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ABSTRACT

Classification techniques have achieved significant success across fields such as computer
vision, information retrieval, and natural language processing. However, much of this
progress assumes input features are error-free – a condition rarely met in practice. In
real-world scenarios, noisy inputs caused by measurement errors are common, leading to
biased or suboptimal classification results. This paper presents a unified framework for bi-
nary classification with noisy inputs, offering a generalizable solution that applies across
various supervised learning algorithms and noise models. We provide a theoretical anal-
ysis of the bias introduced by ignoring input noise (also referred to as feature corruption)
and identify conditions where this bias can be safely disregarded. To address cases where
noise correction is needed, we propose a novel data augmentation-based method to miti-
gate input noise effects. Our approach is both comprehensive and theoretically grounded,
providing practical solutions for improving classification accuracy in noisy data enviro-
ments. Extensive experiments, including analyses of medical image datasets, demonstrate
the superior performance of our methods under different noise conditions.

1 INTRODUCTION

With the exponential growth of data across diverse domains, classification techniques have emerged as in-
dispensable tools in solving complex problems in fields, such as computer vision (Krizhevsky, Sutskever,
and Hinton 2012), information retrieval (Pang et al. 2017), and natural language processing (Howard and
Ruder 2018). Widely used methods like logistic regression, support vector machines, boosting, and neural
networks have demonstrated remarkable success in numerous applications (Mohri, Rostamizadeh, and Tal-
walkar 2018), but much of their effectiveness hinges on the assumption that the input data are clean and
error-free. In practice, this assumption rarely holds. Noisy, imprecise, or corrupted features are prevalent in
practice, creating substantial challenges for these models and leading to suboptimal or biased results.

One of the key challenges in supervised learning is dealing with noisy input features. While research on
handling noisy labels has been prolific – spanning data-cleaning techniques, robust loss functions, and prob-
abilistic methods (e.g., Song et al. 2022), there has been comparatively less attention given to noisy inputs
(or corrupted features), where measurement errors affect feature values. Addressing noisy inputs remains an
interesting research area, particularly as real-world data collection processes are rarely flawless.

1.1 RELATIVE WORK

Research on classification with noisy inputs spans both traditional machine learning algorithms like dis-
criminative methods (e.g., Fidler, Skocaj, and Leonardis 2006; Adeli et al. 2018), logistic regression (e.g.,
Stefanski and Carroll 1985) and support vector machines (Rabaoui et al. 2008), as well as deep learning
techniques, particularly in the context of noisy images. In deep learning, existing methods can be broadly
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classified into two categories. The first category involves preprocessing approaches, where denoising tech-
niques are applied to reconstruct clean images from images from noisy ones before passing them through a
convolutional neural network (CNN) for classification (e.g., Roy, Ahmed, and Akhand 2018). However, the
success of this approach heavily depends on the quality of the denoising step, which introduces additional
complexity and uncertainty. A useful example is FROM (Face Recognition with Occlusion Masks) by Qiu et
al. (2021), which detects corrupted features using a CNN and dynamically cleans them with learned masks.
In the second approach, instead of attempting to recover the clean images, a noise-robust CNN architecture
is designed to directly classify the noisy images (e.g., Momeny et al. 2021). This direct approach reduces
the dependency on preprocessing and has shown promise in noisy image classification tasks.

Beyond deep learning, non-parametric approaches such as Gaussian processes (e.g., Seeger 2002; Kuss,
Rasmussen, and Herbrich 2005; Nickisch and Rasmussen 2008; Hernández-lobato, Hernández-lobato, and
Dupont 2011; Rodrigues, Pereira, and Ribeiro 2014; Zhao et al. 2021) have garnered increased attention for
handling noisy inputs in multi-class classification problems (Villacampa-Calvo et al. 2021). For example,
Hernández-lobato et al. (2014) presented a Gaussian process classification method that treats privileged
information as noise.

Another emerging area is fair classification (e.g., Donini et al. 2018; Huang and Vishnoi 2019; Zafar et
al. 2019; Agarwal et al. 2018; Hardt, Price, and Srebro 2016) under noisy conditions, particularly when
protected attributes are noisy. Lamy et al. (2019) demonstrated that fairness can still be achieved in classifiers
with noisy binary protected attributes, provided specific fairness measures such as the mean-difference score
are used. Celis et al. (2021) extended this work to the non-binary case, developing optimization frameworks
that enable fair classification even when the protected attributes are noisy.

In addition, robust machine learning has been approached by deliberately corrupting features to train models
(e.g., Burges and Schölkopf 1996; Globerson and Roweis 2006; Dekel and Shamir 2008; Xu, Caramanis, and
Mannor 2009). For example, Bahri et al. (2022) proposed SCARF, a technique for contrastive learning that
involves corrupting random subsets of features; Maaten et al. (2013) introduced a robust learning method
that corrupts features using noise sampled from known distributions and minimizes the expected loss under
the corrupting distribution.

Despite these advances, several limitations persist in the current literature. Most existing methods are tai-
lored to specific algorithms and often rely on simple input noise models (e.g., additive noise), commonly
referred to as measurement error models in the statistical literature (Yi 2017; Yi, Delaigle, and Gustafson
2021). Moreover, few studies offer a theoretical framework for analyzing the impact of input noise on clas-
sifier performance or propose generalizable correction methods that can be applied across a broad range
of classification problems. This leaves open questions about how to effectively handle input nose across
different machine learning algorithms and noise structures, especially in large-scale and high-dimensional
settings.

1.2 OUR CONTRIBUTIONS

In this paper, we take a significant step toward closing these gaps by focusing on binary classification with
noisy inputs. We present a unified framework for addressing noisy inputs, with theoretical guarantees and a
practical correction method that applies across a wide range of classification algorithms. Our key contribu-
tions are as follows:

• A General Classification Framework with Noisy Inputs: We develop a general framework for binary
classification that explicitly accounts for input noise. Using the commonly employed 0-1 loss
to evaluate classifiers, we address the computational challenges by utilizing a convex surrogate
loss function, denoted as ϕ(·), and use the corresponding ϕ-risk as a metric to evaluate classifier
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performance. This approach provides a flexible, robust framework that extends beyond specific
algorithms or noise models.

