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Abstract

Traditional keyphrase prediction methods pre-001
dict a single set of keyphrases per document,002
failing to cater to the diverse needs of users and003
downstream applications. To bridge the gap,004
we introduce on-demand keyphrase generation,005
a novel paradigm that requires keyphrases that006
conform to specific high-level goals or intents.007
For this task, we present METAKP, a large-008
scale benchmark comprising four datasets,009
7500 documents, and 3760 goals across news010
and biomedical domains with human-annotated011
keyphrases. Leveraging METAKP, we design012
both supervised and unsupervised methods, in-013
cluding a multi-task fine-tuning approach and a014
self-consistency prompting method with large015
language models. The results highlight the chal-016
lenges of supervised fine-tuning, whose perfor-017
mance is not robust to distribution shifts. By018
contrast, the proposed self-consistency prompt-019
ing approach greatly improves the performance020
of large language models, enabling GPT-4o to021
achieve 0.548 SemF1, surpassing the perfor-022
mance of a fully fine-tuned BART-base model.023
Finally, we demonstrate the potential of our024
method to serve as a general NLP infrastruc-025
ture, exemplified by its application in epidemic026
event detection from social media.027

1 Introduction028

Keyphrase prediction is an NLP task that has at-029

tracted long-lasting research interest (Witten et al.,030

1999; Hulth, 2003; Meng et al., 2017). Given doc-031

uments from various domains such as academic032

writing, news, social media, or meetings, keyphrase033

extraction and keyphrase generation models output034

short phrases aiming at encapsulating the key enti-035

ties and concepts mentioned by the document. Be-036

yond a number of information retrieval applications037

(Kim et al., 2013; Tang et al., 2017; Boudin et al.,038

2020), keyphrase prediction methods are widely039

incorporated into the pipelines of other NLP tasks040

such as natural language generation (Yao et al.,041
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Pennsylvania : Postmaster Charged with Threatening Workers

Pittsburgh’s postmaster has been charged with threatening to retaliate 
against employees if they reported seeing him opening parcels and 
removing the illegal drugs inside. District attorney Stephen Zappala Jr. 
of Allegheny County announced the charges Tuesday against Daniel 
Davis, who transferred to Pittsburgh from Toledo, Ohio, last year. …
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Figure 1: An illustration of on-demand keyphrase gen-
eration. Given diverse user goals, models are required
to generate goal-conforming keyphrases or abstain.

2019; Li et al., 2020), text summarization (Dou 042

et al., 2021), and text classification (Berend, 2011). 043

Despite their wide application in diverse scenar- 044

ios, which may have diverse requirements on the 045

types of keyphrases, existing keyphrase prediction 046

methods generally follow a suboptimal assumption: 047

for every document, the model shall predict a sin- 048

gle application-agnostic set of keyphrases, which 049

is then evaluated against a monolithic set of ref- 050

erences (Wu et al., 2023b). This one-size-fits-all 051

approach fails to cater to both downstream appli- 052

cations’ varied requirements of the keyphrase pre- 053

dictions’ topic and level of specificity and different 054

expectations from human users with diverse back- 055

grounds. To properly handle such diverse feedback, 056

current approach could only rely on the sample- 057

rerank strategy (Zhao et al., 2022; Wu et al., 2023a), 058

which is largely inefficient. Besides, the single- 059

reference setting also biases the intrinsic evaluation, 060

of keyphrase prediction models, as high-frequency 061

topics in keyphrase labels may significantly out- 062

weigh the long-tail keyphrases. 063

To tackle these challenges, we propose on- 064

demand keyphrase generation, a novel paradigm 065
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that predicts keyphrases conditioned on a goal066

phrase that specifies the high-level category or067

intent of the keyphrase (Figure 1). For existing068

keyphrase prediction models, this task is challeng-069

ing as it requires the predictions to be not only cap-070

turing key information but also goal-conforming.071

Furthermore, the models are required to accept072

open-vocabulary goals, a significant step beyond073

predicting keyphrases with predefined categories074

or ontology (Park and Caragea, 2023).075

To test on this new task, we meticulously curate076

and release METAKP, a large-scale on-demand077

keyphrase generation benchmark covering four078

datasets, 7500 documents, and 3760 unique goals079

from the news and the biomedical text domain. We080

build a scalable labeling pipeline that combines081

GPT-4 (OpenAI, 2023) and human annotators to082

construct high-quality goals from keyphrases (Fig-083

ure 2). For evaluation, we design two tasks: judg-084

ing the relevance of goals and generating goal-085

conforming keyphrases. For the latter, we employ086

the state-of-the-art evaluation method (Wu et al.,087

2023b) to conduct a semantic-based evaluation.088

Using METAKP, we develop both super-089

vised and unsupervised methods for on-demand090

keyphrase generation. For the supervised method,091

we design a multi-task fine-tuning approach to en-092

able sequence-to-sequence pre-trained language093

models to self-determine the relevance of a goal094

and selectively generate keyphrases (Section 4.1).095

Then, in Section 4.2, we introduce an unsupervised096

self-consistency prompting approach leveraging097

the strong ability of large language models (LLMs)098

to propose goal-related keyphrase candidates and099

their propensity to predict high quality keyphrases100

with higher frequencies and ranks. Comprehensive101

experiments reveal the following insights:102

1. METAKP represents a challenging benchmark103

for keyphrase generation. Flan-T5-XL, the104

strongest fine-tuned model, only achieves an105

average of 0.609 Satisfaction Rate across all106

the datasets, and zero-shot prompting GPT-4o,107

a strong LLM, only achieves 0.492 SR.108

2. The proposed fine-tuning approach enables109

jointly learning goal relevance judgment and110

keyphrase generation without impeding each111

task’s performance (Section 5.3).112

3. The proposed self-consistency prompting ap-113

proach greatly improves the performance of114

LLMs, enabling GPT-4o to achieve 0.548115

SemF1, surpassing the performance of a fully116

fine-tuned BART-base model.117

4. Supervised fine-tuning can fail to general- 118

ize on out-of-distribution testing data. By 119

contrast, LLM-based unsupervised method 120

achieves consistent performance in all the do- 121

mains, especially in the news domain, where 122

GPT-4o outperforms supervised Flan-T5-XL 123

by 19% in out-of-distribution testing. 124

Finally, we demonstrate the potential of on- 125

demand keyphrase generation as a general NLP 126

infrastructure. Specifically, we use event detec- 127

tion for epidemics prediction (Parekh et al., 2024) 128

as a test bed. By constructing simple goals from 129

event ontology and attempting to extract relevant 130

keyphrases from social media text, we show that 131

an on-demand keyphrase generation model has the 132

potential to extract epidemic-related trends similar 133

to an event detection model trained on task-specific 134

data. The benchmark and experimental code will 135

be released to facilitate further research. 136

2 Related Work 137

Keyphrase Prediction with Types This work 138

is closely related to prior work on modeling 139

keyphrases with pre-defined types or categories. 140

Early datasets are often derived from named en- 141

tity recognition, where keyphrase spans are ex- 142

tracted with entity type tags (QasemiZadeh and 143

Schumann, 2016; Augenstein et al., 2017; Luan 144

et al., 2018). Notable modeling approaches in- 145

clude using intermediate task for training strong 146

and transferable encoder representations (Park and 147

Caragea, 2020) as well as multi-task fine-tuning 148

(Park and Caragea, 2023). In addition, existing lit- 149

erature has explored inducing high-level type vari- 150

able for more accurate keyphrase prediction, such 151

as topic-guided keyphrase generation (Wang et al., 152

2019; Zhang et al., 2022a), hierarchical keyphrase 153

generation (Wang et al., 2016; Chen et al., 2020; 154

Zhang et al., 2022b), as well as keyphrase comple- 155

tion (Zhao et al., 2021). Compare to these prior 156

work, our benchmark features a massive set of 157

open-vocabulary goals with wide domain cover- 158

age. We design novel supervised and unsupervised 159

modeling approaches that consider up-to-date tech- 160

niques such as large language models. 161

On-Demand Information Extraction Our work 162

resonates with the recent trend of designing flexi- 163

ble formulations for information extraction. For 164

instance, Zhong et al. (2021) propose a query- 165

focused formulation for the summarization task, 166

and Zhang et al. (2023) further extend the task to 167
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Document

Stanford sisters Nnemkadi and Chiney Ogwumike share bond

Fresno , Calif. The play-by-play sheet did not mark the exact 
moment , and th\re was no telephone changing booth in 
sight. Just the same , Nnemkadi Ogwumike somehow 
switched from Stanford teammate to super sister the split 
second Chiney Ogwumike crumpled with a yelp to the 
hardwood floor of the save mart center on Saturday night. …

