
Permutation-Invariant Variational Autoencoder for
Graph-Level Representation Learning

Robin Winter
Bayer AG

Freie Universität Berlin
robin.winter@bayer.com

Frank Noé
Freie Universität Berlin

frank.noe@fu-berlin.de

Djork-Arné Clevert
Bayer AG

djork-arne.clevert@bayer.com

Abstract

Recently, there has been great success in applying deep neural networks on graph
structured data. Most work, however, focuses on either node- or graph-level
supervised learning, such as node, link or graph classification or node-level un-
supervised learning (e.g., node clustering). Despite its wide range of possible
applications, graph-level unsupervised representation learning has not received
much attention yet. This might be mainly attributed to the high representation
complexity of graphs, which can be represented by n! equivalent adjacency ma-
trices, where n is the number of nodes. In this work we address this issue by
proposing a permutation-invariant variational autoencoder for graph structured
data. Our proposed model indirectly learns to match the node order of input and
output graph, without imposing a particular node order or performing expensive
graph matching. We demonstrate the effectiveness of our proposed model for graph
reconstruction, generation and interpolation and evaluate the expressive power of
extracted representations for downstream graph-level classification and regression.

1 Introduction

Graphs are an universal data structure that can be used to describe a vast variety of systems from
social networks to quantum mechanics [1]. Driven by the success of Deep Learning in fields such
as Computer Vision and Natural Language Processing, there has been an increasing interest in
applying deep neural networks on non-Euclidean, graph structured data as well [2, 3]. Most notably,
generalizing Convolutional Neural Networks and Recurrent Neural Networks to arbitrarily structured
graphs for supervised learning has lead to significant advances on task such as molecular property
prediction [4] or question-answering [5]. Research on unsupervised learning on graphs mainly
focused on node-level representation learning, which aims at embedding the local graph structure
into latent node representations [6, 7, 8, 9, 10]. Usually, this is achieved by adopting an autoencoder
framework where the encoder utilizes e.g., graph convolutional layers to aggregate local information
at a node level and the decoder is used to reconstruct the graph structure from the node embeddings.
Graph-level representations are usually extracted by aggregating node-level features into a single
vector, which is common practice in supervised learning on graph-level labels [4].
Unsupervised learning of graph-level representations, however, has not yet received much attention,
despite its wide range of possible applications, such as feature extraction, pre-training for graph-level
classification/regression tasks, graph matching or similarity ranking. This might be mainly attributed
to the high representation complexity of graphs arising from their inherent invariance with respect

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

𝑴("#$, &)

Self-Attention

diag 𝑴(()*, +) = 𝑚&,&, 𝑚,,,, 𝑚-,-, 𝑚.,., 𝑚/,/, 𝑚0,0, 𝑚1,1

extract messages

Soft-Sort

Encoder

score

𝑠 = 0.3, 0.9, 0.4, 0.2, 0.6, 0.1

2𝑷 =

𝑣6

𝑣&

𝑣1

𝑒0,1

𝑒1,1

𝒛~𝒩(𝜇, 𝜎𝐼)
sample embedding

Position Embeddings

𝑴(3"$, &)

1 2 3 4 5 6

2 5 3 1 4 6

permute

Self-Attention

Decoder

+

initialize
messages

𝑴(3"$, +)

𝑿 𝑬

extract node +
edge features

Input Graph Output GraphPermutation
Matrix

𝑣/

𝑣0
𝑣.

𝑣-

𝑣,

𝑒&,,
𝑣1

𝑣0

𝑣/𝑣-

𝑣,

𝑣.

Figure 1: Network architecture of the proposed model. Input graph is depicted as fully connected
graph (dashed lines for not direct neighbours) with the additional embedding node v0 and edges to it
(black color). Different node and edge types are represented by different colors and real edges by
solid lines between nodes. Transformations parameterized by a neural network are represented by
block arrows.