• Theoretical Analysis of Input Noise: We provide a rigorous theoretical analysis of the bias intro-
duced by the naive approach that ignores input noise. Our analysis yields an informative upper
bound for the disparity between the generalization error and ϕ-risk of the optimal classifier ob-
tained from the naive procedure. Notably, this upper bound shrinks as the noise level decreases,
identifying cases where ignoring input noise can be safely disregarded. This result is critical, as it
offers insight into when and how noise affects classifier performance and provides guidance on the
conditions under which noise correction is necessary.

• A Novel Correction Method via Data Augmentation: To mitigate the effect of noisy inputs, we
propose a novel correction method by augmenting the dataset with newly generated data that either
are precisely measured or contain minimal error. This augmented dataset enables us to devise robust
classifiers that mitigate the bias induced by noisy inputs. Unlike previous methods, our approach
is model-agnostic and can be applied to a broad class of classification algorithms, making it highly
versatile for different applications.

• Extensive Empirical Evaluation: We validate the proposed method through extensive numerical
experiments. We first apply our correction method to a real-world chest X-ray image dataset to
demonstrate its effectiveness in a practical healthcare setting. We then conduct a series of synthetic
experiments to assess the performance of our method under different noise levels and input distri-
butions. The results consistently demonstrate the superior performance of the proposed method.

By providing a unified and generalizable approach to handling noisy inputs, this paper makes important
contributions to the field of classification, addressing noisy inputs in a comprehensive and theoretically
grounded manner.

The rest of this paper is structured as follows: In Section 2, we introduce the general classification frame-
work with accurately measured inputs. Section 3 extends this framework to noisy inputs and presents our
correction method. We evaluate our approach in Section 4, using both real-world and synthetic datasets to
assess its effectiveness.

2 CLASSIFICATION FRAMEWORK

Let X ⊆ Rp denote the input space, equipped with the Borel σ-algebra σX , where p is the number of
features, and let Y = {−1,+1} denote the output (or label) space, endowed with the σ-algebra σY . Let
X denote the p-dimensional input vector taking values in X , and let Y represent the binary output variable
taking values in Y . Let D denote the joint distribution of X and Y . Let H denote the set of all measurable
functions from the input measurable space (X , σX ) to the output measurable space (Y, σY). For any h ∈ H,
the generalization error, or risk is defined as:

R(h) , E{1{h(X)6=Y }} (1)

where the expectation is taken with respect to the joint distribution D of X and Y , and 1{h(X)6=Y } is the 0-1
loss function, equal to 1 if the classifier h misclassifies the label of X and 0 otherwise.

Our goal is to find a classifier h0 ∈ H that minimizes the generalization error :

h0 ∈ arg min
h∈H

R(h), (2)

where the symbol “∈” indicates that the solutions of (2) may not be unique.
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A well-known solution to (2) is the Bayes classifier, given by h0(X) = sign
{
η(X) − 1

2

}
(Boucheron,

Bousquet, and Lugosi 2005, Section 2), where η(X) , P(Y = 1|X), and the sign function sign(t) is
defined as 1 if t ≥ 0 and −1 if t < 0.

Let R0 , R(h0) represent the generalization error of the Bayes classifier. Then, we have

R0 = min
h∈H

R(h). (3)

While the Bayes classifier is conceptually optimal, it often proves impractical because we typically do not
know the distributionD of X and Y . To address this challenge, we can focus on a subset ofH instead of the
entire space.

Typically, we select a subset ofH that possesses favorable mathematical properties, such as a set of bounded
linear functions that includes the Bayes classifier. A common approach to construct such a subset is to
specify a family of measurable functions from X to R, denoted F , and define our subset ofH as sign(F) ,
{sign ◦ f : f ∈ F}, where sign ◦ f represents the composition of functions sign and f . Consequently, we
seek to find the minimizer arg min

f∈F
R(sign ◦ f) for an appropriately chosen class F .

Often, we consider a class F with Rademacher complexity R(F) on the order of O(n−
1
2 ) (Boucheron,

Bousquet, and Lugosi 2005). Further, we assume that the functions in F are uniformly bounded, meaning
there exists a constantCF > 0 such that |f(x)| ≤ CF for all f ∈ F and x ∈ X . Since sign(f) = sign( f

CF
)

for any f ∈ F , we can equivalently consider the set F ′ , { f
CF

: f ∈ F}. Thus, without loss of generality,
we assume that |f(x)| ≤ 1 for all f ∈ F and x ∈ X .

To simplify our discussion, we will refer to any function f ∈ F as a classifier throughout the paper while
keeping in mind that it is actually sign(f(x)) that predicts the label for x. Define the loss function as

`(u) = 1{u∈[0,∞)} for any u ∈ R. (4)

Using (1) and (4), we express the generalization error of the classifier sign ◦ f as:

R(sign ◦ f) = E
{
1{sign◦f(X)6=Y }

}
= E{`(−Y f(X))},

which we will denote simply as
R(f) , E{`(−Y f(X))}. (5)

We thereby aim to find a classifier from F that minimizes the generalization error R(f). However, the
non-convexity of `(u) complicates this minimization. As a remedy, we consider a convex surrogate function

ϕ : R→ R+ (6)

that serves as an upper bound for the loss function `(u) and is Lipschitz continuous restricted on the interval
[−1, 1]. Specifically, we require that

(a). `(u) ≤ ϕ(u) for all u ∈ R;

(b). there exists a positive constant Lϕ such that

|ϕ(u1)− ϕ(u2)| ≤ Lϕ|u1 − u2| for all u1, u2 ∈ [−1, 1]. (7)

Surrogate functions that meet these criteria are bounded, as shown in the following lemma, whose proof is
deferred to Appendix B.1.
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Lemma 1. For any convex surrogate ϕ(·) defined in (6), there exists a constant Eϕ > 0 such that

|ϕ(f(x))| ≤ Eϕ for all f ∈ F and x ∈ X . (8)

By substituting `(·) in (5) with a convex surrogate ϕ(·), we define the ϕ-risk for f ∈ F (e.g., Lopez-Paz et
al. 2015) as:

Rϕ(f) , E{ϕ(−Y f(X))}. (9)
Now, given a convex surrogate ϕ, as defined in (6), our objective is to find the optimal classifier f0 ∈ F ,
determined by

f0 = arg min
f∈F

Rϕ(f), (10)

which can be readily found using convex optimization algorithms due to the convexity of ϕ.

