
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RwR: A REASON-WHILE-RETRIEVE FRAMEWORK FOR
REASONING ON SCENE GRAPHS WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning and
planning capacities, yet grounding these abilities to a specific environment remains
challenging. Recently, there has been a growing interest in representing environ-
ments as scene graphs for LLMs, due to their serializable format, scalability to
large environments, and flexibility in incorporating diverse semantic and spatial
information for various downstream tasks. Despite the success of prompting graphs
as text, existing methods suffer from hallucinations with large graph inputs and
limitation in solving complex spatial problems, restricting their application beyond
simple object search tasks. In this work, we explore grounding LLM reasoning
in the environment through the scene graph schema. We propose SG-RwR, an
iterative reason-while-retrieve scene graph reasoning framework involving two co-
operative schema-guided code-writing LLMs: a (1) Reasoner for task planning and
information querying, and a (2) Retriever for extracting graph information based
on these queries. This cooperation facilitates focused attention on task-relevant
graph information and enables sequential reasoning on the graph essential for
complex tasks. Additionally, the code-writing design allows for the use of tools to
solve problems beyond the capacity of LLMs, which further enhance its reasoning
ability on scene graphs. We also demonstrate that our framework can benefit from
task-level few-shot examples, even in the absence of agent-level demonstrations,
thereby enabling in-context learning without data collection overhead. Through
experiments in multiple simulation environments, we show that SG-RwR surpasses
existing LLM-based approaches in numerical Q&A and planning tasks.

1 INTRODUCTION

Large language Models (LLMs) have shown remarkable prowess in not only language interpretation
(Achiam et al., 2023; Touvron et al., 2023) but also reasoning and planning (Song et al., 2023; Zeng
et al., 2022). Prior works have successfully leveraged the world knowledge encapsulated in LLMs for
plan generation (Song et al., 2023), interaction (Joublin et al., 2024), and action selection (Rana et al.,
2023), which suggests a promising path towards embodied intelligence (Huang et al., 2023a; 2022).

Despite much progress, the challenge of grounding the reasoning process of LLMs to situated
environments remains unsolved, predominantly due to the absence of a generalizable and explicit
representation of environmental spatial and semantic information that LLMs can process (Huang
et al., 2023c). One vein of research explores leveraging LLMs to interface with external tools for
the extraction of task-oriented states from perceptual data (Liang et al., 2023; Huang et al., 2023b).
Although this strategy has shown effectiveness for several manipulation and planning tasks, it requires
LLMs to compose tools in a predetermined way taught through in-context learning (Brown et al.,
2020), restricting LLMs from reasoning flexibly on novel tasks. Furthermore, sensory inputs such
as images capture only a fraction of the environmental information and are inadequate for tasks
necessitating a comprehensive understanding of a 3D scene. In contrast, scene graphs have emerged
as a powerful and scalable high-level representation of environments Hughes et al. (2022); Gu
et al. (2024). Unlike images, scene graphs explicitly encapsulate spatial relationships and offer the
flexibility to incorporate diverse semantic and quantitative attributes (Zhu et al., 2021). Additionally,
they are parsable by LLMs, thus enabling the direct grounding of LLM reasoning to the underlying
environment (Rana et al., 2023; Ni et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Answer:
• Actions to take:

ACTION1, ACTION2, …
Reasoner Retriever Reasoner

Answer:
• Actions to take:

ACTION1, ACTION2, …
“nodes”: [{“id”:1,…},
 {“id”:2,…},
 {“id”:3,…},…]
“edges”: [(1,2),(2,3) …]

“nodes”: [{“id”:1,…},
 {“id”:2,…},
 {“id”:3,…},…]
“edges”: [(1,2),(2,3) …]

“nodes”: [{“id”:2,…},
 {“id”:3,…},…]
“edges”: [(2,3), …]

QueryReasoner Retriever Reasoner Query Retriever Reasoner

Reason
Code

“ACTION1”

…

“ACTION2”

…
Answer:
• Actions to take:

ACTION1, ACTION2, …

Retrieve
Code

Retrieve
Code

RetrieverQuery

(a) Reason-Only (b) Retrieve-then-Reason

(c) Reason-while-Retrieve (Ours)

Figure 1: LLM Graph Processing Framework Comparison. (a) Reason-Only: A Reasoner LLM is
directly prompted with a full textualized graph. (b) Retrieve-then-Reason: A Retriever LLM filters out
a task-related sub-graph for use by another Reasoner LLM as text inputs. (c) Reason-while-Retrieve
(Ours): A Reasoner and a Retriever collaborate in solving a task by attending to the graph dynamically
based on the progress in solving the task. Both Retriever and Reasoner LLMs write code to process
information to avoid hallucinations and to enhance numerical and spatial reasoning.

Leveraging LLMs for reasoning with scene graphs remains an under-explored problem. Reasoning
requires LLMs to interpret task descriptions, comprehend the relational and semantic information
within the graph, and apply their intrinsic knowledge to solve the task by grounding on the graph
and in turn the environment. Recent research explores graphs-as-text as the input for LLMs Fatemi
et al. (2024); Gu et al. (2024). LLMs are shown to possess a preliminary capacity to interpret graph
topology. Yet, they are prone to hallucinations or exceed input token limits when handling large
graphs (Wang et al., 2023). To tackle the challenges, (Luo et al., 2024) propose a "Retrieve-then-
Reason" wherein the LLM first explores the graph identifying the sub-graph pertinent to a given task,
and then performs reasoning on the retrieved part to generate the task solution. The exploration phase
employs a heuristic strategy, either by exploring neighborhood nodes and edges of visited parts Sun
et al. (2023) or expanding the sub-tree rooted at nodes at a certain hierarchical level Rana et al. (2023).
This strategy is adept at information collection, however, it is less suited for intricate tasks that require
a comprehensive understanding of the entire graph. It is also limited in its ability to dynamically shift
focus based on the reasoning process and the requirements of task sub-steps. Additionally, LLMs are
incapable of solving complex spatial reasoning tasks that human experts can solve with ease, due to
their well-established limitation in numerical reasoning ability (Nezhurina et al., 2024; Ahn et al.,
2024). The aforementioned limitations restrict the utility of LLMs in understanding complex scenes
from textualized graphs.

Recent research on interleaved generation and retrieve methods (Yao et al., 2022; Jiang et al., 2023;
Press et al., 2022) highlights their advantages over single-time retrieval strategies. By retrieving
multiple times, these methods reduce factual errors in LLM responses by iteratively aggregating
relevant information throughout the reasoning process. However, adapting them for scene-graph-
based information source is not straightforward. Originally designed for reasoning on text corpora,
these methods leverage search engines to retrieve sentences or paragraphs that are semantically
"close" to the past reasoning context using lexical (Trivedi et al., 2022) or neural embedding analysis
(Shao et al., 2023). In contrast, the information required for spatial reasoning tasks considered in this
paper demands both semantic and structural understanding of the scene graphs. Failure to capture
the spatial relationships can widen the gap between the retrieved information and what is needed for
reasoning, ultimately reducing task performance.