to the order of nodes within the graph. In general, a graph with n nodes, can be represented by
n! equivalent adjacency matrices, each corresponding to a different node order. Since the general
structure of a graph is invariant to the order of their individual nodes, a graph-level representation
should not depend on the order of the nodes in the input representation of a graph, i.e. two isomorphic
graphs should always be mapped to the same representation. This poses a problem for most neural
network architectures which are by design not invariant to the order of their inputs. Even if carefully
designed in a permutation invariant way (e.g., Graph Neural Networks with a final node aggregation
step), there is no straight-forward way to train an autoencoder network, due to the ambiguous
reconstruction objective, requiring the same discrete order of input and output graphs to compute the
reconstruction loss.
How can we learn a permutation-invariant graph-level representation utilizing a permutation-variant
reconstruction objective? In this work we tackle this question proposing a graph autoencoder
architecture that is by design invariant to the order of nodes in a graph. We address the order
ambiguity issue by training alongside the encoder and decoder model an additional permuter model
that assigns to each input graph a permutation matrix to align the input graph node order with the
node order of the reconstructed graph.

2 Method

2.1 Notations and Problem Definition

An undirected Graph G = (V, E) is defined by the set of n nodes V = fv1, . . . , vng and edges
E = f(vi, vj)jvi, vj 2 Vg. We can represent a graph in matrix form by its node features X� 2 Rn�dv
and adjacency matrix A� 2 f0, 1gn�n in the node order π 2 Π, where Π is the set of all n!
permutations over V . We define the permutation matrix P that reorders nodes from order π to order
π0 as P�!�0 = (pij) 2 f0, 1gn�n, with pij = 1 if π(i) = π0(j) and pij = 0 everywhere else. Since
Graphs are invariant to the order of their nodes, note that

G� = G(X�,A�) = G(P�!�0X�,P�!�0A�P>�!�0) = G(X�0 ,A�0) = G�0 , (1)

where > is the transpose operator. Let us now consider a dataset of graphs G = fG(i)gNi=0 we would
like to represented in a low-dimensional continuous space. We can adopt a latent variable approach
and assume that the data is generate by a process p�(Gjz), involving an unobserved continuous
random variable z. Following the work of Kingma and Welling [11], we approximate the intractable
posterior by q�(Gjz) � p�(Gjz) and minimize the lower bound on the marginal likelihood of graph
G(i):

log p�(G(i)) � L(φ, θ;G(i)) = �KL
h
q�(zjG(i))jjp�(z)

i
+ Eq�(zjG(i))

h
log p�(G(i)jz)

i
, (2)

2

where the Kullback–Leibler (KL) divergence term regularizes the encoded latent codes of graphs G(i)

and the second term enforces high similarity of decoded graphs to their encoded counterparts. As
graphs can be completely described in matrix form by their node features and adjacency matrix, we
can parameterize q� and p� in Eq. (2) by neural networks that encode and decode node features X

(i)
�

and adjacency matrices A
(i)
� of graphs G(i)

� . However, as graphs are invariant under arbitrary node
re-ordering, the latent code z should be invariant to the node order π:

q�(zjG�) = q�(zjG�0), for all π, π0 2 Π. (3)

This can be achieved by parameterizing the encoder model q� by a permutation invariant function.
However, if the latent code z does not encode the input node order π, input graph G� and decoded
graph Ĝ�0 are no longer necessarily in the same order, as the decoder model has no information
about the node order of the input graph. Hence, the second term in Eq. (2) cannot be optimized
anymore by minimizing the reconstruction loss between encoded graph G� and decoded graph Ĝ�0 in
a straight-forward way. They need to be brought in the same node order first. We can rewrite the
expectation in Eq. (2) using Eq. (1):

E
q�(zjG(i)

�)

h
log p�(G(i)

�0 jz)
i

= E
q�(zjG(i)

�)

h
log p�(P̂�!�0G(i)

� jz)
i
. (4)

Since the ordering of the decoded graph π0 is subject to the learning process of the decoder and
thus unknown in advance, finding P�!�0 is not trivial. In [12], the authors propose to use ap-
proximate graph matching to find the permutation matrix P�!�0 that maximizes the similarity
s(X�0 ,P�!�0X̂�;A�0 ,P�!�0Â�P>�!�0), which involves up to O(n4) re-ordering operations at
each training step in the worst case [13].