Ogwumike Nnemkadi

Stanford University

Ogwumike Chiney

NCAA Basketball Championships (women)
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Goal 
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Human Validation
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College Basketball
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Basketball (Sports)

Person
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Person Ogwumike Nnemkadi Ogwumike Chiney

Sport College Basketball Basketball (Sports)

Organization Duke University Stanford University

NCAA Basketball Championships (women)Event

User Goals Keyphrases

Figure 2: The annotation pipeline for METAKP. Starting from human-annotated keyphrases, GPT-4 is instructed to
propose high-level goals and self-refine them. Finally, the goals are validated and filtered by humans.

include five constraints: Length, Extractiveness,168

Specificity, Topic, and Speaker. Recently, Jiao et al.169

(2023) introduce on-demand information extrac-170

tion, where models are required to answer queries171

by extracting information from the associated text172

and organize it in a tabular format. By comparison,173

this work pioneers in defining and benchmarking174

the goal-following ability of keyphrase prediction175

models. Our resource and methodology lay the176

foundation for user-controllable keyphrase systems177

and flexible concept extraction infrastructures.178

3 METAKP Benchmark179

In this section, we formulate the on-demand180

keyphrase generation task and introduce the181

METAKP evaluation benchmark.182

3.1 Problem Formulation183

The traditional keyphrase prediction task is defined184

with a tuple: (document X , reference set Y). Given185

X , a model directly generates all keyphrase hy-186

potheses, with approximating Y as the goal. For187

on-demand keyphrase generation, we introduce an188

open-vocabulary goal phrase g which describes a189

category of keyphrases specified by the user. The190

target of the model, then, is to generate a set of191

keyphrases based on (X , g) to approximate the set192

of goal-conforming keyphrases Yg ⊆ Y .193

Figure 1 provides an intuitive example of the194

task. We note that for irrelevant goals, Yg = ϕ,195

which means that an ideal model should not gener-196

ate any keyphrases given such goals. In addition,197

although Yg varies according to the goal, the univer-198

sal set of keyphrases Y is assumed to be generally199

fixed. In other words, g could viewed as a query 200

that specifies a target subset from Y , which enables 201

a wide range of choices for the modeling design. 202

3.2 Benchmark Creation Pipeline 203

To evaluate on-demand keyphrase generation, we 204

curate METAKP, a large-scale multi-domain evalu- 205

ation benchmark. The key challenge is to construct 206

general, meaningful, and diverse goals that reflect 207

high-level keyphrase types in real-world scenarios 208

such as document indexing and search engines. To 209

collect high quality goals, we design a model-in- 210

the-loop annotation pipeline that combines GPT-4 211

(OpenAI, 2023) with human annotators to infer 212

goals reversely from keyphrase annotations (Fig- 213

ure 2), with four steps detailed as follows. 214

Keyphrase Annotation by Human Given the 215

document X , human annotators specify the set of 216

all the possible keyphrases Y . For METAKP, we di- 217

rectly leverage the expert-curated keyphrases from 218

the respective keyphrase prediction datasets. 219

Goal Proposal We instruct GPT-4 to propose a 220

high-level goal for each of the keyphrases, and the 221

same goal could be shared by multiple keyphrases1. 222

Concretely, given X ,Y , GPT-4 returns a mapping 223

from goals to keyphrases. We present the prompt 224

for this step in Appendix A. 225

Goal Abstraction After the previous step, a draft 226

goal has been associated with each keyphrase. Al- 227

though the proposed goals are relevant, we observe 228

that they are sometimes overly specific. There- 229

1We use gpt-4-0613 via the OpenAI API.
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fore, we instruct GPT-4 to perform a round of self-230

refinement, where it attempts to propose a more231

abstract version for each of the goals in the previ-232

ous round, or keep the original goals if they are233

already high-level enough. The full prompt for this234

step is presented in Appendix A.235

Human Validation We qualitatively find that the236

outputs from two GPT-4 annotation iterations are237

sufficiently abstract and diverse. To further im-238

prove the quality of the goals and reduce the level239

of duplication, two of the authors conduct a round240

of filtering to obtain the final goal annotations. As241

this step does not entail adding new goals, the an-242

notators achieve a high inter-annotator agreement243

(detailed in the next section) following the annota-244

tion guideline, which we present in Appendix A.245

Finally, we create an instance for each of the fil-246

tered goals, taking the form (X , gi,Ygi).247

3.3 Dataset Statistics248

We execute the aforementioned goal construction249

pipeline on four keyphrase prediction datasets cov-250

ering two domains: news and biomedical text. For251

each domain, we create both an in-distribution and252

an out-of-distribution test set.253

• KPTimes (Gallina et al., 2019) is a large-scale254

keyphrase generation dataset in the news do-255

main. The documents are sourced from from256

New York Times and the keyphrases are cu-257

rated by professional editors.258

• DUC2001 (Wan and Xiao, 2008) is a widely259

used keypharse extraction dataset with news260

articles collected from TREC-9, paired with261

human-annotated keyphrases.262

• KPBiomed (Houbre et al., 2022) is a large-263

scale dataset containing PubMed abstracts264

paired with keyphrases annotated by paper265

authors themselves.266

• Pubmed (Schutz, 2008) is a traditional267

keyphrase extraction dataset in the biomed-268

ical domain with documents and keyphrases269

extracted from the PubMed Central.270

We curate a test set using each of these datasets271

and construct two domain-specific train/validation272

sets sampled from the training sets from KPTimes273

and KPBiomed. Table 1 and Figure 3 presents274

the basic statistics of the final datasets. Besides275

its domain coverage, one strength of METAKP is276

Source Split #Doc #Inst #Goal |Goal| #KP/Goal

KPTimes
Train 1859 7502 1083 1.43 1.32
Val 100 392 148 1.46 1.37
Test 984 3836 679 1.41 1.33

DUC2001 Test 308 1642 549 1.50 1.53

KPBiomed
Train 1886 7807 1311 1.75 1.27
Val 100 404 189 1.75 1.32
Test 994 4136 865 1.76 1.27

Pubmed Test 1269 4988 843 1.82 1.33

Table 1: Basic statistics of METAKP. #Inst = number
of instances in the form (X , g,Yg). |Goal| refers to
the average number of words in g. Finally, #KP/Goal
corresponds to the average cardinality of Yg .

Figure 3: A visualization of the goal distribution for the
news domain (top) and the biomedical domain (bottom).
METAKP features both high-frequency goals and a di-
verse long-tail goal distribution.

its diverse coverage: together, the dataset covers 277

3760 unique goals, including diverse topics and 278

subjects. While 40% of the instances correspond 279

to the 10 most popular goals in each domain, a 280

substantial number of goals also fall into the long 281

tail distribution, posing significant new challenge 282

in understanding the goal semantics. 283

To construct METAKP, the two-staged GPT-4 284

annotation costed approximately 500 USD, and the 285

human annotators worked for approximately 80 286

hours in total on final data filtering. We randomly 287

sample 50 documents each from KPTimes and KP- 288

Biomed, on which the annotators reach 0.699 Co- 289

hen’s Kappa for inter-annotator agreement. Then, 290

the annotators work on the rest documents sepa- 291

rately. When ambiguous cases are found, a discus- 292

sion is conducted to reach agreement. 293

Irrelevant Goal Sampling To test the ability of 294

keyphrase generation models to abstain from gen- 295

erating keyphrases given irrelevant goals, for each 296

document, we additionally construct a set of irrel- 297

evant goals. Concretely, we cluster the goals in 298

the labelled data and use each document’s existing 299

goals as anchors to sample goals that are likely to 300

be irrelevant to the document and thus it is unlikely 301
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that a keyphrase corresponding to the sampled goal302

exists for the document. We present the algorithm303

in the Appendix A.3. Using the algorithm, a bal-304

anced training set was created for training super-305

vised methods for goal relevance judgment.306

3.4 Evaluation Metric307

With METAKP, we design two tasks to compre-308

hensively evaluate a model’s ability to perform on-309

demand keyphrase generation.310

Goal Relevance Assessment This task aims to311

test whether a model can correctly distinguish irrel-312

evant goals that cannot yield any keyphrase from313

the relevant goals. As we will show in Section 6,314

this skill is also crucial to enable a wide application315

of on-demand keyphrase generation models. Fol-316

lowing recent literature on abstention (Feng et al.,317

2024), we use Abstain F1 as the evaluation metric,318

which is defined as the harmonic mean of the preci-319

sion and the recall of a model refusing to generate320

keyphrases for irrelevant goals.321

Goal-Oriented Keyphrase Generation Given322

document X , a list of goals g1, g2, ..., gn, and ref-323

erences Yg1 ,Yg2 , ...,Ygn , we evaluate a model’s324

predictions P1, P2, ..., Pn with two metrics:325

1. Reference Agreement, which assesses the326

model’s ability to generate keyphrases specifi-327

cally corresponding to the goal gi. Concretely,328

we calculate and report SemF1(Ygi , Pi), fol-329

lowing Wu et al. (2023b).330

2. Satisfactory Rate (SR), which assesses the331

frequency of the model generating high-332

quality keyphrases. Concretely, we calcu-333

late and report SR((Yg1, P1), ..., (Ygn, Pn))334

as the percentage of goals that have335

SemF1(Ygi , Pi) greater than a threshold2.336

4 Modeling Approach337

In this section, we introduce two modeling ap-338

proaches for on-demand keyphrase generation:339

a multi-task learning approach for fine-tuning340

sequence-to-sequence pre-trained language mod-341

els, and a self-consistency decoding approach for342

prompting large language models (LLMs).343

4.1 Multi-Task Supervised Fine-tuning344

Previous literature has demonstrated the effec-345

tiveness of fine-tuning sequence-to-sequence pre-346

2We fix τ = 0.6. This decision is based Wu et al. (2023b),
which suggests that the embedding model for SemF1 assigns
a similarity score of approximately 0.6 for name variations.