The ϕ-risk provides a mathematically convenient upper bound for the original risk in (5). Although different
surrogate functions can yield varying upper bounds, a well-calibrated surrogate function ϕ(·) can closely
approximate `(·) and facilitate meaningful risk bounds. To this end, Bartlett et al. (2006) introduced a useful
class of surrogate functions known as classification-calibrated convex surrogates, which include commonly
used losses such as the logistic loss ϕ(u) = log2 (1 + exp(u)) used in logistic regression, the hinge loss
ϕ(u) = max{0, 1 + u} used in the support vector machine (SVM), and the exponential loss ϕ(u) = exp(u)
used in Adaboost.

While utilizing a convex surrogate function simplifies our minimization in (5) to a convex optimization
problem, the unknown distribution D still prevents us from obtaining f0 directly from (10), or even from
arg min

f∈F
Rϕ(f). To address this issue, we consider a collection of n independently and identically distributed

(i.i.d.) copies of {X,Y }, denoted S(n) =
{
{X1, Y1}, · · · , {Xn, Yn}

}
, where n is the sample size.

With the sample S(n) available, we replace Rϕ(f) in (9) with the empirical ϕ-risk:

R̂ϕ(f) ,
1

n

n∑
i=1

ϕ(−Yif(Xi)) (11)

and then find the empirical classifier f̂ϕ ∈ F by minimizing the empirical ϕ-risk:

f̂ϕ = arg min
f∈F

R̂ϕ(f). (12)

To evaluate the performance of f̂ϕ, we compare it with the theoretical minimizer h0 in (2) and the minimizer
f0 in (10) by examining the differences R(f̂ϕ) − R0 and Rϕ(f̂ϕ) − Rϕ(f0), where R0 is defined in (3).
The first measure, R(f̂ϕ) − R0, measures the difference in expected misclassification rates between the
optimal classifier over H and our empirical classifier f̂ϕ. The second term compares the ϕ-risk of the
empirical classifier with that of the optimal classifier over F . While deriving explicit expressions for these
differences is challenging, literature often focuses on identifying meaningful upper bounds for R(f̂ϕ)−R0

andRϕ(f̂ϕ)−Rϕ(f0), typically within the context of finite-dimensional input spaces (Boucheron, Bousquet,
and Lugosi 2005; Mohri, Rostamizadeh, and Talwalkar 2018).

To extend these concepts to broader applications, we develop our analysis in the context of infinite-
dimensional input spaces and provide upper bounds of R(f̂ϕ) − R0 and Rϕ(f̂ϕ) − Rϕ(f0). Contrast to
H that is a superset of sign(F) containing all measurable functions mapping from the input measurable
space (X , σX ) to the output measurable space (Y, σY), we consider a superset of F , denoted G, which in-
cludes all measurable functions mapping from the input measurable space (X , σX ) to the measurable space

5
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(R,B(R)), where B(R) is the Borel σ-algebra on R. The introduction of G enables us to express F relative
to G in the same manner as describing sign(F) relative toH.
Theorem 1. Consider ϕ(·) defined in (6) with the constant Eϕ described in Lemma 1. Let δ be any constant
between 0 and 1. Define

C(n, δ) = 4LϕR(F) + 2Eϕ

√
2log(1/δ)

n
(13)

and
Dϕ(n, δ) = Rϕ(f0)−min

g∈G
Rϕ(g) + C(n, δ). (14)

where f0 is given by (10). Then, with probability at least 1− δ,

Rϕ(f̂ϕ)−Rϕ(f0) ≤ C(n, δ). (15)

Furthermore, if ϕ is classification-calibrated, there exists a nondecreasing continuous function ζϕ : R →
[0, 1], with ζϕ(0) = 0, such that with probability at least 1− δ,

R(f̂ϕ)−R0 ≤ ζϕ(Dϕ(n, δ)). (16)

The proof of Theorem 1 is presented in Appendix B.2. This theorem is applicable to a broad class of convex
surrogates ϕ(·), including the hinge loss, the exponential loss, and the logistic loss, all of which are Lipschitz
continuous. Setting δ = 1

n , the upper bound (15) indicates that Rϕ(f̂ϕ) converges to the true ϕ-risk Rϕ(f0)

in probability as the sample size n approaches infinity, implying that f̂ϕ is ϕ-consistent (Definition A.2 in
the appendix). Furthermore, if the class F includes the minimum of Rϕ(g), the upper bound in (16) shows
that expected misclassification rate R(f̂ϕ) also converges to the optimal risk R0 in probability as the sample
size n approaches infinity. This is because ζϕ(·) is continuous, and hence, f̂ϕ derived from the empirical
ϕ-risk is consistent (Definition A.1 in the appendix).

3 CLASSIFICATION WITH NOISY INPUTS

Theorem 1 provides guidelines for selecting an appropriate ϕ-function, valid only when the input variables
{Xi : i = 1, · · · , n} are precisely measured. This condition is, however, often violated in practice, where
mismeasurement of Xi is common. We denote the observed version of Xi as X∗i and assume access only

to the sample S∗(n) ,
{
{X∗i , Yi} : i = 1, · · · , n

}
, where the X∗i are assumed to be independent and may

have different distributions for i = 1, · · · , n.

