path than Y. Thus, careful tuning and heuristics may be needed to
make this training scheme converge reliably. Nonetheless, this method has been shown to help train
discrete logical networks that would otherwise be stuck due to vanishing gradients.

In summary, RRL’s approach to training discrete logical rules involves smoothing the logical opera-
tions (to keep gradients alive) and using a hybrid training procedure to inject discrete loss information,
partially mitigating the vanishing gradient issue.

J.4 RNS: +1 ENCODING AND min/max LOGICAL ACTIVATIONS

RNS takes a fundamentally different route to avoid vanishing gradients: it redesigns the logical
neuron computations and encoding so that gradients do not collapse in the first place, even at discrete
points. There are two key aspects to this strategy:

(1) =1 Binary Encoding (No Zeros). Instead of representing False as 0 and True as 1, RNS encodes
Boolean values as —1 (false) and +1 (true). All intermediate logical signals in the network use this
{-1,+1} domain. The advantage of this encoding is that multiplying by —1 flips a signal’s truth
value while multiplying by 41 leaves it unchanged — and importantly, zero is never an output of a
logical unit. This means we never encounter the situation of a gradient being multiplied by 0 (which
was a major issue in the 0/1 encoding). By design, removing 0 from the state space ensures that no
single input can annihilate the gradient by being zero.

(2) Min/Max-Based Logical Operations (Non-multiplicative). Instead of using products to repre-
sent AND/OR, RNS uses piecewise-linear extremum functions that exactly mimic logic under the £1
encoding. Specifically, if a set of inputs {21, za, ..., 2, } are all either —1 or +1, we define:

AND(z1,...,2,) = min{zy,...,z,}, OR(z1,...,2,) = max{z1,...,z,}.
For example, if any x; = —1 (False), the minimum will be —1, correctly giving AND = False; only
if all z; = +1 will the minimum be +1 (True). Similarly, the maximum returns +1 if any input

is true. These operators perfectly realize the Boolean logic of AND/OR for £1 inputs, but unlike
products, they are not multiplicative and do not cause exponential shrinkage of gradients. Instead,

26

Under review as a conference paper at ICLR 2026

they behave as selectors: the AND output is whichever input is the “most false” (most negative), and
the OR output is the “most true” (most positive).

Because min and max are piecewise linear functions, we can define well-behaved subgradients for
them. Suppose y = max(z1,...,Z,). In the case of no ties, exactly one input attains this maximum
value; say xj, is the largest. A small change in x; will change y equally (a 1-to-1 slope), whereas
changes in any other x; (that are below the max) have no effect on y (as long as they don’t exceed

x1). One convenient choice of subgradient is to assign %’k = 1 for one of the maximal indices k,

and (%’j = 0 for all other j # k. More generally, when there are ties (multiple inputs share the max

value), the gradient can be split among them. A common subgradient is:

1 . .
b w7 ift e M,
oy where M = {j : ; = maxx} . 47)
Oz 0 ifi¢ M, k
An analogous definition applies for y = min(x1, ..., z,): the subgradient is 1/|m/| for inputs ¢ that

attain the minimum and O for others (where m = {j : z; = ming ;}). In words, the gradient of a
max gate is distributed equally to the input(s) that are currently “winning” (i.e., the True inputs in an
OR, or the least False inputs in an AND when all are true). Crucially, this gradient does not vanish
with n: at least one input of an AND/OR receives a substantial gradient (of order 1), indicating it
is responsible for the output. Even in the worst case of a tie among all n inputs (e.g., all inputs are
—1 for an AND, or all 41 for an OR), each input would get a gradient of 1/n — which decays only
linearly with n, not exponentially. In most cases, only one or a few inputs determine the extremum,
and they get a full magnitude gradient. There is no multiplicative chaining of many factors as in
RRL’s F, or Fz products. Additionally, negation in RNS is handled simply by a sign-flip: each literal
may have a trainable indicator that either uses the variable as +1 (positive literal) or negates it (—1).
Negation is just multiplication by —1, which is trivially differentiable (its subgradient is —1 when
active, or essentially treated as a constant factor).

Training with Straight-Through Estimators (STE). Both the -1 encoding and the use of min / max
activations are still inherently non-differentiable as functions (the max has a kink where two inputs are
equal, and the sign function that produces +1 outputs is discontinuous). However, RNS is amenable
to standard techniques for training binarized networks, particularly the straight-through estimator
(STE) for gradients. In backpropagation, whenever a gradient hits a non-differentiable threshold
(such as the sign function that produces 1 outputs), RNS simply treats that operation as an identity
mapping for the sake of gradient computation — meaning the gradient is “straight-through” passed as if
the threshold were not there ?. This is a common approach in binary neural networks to approximate
gradients through quantization. In the case of the min / max gates, we use the subgradient defined in
Eq. equation during backpropagation. The combination of STE and subgradient for min / max
ensures that at discrete operating points, the network can still propagate meaningful gradients.