Encoder

Decoder

Stanford sisters Nnemkadi and Chiney ...

Institution
<n/a>

Duke; Stanford; ...

<eog>

Document Text

Selective Generation of KeyphrasesGoal Prefix

Figure 4: A visualization of the inference process of the
proposed sequence-to-sequence generation approach.
Based on the document and the goal prefix, the model
self-decides the relevance of the goal and selectively
generates the keyphrases for relevant goals only.

trained language models for keyphrase generation 347

(Kulkarni et al., 2022; Wu et al., 2022, 2023a). 348

However, it is unclear how these sequence predic- 349

tion approaches could be adopted for on-demand 350

keyphrase generation. To bridge this gap, we in- 351

troduce a novel formulation to train a sequence-to- 352

sequence model to autoregressively (1) assess the 353

relevance of goals and (2) jointly consider the docu- 354

ment as well as a desired goal to predict keyphrases. 355

Concretely, we formulate on-demand keyphrase 356

generation as a hierarchical composition of two 357

token prediction tasks. As shown in Figure 4, 358

with the document fed in the encoder, the de- 359

coder first models P (gi|X ), the likelihood of gi 360

being a high-quality relevant goal proposed by real 361

users. The model verbalizes this probability in 362

P (<n/a>|X , gi), a special token for rejecting irrel- 363

evant goals. If the goal is determined as relevant, 364

the model proceeds generating the keyphrases ac- 365

cording to the distribution P (Ygi |X , gi) it learned. 366

Inference We use prefix-controlled decoding for 367

inference. gi, followed by a special end-to-goal 368

token <eog>, is fixed as the decoder’s start of gen- 369

eration. Then, we use autoregressive decoding to 370

let the model self-assess the relevance of goal and 371

automatically decide the keyphrases to generate. 372

Training We design a multi-task learning pro- 373

cedure to directly supervise the model on 374

P (<n/a>|X , gi) and P (Ygi |X , gi) with a mixture 375

of relevant and irrelevant goals. As the goals pro- 376

vided by users could be arbitrary, we do not directly 377

supervise the model on P (gi|X ). 378
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Remark We note that the proposed approach has379

several advantages. First, both the goal relevance380

assessment and the keyphrase prediction process381

are streamlined in a single sequence prediction pro-382

cess, removing the need for separate architecture383

or inference pass. Second, since gi is not fed to the384

encoder, our model avoids the goal being diluted by385

the long input context and enables efficient infer-386

ence by reusing the encoded input representation387

for predicting keyphrases with different goals.388

4.2 Prompting Large Language Models389

Large language models (LLMs) that are tuned390

to follow human instructions have been shown391

to adapt well to a massive number of tasks de-392

fined through human queries (Ouyang et al., 2022;393

OpenAI, 2023). They have also been demon-394

strated to achieve promising keyphrase extraction395

or keyphrase generation performance, especially396

with semantic-based evaluation (Song et al., 2023;397

Wu et al., 2023b). As on-demand keyphrase extrac-398

tion could be easily formulated as an instruction-399

following task, we investigate the potential of400

LLMs as an unsupervised approach. We start with401

a simple instruction for judging a goal’s relevance:402

Decide if you should reject the high-level403
category given the title and abstract of a404

document. One could use the high-level category405
to write keyphrases from the document.406

as well as another instruction for keyphrase genera-407

tion based on a goal:408

Generate present and absent keyphrases belonging409
to the high-level category from the given text.410

Our preliminary experiments show that the first411

instruction already achieves a strong performance412

in deciding the goal relevance, even approaching413

supervised models (Section 5.2). However, when it414

comes to keyphrase generation, LLMs intriguingly415

misinterpret the task as named entity extraction:416

they often generate an almost exhaustive list of417

goal-related entities. To correct this behavior, we418

hypothesize that LLMs tend to generate salient en-419

tities more frequently and at an earlier location of420

the prediction sequence. Inspired by Wang et al.421

(2023), we thus design a novel self-consistency de-422

coding process to leverage the rank and frequency423

information in LLMs’ samples to filter out phrases424

that encode the most important information.425

Concretely, using the same instruction and in-426

put, we sample K prediction sequences (s1, ..., sK)427

from the LLM independently, each of which con-428

tains a variable number of keyphrases. Then, for429

each keyphrase p, we define its saliency score as: 430

score(p) = freq(p)
K × freq(p)∑

i=1,...,K rank(si,p)
, 431

where freq(p) returns the frequency of p in all the 432

samples and rank(si, p) returns the rank of p in 433

si (starting from 1) or 0 if p /∈ si. The first term 434

rewards keyphrases that frequently present in the 435

samples, and the second term rewards keyphrases 436

with a higher rank. Together, the score is defined to 437

range 0 from 1 regardless of the number of samples 438

or the number of keyphrases a model generates 439

per sample. Finally, we apply threshold filtering 440

and only retain the high quality keyphrases with 441

score(p) greater than or equal to a threshold τ . 442

5 Experiments 443

5.1 Experimental Setup 444

Supervised Fine-tuning Using the proposed ob- 445

jective, we fine-tune four sequence-to-sequence 446

models: BART-base/large (Lewis et al., 2020) 447

and Flan-T5-large/XL (Longpre et al., 2023), 448

with diverse sizes ranging from 140M to 3B. We 449

train the models for 20 epochs with batch size 64, 450

learning rate 3e-5, the Adam optimizer, and a lin- 451

ear decay with 50 warmup steps. The best model 452

checkpoint is chosen based on the keyphrase gen- 453

eration performance on the validation set. 454

Prompting We use gpt-3.5-turbo-0125 and 455

the gpt-4o-2024-05-13 models via the OpenAI 456

API. We will denote the models as GPT-3.5-Turbo 457

and GPT-4o. We use separate prompts for goal rel- 458

evance judgment and on-demand keyphrase gen- 459

eration. For the first task, greedy search is used. 460

For the second task, we generate 10 samples with 461

p = 0.95 and temperature = 0.7. The output length 462

is limited 30 tokens, which can accommodate ap- 463

proximately 10 keyphrases. Finally, for filtering, 464

we use τ = 0.3 for all the datasets. 465

We document the full implementation details in 466

Appendix B, including the prompt for language 467

language models, the post-processing process, as 468

well as the details for hyperparameter tuning. 469

5.2 Main Results 470

We present the main results for the two tasks in 471

Figure 5 and Table 2. 472

Goal Relevance Assessment According to Fig- 473

ure 5, we find both supervised fine-tuning and unsu- 474

pervised prompting reaches a high performance for 475
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Figure 5: Goal relevance judgment results of different types of models. Zero-shot prompting LLMs achieves a high
performance, despite slightly falling below supervised models. Also, GPT-4o does improve over GPT-3.5-Turbo.