In this work, we propose SG-RwR, a Scene-Graph-tailored Reason-while-Retrieve framework,
depicted in Figure 1. This framework interleaves the reasoning and scene graph information retrieval
phases, which ensures that LLMs focus only on the information that is selectively aligned with the
task solving process, and that the reasoning trace is grounded in the graph by factoring in the retrieved
graph information. Our framework consists of two cooperative LLM-powered modules: a Reasoner
that decomposes the task and generates queries for the information that can guide subsequent steps;
and a Retriever that processes the queries and writes code to retrieve related graph information for the
Reasoner. To prevent hallucinations when processing excessive information, we prompt both LLMs
with only the graph schema instead of the entire graph. The schema describes the types, format, and
semantics of the scene information in the grap. It guides the Reasoner to determine what information
is helpful to solve a given task, and informs the Retriever to write code for accessing the graph as a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

database to obtain the desired information. We also equip the Reasoner with code-writing capabilities
to conduct precise numerical reasoning (Lyu et al., 2023) and employ external tools for well-defined
atomic problems, thereby enhancing the framework’s ability to tackle complex scene understanding
and planning tasks.

We evaluate our method with two simulation environments: BabyAI (Chevalier-Boisvert et al.,
2018), a 2D grid world environment; and VirtualHome (Puig et al., 2018), a large-scale indoor
multi-room environment. Our experiments on numerical Q&A and planning tasks show that SG-RwR
greatly improves the reasoning ability of LLMs on scene graphs. We also observe that SG-RwR
can effectively leverage end-to-end task-level few-shot examples without requiring module-level
demonstrations. Additionally, compared to direct graph prompting methods, SG-RwR can better
extrapolate from few-shot examples to unseen tasks without suffering from severe performance
degradation. Specifically, on the traversal plan generation task in BabyAI, our method outperforms
baselines by 18.5 percentage points (pp) in the zero-shot prompt setting, and by 3pp and 60pp in seen
and unseen environments in the few-shot prompt setting.

In summary, our contributions include:

• An iterative Reason-while-Retrieve (SG-RwR) framework with reasoning-oriented informa-
tion gathering mechanism for task solving on scene graphs.

• Schema-based grounding and code-writing for graph information retrieval and processing
that reduces hallucination and improves the reasoning ability of LLMs on complex tasks.

• We show that SG-RwR significantly enhances the performance in two distinct environments,
encompassing a wide range of tasks in both zero-shot and few-shot settings.

2 METHOD

2.1 PROBLEM STATEMENT

Our problem setting involves a natural language task instruction I and a scene graph G = (V,E),
where V and E denote vertices and edges, respectively. Each node Vi represents an object along with
its attributes, such as coordinates or colors, while each edge indicates a type of spatial relationship,
such as inside or on top of. Additionally, we assume access to the scene graph schema S, which is
a textual description of vertex, edge, and attribute types, formats, and semantics. Our objective is
to generate the solution of I using LLMs, based on the available information above, expressed as
A = f(I,G,S;LLMs).

2.2 OVERVIEW OF SG-RwR

While existing methods directly prompt LLMs with textualized graphs, we explore grounding the
reasoning process to scene graphs based on the scene graph schema S and the code-writing ability of
LLMs. We develop SG-RwR, an LLM-based multi-agent framework that iteratively reasons through
the next steps and retrieves necessary information from the graph. As shown in Figure 2, our method
contains two LLM agents: a Reasoner and a Retriever. Given a task, the Reasoner determines the
next substep to approach the task and identifies the scene graph information necessary for it. It then
raises a natural language query to the Retriever for this information. Upon receiving the query, the
Retriever processes the scene graph through code-writing and sends the data back to Reasoner. By
iteratively performing these steps, both agents collaborate to solve the task.

Our system initializes with the Scene Graph Schema, the Environment Description, general Guidance
to direct the cooperation process, and task-dependent information such as the description of Agent
Actions and Reasoning Tools. Then, given the Task, the Reasoner outputs analysis in natural language
labeled as Explanation, and Query the Retriever. In turn, given the Scene Graph and a Query, the
Retriever provides structured responses grounded in the Scene Graph. This process iterates until the
Reasoner outputs a plan.

The next two subsections explain workflows of each agent, as well as techniques that ensure a fluent
and automated task-solving process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

[Explanation]We need to find where
the agent is located to understand
the starting point

[Query] What is the room ID where the
agent is located? What is its
coordinate and size?

Reasoner

Scene Graph Schema

Environment Description

Agent Actions

Guidance

Reason Tools

* The env has multiple rooms, doors
connecting rooms, and items…
* To open a closed door, the agent
needs a key of the same color…

Node attributes: ……
Edges include: ……

* pickup(ITEM_NODE_ID): Move to the
item location and pick up the item.
* open(DOOR_NODE_ID): ……

def traverse_room(init_loc,
target_loc, …):
"""Return path between two locs in a
room & item to remove along the path …
"""

* Please query with the terms in
 the scene graph schema
* Use code-writing skills and the
 tools to solve atomic subproblems.
* Format your ……

Retriever

Scene Graph Schema

Guidance

Node attributes:
- “types”: String.[“room”, “agent”,…]
- “color”: String.
- “coordinate”: ……
Edges:
- Doors are linked to connected doors.
- Rooms are lined to items within ……

* Please write python code to retrieve
 the queried info according to the
 scene graph schema.
* Please summarize the information and
 reply `INFO RETRIEVED`……

Iterate to find the agent
for node in G.nodes:
 if G.nodes[node]['type'] == 'room':
 if agent_id in G.neighbors(node):
 ……

Agent room information:
- id: 1
- coordinate: [0, 0]
- size: 6

[Explanation]We have obtained the
location of the agent. Now, we need to
identify where the red box is…

[Query] What is …… (next query)

Iterate to find the doors …
room1_id = 1
room2_id = 7
for node in G.nodes:
 if G.nodes[node]['type'] == 'door':
 neighbors = G.neighbors(node)
 if room1_id in neighbors and
 room2_id in neighbors:
 ……

Doors connecting room 11 and room 13: -
- id: 12
- color: 'purple’
- is_locked: True
- coordinate: [5, 3]

Environment Description
* The env has ……

712

3
11

6

8 4

2

13

10

5

9

1

Few-shot Examples (Optional)
[Solution] ……
[Explanation] ……

“Pickup the red box”

Task Scene

𝒂𝟎
𝒒𝟎

𝒂𝟏
𝒒𝟏

𝓖′𝟎

𝓖′𝟐

𝑰

𝑺 𝑺

pickup(10), remove(9), open(12), remove(5), pickup(3)

Traversability to purple key: True
Items to remove: []

[Explanation] We need to check if the
agent can traverse to purple key id 10.

[Code]
init_coord = [1, 1]
target_coord = [1, 2]
items = […]
check traversability
succ, remove_items = traverse_room
(init_coord, target_coord, items, …)

[Explanation] Plan: pickup(1). Next… 𝒂𝒕
[Query] What is …… (next query) 𝒒𝒕

Solution 𝑨

[Explanation]The agent and the red box
are not in the same room. We need to
find the path between two rooms.

[Query]What are the door IDs and
attributes (color, is_locked,
coordinate) that connect room 11 and 13?

𝒂𝟐
𝒒𝟐

(Further conversation until
task finished)

Figure 2: SG-RwR Workflow. It solves tasks based on scene graphs through the cooperation of two
LLM agents: Reasoner and Retriever. Reasoner iteratively queries Retriever for graph information
and reasons based on the received data from the Retriever. Additionally, both agents employ the
code-writing skill: Retriever writes code to retrieve graph information, while the Reasoner writes
code to utilize external tools for solving complex atomic problems. In the graph, and represent
code writing and execution stage, respectively. They retrieve graph information G′ or enhance the
analysis stages a.