2.2 Permutation-Invariant Variational Graph Autoencoder

In this work we propose to solve the reordering problem in Eq. (4) implicitly by inferring the
permutation matrix P�0!� from the input graph G� by a model g (G�) that is trained to bring input
and output graph in the same node order and is used by the decoder model to permute the output
graph. We train this permuter model jointly with the encoder model q�(zjG�) and decoder model
p�(G�jz,P�0!�), optimizing:

L(φ, θ, ψ;G(i)
�) = �KL

h
q�(zjG(i)

�)jjp�(z)
i

+ Eq�(zjG(i))

h
log p�(G(i)

� jz, g (G(i)
�))

i
. (5)

Intuitively, the permuter model has to learn how the ordering of nodes in the graph generated by the
decoder model will differ from a specific node order present in the input graph. During the learning
process, the decoder will learn its own canonical ordering that, given a latent code z, it will always
reconstruct a graph in. The permuter learns to transform/permute this canonical order to a given input
node order. For this, the permuter predicts for each node i of the input graph a score si corresponding
to its probability to have a low node index in the decoded graph. By sorting the input nodes indices
by their assigned scores we can infer the output node order and construct the respective permutation
matrix P�!�0 = (pij) 2 f0, 1gn�n, with

pij =

�
1, if j = argsort(s)i
0, else

(6)

to align input and output node order. Since the argsort operation is not differentiable, we utilizes the
continuous relaxation of the argsort operator proposed in [14, 15]:

P � P̂ = softmax(
�d(sort(s)1>,1s>)

τ
), (7)

where the softmax operator is applied row-wise, d(x, y) is the L1-norm and τ 2 R+ a temperature-
parameter. By utilizing this continuous relaxation of the argsort operator, we can train the permuter
model g in Eq. (5) alongside the encoder and decoder model with stochastic gradient descent. In
order to push the relaxed permutation matrix towards a real permutation matrix (only one 1 in every
row and column), we add to Eq. (5) a row- and column-wise entropy term as additional penalty term:

C(P) =
X
i

H(pi;�) +
X
j

H(p�;j), (8)

3

with Shannon entropyH (x) = �
P

i x i log(x i) and normalized probabilitiesp i; � = p i; �P
j p i;j

.

Propositions 1. A square matrixP is a real permutation matrix if and only ifC(P) = 0 and the
doubly stochastic constraintpij � 0 8(i; j);

P
i pij = 1 8j;

P
j pij = 1 8i holds.

Proof. See Appendix A.
By enforcingP̂ ! P , we ensure that no information about the graph structure is encoded inP̂ and
decoder modelp� (G� jz; P) can generate valid graphs during inference, without providing a speci�c
permutation matrixP (e.g., one can setP = I and decode the learned canonical node order). At this
point it should also be noted, that our proposed framework can easily be generalized to arbitrary sets
of elements, although we focus this work primarily on sets of nodes and edges de�ning a graph.

Graph Isomorphism Problem. Equation(5) gives us means to train an autoencoder framework
with a permutation invariant encoder that maps a graphf : G ! Z in an ef�cient manner. Such
an encoder will always map two topologically identical graphs (even with different node order) to
the same representationz. Consequently, the question arises, if we can decide for a pair of graphs
whether they are topologically identical. This is the well-studiedgraph isomorphism problemfor
which no polynomial-time algorithm is known yet [16, 17]. As mentioned above, in our framework,
two isomorphic graphs will always be encoded to the same representation. Still, it might be that two
non-isomorphic graphs will be mapped to the same point (non-injective). However, if the decoder is
able to perfectly reconstruct both graphs (which is easy to check since the permuter can be used to
bring the decoded graph in the input node order), two non-isomorphic graphs must have a different
representationz. If two graphs have the same representation and the reconstruction fails, the graphs
might still be isomorphic but with no guarantees. Hence, our proposed model can solve the graph
isomorphism problem at least for all graphs it can reconstruct.

2.3 Details of the Model Architecture

In this work we parameterize the encoder, decoder and permuter model in Eq.(5) by neural networks
utilizing the self-attention framework proposed by Vaswani et al.[18] on directed messages represent-
ing a graph. Figure 1, visualizes the architecture of the proposed permutation-invariant variational
autoencoder. In the following, we describe the different parts of the model in detail1.