Model Size Method KPTimes✣ DUC2001✣ KPBiomed✿ Pubmed✿ Average
SemF1 SR SemF1 SR SemF1 SR SemF1 SR SemF1 SR

Supervised Methods

BART-base 140M
No Goal 0.395 0.192 0.299 0.089 0.300 0.107 0.305 0.196 0.325 0.146
MetaKP 0.728 0.699 0.447 0.319 0.508 0.417 0.504 0.406 0.547 0.460

BART-large 406M
No Goal 0.399 0.196 0.306 0.081 0.297 0.074 0.290 0.070 0.323 0.105
MetaKP 0.752 0.738 0.469 0.336 0.545 0.461 0.529 0.437 0.574 0.493

Flan-T5-large 770M MetaKP 0.765 0.758 0.488 0.360 0.578 0.506 0.572 0.501 0.601 0.531
Flan-T5-XL 3B MetaKP 0.763 0.757 0.484 0.361 0.594† 0.530† 0.593† 0.526† 0.609† 0.544†

Unsupervised Methods

GPT-3.5-Turbo -
Zero-Shot 0.452 0.221 0.499 0.290 0.421 0.166 0.444 0.217 0.454 0.224

Sample + SC 0.518 0.406 0.572 0.516 0.513 0.423 0.472 0.376 0.519 0.430

GPT-4o -
Zero-Shot 0.491 0.281 0.526 0.374 0.480 0.278 0.469 0.262 0.492 0.299

Sample + SC 0.552 0.460 0.578† 0.535† 0.529 0.451 0.532 0.453 0.548 0.475

Table 2: Experiment results of supervised and unsupervised methods on-demand keyphrase generation. We use
different superscripts to denote results that are reported using the models trained on KPTimes (✣) and KPBiomed (✿).
SR = satisfaction rate. SC = self-consistency prompting The best results are boldfaced. †statistically significantly
better than the second highest result with p < 0.01, tested via paired t-test.

assessing whether a goal, as indicated by over 0.85476

Abstain F1 scores across all datasets. As model477

size scales, the out-of-distribution performance478

scales more readily, while the in-distribution perfor-479

mance plateaus at Flan-T5-large. With large lan-480

guage models, we observe strong performance es-481

pecially on DUC2001, surpassing the performance482

of Flan-T5-large trained on KPTimes.483

Keyphrase Generation The main results for484

keyphrase generation are presented in Table 2. For485

supervised methods, we additionally include a "No486

Goal" baseline, where the model is fine-tuned to487

generate all the keyphrases for the same document488

at once. For both BART-base and BART-large,489

this baseline achieves a low performance, indi-490

cating the challenging nature of directly lever-491

aging a keyphrase generation model for the pro-492

posed task. By comparison, the proposed goal-493

directed fine-tuning approach improves the perfor-494

mance by a large margin, with the best Flan-T5-XL495

model achieving 0.609 SemF1 and 0.544 satisfac-496

tion rate. On the other hand, directly zero-shot497

prompting large language models already achieves498

more superior performance compared to the su-499

pervised models trained without any goal. The 500

proposed self-consistency further improves the per- 501

formance substantially, allowing GPT-4o achieve 502

0.548 SemF1 and 0.475 satisfaction rate. Notably, 503

results demonstrate that the LLM-based approach 504

has the potential to be more generalizable. On 505

DUC2001, all supervised models trained on KPTi- 506

mes demonstrate a poor performance. By contrast, 507

both GPT-3.5-Turbo and GPT-4o are able to sur- 508

pass the performance of all supervised models. 509

5.3 Analyses 510

Which parameter affects LLMs the most? In 511

Figure 6, we use use KPTimes’ validation set to 512

investigate the sensitivity of the LLM-based ap- 513

proach to three hyperparameters: number of sam- 514

ples (K), threshold τ , and context length of the 515

input. Although multiple samples are essential to 516

high performance, more samples after two only 517

help marginally. In addition, our method is insensi- 518

tive to the threshold setting - the best performance 519

can be obtained by multiple settings between 0.25 520

and 0.45. Finally, while GPT-3.5-Turbo exhibits 521

a slight performance drop with longer context, 522

GPT-4o is robust to context length variations. 523
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Figure 6: Sensitivity of the self-consistency prompting
approach’s performance to number of samples, settings
of threshold τ , and the input length on KPTimes. The
results on KPBiomed is presented in Figure 12.

Objective ID OOD
AF1 SR AF1 SR

Training on KPTimes
Multi-task Learning 0.936 0.699 0.885 0.319
Goal Relevance Only 0.928 - 0.898 -
Keyphrase Only - 0.692 - 0.316

Training on KPBiomed
Multi-task Learning 0.907 0.417 0.915 0.406
Goal Relevance Only 0.917 - 0.916 -
Keyphrase Only - 0.425 - 0.407

Table 3: Ablation study on the multi-task learning setup.
AF1 = Abstain F1, SR = Satisfaction Rate.

Does multi-task learning harm each individual524

task’s performance? In Table 3, we conduct an525

ablation study with BART-base on the supervised526

training loss. For each ablated component, we527

mask out the corresponding tokens when calcu-528

lating the loss. Overall, combining the two learn-529

ing objectives do not significantly harm the perfor-530

mance compared to only learning individual tasks,531

while incurring much less computational overhead.532

In fact, on KPTimes, the two tasks are constructive533

- learning goal relevance helps generating better534

goal-conforming keyphrases, and vice versa.535

6 METAKP in the Wild: Event Detection536

Finally, we demonstrate the potential of on-demand537

keyphrase generation as general NLP infrastructure,538

using event detection (ED) as a case study.539

We leverage the testing dataset used in SPEED540

(Parekh et al., 2024), which contains time-stamped541

social media posts related to Monkeypox3. From542

3We solicited the dataset and outputs from the authors.
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Figure 7: Number of events/keyphrases extracted for
Monkeypox as a function of time. The true trend and
SPEED outputs are solicited from Parekh et al. (2024).

the SPEED ontology, we curate seven epidemic- 543

related goals: disease infection, epidemic spread, 544

epidemic prevention, epidemic control, symptom, 545

recover from disease, death from epidemic. Then, 546

we run a FLAN-T5-large model trained on all train- 547

ing data from METAKP to assess the relevance of 548

each goal against each social media post. If the 549

probability of <n/a> following <eog> is greater 550

than 0.001, the goal is judged relevant to the post 551

and thus the underlying event is likely. 552

As shown in Figure 7, we observe that this 553

keyphrase-based paradigm is able to extract trends 554

that are similar to an ED model trained on SPEED 555

(Parekh et al., 2024). Intuitively, given a sentence 556

containing "getting vaccination", instead of focus- 557

ing on the trigger "get", on-demand keyphrase 558

generation is able focus more on "vaccination", 559

given the goal "epidemic control". In this way, on- 560

demand keyphrase generation models can both be 561

naturally repurposed for ED and also promises to 562

extract supporting topics related to the the event. 563

7 Conclusion 564

We introduce on-demand keyphrase generation, 565

targeting the need for dynamic, goal-oriented 566

keyphrase prediction tailored to diverse applica- 567

tions and user demands. A large-scale, multi- 568

domain, human-verified benchmark METAKP was 569

curated and introduced. We designed and evalu- 570

ated both supervised and unsupervised methods 571

on METAKP, highlighting the strengths of self- 572

consistency prompting with large language mod- 573

els. This approach significantly outperformed tra- 574

ditional fine-tuning methods under domain shifts, 575

showcasing its robustness and the broader applica- 576

bility of our methodology. Finally, we underscore 577

the versatility of on-demand keyphrase generation 578

in practical applications such as epidemic event ex- 579

traction, promising a new direction for keyphrase 580

generation as general NLP infrastructure. 581
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Limitations582

In this work, we propose the novel on-demand583

keyphrase generation paradigm. In the future,584

several exciting directions exist for extending the585

paradigm as well as the METAKP benchmark:586

1. Multi-lingual Keyphrase Generation.587

METAKP only covers data in English.588

Further benchmarking and enhancing the589

multilingual and cross-lingual on-demand590

keyphrase generation ability is an important591

future direction.592

2. Wider Domain Coverage. We mainly focus593

on the news and the biomedical text domain as594

they have been shown as important application595

domains for keyphrase generation.596

3. Flexible Instructions. In this work, the "de-597

mand" from the users are generally defined598

as topics or categories of keyphrases. How-599

ever, future work could expand this definition600

to include demands that specify stylistic con-601

straints such as the number of keyphrases, the602

length, and their formality.603

Ethics Statement604

As a new task and paradigm, on-demand keyphrase605

generation may bring new security risks and ethi-606

cal concerns. To begin with, although keyphrase607

generation models generally have outstanding un-608

derstanding of phrase saliency, they generally have609

a shallower understanding of semantics and factu-610

ality. Thus, when pairing keyphrases with goals,611

potential misinformation could be created. For612

instance, when queried with "cure" as a goal, a613

model may return certain concepts that are factu-614

ally wrong. In addition, when queries contain cer-615

tain occupations as goals, a keyphrase generation616

model may reinforce existing gender stereotypes617

by selectively generating and ignoring entities with618

a certain gender. We view these possibilities as619

potential risks and encourage a thorough redteam-620

ing process before deploying on-demand keyphrase621

generation systems in real-world products.622

We use KPTimes and KPBiomed data dis-623

tributed by the original authors. For DUC2001 and624

PubMed, we access the data via ake-datasets4. KP-625

Times was released under Apache-2.0 license, and626

we cannot find licensing information for DUC2001,627

KPBiomed, and PubMed. ake-datasets was also628

released under Apache-2.0. No additional prepro-629

4https://github.com/boudinfl/ake-datasets

cessing is performed in METAKP except lower- 630

casing and tokenization. While we mainly rely on 631

the original authors for dataset screening to remove 632

sensitive and harmful information, we also actively 633

monitor the data quality during in the human filter- 634

ing process and remove any document that could 635

cause privacy or ethics concerns. As OpenAI mod- 636

els are involved in the data curation process, our 637

code and datasets will be released with MIT license 638

with a research-only use permission. 639

References 640

Isabelle Augenstein, Mrinal Das, Sebastian Riedel, 641
Lakshmi Vikraman, and Andrew McCallum. 2017. 642
SemEval 2017 task 10: ScienceIE - extracting 643
keyphrases and relations from scientific publications. 644
In Proceedings of the 11th International Workshop 645
on Semantic Evaluation (SemEval-2017), pages 546– 646
555, Vancouver, Canada. Association for Computa- 647
tional Linguistics. 648