2.3 REASONER

Reasoner is the core of SG-RwR, steering the task-solving iterations. We prompt it with the schema
S, environment and task information (such as action description for the planning task), annotations
of reasoning tools, general guidance to ensure automated task-solving conversation, and optionally,
few-shot task-level examples. Reasoner then initiates the conversation with Retriever to solve a given
task.

Concretely, without any knowledge about the graph data initially, the Reasoner analyzes the task
I and graph schema S, and generates the first analysis, denoted as a0, and sends out the first
associated information retrieval query, designated as q0, to the Retriever to access the graph in-
formation. At the tth round of conversation, the Reasoner consumes the conversation history,
which includes past information retrieval queries, retrieved information, and the past analyses:
{(a0, q0,G′

0), · · · , (at−1, qt−1,G′
t−1)}. It then generates the next corresponding analysis at and

query qt, where at involves intermediate conclusions and the next subtask to be solved, which
informs and justifies qt. For example, in the 2nd round of conversation shown in Figure 2, Reasoner
processes previously retrieved agent and red box room and location ({(a0, q0,G′

0), (a1, q1,G′
1)), iden-

tifies that the next subtask is to find "the path between two rooms" (a2), and then query for
the "door IDs and attributes" that connect two rooms (q2) for solving the subtask. In this
way, each reasoning step is grounded to the environment by factoring in the retrieved information,
and the graph data processed by LLMs is filtered by the reasoning.

The grounded iterative reasoning above involves solving spatial graph problems, such as navigation
and object search. Prior work shows that LLMs give unreliable solutions to quantitative problems
(Ahn et al., 2024). To circumvent the deficiency, we follow prior work (Schick et al., 2024; Paranjape
et al., 2023) to enable code-writing and tool-use for the Reasoner. We provide programmatic functions
to address atomic problems critical to the given task family. As shown in Figure 2, at the tth round of
conversation, the Reasoner uses the provided pathfinding tool traverse_room to identify obstacles
that need to be removed to traverse to the key, a problem beyond the capacity of LLMs. We include
tool annotations in the prompt to guide the Reasoner in querying for the information necessary. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

introduction of tools prevents hallucination on complex problems and reduces the burden of LLMs
by leveraging known algorithms.

Since the Reasoner controls the iterative process to address a task, it is critical to control its behavior
to ensure a smooth flow of the conversation. We control the message exchange between the Reasoner
and the Retriever through both prompt guidance and manual interference. Specifically, we prompt
the Reasoner with the graph schema and the guidance to "Communicate using the terms in
the graph schema" to avoid confusion. We also filter out only the next query qt+1 to send to the
Retriever, removing the analysis at and the past conversation. We find that without doing so, the
Retriever might attempt to realize all plan steps in the language analysis in the conversation, while
omitting the actual desired information, which leads to a failure eventually.

2.4 RETRIEVER

The Retriever assists the Reasoner by processing its queries and returning the requested information
from the graph. Specifically, given a free-form language query q, the Retriever generates code that
executes on the scene graph to retrieve the relevant subgraph containing the required information
G′ = (V ′, E′) = h(G). Here, V ′ and E′ denote subsets of graph nodes and edges, respectively.
While the Reasoner may query for either the entire node or edge or just a subset of their attributes, we
use V ′ and E′ as the general representation for either case. Similar to the prompt for the Reasoner,
the prompt forthe Retriever includes the environment description, the scene graph schema S, and
general guidance. The key difference is that S guides the Retriever in writing the information retrieval
code. Confusion is avoided by ensuring that both agents communicate using the same terms from the
schema.

2.5 SELF-DEBUGGING AND ERROR PREVENTION IN CODE-WRITING

Even with adequate context, LLMs are not guaranteed to write executable code in a single attempt.
Therefore, we introduce a self-debugging mechanism to both the Retriever and the Reasoner to ensure
the successful execution of their code (Chen et al., 2024). Specifically, we establish an inner iteration
between the code-writing LLM and the code executor. At each round, we prompt the history of
attempts, including the initial query q, previous programs h0, · · · , hi−1, and execution outcomes
h0(G), · · · , hi−1(G), back to the LLM for review. If execution errors exist, the code-writing LLM
corrects the code and repeats the process. Conversely, if the code execution is successful, then the
debugging iteration terminates.

What’s more, we observe hallucination in the code written by LLMs as prior work (Liu et al., 2024).
In our case, the Reasoner might hallucinate about scene information without querying for it from
the Retriever. To prevent this, we design a reprompting technique based on keyword detection.
Specifically, we detect the keywords "assuming" and "assume" in the code written by LLMs, and
prompt the code back to the Reasoner with the query to remove any assumptions in the code. We
observe that the simple technique prevents scene information hallucination in most cases.

3 EXPERIMENTAL SETTINGS

We evaluate our methods on a series of numerical Q&A (NumQ&A) and planning tasks within
the BabyAI (Chevalier-Boisvert et al., 2018; Chevalier-Boisvert et al., 2023) and VirtualHome
(VH) (Puig et al., 2018) environments. Detailed descriptions of these environments are provided
in the following subsections. For each environment, we provide a single scene graph schema and
environment description that is consistent across all tasks for that environment. Our method then
generates solutions grounded in different scene graph instance inputs for each experiment.

Each task in our experiments requires reasoning on both the spatial structure and the semantic
information encoded in the graph. We use the success rate as our evaluation metric, where success is
defined as either providing the correct answer or achieving the desired outcome in the simulation.
In this paper, we use GPT-4o for all methods, including SG-RwR and the baselines below. SG-RwR
process is implemented using AutoGen (Wu et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) “Pickup the red box”

(b) “Pickup the yellow box” (c) “Find the color of the ball in a room
next to the room with 4 grey keys”

(d) “Put the soap in the bathroomcabinet”

Figure 3: Experiment Settings. (Best viewed in color) The environment and tasks for evaluation.
(a) BabyAI Trv-1 task with single-side door obstacle; (b) BabyAI Trv-2 task with double-side door
obstacles; (c) BabyAI Numerical Q&A task; (d) Two VirtualHome household environments (left:
VH-1; right: VH-2) and an examplar task.

Baselines Following NLGraph (Wang et al., 2023), we compare our approach against several
direct reasoning methods based on whole graph prompting. These methods include three zero-
shot approaches: zero-shot prompting (ZERO-SHOT), Zero-Shot Chain-of-Thought (0-COT)
(Kojima et al., 2022), Least-to-Most (LTM) (Zhou et al., 2022); and three few-shot methods: Chain-
of-Thought (COT) (Wei et al., 2022), Build-a-Graph (BAG) (Wang et al., 2023), Algorithmic
Prompting (ALGORITHM) (Wang et al., 2023). In addition to the few-shot examples, ALGORITHM
also require a language description of the task solving method. We also compare against ReAct
(Yao et al., 2022), a generic iterative reasoning and acting approach that is able to call database
APIs to retrieve information. Furthermore, we compare against SayPlan (Rana et al., 2023), a
retrieve-then-reason baseline. Compared to other methods of this category, Sayplan is specifically
designed on the scene graphs that represent spatial layout, and thus is more suitable for the problem
scope considered in this paper. For the detailed function design for SayPlan and ReAct, please refer
to Appendix G.