For example, consider an AND implemented as y = min(zy, ..., z,) with all inputs either +1 or
—1. Suppose y = —1 (False) because at least one x; = —1. In the forward pass, this yields y = —1.
In the backward pass, the subgradient will assign a non-zero derivative to each input that was equal
to the minimum (i.e., to each x; that is —1). This correctly identifies that increasing any of those
from —1 to +1 (i.e., flipping a false literal to true) would change the AND output to a higher value
(potentially making the whole conjunction true if that was the only false). Thus, even though the
forward function is flat for changes in any single input (since you need all falses to flip for the AND to
turn true), the chosen subgradient provides a direction for learning: it tells the network to try flipping
those false literals. By contrast, in a multiplicative AND, if more than one input is false, the true
gradient is strictly zero for a single-input change — there is no signal at all indicating which inputs are
candidates to flip. An STE cannot magically invent a meaningful gradient in that case without risking
divergence from the actual function’s behavior. In RNS, however, the STE is effectively aligning with
the inherent combinatorial structure of the logic: it distributes blame to all currently-false conditions
for an AND (or to all currently-true conditions for an OR that outputs true, in case of ties). This
yields a robust training signal even in fully discrete regimes.

27

Under review as a conference paper at ICLR 2026

J.5 WHY RNS AvOIDS VANISHING GRADIENTS

In summary, the design choices in RNS eliminate the root causes of vanishing gradients that plague
RRL’s product-based logic:

* Activation Form: RRL uses multiplicative activations (product for AND, complement-
product for OR), which cause gradient magnitudes to contract multiplicatively with clause
size. Even the improved RRL with the P(v) log-smoothing still relies on a product (mod-
ulated by a corrective factor) and can suffer when many terms are far from 1. In contrast,
RNS uses min / max activations, which are piecewise linear selectors. There is no long
product over many inputs; the gradient comes from identifying the extremal input(s). This
fundamental difference means RNS does not inherently squeeze the gradient as the number
of inputs grows.

* Binary Encoding: RRL’s 0/1 encoding introduces an actual zero output (false = 0) that can
outright nullify gradients (any factor of 0 in a product zeroes out the whole gradient). RNS’s
+1 encoding avoids this so that a false value is —1 instead of 0, so it never multiplicatively
annihilates an entire gradient. Every input always has the potential to influence the output
by changing sign, and the gradient methods used in RNS take advantage of that.

* Gradient Scaling with Clause Size: In RRL, the magnitude of a gradient component
is on the order of [],_; ay for some ay € [0, 1] related to each of the other inputs (e.g.
F.(hy, W, r)). This leads to an exponential decay in gradient as n increases, unless all o,
are extremely close to 1. The log-domain trick rescales this by a factor of P(v)? /v, which
slows the decay but does not stop it for very large n. In RNS, by contrast, a gradient to
a decisive input is O(1) — it does not diminish with n at all (one input typically gets full
gradient 1 if it alone determines the output). In worst-case tie scenarios, the gradient might
be split among n inputs, giving each about 1/n, i.e., decaying linearly with n, which is
far milder than exponential decay. Thus, RNS scales to clauses with many literals without
facing an overwhelming vanishing gradient issue.

* Discrete Training Behavior: RRL must resort to special training techniques like gradient
grafting to handle discrete parameters, because directly backpropagating through a binarized
product-form network yields zero gradients in most places. RNS, on the other hand, can be
trained with standard backpropagation augmented with STE, which is a simpler and more
direct approach. The reason STE works well for RNS is that its surrogate gradient (identity
for the sign function, plus the min / max subgradient) aligns with actual changes that would
affect the output. In RRL’s case, an STE would have to assign gradients to inputs that in
reality do not affect the output unless combined with others — a fundamentally ambiguous
credit assignment. Therefore, RNS avoids the need for a two-model training setup; one
can optimize the £1 network in one go by using surrogate gradients, without the gradients
vanishing.

Overall, by using +1 encoding and min/max logic, RNS preserves discrete interpretability while
ensuring that gradient signals remain strong and informative. The network is able to learn large
logical formulas (many-input clauses) because it never multiplies a long chain of fractional terms
during backpropagation. Each logical neuron in RNS passes a gradient to the input(s) that currently
determine its output, providing a clear learning direction. These properties enable RNS to train
effectively, where a product-based logical network would struggle or stall due to vanishing gradients.

28

	Introduction
	Preliminaries
	Problem Formulation
	Feature Binarization
	Normal Form Rules as Model Interpretation

	Method
	Overall Structure
	Logic Selection Layer (LSL)
	Negation Layer
	Optimization
	Normal Form Constraint (NFC)

	Experiment
	Experimental Settings
	Rule Quality (RQ1)
	Rule Quality Metrics

	Classification Performance (RQ2)
	Simulation Experiment

	Efficiency (RQ3)
	Hyperparameter Study (RQ5)
	Model Interpretation

	Advantages and Limitations of RNS
	Conclusion
	Ethics Statement
	Use of Large Language Models
	Reproducibility Statement
	Related Work
	Traditional Rule Learning Methods
	Rule Learning Neural Networks
	Binarized Neural Network

	Dataset Statistics
	Reproducibility
	Hyperparameter Study
	Efficiency
	Rule Quality
	Simulation Experiment
	Ablation Study (RQ4)
	Model Interpretation
	Gradient vanishing
	Detailed Analysis
	Vanishing Gradients in Multiplicative Logical Activations (RRL)
	RRL's Mitigations: Log-Domain Smoothing and Gradient Grafting
	RNS: ±1 Encoding and min/max Logical Activations
	Why RNS Avoids Vanishing Gradients