Gábor Berend. 2011. Opinion expression mining by ex- 649
ploiting keyphrase extraction. In Proceedings of 5th 650
International Joint Conference on Natural Language 651
Processing, pages 1162–1170, Chiang Mai, Thailand. 652
Asian Federation of Natural Language Processing. 653

Florian Boudin, Ygor Gallina, and Akiko Aizawa. 2020. 654
Keyphrase generation for scientific document re- 655
trieval. In Proceedings of the 58th Annual Meeting of 656
the Association for Computational Linguistics, pages 657
1118–1126, Online. Association for Computational 658
Linguistics. 659

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King. 660
2020. Exclusive hierarchical decoding for deep 661
keyphrase generation. In Proceedings of the 58th 662
Annual Meeting of the Association for Computational 663
Linguistics, pages 1095–1105, Online. Association 664
for Computational Linguistics. 665

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao 666
Jiang, and Graham Neubig. 2021. GSum: A gen- 667
eral framework for guided neural abstractive summa- 668
rization. In Proceedings of the 2021 Conference of 669
the North American Chapter of the Association for 670
Computational Linguistics: Human Language Tech- 671
nologies, pages 4830–4842, Online. Association for 672
Computational Linguistics. 673

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan 674
Ding, Vidhisha Balachandran, and Yulia Tsvetkov. 675
2024. Don’t hallucinate, abstain: Identifying LLM 676
knowledge gaps via multi-llm collaboration. CoRR, 677
abs/2402.00367. 678

Ygor Gallina, Florian Boudin, and Beatrice Daille. 2019. 679
KPTimes: A large-scale dataset for keyphrase gener- 680
ation on news documents. In Proceedings of the 12th 681
International Conference on Natural Language Gen- 682
eration, pages 130–135, Tokyo, Japan. Association 683
for Computational Linguistics. 684

9

https://github.com/boudinfl/ake-datasets
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://aclanthology.org/I11-1130
https://aclanthology.org/I11-1130
https://aclanthology.org/I11-1130
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.48550/ARXIV.2402.00367
https://doi.org/10.48550/ARXIV.2402.00367
https://doi.org/10.48550/ARXIV.2402.00367
https://doi.org/10.18653/v1/W19-8617
https://doi.org/10.18653/v1/W19-8617
https://doi.org/10.18653/v1/W19-8617


Maël Houbre, Florian Boudin, and Beatrice Daille. 2022.685
A large-scale dataset for biomedical keyphrase gen-686
eration. In Proceedings of the 13th International687
Workshop on Health Text Mining and Information688
Analysis (LOUHI), pages 47–53, Abu Dhabi, United689
Arab Emirates (Hybrid). Association for Computa-690
tional Linguistics.691

Anette Hulth. 2003. Improved automatic keyword ex-692
traction given more linguistic knowledge. In Pro-693
ceedings of the 2003 Conference on Empirical Meth-694
ods in Natural Language Processing, pages 216–223.695

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru696
Ouyang, Heng Ji, and Jiawei Han. 2023. Instruct697
and extract: Instruction tuning for on-demand in-698
formation extraction. In Proceedings of the 2023699
Conference on Empirical Methods in Natural Lan-700
guage Processing, pages 10030–10051, Singapore.701
Association for Computational Linguistics.702

Youngsam Kim, Munhyong Kim, Andrew Cattle, Julia703
Otmakhova, Suzi Park, and Hyopil Shin. 2013. Ap-704
plying graph-based keyword extraction to document705
retrieval. In Proceedings of the Sixth International706
Joint Conference on Natural Language Processing,707
pages 864–868, Nagoya, Japan. Asian Federation of708
Natural Language Processing.709

Mayank Kulkarni, Debanjan Mahata, Ravneet Arora,710
and Rajarshi Bhowmik. 2022. Learning rich repre-711
sentation of keyphrases from text. In Findings of the712
Association for Computational Linguistics: NAACL713
2022, pages 891–906, Seattle, United States. Associ-714
ation for Computational Linguistics.715

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan716
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,717
Veselin Stoyanov, and Luke Zettlemoyer. 2020.718
BART: Denoising sequence-to-sequence pre-training719
for natural language generation, translation, and com-720
prehension. In Proceedings of the 58th Annual Meet-721
ing of the Association for Computational Linguistics,722
pages 7871–7880, Online. Association for Computa-723
tional Linguistics.724

Jingjing Li, Zichao Li, Lili Mou, Xin Jiang, Michael R.725
Lyu, and Irwin King. 2020. Unsupervised text gener-726
ation by learning from search. In Advances in Neural727
Information Processing Systems 33: Annual Confer-728
ence on Neural Information Processing Systems 2020,729
NeurIPS 2020, December 6-12, 2020, virtual.730

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,731
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le,732
Barret Zoph, Jason Wei, and Adam Roberts. 2023.733
The flan collection: Designing data and methods for734
effective instruction tuning. In Proceedings of the735
40th International Conference on Machine Learning,736
volume 202 of Proceedings of Machine Learning737
Research, pages 22631–22648. PMLR.738

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh739
Hajishirzi. 2018. Multi-task identification of entities,740
relations, and coreference for scientific knowledge741

graph construction. In Proceedings of the 2018 Con- 742
ference on Empirical Methods in Natural Language 743
Processing, pages 3219–3232, Brussels, Belgium. 744
Association for Computational Linguistics. 745

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, 746
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase 747
generation. In Proceedings of the 55th Annual Meet- 748
ing of the Association for Computational Linguistics 749
(Volume 1: Long Papers), pages 582–592, Vancouver, 750
Canada. Association for Computational Linguistics. 751

OpenAI. 2023. Gpt-4 technical report. ArXiv, 752
abs/2303.08774. 753

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 754
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 755
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 756
2022. Training language models to follow instruc- 757
tions with human feedback. Advances in neural in- 758
formation processing systems, 35:27730–27744. 759

Tanmay Parekh, Anh Mac, Jiarui Yu, Yuxuan Dong, 760
Syed Shahriar, Bonnie Liu, Eric Yang, Kuan-Hao 761
Huang, Wei Wang, Nanyun Peng, and Kai-Wei 762
Chang. 2024. Event detection from social media for 763
epidemic prediction. Preprint, arXiv:2404.01679. 764

Seo Park and Cornelia Caragea. 2023. Multi-task 765
knowledge distillation with embedding constraints 766
for scholarly keyphrase boundary classification. In 767
Proceedings of the 2023 Conference on Empirical 768
Methods in Natural Language Processing, pages 769
13026–13042, Singapore. Association for Compu- 770
tational Linguistics. 771

Seoyeon Park and Cornelia Caragea. 2020. Scientific 772
keyphrase identification and classification by pre- 773
trained language models intermediate task transfer 774
learning. In Proceedings of the 28th International 775
Conference on Computational Linguistics, pages 776
5409–5419, Barcelona, Spain (Online). International 777
Committee on Computational Linguistics. 778

Behrang QasemiZadeh and Anne-Kathrin Schumann. 779
2016. The ACL RD-TEC 2.0: A language resource 780
for evaluating term extraction and entity recognition 781
methods. In Proceedings of the Tenth International 782
Conference on Language Resources and Evaluation 783
(LREC’16), pages 1862–1868, Portorož, Slovenia. 784
European Language Resources Association (ELRA). 785

Alexander Schutz. 2008. Keyphrase extraction from 786
single documents in the open domain exploiting lin- 787
guistic and statistical methods. 788

Mingyang Song, Haiyun Jiang, Shuming Shi, Songfang 789
Yao, Shilong Lu, Yi Feng, Huafeng Liu, and Liping 790
Jing. 2023. Is chatgpt a good keyphrase generator? a 791
preliminary study. arXiv preprint arXiv:2303.13001. 792