Few-shot SG-RwR We investigate the performance of SG-RwR in both zero-shot and few-shot
settings. For the latter, we introduce two few-shot versions of SG-RwR: SG-RwR +FewShot(SG-
RwR-FS), which incorporates additional in-context learning examples for the Reasoner, and SG-RwR
+Algorithm(SG-RwR-A): which adds both in-context examples and algorithmic prompts to the
Reasoner. Notably, although SG-RwR involves dialogue between two agents, we do not provide either
agent with detailed conversation examples, as these can be impractical to collect and may constrain
the reasoning flexibility of LLMs. In this way, we examine whether our framework can leverage
task-level examples to enhance its reasoning capacity.

3.1 2D GRID WORLD NUMERICAL Q&A

Our first experiment is on a numerical Q&A task in a customized 9-room 2D BabyAI (Chevalier-
Boisvert et al., 2018) environment, as shown in Figure 3(c). We generate scene graph representation of
the environment following the hierachical graph design from 3DSG (Armeni et al., 2019), illustrated
in Figure 4. Specifically, the graph represents the spatial scene layout through three levels: root,
rooms, and objects, with additional door nodes connecting room pairs.

Inspired by the complex search questions designed in SayPlan (Rana et al., 2023), we design the
following question template: find the color of the {TARGET_OBJECT} in a room next
to the room with {NUM_IDENTIFIER} {COLOR_IDENTIFIER} {IDENTIFIER_OBJECT},
where contents in curley brackets are populated based on each new environment instance. The
environment and question pairs are designed to ensure that there is only one answer.

We test each method in 100 different environment and task instance. For few-shot methods, we sample
two instances and manually annotate the solution and the explanation as the in-context learning
prompt.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2 2D GRID WORLD TRAVERSAL PLANNING

Figure 4: BabyAI Scene Graph Representation.
Graph nodes represent items, agents, rooms, and
doors. Edges indicate items or agents located in-
side a room, or doors that connect rooms. Room
nodes are connected to a root node.

We also test on the traversal planning task
in BabyAI, where the task is to generate a
sequence of node-centric actions to pick up
a target item. We design three atomic ac-
tions, including (1) pickup(nodeID): Walk
to and pickup an object specified by the node
ID; (2) remove(nodeID): Walk to and re-
move an object specified by the node ID; (3)
open(nodeID): Walk to and open a door spec-
ified by the node ID. We directly query SG-RwR
and all baselines to generate the actions in the
format above.

As shown in Figure 3(a)(b), the traversal plan-
ning task is tested in two related double-room
environments, both of which require the agent
to pick up the key of the correct color to unlock
the door, remove any obstacle that blocks the
door, open the door, and pick up the target. The
difference is that the first environment, Trv1, contains only the agent-side obstacle, whereas the
second environment, dubbed Trv2, contains another target-side obstacle. We generate the in-context
examples only in Trv1, and test if the methods can extrapolate to Trv2. As before, we evaluate each
method in 100 times in different instance of both types of the environment. For SG-RwR, we provide
the reasoning function traversal_room programmed based on the A∗ algorithm, which identifies
the item to remove in order to reach from an initial to a desired location within the same room. As we
will show, SG-RwR is able to leverage this external tool to compensate for the limited mathematical
problem solving ability of LLMs.

3.3 HOUSEHOLD TASK PLANNING

Our last evaluation is in two VirtualHome (VH) (Puig et al., 2018) environments shown in Figure
3(d). We denote them as VH-1 and VH-2, respectively. Each of these is encoded as a built-in
environment graph that naturally serves as the input to our method. Compared to BabyAI, VH
environments are larger in scale in terms of the state space and action space. Both of them con-
tain 115 object instances, 8 relationship types encoded as edges in the graph, and multiple object
properties and states that determine the executability of an action. Hence the VH environment
is more challenging in terms of task-dependent information distillation. For each environment,
we adopt the 10 household tasks from ProgPrompt (Singh et al., 2023), such as "put the soap
in the bathroom cabinet", and query each method for the action sequence to accomplish
the task. As before, we task each method to directly generate the plan in the VH action for-
mat. It includes [action_name]<object_name>(object_id) for one argument actions, and
[action_name]<object_name1>(object_id1)<object_name2>(object_id2) for two ar-
gument actions. Two of the tasks, together with the ground truth action sequences, serve as the
few-shot examples, whereas the other eight are for testing. To situate the task in the environment, we
follow CoELA Zhang et al. (2024) to specify the task as the desired states. For example, the task of
above is specified as soap INSIDE bathroomcabinet. To achieve the desired state, LLMs need
to reason over the current state of the environment in order to identify the sequence of actions that
ultimately achieve the achieve the desired outcome. A plan is considered successful if the desired
states are reached after simulation. Please refer to Appendix C for more details.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENT RESULTS

Numerical Q&A Resutls The results are collected in Table 1. The vanilla version of our method
outperforms the best baseline by 30 percentage points (pp), even though it does not take the advantage
of the few-shot examples. In this task, few-shot methods do not show significant advantage over

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

[putin]<barsoap>(34)
<bathroomcabinet>(26)

[walk]<barsoap>(34) [grab]<barsoap>(34) [walk]<bathroomcabinet>
(26)

[open]<bathroomcabinet>
(26)

(a) Retrieve the node with the class_name "barsoap".

(b) We have identified the bar soap with the details:
- ID: 34
- Class Name: barsoap
- Properties: ['GRABBABLE', 'MOVABLE', 'CREAM’]

(d) We have identified the bathroom cabinet with the details:
- ID: 26
- Class Name: bathroomcabinet
- Properties: ['SURFACES', 'CAN_OPEN', 'CONTAINERS']
- States: ['CLOSED’]

(c) Retrieve the node with the class_name "bathroomcabinet".

(e) We need to open the bathroom cabinet (ID: 26) since it is closed.
Reasoner

“Put the soap in the bathroomcabinet”

Figure 5: VirtualHome Qualitative Demonstration. Top row: Plan Execution; Middle row:
Generated plan in the VirtualHome action format. Bottom row: SG-RwR Reasoner-side conversation
behind the generated plan.

Zero-Shot Few-Shot

Task ZeroShot 0-CoT LTM SG-RwR CoT BAG Alg ReAct SayPlan SG-RwR
(FS)

SG-RwR
(Alg)

NumQ&A 55% 48% 52% 95% 45% 53% 51% 65% 24% 35% 94% 97%
Trv-1 20% 23% 17% 61% 34% 35% 64% 13 18% 67% 64%
Trv-2 11% 7% 6% 56% 1% 1% 0% 0% 0% 61% 56%

Table 1: Results in BabyAI SG-RwR achieves the best performance across all tasks in both zero-shot
and few-shot settings, showing that SG-RwR (1) is effective in solving spatial tasks; (2) can harness
the information from in-context examples and extrapolate better to unseen tasks.

zero-shot methods. They can all reason correctly on this problem, but tend to make mistakes when
addressing the substeps such as counting the item or locating the neighboring rooms. The room-by-
room graph traverse mechanism used in SayPlan further degrades the performance, as the relevance
of the information to the task cannot be determined without reasoning first. That is, the target
neighboring room cannot be identified without finding the identifier room first. In contrast, SG-RwR
attends to the graph information in the correct order by querying for it based on the reasoning process.