For each i = 1, · · · , n, we define the noise level as:

Di , E{||X∗i −Xi||22}, (17)

where ||a||2 ,
√
aTa is the L2-norm for vector a. To see how to determine Di, we examine widely-used

models in Appendix C.

Next, we study the impact of noisy inputs. With only surrogate measurements X∗i for Xi, it might be
tempting to train a classifier by simply replacing Xi with X∗i , leading to what we call a naive classifier. In
this context, we derive the naive empirical ϕ-risk and naive classifier by replacing Xi with X∗i in (11) and
(12), respectively:

R̂∗ϕ(f) ,
1

n

n∑
i=1

ϕ(−Yif(X∗i )) and f̂∗ϕ = arg min
f∈F

R̂∗ϕ(f). (18)

6
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Similar to the discussion about (A.1) in the appendix, f̂∗ϕ implicitly depends on the noisy sample S∗(n), and
we define

R(f̂∗ϕ) = E{`(−Y f̂∗ϕ(X))
∣∣S∗(n)} and Rϕ(f̂∗ϕ) = E{ϕ(−Y f̂∗ϕ(X))

∣∣S∗(n)}
to capture the associated randomness.

For many settings different from the current context, it has been well documented that naive methods ignor-
ing the feature of mismeasurement commonly yield biased results, with induced bias varies from problem
to problem (e.g., Yi 2017). Here, we investigate the performance of the naive classifier f̂∗ϕ in terms of a
ϕ-risk and the risk. In Appendix B.3, we prove the following theorem which provides upper bounds for
E{Rϕ(f̂∗ϕ)−Rϕ(f0)} and E{R(f̂∗ϕ)−R0}.
Theorem 2. Consider ϕ(·) in (6) with the constant Eϕ described in Lemma 1. Assume that all functions in
F are Lipschitz continuous with respect to the L2-norm in X , with a common Lipschitz constant LF . That
is, for any f ∈ F and x, x′ ∈ X ,

|f(x)− f(x′)| ≤ LF ||x− x′||2. (19)

Then

E{Rϕ(f̂∗ϕ)−Rϕ(f0)} ≤ C
(
n,

1

n

)
+

4Eϕ
n

+
2LϕLF
n

n∑
i=1

√
Di, (20)

where C(·, ·) is defined in (13). Furthermore, if ϕ is classification-calibrated, then

E{R(f̂∗ϕ)−R0} ≤ ζϕ

(
Dϕ

(
n,

1

n

)
+

4Eϕ
n

+
2LϕLF
n

n∑
i=1

√
Di

)
, (21)

where Dϕ(·, ·) is defined in (14), and ζϕ(·) is a nondecreasing function with ζϕ(0) = 0 as in Theorem 1.

The upper bound (20) in Theorem 2 conveys an important message. By the limit property that
limn→∞

1
n

∑n
i=1 xi = 0 if limn→∞ xn = 0 (Choudary and Niculescu 2014, Section 2.7), we find that

limn→∞
2LϕLF
n

∑n
i=1

√
Di = 0 if Dn → 0 as n → ∞. Further, under the assumption R(F) = O( 1√

n
)

in Section 2, we have limn→∞

{
C
(
n, 1

n

)
+

4Eϕ

n

}
= 0. Therefore, when Dn → 0, we conclude

that E{Rϕ(f̂∗ϕ) − Rϕ(f0)} approaches zero. If the class F includes arg min
g∈G

Rϕ(g), then Rϕ(f0) =

minf∈F Rϕ(f), showing that if Dϕ(n, 1
n ) in (14) converges to zero as n → ∞, E{R(f̂∗ϕ) − R0} con-

verges to zero as n → ∞. Consequently, as the input noise degree Dn approaches zero as n → ∞, the
naive classifier f̂∗ϕ is both ϕ-consistent and consistent (Definition A.2 and Definition A.1 in the appendix),
showing that in this case, the input noise is ignorable asymptotically.

Building on the results in Theorem 2, we propose a correction method that construct an augmented dataset,
combining the original noisy inputs and newly added data that either are precisely measured or contain
minor error. Implementation details are provided in Algorithm 1. According to Theorem 2, if the size of the
augmented dataset ñ is sufficiently large, the classifier provided by Algorithm 1 can yield reliable learning
outcomes.

4 EXPERIMENTS

4.1 SENSITIVITY ANALYSES OF MEDICAL IMAGE DATA

Chest X-rays are one of the most common imaging tests, crucial for screening, diagnoising and managing
of various life-threatening diseases. CheXpert is a large chest radiography dataset that includes 224,316

7
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Algorithm 1 Implementation of Correction Method

1: Input: Start with the observed noisy data: D∗ =
{
{X∗i , Yi} : i = 1, · · · , n

}
2: Data Collection: Gather ñ instances of precisely measured data or data with minor mismeasurement,

represented as D =
{
{X̃j , Ỹj} : j = 1, · · · , ñ

}
, which may come from a previous study.

3: Dataset Augmentation: Merge D∗ and D into an augmented dataset, denoted D∗A , D∗ ∪ D.
4: Output: Train the optimal classifier using the augmented dataset D∗A

4.1. Specify the class F of classifiers according to a specific application
4.2. Solve the optimization problem (18) by replacing data D with D∗A

Table 1: Sensitivity analyses of the CheXpert data using the true (T), naive (N) and the proposed Correction
(C) methods.

Variable Accuracy (%) Precision (%) Recall (%) F1-score (%)

T N C T N C T N C T N C

Cardiomegaly 99.50 69.80 84.16 100 58.62 100 100 100 78.79 99.25 58.03 69.23
Edema 99.01 76.73 94.55 100 40 100 95.24 100 85.71 97.56 45.71 86.75

Consolidation 100 86.63 96.04 100 83.33 100 100 87.50 87.50 100 41.94 85.71
Atelectasis 100 73.27 88.12 100 100 87.10 100 100 86.67 100 62.44 82.86

Pleural Effusion 100 69.31 83.17 100 100 100 100 82.81 82.81 100 46.29 64.58

high-quality chest X-ray images from 65,240 patients, annotated for 14 common chest conditions. Like the
medical AI competition organized by the Stanford ML group, we aim to train a model to predict the pres-
ence or absence for five specific diseases: Cardiomegaly, Edema, Consolidation, Atelectasis, and Pleural
Effusion.