Yixuan Tang, Weilong Huang, Qi Liu, Anthony K. H. 793
Tung, Xiaoli Wang, Jisong Yang, and Beibei Zhang. 794
2017. Qalink: Enriching text documents with rel- 795
evant q&a site contents. Proceedings of the 2017 796
ACM on Conference on Information and Knowledge 797
Management. 798

10

https://doi.org/10.18653/v1/2022.louhi-1.6
https://doi.org/10.18653/v1/2022.louhi-1.6
https://doi.org/10.18653/v1/2022.louhi-1.6
https://aclanthology.org/W03-1028
https://aclanthology.org/W03-1028
https://aclanthology.org/W03-1028
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/hash/7a677bb4477ae2dd371add568dd19e23-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7a677bb4477ae2dd371add568dd19e23-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7a677bb4477ae2dd371add568dd19e23-Abstract.html
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2404.01679
https://arxiv.org/abs/2404.01679
https://arxiv.org/abs/2404.01679
https://doi.org/10.18653/v1/2023.emnlp-main.805
https://doi.org/10.18653/v1/2023.emnlp-main.805
https://doi.org/10.18653/v1/2023.emnlp-main.805
https://doi.org/10.18653/v1/2023.emnlp-main.805
https://doi.org/10.18653/v1/2023.emnlp-main.805
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://doi.org/10.18653/v1/2020.coling-main.472
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://api.semanticscholar.org/CorpusID:8314070
https://api.semanticscholar.org/CorpusID:8314070
https://api.semanticscholar.org/CorpusID:8314070
https://api.semanticscholar.org/CorpusID:8314070
https://api.semanticscholar.org/CorpusID:8314070
https://leuchine.github.io/papers/cikm17.pdf
https://leuchine.github.io/papers/cikm17.pdf
https://leuchine.github.io/papers/cikm17.pdf


Xiaojun Wan and Jianguo Xiao. 2008. Single document799
keyphrase extraction using neighborhood knowledge.800
In AAAI, volume 8, pages 855–860.801

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,802
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,803
and Denny Zhou. 2023. Self-consistency improves804
chain of thought reasoning in language models. In805
The Eleventh International Conference on Learning806
Representations.807

Yue Wang, Jing Li, Hou Pong Chan, Irwin King,808
Michael R. Lyu, and Shuming Shi. 2019. Topic-809
aware neural keyphrase generation for social media810
language. In Proceedings of the 57th Annual Meet-811
ing of the Association for Computational Linguistics,812
pages 2516–2526, Florence, Italy. Association for813
Computational Linguistics.814

Yunli Wang, Yong Jin, Xiaodan Zhu, and Cyril Goutte.815
2016. Extracting discriminative keyphrases with816
learned semantic hierarchies. In Proceedings of COL-817
ING 2016, the 26th International Conference on Com-818
putational Linguistics: Technical Papers, pages 932–819
942, Osaka, Japan. The COLING 2016 Organizing820
Committee.821

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl822
Gutwin, and Craig G Nevill-Manning. 1999. Kea:823
Practical automatic keyphrase extraction. In Pro-824
ceedings of the fourth ACM conference on Digital825
libraries, pages 254–255.826

Di Wu, Wasi Ahmad, and Kai-Wei Chang. 2023a. Re-827
thinking model selection and decoding for keyphrase828
generation with pre-trained sequence-to-sequence829
models. In Proceedings of the 2023 Conference on830
Empirical Methods in Natural Language Processing,831
pages 6642–6658, Singapore. Association for Com-832
putational Linguistics.833

Di Wu, Wasi Ahmad, Sunipa Dev, and Kai-Wei834
Chang. 2022. Representation learning for resource-835
constrained keyphrase generation. In Findings of the836
Association for Computational Linguistics: EMNLP837
2022, pages 700–716, Abu Dhabi, United Arab Emi-838
rates. Association for Computational Linguistics.839

Di Wu, Da Yin, and Kai-Wei Chang. 2023b. Kpeval:840
Towards fine-grained semantic-based evaluation of841
keyphrase extraction and generation systems.842

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin843
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-844
and-write: Towards better automatic storytelling. In845
Proceedings of the AAAI Conference on Artificial846
Intelligence, volume 33, pages 7378–7385.847

Yusen Zhang, Yang Liu, Ziyi Yang, Yuwei Fang, Yulong848
Chen, Dragomir Radev, Chenguang Zhu, Michael849
Zeng, and Rui Zhang. 2023. MACSum: Control-850
lable summarization with mixed attributes. Transac-851
tions of the Association for Computational Linguis-852
tics, 11:787–803.853

Yuxiang Zhang, Tao Jiang, Tianyu Yang, Xiaoli Li, and 854
Suge Wang. 2022a. HTKG: deep keyphrase gen- 855
eration with neural hierarchical topic guidance. In 856
SIGIR ’22: The 45th International ACM SIGIR Con- 857
ference on Research and Development in Information 858
Retrieval, Madrid, Spain, July 11 - 15, 2022, pages 859
1044–1054. ACM. 860

Yuxiang Zhang, Tianyu Yang, Tao Jiang, Xiaoli Li, and 861
Suge Wang. 2022b. Hyperbolic deep keyphrase gen- 862
eration. In Machine Learning and Knowledge Dis- 863
covery in Databases - European Conference, ECML 864
PKDD 2022, Grenoble, France, September 19-23, 865
2022, Proceedings, Part II, volume 13714 of Lecture 866
Notes in Computer Science, pages 521–536. Springer. 867

Guangzhen Zhao, Guoshun Yin, Peng Yang, and Yu Yao. 868
2022. Keyphrase generation via soft and hard seman- 869
tic corrections. In Proceedings of the 2022 Confer- 870
ence on Empirical Methods in Natural Language Pro- 871
cessing, pages 7757–7768, Abu Dhabi, United Arab 872
Emirates. Association for Computational Linguistics. 873

Yu Zhao, Jia Song, Huali Feng, Fuzhen Zhuang, Qing 874
Li, Xiaojie Wang, and Ji Liu. 2021. Deep keyphrase 875
completion. CoRR, abs/2111.01910. 876

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia 877
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli 878
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir 879
Radev. 2021. QMSum: A new benchmark for query- 880
based multi-domain meeting summarization. In Pro- 881
ceedings of the 2021 Conference of the North Amer- 882
ican Chapter of the Association for Computational 883
Linguistics: Human Language Technologies, pages 884
5905–5921, Online. Association for Computational 885
Linguistics. 886

11

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://aclanthology.org/C16-1089
https://aclanthology.org/C16-1089
https://aclanthology.org/C16-1089
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2023.emnlp-main.410
https://doi.org/10.18653/v1/2022.findings-emnlp.49
https://doi.org/10.18653/v1/2022.findings-emnlp.49
https://doi.org/10.18653/v1/2022.findings-emnlp.49
https://arxiv.org/abs/2303.15422
https://arxiv.org/abs/2303.15422
https://arxiv.org/abs/2303.15422
https://arxiv.org/abs/2303.15422
https://arxiv.org/abs/2303.15422
https://ojs.aaai.org/index.php/AAAI/article/view/4726/4604
https://ojs.aaai.org/index.php/AAAI/article/view/4726/4604
https://ojs.aaai.org/index.php/AAAI/article/view/4726/4604
https://doi.org/10.1162/tacl_a_00575
https://doi.org/10.1162/tacl_a_00575
https://doi.org/10.1162/tacl_a_00575
https://doi.org/10.1145/3477495.3531990
https://doi.org/10.1145/3477495.3531990
https://doi.org/10.1145/3477495.3531990
https://doi.org/10.1007/978-3-031-26390-3_30
https://doi.org/10.1007/978-3-031-26390-3_30
https://doi.org/10.1007/978-3-031-26390-3_30
https://doi.org/10.18653/v1/2022.emnlp-main.529
https://doi.org/10.18653/v1/2022.emnlp-main.529
https://doi.org/10.18653/v1/2022.emnlp-main.529
https://arxiv.org/abs/2111.01910
https://arxiv.org/abs/2111.01910
https://arxiv.org/abs/2111.01910
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472


Supplementary Material: Appendices

A METAKP Construction Details887

In this section, we describe the details of the con-888

struction process of METAKP.889

A.1 GPT-4 Annotation890

Goal Proposal In Figure 8, we show the prompt891

used to instruct GPT-4 to propose goals from the892

document and human-annotated keyphrases. We893

truncate the document body to four sentences as894

its role is only providing essential contextual. The895

LLM is instructed to propose all the goals for all the896

keyphrases together, which helps the model group897

together keyphrases that share the same goal.898

Document Title: {title}
First 4 sentences of the document body: {body}

Keyphrases (separated by ";"): {keyphrases}

For each keyphrase, generate an abstract
category for the keyphrase. Examples include
process, task, material, tool, measurement,
model, technology, and metric etc. Do not
limit yourself to the examples. Make sure
that the categories are informative in the
domain of science and appearing natural as if
that assigned by a well-read user. Return a
list of dictionaries, each with two keys -
"keyphrase" and "category". If two keyphrases
have the same category, make sure that they are
labelled with the same phrase. Do not change how
the keyphrases appear, including their cases.
Return json only and do not say anything else.