Graph Representation by Directional Messages. In general, most graph neural networks can be
thought of as so called Message Passing Neural Networks (MPNN) [19]. The key idea of MPNNs is
the aggregation of neighbourhood information by passing and receiving messages of each node to
and from neighbouring nodes in a graph. We adopt this view and represent graphs by its messages
between nodes. We represent a graphG(X ; E), with node featuresX 2 Rn � dv and edge features
E 2 Rn � n � de , by its message matrixM = (m ij) 2 Rn � n � dm :

m ij = � ([x i jj x j jjeij] W + b) ; (9)

with non-linearity� , concatenation operatorjj and trainable parametersW andb. Note, that nodes in
this view are represented byself-messagesdiag(M), messages between non-connected nodes exists,
although the presence or absence of a connection might be encoded ineij , and ifM is not symmetric,
edges have an inherent direction.

Self-Attention on Directed Messages. We follow the idea of aggregating messages from neigh-
bours in MPNNs, but utilize the self-attention framework proposed by Vaswani et al.[18] for
sequential data. Our proposed model comprises multiple layers of multi-headed scaled-dot product
attention. One attention head is de�ned by:

Attention(Q; K ; V) = softmax
�

QK >
p

dk

�
V (10)

with queriesQ = MW Q , keysK = MW K , and valuesV = MW V and trainable weightsW Q 2
Rdm � dq , W K 2 Rdm � dk andW V 2 Rdm � dv . For multi-headed self-attention we concatenate
multiple attention heads together and feed them to a linear layer withdm output features. Since
the message matrixM of a graph withn nodes comprisesn2 messages, attention of all messages
to all messages would lead to aO(n4) complexity. We address this problem by letting messages

1Code available athttps://github.com/jrwnter/pigvae

4

https://github.com/jrwnter/pigvae

m ij only attend on incoming messagesm ki , reducing the complexity toO(n3). We achieve this by
representingQ as a(m � n � d) tensor andK andV by a transposed(n � m � d) tensor, resulting
into a(m � n � m) attention tensor, with number of nodesm = n and number of featuresd. That
way, we can ef�ciently utilize batched matrix multiplications in Eq.(10), in contrast to computing
the whole(n2 � n2) attention matrix and masking attention on not incoming messages out.

Encoder To encode a graph into a �xed-sized, permutation-invariant, continuous latent represen-
tation, we add to input graphs a dummy nodev0, acting as an embedding node. To distinguish
the embedding node from other nodes, we add an additional node and edge type to represent this
node and edges to and from this node. After encoding this graph into a message matrixM (enc; 0)

as de�ned in Eq.(9), we applyL iterations of self-attention to updateM (enc; L) , accumulating the
graph structure in the embedding node, represented by the self-messagem (enc; L)

0;0 . Following [11],
we utilize the reparameterization trick and sample the latent representationz of a graph by sampling
from a multivariate normal distribution:

z � N (f � (m (enc; L)
0;0); f � (m (enc; L)

0;0)I); (11)

with f � : m 0;0 ! � 2 Rdz andf � : m 0;0 ! � 2 Rdz , parameterized by a linear layer.

Permuter To predict how to re-order the nodes in the output graph to match the order of nodes in
the input graph, we �rst extract node embeddings represented by self-messages on the main diagonal
of the encoded message matrixm (enc; L)

i;i = diag(M (enc; L)) for i > 0. We score these messages by
a functionf s : m i;i ! s 2 R, parameterized by a linear layer and apply the soft-sort operator (see
Eq. (7)) to retrieve the permutation matrix̂P .

Decoder We initialize the message matrix for the decoder models input with the latent representa-
tion z at each entry. To break symmetry and inject information about the relative position/order of
nodes to each other, we follow [18] and de�ne position embeddings in dimensionk

PE(i)k =
�

sin(i=100002k=d z); for evenk
cos(i=100002k=d z); for oddk

(12)

It follows for the initial decoder message matrixM (dec; 0) :

m (dec; 0)
ij = � ([z + [PE(i)jjPE(j)]] W + b) ; (13)

Since the self-attention based decoder model is permutation equivariant, we can move the permutation
operation in Eq.(5) in front of the decoder model and directly apply it to the position embedding
sequence (see Figure 1). AfterL iterations of self-attention on the message matrixM , we extract
node featuresx i 2 X and edge featuresei;j 2 E by a �nal linear layer:

x i = m i;i W v + bv ei;j = 0 :5 � (m i;j + m j;i)W e + be; (14)

with learnable parametersW v 2 Rdm � dv , W e 2 Rdm � de , bv 2 Rdv andbe 2 Rde .