Method Few-Shot
Examples VH-1 VH-2

ZeroShot 87.5% 75%
0-CoT 87.5% 75%
LTM 87.5% 62.5%
CoT 87.5% 75%
BAG 87.5% 62.5%
RwR 100% 100%

Table 2: Results in VirtualHome. The superior
performance of SG-RwR shows that it is capable
of grounding its plan to the environmental states.

2D Traversal Results Table 1 also reports
the success rate for all methods in two traver-
sal environments. In the seen environment, our
method achieves 38pp and 3pp higher success
rate against the best performing baselines un-
der zero-shot and few-shot settings, respectively.
While few-shot baselines perform more than
10pp better compared to zero-shot baselines,
they perform even worse in the unseen settings,
achieving less than or equal to 1% success rate.
This indicates that although few-shot examples
help improve the performance in the seen tasks,
LLMs do not learn the reasoning process to ex-
trapolate to similar unseen tasks. Rather, LLMs
might only memorize the heuristic mechanism
that can help solve the same task, such as removing the item on the left of the door in this case. On
the other hand, by separating out the Retriever that handles the graph information, the Reasoner in
SG-RwR learns the reasoning process from the few-shot examples that is essential for the task, and
can thus extrapolate well to similar problems utilizing the knowledge. SayPlan achieves even inferior
results compared to reason-only methods, indicating that its heuristic retrieval method is unsuitable
for tasks concerning global information.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Code-Writing
& Tool-Use Iterative process Numerical Q&A Trv-1 Trv-2

SingleCoder 80% 33% 25%
RwR_Text 57% 18% 8%
RwR 95% 61% 56%

Table 3: Ablation in BabyAI traversal and numerical Q&A. The best result is achieved by
combining both Reason-while-Retrieve framework and the code-writing, justifying the key designs in
our method.

Household Task Planning Results The planning success rate on the 8 tasks in the 2 VH environ-
ments are shown in Table 2. We observe that all baselines consistently fail to address the precondition
of the planned action. For example, all of them failed to generate [open] <garbagecan> (ID)
before [putin] <plum> (ID) <garbagecan> (ID), forgetting that the state of the garbage can
is state:{CLOSED} from the extensive graph input. On the other hand, SG-RwR doesn’t process the
entire graph. Instead, it queries for the specific object information, which helps to better determine
the action parameter and examine the action preconditions. For qualitatitve demonstration, please
refer to Figure 5 for an examplar task and solution by our method.

4.2 ABLATION

Setup To further validate the design of SG-RwR framework, we conduct an ablation study for the
key component of our method. To this end, we introduce two variants of SG-RwR:

• SingleCoder: A single LLM that directly writes the entire code to address a given task. It
benefits from the accurate numerical reasoning and tool-use capacity from the code-writing,
but does not have the opportunity to analyze the intermediate graph information from the
iterative retrieving and reasoning (dubbed Iterative RetRea in this section). We prompt the
SingleCoder LLM with the combination of the information for both the Reasoner and the
Retriever in SG-RwR, including the environment and action space information, scene graph
schema, and tool annotations. The self-debugging mechanism is also introduced.

• SG-RwR _Text: The other variant disables the code-writing ability of both the Retriever and
Reasoner in SG-RwR. Instead, both cooperative agents rely purely on language reasoning
and communication skill to solve a given task. This design evaluates the performance of the
iterative retrieve and reason process without the code-writing. We observe that this variant
is only capable of generating plans in natural language. Hence, we add an additional action
translator that converts the output to the executable action format, following prior works
(Song et al., 2023; Huang et al., 2023c).

Both variants are tested in BabyAI Trv-1 and Numerical Q&A tasks under the zero-shot setting.

Results The ablation study results are demonstrated in Table 3, where both variants impair the
effectiveness of the method. While the iterative task solving can better break the task down, correct
solution for each substep cannot always be obtained without the code-writing. For example, queried
with "Find all rooms that contain 5 green balls", the non-code-writing Retriever is
not able to solve the counting problem and locate the correct room without code-writing. On the other
hand, while SingleCoder is better at solving numerical problems, it is unable to address complex
planning tasks without the iterative cooperation. By combining the advantage from both designs, our
method achieves the best result over both variants and all baselines.

5 RELATED LITERATURE

Language models for Task and Motion Planning With the advance of large language or multi-
modal models, many earlier works look into harnessing their power for decision making (Xi et al.,
2023; Chen et al., 2023; Liu et al., 2023) and robotic control (Dalal et al., 2024; Zhang et al., 2023;
Lin et al., 2023; Chen et al., 2021; Hatori et al., 2018). With rich built-in knowledge and in-context

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

learning ability trained from the large internet-scale text corpora, language models are used for
generating task-level plans (Raman et al., 2022; Gao et al., 2024), action selection (Ahn et al., 2022;
Nasiriany et al., 2024), processing environmental or human feedback (Skreta et al., 2023), training
or finetuning language-conditioned policy models (Team et al., 2024; Padalkar et al., 2023; Szot
et al., 2023), and more. To allow the language models to factor in the environment during planning,
recent studies have explored using LLMs for programmatic plan generation (Singh et al., 2023),
combining knowledge from external perception tools via code-writing (Liang et al., 2023; Huang
et al., 2023b) or grounded decoding (Huang et al., 2023c), and value function generation Yu et al.
(2023). While proven effective, those methods are limited to small scale environments, and rely on
multimodal or expert perception models to extract task-related states from the scene representation
with implicit spatial structure. In this work, we study using pretrained LLMs to process the the global
representation of large environments with explicit structure, and generate the solution that is grounded
in the environment.

Graph as the Scene Representation The scope of the solvable task is largely determined by
the state representation. Compare to sensory representation such as images or point clouds, scene
graphs are compact thus scalable to large environments Greve et al. (2024), structured to represent
spatial layout explicitly Hughes et al. (2022); Wu et al. (2021), and efficient in representing diverse
states of the environment Armeni et al. (2019). Due to that reason, they have been used in various
manipulation or navigation tasks Ravichandran et al. (2022); Zhu et al. (2021). In this paper, we
exploit these favorable features of the scene graph representation to ground the reasoning process of
LLMs to the environment.

LLMs for Reasoning on Graph Leveraging language models for reasoning on graphs is a growing
area. While prior works integrates learnt graph and language knowledge through training or finetuning
(Ye et al., 2023; Ni et al., 2023), recent study explore serializing graph-structured data for prompting
to pretrained LLMs (Wang et al., 2023; Fatemi et al., 2024). This strategy has been successfully used
to enhance the reasoning ability of LLMs with external knowledge graphs (Sun et al., 2023; Luo et al.,
2024) and robotic task planning on open vocabulary 3D scene graphs (Gu et al., 2024). Closest to our
work, SayPlan (Rana et al., 2023) prompts scene graphs to LLMs and designs a Retrieve-then-Reason
framework for the planning tasks. However, it designs the room-by-room retrieve mechanism only
for the object search purpose, whereas we design the Reason-while-Retrieve framework that allows
graph information retrieval for any type of reasoning. We further incorporate the code-writing and
tool-use ability to LLMs, so that our proposed method can effectively retrieve information based on
scene graphs and address numerical tasks that fall beyond the expertise of LLMs (Nezhurina et al.,
2024).

6 CONCLUSION AND FUTURE WORK

In this work, we have proposed SG-RwR: an iterative, multi-agent framework that grounds LLMs
in a physical environment through scene graphs, and enables them to reason using both natural and,
crucially, programming languages. Specifically, SG-RwR facilitates reasoning on large scene graphs
by enabling LLMs to write code that retrieves task-related information during the reasoning process.