Figure 8: Prompt used for instructing GPT-4 to generate
the goals from a document and keyphrases.

Goal Refinement Then, we instruct GPT-4 to899

refine the goals by trying to generate more abstract900

versions of them. The prompt is shown in Figure 9.901

As we perform the refinement directly from the chat902

history of the previous step, we omit the previous903

prompt and step 1 model outputs.904

... step 1 prompt and model outputs ...

Can you make the categories more abstract, yet
still informative to the keyphrase? If the
categories are already abstract enough, you do
not need to change. Return json only.

Figure 9: Prompt used for instructing GPT-4 to improve
the abstractiveness of the proposed goals.

For both of the steps, we use greedy search and905

cap the output to 400 tokens. We parse the results906

string into json format to extract the goals.907

A.2 Human Validation 908

Next, based on the two rounds of proposed goals, 909

the two authors (student researchers familiar with 910

NLP and the keyphrase generation task) filter 911

out high quality goals as the final benchmarking 912

dataset. We emphasize that this decision is required 913

due to the nature of the task, which requires expert 914

annotators to ensure a high data quality. The con- 915

sent to use and release the annotation traces was 916

obtained from both of the authors. The type of re- 917

search conducted by this work is automatically de- 918

termined exempt from by the authors’ institution’s 919

ethics review board. We design and enforce two 920

major guidelines during the annotation process: 921

1. Remove a goal if it is semantically equivalent 922

to or a subtype of some another goal that is 923

more abstract. 924

2. Remove a goal if it so abstract that it could 925

also enclose other keyphrases not currently 926

paired with the goal. This criterion includes 927

overly vague goals (e.g., "concept") and goals 928

that corresponds to the topic of the entire 929

pssage (e.g., "chemistry concepts"). 930

As mentioned in Section 3, this process allows 931

the annotator reach a high inter-annotator agree- 932

ment of 0.699 Cohen’s Kappa. In addition, the 933

annotator actively engage in a discussion whenever 934

ambiguous cases are found. Finally, we conduct a 935

rule-based postprocessing with two stages. 936

1. Goal Removal. We remove the following 937

goals as they represent overly general goals: 938

entity, process, concept. 939

2. Goal Unification. We merge the following 940

goal labels as they represent the same mean- 941

ing. Table 4 presents the source and target 942

goals. Note that to preserve the diversity of 943

the goals, we refrain from merging aggres- 944

sively and only merge the basic cases that 945

may be result from annotation discrepancy. 946

A.3 Negative sampling Algorithm 947

To construct the training and evaluation data for 948

evaluating the model’s ability to reject irrelevant 949

goals, we design a simple algorithm to sample ir- 950

relevant goals. Concretely, we pool together all 951

the existing goals from the same dataset as the uni- 952

versal goal set and leverage the phrase embedding 953

model released by (Wu et al., 2023b) to embed all 954

the phrases. Then, for each goal from the docu- 955
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Source Goals Target Goals
place, geographical location location

person, people, individual person individual
geopolitical entity country

... event event
profession occupation

belief system religion
incident outcome outcome

subject topic
incident event

... equipment equipment
... procedure procedure

Table 4: Goal merging directions for METAKP label
cleaning. We replace all occurrences of source goals
with target goals.

ment, we use it as an anchor to retrieve d% most956

dissimilar goals. We use d = 50 for all the datasets.957

From these goals, we sample a goal that is not asso-958

ciated with the document as the irrelevant goal ac-959

cording to the frequency distribution of these goals960

appearing as relevant goals in the final dataset. We961

additionally design a frequency match constraint,962

which enforces that the frequency of a goal g ap-963

pearing as an irrelevant goal should not exceed the964

frequency it appears as a relevant goal. In practice,965

the frequency match constraint is applied first. If966

no eligible goals remain, we sample a goal from the967

d% most dissimilar goals according to frequency.968

B Implementation Details969

B.1 Supervised Fine-tuning970

For multi-task learning with BART and Flan-T5, we971

base our implementation on the Huggingface Trans-972

formers implementations provided by (Wu et al.,973

2023a) and train for 20 epochs with early stopping.974

We use learning rate 3e-5, linear decay, batch size975

64, and the AdamW optimizer. Due to the context976

limitations of Flan-T5, all the input documents for977

BART and Flan-T5 are truncated to 512 tokens to978

enable a fair comparison. We perform a careful979

hyperparameter search over the learning rate, batch980

size, and warm-up steps. The corresponding search981

spaces are {1e-5, 3e-5, 6e-5, 1e-4}, {16, 32, 64,982

128}, and {50, 100, 250, 500}. The best hyper-983

parameters are chosen based on the performance984

on the validation set. To decode from the fine-985

tuned models, we fix the decoder’s prefix using the986

constrained decoding functionalities provided by987

Huggingface Transformers and use greedy search988

to complete the suffix. 989

The fine-tuning experiments are performed on 990

a local GPU server with eight Nvidia RTX A6000 991

GPUs (48G each). We use gradient accumula- 992

tion to achieve the desired batch sizes. Fine- 993

tuning BART-base, BART-base, Flan-T5-large, 994

and Flan-T5-XL take, respectively. 995

B.2 Large Language Models 996

We present the prompts for prompting large lan- 997

guage models for goal relevance judgment and 998

goal-conforming keyphrase generation in Figure 10 999

and Figure 11. 1000

In this task you will need to decide if you
should reject the high-level category given the
title and abstract of a document. One could
use the high-level category to write keyphrases
from the document. If you decide the category
is relevant to the document, generate yes; if
the category is not relevant, generate no. Do
not output anything else.

Document Title: {title}
Document Abstract: {body}

High-level Category: {goal}
Relevant? (yes or no):

Figure 10: Prompt used for goal relevance judgment.

Generate present and absent keyphrases
belonging to the high-level category from the
given text, separated by commas. Do not output
anything else.

Document Title: {title}
Document Abstract: {body}

High-level Category: {goal}
Keyphrases (Must be of category "{goal}"):

Figure 11: Prompt used for on-demand keyphrase gen-
eration with LLMs.

For all the results reported in the pa- 1001

per, we use gpt-3.5-turbo-0125 and the 1002

gpt-4o-2024-05-13 models via the OpenAI API. 1003

For goal relevance judgment, we use greedy de- 1004

coding and record the yes/no predictions for evalu- 1005

ation. The document body is truncated to the first 1006

five sentences as we find providing longer context 1007

barely improves the performance. 1008

For on-demand keyphrase generation, the input 1009

length is truncated to 4000 tokens. We generate 1010

10 samples with p = 0.95 and temperature = 0.7. 1011

The output length is limited to 30 tokens, which ac- 1012

commodate approximately 10 keyphrases. Finally, 1013
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for filtering, we set a fixed threshold τ = 0.3. We1014

lower-case all the outputs and use a string match-1015

ing algorithm to remove excessive parts generated1016

by the model such as "present keyphrases: ". The1017

method’s sensitivity to the hyperparameter settings1018

is presented in Figure 6 and Figure 12.1019

Since the proposed LLM-based methods are un-1020

supervised, we refrain from extensively tuning the1021

hyperparameters. The only exception is that we use1022

the validation sets to determine a reasonable good1023

setting of the sample size K and the threshold τ ,1024

which is uniformly applied to all the datasets.1025
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Sample Size

0.4

0.5

0.6
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m
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500 1000 1500 2000 2500 3000 3500 4000
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GPT-3.5-Turbo GPT-4o

Figure 12: Sensitivity of the self-consistency prompting
approach’s performance to number of samples, settings
of threshold τ , and the input length on KPBiomed.