Overall Architecture We now describe the full structure of our proposed method using the in-
gredients above (see Figure 1). Initially, the input graph is represented by the directed message
matrix M (enc; 0) , including an additional graph embedding nodev0. The encoder model performsL
iterations of self-attention on incoming messages. Next, diagonal entries of the resulting message
matrix M (enc; L) are extracted. Messagem(enc; L)

0;0 , representing embedding nodev0, is used to
condition the normal distribution, graph representationz is sampled from. The other diagonal entries
m(enc; L)

i;i are transformed into scores and sorted by the Soft-Sort operator to retrieve the permutation

matrix P̂ . Next, position embeddings (in Figure 1 represented by single digits) are re-ordered by
applyingP̂ and added by the sampled graph embeddingz. The resulting node embeddings are
used to initialize message matrixM (dec; 0) and fed into the decoding model. AfterL iterations of
self-attention, diagonal entries are transformed to node featuresX and off-diagonal entries to edge
featuresE to generate the output graph. In order to train and infer on graphs of different size, we pad
all graphs in a batch with empty nodes to match the number of nodes of the largest graph. Attention
on empty nodes is masked out at all time. To generate graphs of variable size, we train alongside
the variational autoencoder an additional multi-layer perceptron to predict the number of atoms of
graph from its latent representationz. During inference, this model informs the decoder on how many
nodes to attend to.

5

Table 1: Negative log likelihood (NLL) and area under the receiver operating characteristics curve
(ROC-AUC) for reconstruction of the adjacency matrix of graphs from different families. We compare
our proposed method (PIGAE) with Graph Autoencoder (GAE) [8] and results of Graphite and Graph
Autoencoder (GAE*) reported in [20]. PIGAE� utilize topological distances of nodes in a graph as
edge feature.

MODELS ERDOS-RENYI BARABASI-ALBERT EGO

NLL ROC-AUC NLL ROC-AUC NLL ROC-AUC
PIGAE 20:5 � 0:9 98:3 � 0:1 27:2 � 0:9 96:7 � 0:2 23:4 � 0:5 97:8 � 0:3
PIGAE � 19:5 � 0:8 99:4 � 0:1 15:2 � 0:8 99:5 � 0:1 22:4 � 0:5 98:8 � 0:3
GAE 186� 3 57:9 � 0:1 199� 3 57:4 � 0:1 191� 4 59:1 � 0:1
GAE� 222� 8 - 236� 15 - 197� 2 -
GRAPHITE 196� 1 - 192� 2 - 183� 1 -

Key Architectural Properties Since no position embeddings are added to the input of the encoders
self-attention layers, accumulated information in the single embedding nodev0 (m 0;0) is invariant
to permutations of the input node order. Hence, the resulting graph embeddingz is permutation
invariant as well. This is in stark contrast to classical graph autoencoder frameworks [8, 20, 21], that
encode whole graphs effectively by concatenating all node embeddings, resulting in a graph-level
representation that is different for isomorphic graphs, as the sequence of node embeddings permutes
equivalently with the input node order. As no information about the node order is encoded in the graph
embeddingz, the decoder learns its own (canonical) node order, distinct graphs are deterministically
decoded in. The input node order does not in�uence this decoded node order. As the decoder is based
on permutation equivariant self-attention layers, this canonical order is solely de�ned with respect to
the sequence of position embeddings used to initialize the decoders input. If the sequence of position
embeddings is permuted, the decoded node order permutes equivalently. Thus, by predicting the right
permutation matrix, input and output order can be aligned to correctly calculate the reconstruction
loss. Input to the permuter model[m 1;1; : : : ; m n +1 ;n +1] is equivariant to permutations in the input
node order (due to the equivariant self-attention layers in the encoder). Since the permuter model
itself (i.e., the scoring function) is also permutation equivariant (node-wise linear layer), resulting
permutation matricesP are equivariant to permutations in the input node order. Consequently, if
the model can correctly reconstruct a graph in a certain node order, it can do it for alln! input node
orders, and the learning process of the whole model is independent to the node order of graphs in the
training set.