CheXpert provides a validation dataset where labels for the five diseases are considered precise (i.e. noise-
free). However, chest X-ray images are inevitably noisy due to various factors like improper patient position-
ing, suboptimal beam angles or radiologist errors. While the provided images are deemed to be mismeasured,
there are no precisely measured images to determine the noise degree.

We conduct sensitivity analyses on the validation data to investigate the impact of noisy inputs and examine
the performance of the proposed correction method under different measurement error models. For the
experiments, we use DenseNet121 (Huang et al. 2017), a convolutional neural network (CNN), as our
model architecture with ReLU activation. The logistic loss, ϕ(ε) = log2(1 + eε), is used as the convex
surrogate function ϕ(·). More implementation details can be found in Appendix D.

The results (Table 1) show that models trained without considering noise (naive method) underperform,
while our correction method significantly improves performance, effectively mitigating the impact of noisy
inputs.

4.2 SYNTHETIC EXPERIMENTS

To investigate the impact of noisy inputs and assess the effectiveness of our correction method, we conduct
extensive synthetic experiments. We set n = 1000 and the input space X = R. Each configuration,
described below, is simulated 100 times. We consider two types of noisy input models: additive and Berkson,
as described in Example C.1 in the appendix.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

For the additive noisy input model (C.1), we generate n samples
{{
Xi, X

∗
i

}
: i = 1, · · · , n

}
by first

drawing the true input Xi for i = 1, · · · , n independently from the normal distribution with both mean and
variance being 1, and then generating the noise term ei independently for i = 1, · · · , n from the normal
distribution with the mean µ and variance σ2 to determine the noisy input X∗i of Xi.

For the Berkson model (C.2), reverse the process: we first independently generate the noisy input X∗i from
the normal distribution with both mean and variance being 1, and then generate the error term e∗i for i =
1, · · · , n independently from the normal distribution with the mean µ∗ and variance (σ∗)2 to derive the true
input Xi of X∗i .

Next, we generate the label Yi based on the generated true inputsXi using a logistic model: P(Yi = 1|Xi) =

σ(10Xi + 1), with the sigmoid function σ(u) , 1
1+e−u , and we independently generate the label Yi from a

Bernoulli distribution, with this probability.

To study the impact of varying input noise, we test six different configurations of (µ, σ) for the additive
model: (−1, 0.2), (−1.2, 0.2), (−1.4, 0.2), (−1, 0.4), (−1, 0.6), (−1, 0.8) (referred to as Cases 1-6). Simi-
larly, for the Berkson model, we use six configurations of (µ∗, σ∗): (−1, 1), (−1.2, 1), (−1.4, 1), (−1, 0.2),
(−1, 0.5), (−1, 0.8) (called Cases 1∗-6∗, respectively).

For classification, we specify the class F as the set of all linear functions and take the convex surrogate
function ϕ(·) as the logistic loss, ϕ(u) = log2 (1 + eu). We evaluate three approaches. The true classifier is
trained on the data with the true inputs,

{
{Xi, Yi} : i = 1, · · · , n

}
; the naive classifier is trained on the noisy

inputs
{
{X∗i , Yi} : i = 1, · · · , n

}
; and for the correction method, we train the classifier from the augmented

dataset D∗A = D∗ ∪ D, where D∗ ,
{
{X∗i , Yi} : i = 1, · · · , n

}
, and D ,

{
{Xj , Yj} : j = 1, · · · , ñ

}
is additionally independently generated using the same generation process for

{
{Xi, Yi} : i = 1, · · · , n

}
.

Here, n = 1, 000 and K = 10, 000.

For testing, we generate a separate set of 200 precisely measured synthetic samples T ,
{
{Xk, Yk} : k =

1, · · · , 200
}

by using the preceding data generation process. For each configuration, we report the average
values of accuracy, precision, recall, and F1-score for predicted labels of the true inputs in the test set T
across 100 synthetic datasets to evaluate the performance for the correction methods.

Tables 2 and 3 summarize the results for the additive and Berkson models, respectively. In terms of accuracy
and F1-score, the true classifier performs the best, the naive classifier performs the worst, and the proposed
correction method has similar performance as the true method, and these patterns are consistently exhibited
under all settings. Regarding precision and recall metrics, the naive method shows extreme variability de-
pending on the noise type. In the additive model, it can achieve 100% recall values but suffers from poor
precision values. In contrast, the Berkson model leads to 100% precision values but very low recall values.
However, the proposed correction method maintains robust performance, regardless of the input noise form
or degree, with the performance close to that of the true method.These findings reveal that the naive method
yields unreliable results, and that the proposed correction method effectively mitigates the input noise effects
in various settings.

Additional synthetic experiments, exploring the sensitivity to ñ and misspecification of the input noise
model, are deferred to Appendix E.

5 DISCUSSION

In this paper, we examine how noisy input affect binary classification and present an informative upper
bound on the difference between the generalization error and ϕ-risk of the optimal classifier trained on
noisy inputs, compared to the minimum generalization error and ϕ-risk when using precisely measured

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

Table 2: Synthetic experiment results under the additive model: Performance comparison of the true (T),
naive (N), and proposed correction (C) methods.