Our ablation study shows that both the iterative cooperation process and the code-writing design
are crucial to the framework’s enhanced performance. The former ensures that the data specific to
the environment enters the planning process in a just-in-time manner, while later enables prompting
with a data schema instead directly with the data itself. In short, both of these are ways to limit
“information overload” in the Reasoner.

One unexplored benefit of the SG-RwR framework is its inherent flexibility: new agents with new
specialties can be added to the framework with ease. In future work, we plan to experiment with a third
agent, the Verifier, to correct mistakes in the Reasoner’s plan based on the graph information. Another
promising direction is to add new agent expert on new modalities to integrate richer information
about the environment into our method. The iterative nature of SG-RwR, however, can lead to longer
task-solving times: The number of conversation rounds required increases with task complexity and
the number of agents. This suggests future work investigating additional agents must be accompanied
with methods to steer the LLMs to minimize the required conversation rounds.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and Silvio
Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 5664–5673, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Hongyi Chen, Yilun Du, Yiye Chen, Joshua Tenenbaum, and Patricio A Vela. Planning with sequence
models through iterative energy minimization. arXiv preprint arXiv:2303.16189, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024.

Yiye Chen, Ruinian Xu, Yunzhi Lin, and Patricio A Vela. A joint network for grasp detection
conditioned on natural language commands. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4576–4582. IEEE, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. In Advances in Neural
Information Processing Systems 36, New Orleans, LA, USA, December 2023.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-learn:
Language model guided rl for solving long horizon robotics tasks. arXiv preprint arXiv:2405.01534,
2024.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In International Conference on Learning Representations, 2024.

Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and
Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 12462–12469. IEEE,
2024.

Elias Greve, Martin Büchner, Niclas Vödisch, Wolfram Burgard, and Abhinav Valada. Collaborative
dynamic 3d scene graphs for automated driving. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 11118–11124. IEEE, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs:
Open-vocabulary 3d scene graphs for perception and planning. In International Conference on
Robotics and Automation (ICRA), pp. 5021–5028. IEEE, 2024.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los Alamos,
NM (United States), 2008.

Jun Hatori, Yuta Kikuchi, Sosuke Kobayashi, Kuniyuki Takahashi, Yuta Tsuboi, Yuya Unno, Wilson
Ko, and Jethro Tan. Interactively picking real-world objects with unconstrained spoken language
instructions. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
3774–3781. IEEE, 2018.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
arXiv preprint arXiv:2311.12871, 2023a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In Conference on
Robot Learning, pp. 540–562. PMLR, 2023b.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for robot control. arXiv preprint arXiv:2303.00855, 2023c.

Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial perception system for 3d
scene graph construction and optimization. arXiv preprint arXiv:2201.13360, 2022.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

Frank Joublin, Antonello Ceravola, Pavel Smirnov, Felix Ocker, Joerg Deigmoeller, Anna Belardinelli,
Chao Wang, Stephan Hasler, Daniel Tanneberg, and Michael Gienger. Copal: corrective planning
of robot actions with large language models. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 8664–8670. IEEE, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In International
Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, and Li Zhang. Exploring
and evaluating hallucinations in llm-powered code generation. arXiv preprint arXiv:2404.00971,
2024.

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan. Reasoning on graphs: Faithful and interpretable
large language model reasoning. In International Conference on Learning Representations, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint arXiv:2301.13379,
2023.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie,
Danny Driess, Ayzaan Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting elicits actionable
knowledge for vlms. arXiv preprint arXiv:2402.07872, 2024.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061, 2024.

Zhe Ni, Xiaoxin Deng, Cong Tai, Xinyue Zhu, Qinghongbing Xie, Weihang Huang, Xiang Wu, and
Long Zeng. Grid: Scene-graph-based instruction-driven robotic task planning. arXiv preprint
arXiv:2309.07726, 2023.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8494–8502, 2018.

Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie Tellex.
Planning with large language models via corrective re-prompting. In NeurIPS 2022 Foundation
Models for Decision Making Workshop, 2022.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable task planning. In 7th
Annual Conference on Robot Learning, 2023. URL https://openreview.net/forum?
id=wMpOMO0Ss7a.

Zachary Ravichandran, Lisa Peng, Nathan Hughes, J Daniel Griffith, and Luca Carlone. Hierarchical
representations and explicit memory: Learning effective navigation policies on 3d scene graphs
using graph neural networks. In International Conference on Robotics and Automation (ICRA), pp.
9272–9279. IEEE, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. arXiv
preprint arXiv:2305.15294, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen, Kourosh
Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful prompts:
Instruction guided task programming with verifier-assisted iterative prompting. arXiv preprint
arXiv:2303.14100, 2023.

13

https://openreview.net/forum?id=wMpOMO0Ss7a
https://openreview.net/forum?id=wMpOMO0Ss7a

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
International Conference on Computer Vision, October 2023.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Heung-Yeung
Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model
with knowledge graph, 2023.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie
Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representations,
2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=UDqHhbqYJV.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7515–7525, 2021.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, Yongfeng Zhang, et al. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134, 4(5):7, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR, 2023.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598,
2022.

14

https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin
Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In International Conference on Learning Representations, 2024.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. arXiv preprint arXiv:2310.10021, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical planning for long-
horizon manipulation with geometric and symbolic scene graphs. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6541–6548. IEEE, 2021.

A PROMPT TEMPLATES FOR SG-RwR

SG-RwR adopts template-based prompt generation for both the Reasoner and Retriever. The templates
for them are shown in Table 4 and Table 5. The prompt is generated by populating the red contents in
the template with the specific graph information.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Reasoner Prompt Template

Reasoner Prompt Template

You are a planning agent that is excellent at collaboration and
code writing. Given the environment description, schema of the
graph representaiton of that environment, a retriever agent that
can retrieve information from the graph, and a set of user defined
reasoning tool(s), you know what information to ask from the
retriever and how to use them as well as the reasoning tool(s) to
solve a planning task. Then you can generate a plan executable by
the agent to achieve the given mission.

Environment Description:
{ENVIRONMENT PROMPT}

Scene Graph Schema:
{SCENE GRAPH SCHEMA PROMPT}

Agent Actions:
{AGENT ACTIONS}

Please follow the guidance below:
* Solve tasks step-by-step. Figure out the next step that can help
you get closer to the solution.
* If you need any information from the graph based on the graph
schema, raise a language query. A retriever will return the
information to you.
* If you have enough information to solve the next substep, use
your reasoning and code writing skill to solve it. If you write
code, print out the result with succint explanation. The code
execution output will be sent back to you.
* You might be provided with reasoning tools. They are a set of
python functions for solving an atomic subproblem, which might be
helpful for your task. Please use the tools whenever suitable. The
annotation of the tools will be provided at end of the guidance.
* When asking the retriever for information:

- Raise language queries that are clear, self-contained, and
addressable by traversing through the graph.
- Communicate using the terms in the graph schema.
- Please break questions into simpler queries and raise them
one-by-one. Avoid asking for all necessary information at once.

* When the task is solved, summarize the solution and reply ‘TASK
TERMINATE‘ in a separate paragraph. Do this ONLY when you obtain
the complete solution.
* Format your information query message in the following way:

[Explanation]
Explane why querying for the information.
[Query]
The information retrieval query to the retriever.