3 Related Works

Most existing research on unsupervised graph representation learning focuses onnode-levelrepresen-
tation learning and can be broadly categorized in either shallow methods based on matrix factorization
[22, 23, 24, 25] or random walks [26, 27], and deep methods based on Graph Neural Networks (GNN)
[2, 3]. Kipf and Welling [8] proposed a graph autoencoder (GAE), reconstructing the adjacency
matrix by taking the dot product between the latent node embeddings encoded by a GNN. Grover et al.
[20] build on top of the GAE framework by parameterizing the decoder with additional GNNs, further
re�ning the decoding process. Althoughgraph-levelrepresentations in GAE-like approaches can be
constructed by concatenating all node-level representations, note, that as a consequence they are only
permutation equivariant and not permutation invariant. Permutation invariant representations could
be extracted only after training by aggregating node embeddings into a single-vector representation.
However, such a representation might miss important global graph structure. Samanta et al.[21]
proposed a GAE-like approach, which parameters are trained in a permutation invariant way, fol-
lowing [28] utilizing breadth-�rst-traversals with randomized tie breaking during the child-selection
step. However, as graph-level representations are still constructed by concatenation of node-level
embeddings, this method still encodes graphs only in a permutation-equivariant way. A different line
of work utilized Normalizing Flows [29] to address variational inference on graph structured data
based on node-level latent variables [30, 31, 32].
Research ongraph-levelrepresentations has mainly focused on supervised learning, e.g., graph-level
classi�cation by applying a GNN followed by a global node feature aggregation step (e.g., mean or
max pooling) [4] or a jointly learned aggregation scheme [33]. Research on graph-level unsupervised

6

Figure 2: a) Euclidean distance over graph editing distance, averaged over 1000 Barabasi-Albert
graphs withm = 2 . b) t-SNE projection of representations from ten different graph families with
different parameters. Example graphs are shown for some of the clusters. c) Legend of t-SNE
plot explaining colours and symbols. Graph family abbreviations: Binomial (B), Binomial Ego
(BE), Barabasi-Albert (BA), Geometric (G), Regular (R), Powerlaw Tree (PT), Watts-Strogatz (WA),
Extended Barabasi-Albert (EBA), Newman-Watts-Strogatz (NWA), Dual-Barabasi-Albert (DBA).

representation learning has not yet received much attention and existing work is mainly based on
contrastive learning approaches. Narayanan et al.[34] adapted thedoc2vecmethod from the �eld of
natural language processing to represent whole graphs by a �xed size embedding, training askipgram
method on rooted subgraphs (graph2vec). Bai et al.[35] proposed aSiamesenetwork architecture,
trained on minimizing the difference between the Euclidean distance of two encoded graphs and
their graph editing distance. Recently, Sun et al.[36], adapted theDeep InfoMaxarchitecture [37] to
graphs, training on maximizing the mutual information between graph-level representations and rep-
resentations of sub-graphs of different granularity (InfoGraph). Although those contrastive learning
approaches can be designed to encode graphs in a permutation invariant way, they cannot be used to
reconstruct or generate graphs from such representations.
Another line of related work concerns itself withgenerative modelsfor graphs. Besides methods
based on variational autoencoders [8, 20, 12] and Normalizing Flows [30, 31, 32], graph generative
models have also been recently proposed based on generative adversarial neural networks [38, 39]
and deep auto-regressive models [40, 28, 41]. Moreover, due to its high practical value for drug dis-
covery, many graph generating methods have been proposed for molecular graphs [42, 43, 44, 45, 21].
Although graph generative models can be trained in a permutation invariant way [42, 21], those
models can not be used to extract permutation invariant graph-level representations.
Recently, Yang et al. [46] proposed a GAE-like architecture with a node-feature aggregation step to
extract permutation invariant graph-level representations that can also be used for graph generation.
They tackle the discussed ordering issue of GAEs in the reconstruction by training alongside the
GAE a Generative Adversarial Neural Network, which's permutation invariant discriminator network
is used to embed input and output graph into a latent space. That way, a permutation invariant
reconstruction loss can be de�ned as a distance in this space. However, as this procedure involves
adversarial training of the reconstruction metric, this only approximates the exact reconstruction loss
used in our work and might lead to undesirable graph-level representations.