Case Accuracy (%) Precision (%) Recall (%) F1-score (%)

T N C T N C T N C T N C

1 96.64 87.28 95.10 97.44 87.09 94.81 98.68 100 99.74 98.05 93.08 97.21
2 96.64 86.72 94.18 97.44 86.60 93.75 98.68 100 99.88 98.05 92.80 96.71
3 96.64 86.35 93.08 97.44 86.27 92.57 98.68 100 99.96 98.05 92.62 96.11
4 96.64 86.87 94.93 97.44 86.73 94.59 98.68 100 99.80 98.05 92.88 97.12
5 96.64 86.46 94.66 97.44 86.37 94.28 98.68 100 99.83 98.05 92.67 96.97
6 96.64 86.09 94.22 97.44 86.05 93.80 98.68 100 99.87 98.05 92.49 96.73

Table 3: Synthetic experiment results under the Berkson model: Performance comparison of the true (T),
naive (N), and proposed correction (C) methods.

Case Accuracy (%) Precision (%) Recall (%) F1-score (%)

T N C T N C T N C T N C

1∗ 96.15 73.70 95.45 96.18 100 98.37 96.44 49.47 92.79 96.29 66.02 95.48
2∗ 96.22 70.83 95 96.30 100 98.65 95.60 37.51 90.54 95.93 54.38 94.40
3∗ 96.33 70.05 94.49 95.61 100 98.97 95.42 26.95 87.49 95.48 42.19 92.83
4∗ 94.69 65.44 94.32 94.76 100 97.07 95.24 34.82 92.04 94.98 51.48 94.46
5∗ 95.28 67.80 94.71 95.42 100 97.52 95.64 39.05 92.32 95.51 56.00 94.83
6∗ 95.60 71.23 95.04 95.89 100 97.95 95.74 45.12 92.50 95.79 62.00 95.12

inputs. This upper bound quantifies the effect of input noise, and we show that it diminishes as the noise
level decreases. To address the noise issue, we propose a correction method to mitigate the input noise
effects by utilizing different model assumptions.

There are interesting directions for future work. One extension is to develop strategies for multiple classifica-
tion in the presence of input noise. Another important challenge involves cases where both input and output
variables are subject to noise, which introduces additional complexities and requires further investigation.
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APPENDICES: TECHNICAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

A DEFINITIONS OF CONSISTENCY AND ϕ-CONSISTENCY

As described in Section 2 of the main text, let S(n) represent a sample of size n consisting of independently
and identically distributed (i.i.d.) copies of the input X and output Y . The realizations of this sample can
be written as s(n) =

{
{x1, y1}, · · · , {xn, yn}

}
, which are used as training data to train a classifier, denoted

fs(n). This classifier is an element of F , indexed by s(n). Let fS(n) denote a random classifier such that,
for any realization s(n) of S(n), fS(n) = fs(n).

Essentially, fS(n)(X) depends on both the input X and the sample S(n), introducing two sources of ran-
domness: one from random input variable X and the other from the random sample S(n). In contrast to (5)
in the main text, we define R(fS(n)) as a random variable that takes the value R(fs(n)) when S(n) = s(n),
where R(fs(n)) is given by (5) in the main text with f replaced by fs(n). That is,

R(fs(n)) = E{`(−Y fS(n)(X))
∣∣S(n) = s(n)}, (A.1)

and R(fS(n)) remains random due to its dependence on the random sample S(n).

Definition A.1. A sequence of (random) classifiers, {fS(n) : n = 1, 2, · · · } is called consistent if
R(fS(n))→ R0 in probability as the sample size n approaches infinity.

A similar definition can be found in Biau, Devroye, and Lugosi (2008, p.2017) and Steinwart (2005, p.128).
Consistency here refers to the ability of a training method to achieve optimal performance as the sample size
n approaches infinity. Similarly, we define the ϕ-consistency as follows.
Definition A.2. A sequence of classifiers {fS(n) : n = 1, 2, · · · } is called ϕ-consistent if Rϕ(fS(n)) →
Rϕ(f0) in probability as the sample size n approaches infinity, where Rϕ(fS(n)) is defined similarly to
R(fS(n)) but with (5) in the main text replaced by (9).

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF LEMMA 1

By the fact that any continuous function is bounded over a bounded closed set in R, there exists a constant
Eϕ > 0 such that |ϕ(u)| ≤ Eϕ for all u ∈ [−1, 1]. Noting that by definition of f , A , {f(x) : f ∈ F ;x ∈
X} is a subset of [−1, 1], we conclude that the image of A under ϕ is also bounded by Eϕ. That is, we have
that |ϕ(f(x))| ≤ Eϕ for all f ∈ F and x ∈ X .

B.2 PROOF OF THEOREM 1

We prove Theorem 1 by the following two steps:

Step 1: Proof of (15) in the main text:

First, we find an upper bound of Rϕ(f̂ϕ)−Rϕ(f0) via R̂ϕ(·):

Rϕ(f̂ϕ)−Rϕ(f0) = Rϕ(f̂ϕ)− R̂ϕ(f̂ϕ) + R̂ϕ(f̂ϕ)− R̂ϕ(f0) + R̂ϕ(f0)−Rϕ(f0)

≤ Rϕ(f̂ϕ)− R̂ϕ(f̂ϕ) + R̂ϕ(f0)−Rϕ(f0)

≤ 2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)|, (B.1)
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where the first inequality is due to R̂ϕ(f̂ϕ)− R̂ϕ(f0) ≤ 0 by the definition of f̂ϕ, and the second inequality
is due to the property of supremum.

Applying Lemma 1 and repeating the proof of Theorem 4.1 of Boucheron, Bousquet, and Lugosi (2005), we
obtain that with probability at least 1− δ,

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)| ≤ 4LϕR(F) + 2Eϕ

√
2log(1/δ)

n
. (B.2)

Then combining (B.1) and (B.2) proves (15) in the main text.