* Format your code writing message in the following way:
[Explanation]
Explain what your code does.
[Code]
Python code that solves a subproblem. Wrap the code in the
python code block.

* Format your entire solution summary message in the following way:
[Summary]
Summarize the enire solving process.
[Actions]
[ACTION1, ACTION2, ...]
TASK TERMINATE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Retriever Prompt Template

Retriever Prompt Template

You are a excellent graph information retrieval agent. Given the
environnment description and the schema of the graph
representaiton of the environment, you are good at writing code to
obtain information from a graph following language queries.
Environment Description:
{ENVIRONMENT PROMPT}

Scene Graph Schema:
{SCENE GRAPH SCHEMA PROMPT}

Please follow the guidance below:
* Please write python code to retrieve information from the graph.
Please include node id in your result and print out the result in
your code.
* If there is no required information stored in the graph, print
None in your code.
* The code execution result will be send back to you. Please check
the result. If the information is retrieved, summarize the
information and replay ’INFO RETRIEVED’ in a separate paragraph
following the format below:

[Summary]
Summarize the required information
INFO RETRIEVED

B BABYAI ENVIRONMENT AND SCENE GRAPH DETAILS

Node attributes The node attributes in BabyAI scene graph involve:

• "type": String. The type of the element type. Choices:
root, room, agent, key, door, box, ball

• "color": String. For doors and items. The color of the element.
• "coordinate“: List of integer. Exist for all types of nodes except for the root node. For

room nodes, the top left corner coordinate. For other nodes, the 2D coordinate in the grid.
• "is_locked": Binary. For door. State indicating if a door is locked or not.
• "size": List of integer. For room. The size of a room.

C VIRTUALHOME ENVIRONMENT AND SCENE GRAPH DETAILS

Node attributes The node attributes in VirtualHome involve:

• ’id’: Int. Node id.
• ’category’: Str. Meta category. E.g. "Room".
• ’class_name’: Str. Specific class name. E.g. "bathroom".
• ’prefab_name’: Str. Instance name.
• ’obj_transform’: Dict. ’position’: 3D vector, ’rotation’: Quaternion form as 4D vector,

’scale’: 3D vector
• ’bounding_box’: Dict. ’center’: 3D vector, "size": 3D vector
• ’properties’: List. Object properties. Determine the action that can act upon it.
• ’states’: List. Object states. Full list of available states: [’CLOSED’, ’OPEN’, ’ON’,

’OFF’, ’SITTING’, ’DIRTY’, ’CLEAN’, ’LYING’, ’PLUGGED_IN’, ’PLUGGED_OUT’,
’HEATED’, ’WASHED’]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Edge attributes The edge attributes in VirtualHome involve:

• ’from_id’: Int. Id of node in the from relationship.

• ’to_id’: Int. Id of node in the to relationship.

• ’relationships’: Str. Relationship between the 2 objects. Available relationships:

– ’ON’: Object from_id is on top of object to_id.
– ’INSIDE’: Object from_id is inside of object to_id.
– ’BETWEEN’: Used for doors. Door connects with room to_id.
– ’CLOSE’: Object from_id is close to object to_id (< 1.5 metres).
– ’FACING’: Object to_id is visible from objects from_id and distance is < 5 metres. If

object1 is a sofa or a chair it should also be turned towards object2.
– ’HOLDS_RH’: Character from_id holds object to_id with the right hand.
– ’HOLD_LH’: Character from_id holds object to_id with the left hand.
– ’SITTING’: Character from_id is sitting in object to_id.

Action Space

• [walk] <class_name> (id): Walk to an object.

• [grab] <class_name> (id): Grab an object. Requires that the agent has walked to that object
first.

• [open] <class_name> (id): Open an object. Requires that the agent has walked to that
object first.

• [close] <class_name> (id): Close an object. Requires that the agent has walked to that
object first.

• [switchon] <class_name> (id): Turn an object on. Requires that the agent has walked to
that object first.

• [switchoff] <class_name> (id): Turn an object off. Requires that the agent has walked to
that object first.

• [sit] <class_name> (id): Sit on an object. Requires that the agent has walked to that object
first.

• [putin] <class_name1> (id1) <class_name2> (id1): Put object 1 inside object 2. Requires
that the agent is holding object 1 and has walked to the object 2.

• [putback] <class_name1> (id1) <class_name2> (id1): Put object 1 on object 2. Requires
that the agent is holding object 1 and has walked to the object 2.

Example Task and State-based Specifications in VH-1 We show the 5 example tasks and their
desired final state in the VH-1 environment in Table 6.

Task Name State Specification
Watch TV tv ON

Turn off tablelamp tablelamp OFF
put the soap in the bathroomcabinet barsoap INSDIE bathroomcabinet

throw away plum plum INSIDE garbagecan
make toast breadslice INSIDE toaster; breadslice HEATED

Table 6: Results in BabyAI SG-RwR achieves the best performance across all tasks in both zero-shot
and few-shot settings, showing that SG-RwR (1) is effective in solving spatial tasks; (2) can harness
the information from in-context examples and extrapolate better to unseen tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

71
2

3

11

6

8 4

2

13

10

5

9

1

Which room contains the red box (node ID 13)? What are the room's top left
corner coordinate and size?
• The room containing the red box (node ID 13) is room ID 7. The top left corner

coordinate of the room is [5, 0], and the size of the room is [6, 6].
Which room contains the agent (node ID 9)? What are the room's top left
corner coordinate and size?
• The room containing the agent (node ID 9) is room ID 1. The room's top left

corner coordinate is [0, 0], and its size is [6, 6].
Which door connects room 1 and room 7? What is the door's node ID,
coordinate, and locked status?
• The door that connects room 1 and room 7 has the following details:

o Node ID: 4
o Coordinate: [5, 3]
o Locked Status: True

What is the color of the door with node ID 4?
• The color of the door with node ID 4 is yellow.
What is the node ID and coordinate of the yellow key?
• The node ID of the yellow key is 3, and its coordinate is [1, 2].
What are the coordinates and node IDs of all items in room 1?
• The coordinates and node IDs of all items in room 7 are as follows:…

Now, we need to determine if the agent can traverse from its current location to
the yellow key's location
• The agent can traverse from its current location to the yellow key's location

without needing to remove any items.
• [pickup(3)]
Next, we need to determine if the agent can traverse from the yellow key's
location to the locked door's location within room 1.
• The agent can traverse from the yellow key's location to the door's location, but it

needs to remove the ball (node ID 8) to clear the path.
• [pickup(3), remove(8), open(4)]
What are the coordinates and node IDs of all items in room 7?
• The coordinates and node IDs of all items in room 7 are as follows:…
Now, we need to determine if the agent can traverse from the door's location to
the red box's location, considering these items as potential obstacles.
• The agent can traverse from the door's location to the red box's location without

needing to remove any items. The final step is to create a plan for the agent to
pick up the red box.

• [pickup(3), remove(8), open(4), pickup(13)]
TASK TERMINATE

Pickup the
red box

Figure 6: Example SG-RwR Traversal task solving process (Reasoner-side). It shows the queries
or analysis generated by the Reasoner (in black), information obtained from the Retriever (in yellow),
the intermediate conclusion obtained through code-writing that processes the graph information (in
green), and the derived plan (in red). The final plan can successfully achieve the mission shown on
the left.