C Qualitative Study1026

In Figure 13 and Figure 14, we present and com-1027

pare the outputs of Flan-T5-XL, zero-shot sam-1028

pling from GPT-4o, and self-consistency sampling1029

from GPT-4o in two domains. Compared to su-1030

pervised models, which often generates subopti-1031

mal keyphrases under distribution shift, GPT-4o1032

exhibits consistent high recall across domains, and1033

the self-consistency reranking process further fil-1034

ters high quality goals from the zero-shot keyphrase1035

predictions across multiple samples.1036
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Domain: News

Source: KPTimes
Title: more connecticut schools fall short of “no child left behind" standards
Abstract: since [digit] , when president bush signed the federal no child left behind law , schools in connecticut have
scrambled to revamp curriculums , step up professional development for teachers and continually assess students ’ test scores
to comply with the law ’ s requirements . it is an effort that has dominated the agendas of school officials not just in connecticut
, but all over the nation , and not everyone is happy that test results have become such a focus . when results of the latest test
scores were announced a few weeks ago , about [digit] percent , or [digit] , of the public schools in connecticut did not make
the grade under the federal law , state officials said . the state added [digit] schools to its list of schools that failed to meet the
federal benchmarks .
Goal 1: institution
Reference: "education and schools"
Prediction (Flan-T5-XL): "education and schools"
Prediction (GPT-4o (zero-shot): "connecticut schools", "federal government", "state department of education", "norwalk
public schools", "greenwich school district", "greenwich public schools"
Prediction (GPT-4o (self-consistency): "connecticut schools", "state department of education"
Goal 2: law
Reference: "no child left behind act"
Prediction (Flan-T5-XL): "no child left behind act"
Prediction (GPT-4o (zero-shot): "no child left behind", "federal no child left behind law", "federal law", "federal
government", "new accountability system", "adequate yearly progress"
Prediction (GPT-4o (self-consistency): "no child left behind", "no child left behind law"
Source: DUC2001 (out-of-distribution)
Title: (empty)
Abstract: millions of gallons of crude oil that spilled when a tanker ran aground spread across a wildlife - rich stretch of
ocean saturday , and alaska ’ s chief environmental officer criticized cleanup efforts as too slow . the biggest oil spill in u . s .
history created a slick about seven miles long and seven miles wide in prince william sound . the coast guard said only reef
island and the western edge of bligh island had been touched by the slick . “ this situation , i think , was everyone ’ s secret
nightmare about what could happen with oil traffic in the sound ,” said dennis kelso , commissioner of the alaska department
of environmental conservation .
Goal 1: substance
Reference: "crude oil"
Prediction (Flan-T5-XL): "oil ( petroleum ) and gasoline"
Prediction (GPT-4o (zero-shot): "crude oil", "oil spill", "oil pollution", "north slope crude oil", "spilled oil", "leaking oil",
"oil slick", "spilled crude oil"
Prediction (GPT-4o (self-consistency): "crude oil"
Goal 2: action
Reference: "cleanup efforts"
Prediction (Flan-T5-XL): "accidents and safety"
Prediction (GPT-4o (zero-shot): "criticized cleanup efforts", "created a slick", "ran hard aground", "halted early", "begin
pumping", "removing oil", "placed a boom"
Prediction (GPT-4o (self-consistency): "spread across", "criticized cleanup efforts"
Source: DUC2001 (out-of-distribution)
Title: (empty)
Abstract: the clinton administration will soon announce support for a north american development bank , which would fund
projects in communities hit by job losses resulting from the north american free trade agreement . the so - called nadbank
has been strongly supported by congressman esteban torres , who has insisted on some sort of lending institution to support
adjustment throughout the continent . agreement by the administration is expected to bring mr torres and at least [digit] other
hispanic congressmen into the pro - nafta fold . the administration believes it can garner [digit] - [digit] pro - nafta votes , out
of the [digit] needed .
Goal 1: economic issue
Reference: "job losses"
Prediction (Flan-T5-XL): "jobs"
Prediction (GPT-4o (zero-shot): "north american development bank", "job losses", "north american free trade agreement",
"lending institution", "pro-nafta votes", "anti-nafta public opinion"
Prediction (GPT-4o (self-consistency): "north american development bank", "clinton administration", "job losses""
Goal 2: political entity
Reference: "clinton administration"
Prediction (Flan-T5-XL): "united states politics and government"
Prediction (GPT-4o (zero-shot): "clinton administration", "congressman esteban torres", "hispanic congressmen", "white
house", "president bill clinton"
Prediction (GPT-4o (self-consistency): "clinton administration", "north american development bank"

Figure 13: Examples of on-demand keyphrase generation instances and model outputs in the news domain.
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Domain: Biomedical Text

Source: KPBiomed
Title: contemporary trend of acute kidney injury incidence and incremental costs among us patients undergoing percutaneous
coronary procedures .
Abstract: objectives to assess national trends of acute kidney injury ( aki ) incidence , incremental costs , risk factors , and
readmissions among patients undergoing coronary angiography ( cag ) and / or percutaneous coronary intervention ( pci
) during [digit] - [digit] . background aki remains a serious complication for patients undergoing cag / pci . evidence is
lacking in contemporary aki trends and its impact on hospital resource utilization . methods patients who underwent cag /
pci procedures in [digit] hospitals were identified from premier healthcare database . aki was defined by icd - [digit] / [digit]
diagnosis codes ( [digit] .
Goal 1: medical condition
Reference: "acute kidney injury", "chronic kidney disease", "nephropathy"
Prediction (Flan-T5-XL): "acute kidney injury"
Prediction (GPT-4o (zero-shot): "acute kidney injury", "chronic kidney disease", "anemia", "diabetes"
Prediction (GPT-4o (self-consistency): "acute kidney injury", "chronic kidney disease", "anemia"
Goal 2: medical procedure
Reference: "percutaneous coronary intervention"
Prediction (Flan-T5-XL): "percutaneous coronary intervention"
Prediction (GPT-4o (zero-shot): "percutaneous coronary intervention", "coronary angiography", "coronary procedures",
"inpatient procedures", "outpatient procedure"
Prediction (GPT-4o (self-consistency): "percutaneous coronary intervention", "coronary angiography"
Source: PubMed (out-of-distribution)
Title: surviving sepsis campaign : international guidelines for management of severe sepsis and septic shock : [digit]
Abstract: objective to provide an update to the original surviving sepsis campaign clinical management guidelines , 2̆01c
surviving sepsis campaign guidelines for management of severe sepsis and septic shock ,2̆01d published in [digit] . introduction
severe sepsis ( acute organ dysfunction secondary to infection ) and septic shock ( severe sepsis plus hypotension not reversed
with fluid resuscitation ) are major healthcare problems , affecting millions of individuals around the world each year , killing
one in four ( and often more ), and increasing in incidence [ [digit] 2̆013 [digit] ]. similar to polytrauma , acute myocardial
infarction , or stroke , the speed and appropriateness of therapy administered in the initial hours after severe sepsis develops
are likely to influence outcome .
Goal 1: medical condition
Reference: "sepsis", "severe sepsis", "septic shock", "sepsis syndrome", "infection"
Prediction (Flan-T5-XL): "sepsis"
Prediction (GPT-4o (zero-shot): "acute kidney injury", "chronic kidney disease", "anemia", "diabetes"
Prediction (GPT-4o (self-consistency): "severe sepsis", "septic shock"
Goal 2: healthcare initiative
Reference: "surviving sepsis campaign"
Prediction (Flan-T5-XL): "surviving sepsis campaign"
Prediction (GPT-4o (zero-shot): "surviving sepsis campaign", "international guidelines", "management of severe sepsis",
"septic shock", "clinical management guidelines", "evidence-based methodology"
Prediction (GPT-4o (self-consistency): "surviving sepsis campaign"
Source: PubMed (out-of-distribution)
Title: keratinocyte serum - free medium maintains long - term liver gene expression and function in cultured rat hepatocytes
by preventing the loss of liver - enriched transcription factors
Abstract: freshly isolated hepatocytes rapidly lose their differentiated properties when placed in culture . therefore , production
of a simple culture system for maintaining the phenotype of hepatocytes in culture would greatly facilitate their study . our
aim was to identify conditions that could maintain the differentiated properties of hepatocytes for up to [digit] days of culture .
adult rat hepatocytes were isolated and attached in williams 2̆019 medium e containing [digit] % serum . the medium was
changed to either fresh williams 2̆019 medium e or keratinocyte serum - free medium supplemented with dexamethasone ,
epidermal growth factor and pituitary gland extract .
Goal 1: biological extract
Reference: "pituitary gland extract"
Prediction (Flan-T5-XL): "pituitary gland extract"
Prediction (GPT-4o (zero-shot): "keratinocyte serum-free medium", "Williams2̆019 medium E", "dexamethasone",
"epidermal growth factor", "pituitary gland extract"
Prediction (GPT-4o (self-consistency): "keratinocyte serum-free medium", "keratinocyte serum"
Goal 2: molecular biology technique
Reference: "reverse transcription polymerase chain reaction"
Prediction (Flan-T5-XL): "cell culture"
Prediction (GPT-4o (zero-shot): "immunohistochemistry", "western blotting", "rt-pcr", "immunofluorescence staining",
"collagenase perfusion technique"
Prediction (GPT-4o (self-consistency): "western blotting", "rt-pcr", "immunohistochemistry"

Figure 14: Examples of on-demand keyphrase generation instances and model outputs in the biomedical domain.
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