4 Experimental Evaluation

We perform experiments on synthetically generated graphs and molecular graphs from the pub-
lic datasets QM9 and PubChem. At evaluation time, predicted permutation matrices are always
discretized to ensure their validity. For more details on training, see Appendix C.

7

Table 2: Classi�cation Accuracy of our method (PIGAE), classical GAE, InfoGraph (IG), Shortest
Path Kernel (SP) and Weisfeiler-Lehman Sub-tree Kernel (WL) on graph class prediction.

PIGAE GAE IG SP WL

0:83 � 0:01 0:65 � 0:01 0:75 � 0:02 0:50 � 0:02 0:73 � 0:01

4.1 Synthetic Data

Graph Reconstruction In the �rst experiment we evaluate our proposed method on the reconstruc-
tion performance of graphs from graph families with a well-de�ned generation process. Namely,
Erdos-Renyi graphs [47], with an edge probability ofp = 0 :5, Barabasi-Albert graphs [48], with
m = 4 edges preferentially attached to nodes with high degree and Ego graphs. For each family
we uniformly sample graphs with 12-20 nodes. The graph generation parameters match the ones
reported in [20], enabling us to directly compare to Graphite. As additional baseline we compare
against the Graph Autoencoder (GAE) proposed by Kipf and Welling[8]. As Grover et al.[20]
only report negative log-likelihood estimates for their method Graphite and baseline GAE we also
reevaluate GAE and report both negative log-likelihood (NLL) estimates for GAE to make a better
comparison to Graphite possible (accounting for differences in implantation or the graph generation
process). In Table 1 we show the evaluation metrics on a �xed test set of 25000 graphs for each graph
family. On all four graph datasets our proposed model signi�cantly outperforms the baseline methods,
reducing the NLL error in three of the four datasets by approximately one magnitude. Utilizing the
topological distance instead of just the connectivity as edge feature (compare [49]) further improves
the reconstruction performance.

Qualitative Evaluation To evaluate the representations learned by our proposed model, we trained
a model on a dataset of randomly generated graphs with variable number of nodes from ten different
graph families with different ranges of parameters (see Appendix B for details). Next, we generated a
test set of graphs with a �xed number of nodes from these ten different families and with different
�xed parameters. In total we generated graphs in 29 distinct settings. In Figure 2, we visualized
the t-SNE projection [50] of the graph embeddings, representing different families by colour and
different parameters within each family by different symbols. In this 2-D projection, we can make
out distinct clusters for the different graph sets. Moreover, clusters of similar graph sets tend to
cluster closer together. For example, Erdos-Renyi graphs form for each edge probability setting (0:25,
0:35, 0:5) a distinct cluster, while clustering in close proximity. As some graph families with certain
parameters result in similar graphs, some clusters are less separated or tend to overlap. For example,
the Dual-Barabasi-Albert graph family, which attaches nodes with eitherm1 or m2 other nodes,
naturally clusters in between the two Barabasi-Albert graph clusters withm = m1 andm = m2.

Graph Editing Distance A classical way of measuring graph similarity is the so calledgraph
editing distance(GED) [51]. The GED between two graphs measures the minimum number of graph
editing operations to transform one graph into the other. The set of operations typically includes
inclusion, deletion and substitution of nodes or edges. To evaluate the correlation between similarity
in graph representation and graph editing distance, we generated a set of 1000 Barabasi-Albert
(m = 3) graphs with 20 nodes. For each graph we successively substitute randomly an existing edge
by a new one, creating a set of graphs with increasing GED with respect to the original graph. In
Figure 2, we plot the mean Euclidean distance between the root graphs and their 20 derived graphs
with increasing GED. We see a strong correlation between GED and Euclidean distance of the learned
representations. In contrast to classical GAEs, random permutations of the edited graphs have no
effect on this correlation (see Appendix D for comparison).