D EXAMPLE SG-RwR COOPERATION ON BABYAI TRAVERSAL TASK

We qualitatively demonstrate how SG-RwR addresses a challenging BabyAI traversal task in Figure
6. It shows the task solving process from the Reasoner’s perspective, including the information
queried from the Retriever as well as the intermediate solution obtained through its own code writing.
It clearly demonstrates that SG-RwR is able to ground the plan to the environment by iteratively
retrieving graph information based on the task solving process and establishing the next step towards
solution based on the past retrieved information.

E ANALYSIS ON THE COMPUTATIONAL COST

1 2 3 4 5
Iterations

0

500

1000

1500

2000

To
ke

n
C

ou
nt

RwR Reasoner Input Toekns
Graph Tokens
CoT Input Tokens
RwR Average Iterations

(a) NumQ&A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iterations

0

500

1000

1500

2000

2500

3000

To
ke

n
C

ou
nt

RwR Reasoner Input Toekns
Graph Tokens
CoT Input Tokens
RwR Average Iterations

(b) Trv-1

Figure 7: Compute Analysis. We show average conversation rounds and processed token counts
at each iteration by SG-RwR Reasoner for both NumQ&A (left) and Trv-1 (right) tasks. We also
demonstrate the average token counts of the textualized environment scene graph and CoT input for
reference.

We show the number of the token processed by our method by iterations and average conversation
rounds required to solve a query for the BabyAI tasks in Figure 7. We also plot the token counts of
the scene graph and the CoT baseline input. As a direct whole-graph prompting method, the compute
required by CoT is determined by the graph size. So the processed token for NumQ&A is 4 times
larger than that for the Trv-1, despite that the former is a simpler task requiring less reasoning steps.

On the other hand, SG-RwR processed token number monotonically increase along the iteration,
as it processes the cumulative conversation history. Hence, the compute required by SG-RwR also
depends on the task difficulty. However, thanks to the code-writing-based retrieval design, SG-RwR
only processes limited tokens in early iterations. Thus, for simpler task such as NumQ&A, SG-RwR

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

process less tokens compared to graph prompting method such as CoT at each iteration, which is
helpful for reducing hallucination over redundant information. For the traversal task, the processed
token count of our method grows beyond even the graph size. This trade-off in compute cost yields
superior performance, as demonstrated in Table 1.

F HOW SG-RwR AVOIDS HALLUCINATION VIA CODE-WRITING

27

3436

10

8

54

25
24

17

31
19

28

Cropped Environment

1. Identify the room with 4 red
balls: …

2. Determine the rooms adjacent
to room 27: - Room 27 is
connected to room 54 (door 28),
room 34 (door 8), and room 10
(door 24).

3. Check for the presence of a
box in any of these adjacent
rooms: ...

[Answer] blue, green, yellow

Q: find the color of the box in a room next to the room with 4 red ball

Room-door-level node IDs

for node in G.nodes:
 if G.nodes[node]['type'] == 'door’:
 neighbors = list(G.neighbors(node))
 if room_id in neighbors:
 connected_doors.append(node)
 # Find the other room connected by this door
 other_room = [n for n in neighbors if n !=
room_id]
 if other_room:
 connected_rooms.append(other_room[0])

0-CoT CoT
The room with 4 red balls is
room 27. The rooms next to
it are 54, and 25. Among
these rooms, the boxes
present are: …

[Answer] None

RwR(ours)

Door ID: 7; Other room ID: 34

[Query] Find the rooms that are connected to the
room 27 through a door.

…
[Answer] green.

(a) Baseline Hallucination: Spatial layout understanding.

Q: find the color of the ball in a room next to the room with 3 blue box

0-CoT CoT
The room with 3 blue boxes
is room 33. The rooms next
to it are …

[Answer] Gray

RwR(ours)

Room that contains 3 blue boxes: 26

[Query] Find the room that contains 4 gray keys

…
[Answer] green.

Identify the room with 3 blue
boxes: Room 26 has blue boxes
with IDs 17 and 42; Room 33 has
blue boxes with IDs 30…

None of the rooms have exactly 3
blue boxes. …

[Answer] None

Cropped Environment

Rooms & Blue Boxes Node IDs

2633

17 42
15

30

Iterate through all nodes to find rooms
for node in G.nodes:
 if G.nodes[node]['type'] == 'room’:
 room_id = node
 grey_key_count = 0
 # Check all items in the room
 for neighbor in G.neighbors(room_id):
 if G.nodes[neighbor]['type'] == 'key' and
G.nodes[neighbor]['color'] == 'grey’:
 grey_key_count += 1
 # Check if the room contains exactly 4 grey keys
 if grey_key_count == 4:
 target_room_id = room_id; break

(b) Baseline Hallucination: Spatial counting problem.

Figure 8: Qualitative demonstration on how SG-RwR avoids hallucination. We show how
baselines might hallucinate under the following subtasks: (a) Interpreting spatial layout from the
scene graphs, where they identify the incorrect neighbor rooms; (b) Addressing the counting problem
under spatial constraint, where they miscount the number of a target item type in the room. SG-RwR
is able to avoid the hallucination via code-writing, which filters and processes the graph information
more reliably.

In Figure 8, we qualitative show how SG-RwR avoids hallucination problems happened on baselines
under several scenarios from our tasks. We use the zero-shot 0-CoT and the few-shot CoT as
comparison. To focus on the key difference, we only show snippets of reasoning processes for
each referent subtask. We show that when reasoning in language, baselines have the tendency to
hallucinate in the interpretation of the spatial layout from the scene graph structure, and in address
simple quantitative reasoning (e.g. counting) tasks. On the other hand, based on the scene graph
schema understanding, SG-RwR is able to solve these subtasks more reliably via code-writing.

G BASELINE DETAILS

G.1 REACT

For ReAct, we create the following graph information retrieval APIs in the list below. Each of them
is a wrapper of a basic NetworkX (Hagberg et al., 2008) operation:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• get_nodes(): Get all node IDs in the scene graph.
• get_links(): Get all links in the scene graph.
• get_attrs(node_id): Get the all attributes of a target node;
• get_neighbors(node_id): get all neighbor node IDs of a target node.

G.2 SAYPLAN

SayPlan (Rana et al., 2023) is tested in BabyAI tasks. We follow the original work to create the
following APIs for the room-level graph traversal purpose:

• collapse(G) for retaining only room and root nodes;
• expand(node_id) for revealing all nodes rooted from a given room node;
• contract(node_id) for removing all nodes rooted from a given room node;

We don’t assume a graph simulator available for validating and refining the solution as is done in the
original paper. Instead, we evaluate the LLM-generated plan by executing it directly in the BabyAI.

21

	Introduction
	Method
	Problem Statement
	Overview of SG-RwR
	Reasoner
	Retriever
	Self-debugging and Error prevention in code-writing

	Experimental Settings
	2D Grid World Numerical Q&A
	2D Grid World Traversal Planning
	Household Task Planning

	Results and Analysis
	Experiment Results
	Ablation

	Related Literature
	Conclusion and Future Work
	Prompt Templates for SG-RwR
	BabyAI Environment and Scene Graph Details
	VirtualHome Environment and Scene Graph Details
	Example SG-RwR Cooperation on BabyAI Traversal Task
	Analysis on the Computational Cost
	How SG-RwR avoids hallucination via Code-writing
	Baseline Details
	ReAct
	SayPlan