Step 2: Proof of (16) in the main text:

By Theorem 1 and Lemma 2 of Bartlett et al. (2006), for the convex surrogate ϕ(·), there exists a nonnegative
continuous convex function ψϕ(·) from [−1, 1] to R with ψϕ(0) = 0 such that

ψϕ(R(f̂ϕ)−R0) ≤ Rϕ(f̂ϕ)−min
g∈G

Rϕ(g). (B.3)

If the convex surrogate ϕ(·) is classification-calibration, then by the comment after Theorem 1 of Bartlett
et al. (2006), ψϕ(·) is invertible on [0, 1]. Thus, we consider the restricted version of ψϕ(·) on [0, 1], and
let ψ̃ϕ(·) denote it, i.e., ψ̃ϕ(·) maps [0, 1] to R satisfying ψ̃ϕ(x) = ψϕ(x) for all x ∈ [0, 1]. Then ψ̃ϕ(·) is
nonnegative, convex, invertible and continuous over [0, 1], where continuity at the end points 0 and 1 refer to
the right-continuous at 0 and left-continuous at 1, respectively. Further, ψ̃ϕ is strictly increasing over [0, 1].
Indeed, by part 9 of Lemma 2 of Bartlett et al. (2006), for all x ∈ (0, 1], we have that ψ̃ϕ(x) > 0, i.e.,
ψ̃ϕ(x) > ψ̃ϕ(0) because ψ̃ϕ(0) = ψϕ(0) = 0; by part 2 of Lemma 1 of Bartlett et al. (2006), we have that
for all 0 < y < x ≤ 1, ψ̃ϕ(y) ≤ y

x ψ̃ϕ(x) < ψ̃ϕ(x). Therefore, ψ̃ϕ(·) is nonnegative, convex, continuous,
strictly increasing, and invertible with ψ̃ϕ(0) = 0.

As the domain [0, 1] of ψ̃ϕ(·) is compact and R is a Hausdorff space (Kelly 2017), by the classical result
that the inverse of a continuous bijection from a compact space onto a Hausdorff space is also continuous
(Hoffmann 2015), the inverse of ψ̃ϕ(·), denoted ζϕ(·), is continuous. In addition, because ψ̃ϕ(·) is strictly
increasing with ψ̃ϕ(0) = 0, its inverse ζϕ(·) is also strictly increasing with ψ̃ϕ(0) = 0.

Furthermore, becauseR0 is the minimum value ofR(h) overH andF is a subset ofH, 0 ≤ R(f̂ϕ)−R0 ≤ 1.
Then by (B.3), we have that

ψ̃ϕ(R(f̂ϕ)−R0) ≤ Rϕ(f̂ϕ)−min
g∈G

Rϕ(g).

Therefore, by the monotonicity of ζϕ(·),

R(f̂ϕ)−R0 ≤ ζϕ
(
Rϕ(f̂ϕ)−min

g∈G
Rϕ(g)

)
= ζϕ

({
Rϕ(f̂ϕ)−Rϕ(f0)

}
+
{
Rϕ(f0)−min

g∈G
Rϕ(g)

})
≤ ζϕ

({
4LϕR(F) + 2Eϕ

√
2log(1/δ)

n

}
+
{
Rϕ(f0)−min

g∈G
Rϕ(g)

})
= ζϕ(Dϕ), (B.4)

where the second last step is due to (15) in the main text and monotonicity of ζϕ(·). That is, (16) in the main
text follows.
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B.3 PROOF OF THEOREM 2

The proof of Theorem 2 consists two parts that involves multiple steps.

Part 1: Proof of (20) in the main text:

First, we examine Rϕ(f̂∗ϕ)−Rϕ(f0) via R̂∗ϕ(f̂∗ϕ) and R̂∗ϕ(f0):

Rϕ(f̂∗ϕ)−Rϕ(f0) =
{
Rϕ(f̂∗ϕ)− R̂∗ϕ(f̂∗ϕ)

}
+
{
R̂∗ϕ(f̂∗ϕ)− R̂∗ϕ(f0)

}
+
{
R̂∗ϕ(f0)−Rϕ(f0)

}
≤
{
Rϕ(f̂∗ϕ)− R̂∗ϕ(f̂∗ϕ)

}
+
{
R̂∗ϕ(f0)−Rϕ(f0)

}
≤ 2 sup

f∈F

∣∣∣Rϕ(f)− R̂∗ϕ(f)
∣∣∣

= 2 sup
f∈F

∣∣∣{Rϕ(f)− R̂ϕ(f)
}

+
{
R̂ϕ(f)− R̂∗ϕ(f)

}∣∣∣
≤ 2 sup

f∈F

∣∣∣Rϕ(f)− R̂ϕ(f)
∣∣∣+ 2 sup

f∈F

∣∣∣R̂ϕ(f)− R̂∗ϕ(f)
∣∣∣,

where the first inequality is due to R̂∗ϕ(f̂∗ϕ)− R̂∗ϕ(f0) ≤ 0 by the definition of f̂∗ϕ in (18) in the main text, the
second inequality comes from the property of supremum and the fact that f̂∗ϕ ∈ F , and the last inequality is
due to the triangle inequality of absolute value.

Therefore,

E
{
Rϕ(f̂∗ϕ)−Rϕ(f0)

}
≤ E

{
2 sup
f∈F

∣∣∣Rϕ(f)− R̂ϕ(f)
∣∣∣}+ E

{
2 sup
f∈F

∣∣∣R̂ϕ(f)− R̂∗ϕ(f)
∣∣∣}. (B.5)

Now we examine the two terms in (B.5) separately in the following two steps.

Step 1: Examine E
{

2 supf∈F

∣∣∣Rϕ(f)− R̂ϕ(f)
∣∣∣} in (B.5):

For any f ∈ F , we have that

|Rϕ(f)− R̂ϕ(f)| ≤
∣∣Rϕ(f)

∣∣+
∣∣R̂ϕ(f)

∣∣
=
∣∣E{ϕ(−Y f(X))}

∣∣+
∣∣∣ 1
n

n∑
i=1

ϕ(−Yif(Xi))
∣∣∣

≤ E
∣∣ϕ(−Y f(X))

∣∣+
1

n

n∑
i=1

∣∣ϕ(−Yif(Xi))
∣∣

≤ Eϕ +
1

n

n∑
i=1

Eϕ

= 2Eϕ, (B.6)

where the first step is due to the triangle inequality of absolute value, the second step is due to (9) and (11)
in the main text, the third step is due to Jensen’s inequality, and the fourth step is due to Lemma 1 in the
main text.