Graph Isomorphism and Permutation Matrix To empirical analyse if our proposed method
detects isomorphic graphs, we generated for 10000 Barabasi-Albert graphs with up to 28 nodes
a randomly permuted version and a variation only one graph editing step apart. For all graphs
the Euclidean distance between original graph and edited graph was at least greater than0:3. The
randomly permuted version always had the same embedding. Even for graphs out of training domain
(geometric graphs with 128 nodes) all isomorphic and non-isomorphic graphs could be detected.
Additionally, we investigated how well the permuter model can assign a permutation matrix to graph.

8

Figure 3: Linear interpolation between two graphs in the embedding space. Start graph's edges are
colored red. End graph's edges are colored blue. Edges present in both graphs are colored black.
Thick lines are present in a decoded graph, thin lines are absent.

As the high reconstruction performance in Table 1 suggest, most of the time, correct permutation
matrices are assigned (See Appendix E for a more detailed analysis). We �nd that permutation
matrices equivalently permute with the permutation of the input graph (See Appendix E).

Graph Classi�cation In order to quantitatively evaluate how meaningful the learned represen-
tations are, we evaluate the classi�cation performance of a Support Vector Machine (SVM) on
predicting the correct graph set label (29 classes as de�ned above) from the graph embedding. As
baseline we compare against SVMs based on two classical graph kernel methods, namely Shortest
Path Kernel (SP) [52] and Weisfeiler-Lehman Sub-tree Kernel (WL) [53] as well as embeddings
extracted by the recently proposed contrastive learning model InfoGraph (IG) [36] and averaged
node embeddings extracted by a classical GAE. Our model, IG and GAE where trained on the same
synthetic dataset. In Table 2 we report the accuracy for each model and �nd the SVM based on
representations from our proposed model to signi�cantly outperform all baseline models. Notably,
representations extracted from a classical GAE model, by aggregating (averaging) node-level em-
beddings into a graph-level embedding, perform signi�cantly worse compared to representations
extracted by our method. This �nding is consistent with our hypothesis that aggregation of unsuper-
vised learned node-level (local) features might miss important global features, motivating our work
on graph-level unsupervised representation learning.

Graph Interpolation The permutation invariance property of graph-level representations also
enables the interpolation between two graphs in a straight-forward way. With classical GAEs such
interpolations cannot be done in a meaningful way, as interpolations between permutation dependent
graph embeddings would affect both graph structure as well as node order. In Figure 3 we show how
successive linear interpolation between the two graphs in the embedding space results in smooth
transition in the decoded graphs, successively deleting edges from the start graph (red) and adding
edges from the end graph (blue). To the best of our knowledge, such graph interpolations have not
been report in previous work yet and might show similar impact in the graph generation community
as interpolation of latent spaces did in the �eld of Natural Language Processing and Computer Vision.

4.2 Molecular Graphs

Next, we evaluate our proposed model on molecular graphs from the QM9 dataset [54, 55]. This
datasets contains about 134 thousand organic molecules with up to 9 heavy atoms (up to 29
atoms/nodes including Hydrogen). Graphs have 5 different atom types (C, N, O, F and H), 3
different formal charge types (-1, 0 and 1) and 5 differ bond types (no-, single-, double-, triple- and
aromatic bond). Moreover, the dataset contains an energetically favorable conformation for each
molecule in form of Cartesian Coordinates for each atom. We transform these coordinates to an
(rotation-invariant) Euclidean distance matrix and include the distance information as additional edge
feature to the graph representation (More details in Appendix F).

Graph Reconstruction and Generation We de�ne a holdout set of 10,000 molecules and train the
model on the rest. Up on convergence, we achieve on the hold out set a balanced accuracy of99:93%
for element type prediction,99:99%for formal charge type prediction and99:25%for edge type
prediction (includs prediction of non-existence of edges). Distances between atoms are reconstructed
with a root mean squared error of0:33Å and a coef�cient of determination of R2 = 0 :94.

9

	Introduction
	Method
	Notations and Problem Definition
	Permutation-Invariant Variational Graph Autoencoder
	Details of the Model Architecture

	Related Works
	Experimental Evaluation
	Synthetic Data
	Molecular Graphs

	Conclusion, Limitations and Future Work