Next, applying (B.2) to the case with δ = 1
n and using (13) in the main text, we obtain that

P
(

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)| > C(n,

1

n
)
)
≤ 1

n
. (B.7)
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Consequently,

E
{

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)|

}
= E

[{
2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)|

}
1{

2 supf∈F |Rϕ(f)−R̂ϕ(f)|≤C(n, 1n )
}

+
{

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)|

}
1{

2 supf∈F |Rϕ(f)−R̂ϕ(f)|>C(n, 1n )
}]

≤ E
[
C(n,

1

n
)1{

2 supf∈F |Rϕ(f)−R̂ϕ(f)|≤C(n, 1n )
} + 4Eϕ1{

2 supf∈F |Rϕ(f)−R̂ϕ(f)|>C(n, 1n )
}]

= C(n,
1

n
)P
(

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)| ≤ C(n,

1

n
)
)

+ 4EϕP
(

2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)| > C(n,

1

n
)
)

≤ C(n,
1

n
) +

4Eϕ
n

, (B.8)

where the first inequality is due to the property of indicator function and (B.6), the second equality is due to
the property of indicator function, and the last inequality is due to (B.7) and the fact that the probability is
always less than or equal to 1.

Step 2: Examine E
{

2 supf∈F

∣∣∣R̂ϕ(f)− R̂∗ϕ(f)
∣∣∣} in (B.5):

By (11) and (18) in the main text, we obtain that

2 sup
f∈F
|R̂ϕ(f)− R̂∗ϕ(f)|

= 2 sup
f∈F

∣∣∣ 1
n

n∑
i=1

ϕ(−Yif(Xi))−
1

n

n∑
i=1

ϕ(−Yif(X∗i ))
∣∣∣

≤ 2 sup
f∈F

1

n

n∑
i=1

∣∣∣ϕ(−Yif(Xi))− ϕ(−Yif(X∗i ))
∣∣∣

≤ 2

n

n∑
i=1

sup
f∈F

∣∣∣ϕ(−Yif(Xi))− ϕ(−Yif(X∗i ))
∣∣∣

≤ 2

n

n∑
i=1

sup
f∈F

[
Lϕ
∣∣Yi · {f(Xi)− f(X∗i )}

∣∣]
=

2Lϕ
n

n∑
i=1

sup
f∈F

∣∣f(Xi)− f(X∗i )
∣∣

≤ 2LϕLF
n

n∑
i=1

sup
f∈F
||Xi −X∗i ||2, (B.9)

where the first inequality is due to the property of absolute value, the second inequality is due to the property
of supremum, the third inequality is due to (7) in the main text, the second last step is due to that Yi ∈ {−1, 1}
for any i, and the last step is due to (19) in the main text.
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By taking expectation on both sides of (B.9) with utilizing (17) in the main text and Jensen’s inequality, we
obtain that

E
{

2 sup
f∈F
|R̂ϕ(f)− R̂∗ϕ(f)|

}
≤ 2LϕLF

n

n∑
i=1

√
Di. (B.10)

Consequently, applying (B.10) and (B.8) to (B.5) proves (20) in the main text.

Part 2: Proof of (21) in the main text.

Repeat the proof for (16) in the main text presented in Step 2 of B.2, with f̂ϕ replaced by f̂∗ϕ, where ϕ is as-
sumed to be classification-calibrated. Then we can show that there exists a nonnegative, convex, continuous,
strictly increasing, and invertible function, denoted ψ̃ϕ(·), such that

ψ̃ϕ(R(f̂∗ϕ)−R0) ≤ Rϕ(f̂∗ϕ)−min
g∈G

Rϕ(g),

and the function ψ̃ϕ(·) has the following properties:

(a). ψ̃ϕ(0) = 0;

(b). its inverse function, denoted ζϕ(·), is continuous and satisfies ζϕ(0) = 0.

Then by Jensen’s inequality, we obtain that

ψ̃ϕ

(
E
{
R(f̂∗ϕ)−R0

})
≤ E

{
ψ̃ϕ(R(f̂∗ϕ)−R0)

}
≤ E

{
Rϕ(f̂∗ϕ)−min

g∈G
Rϕ(g)

}
. (B.11)

Therefore, by the monotonicity of ζϕ(·),

E
{
R(f̂∗ϕ)−R0

}
≤ ζϕ

(
E
{
Rϕ(f̂∗ϕ)−min

g∈G
Rϕ(g)

})
= ζϕ

(
E
[{
Rϕ(f̂∗ϕ)−Rϕ(f0)

}
+
{
Rϕ(f0)−min

g∈G
Rϕ(g)

}])
= ζϕ

[
E
{
Rϕ(f̂∗ϕ)−Rϕ(f0)

}
+
{
Rϕ(f0)−min

g∈G
Rϕ(g)

}]
≤ ζϕ

(4Eϕ
n

+
2LϕLF
n

n∑
i=1

√
Di +Dϕ(n,

1

n
)
)
, (B.12)

where the first inequality is due to (B.11), and the last inequality is due to (14) in the main text, (20) in the
main text, and monotonicity of ζϕ(·). That is, (21) in the main text follows.

C EXAMPLES OF INPUT NOISE MODELS

Example C.1. Suppose we haveXi andX∗i defined by one of the following four common input noise models.

(1) Additive model:
X∗i = Xi + ei, (C.1)

where ei is a noise term with zero mean and covariance matrix Σi, and is independent of Xi. In
this case, we can compute the expected squared difference between Xi and X∗i as:

Di = E{||X∗i −Xi||22} = E{eT
i ei} = E{tr(eT

i ei)} = E{tr(eieT
i )} = tr(E{eieT

i }) = tr(Σi),

where tr(·) denotes the trace of a matrix, the second equality is due to the fact that eT
i ei is a scalar,

the third equality is due to the property that tr(AB) = tr(BA) for any matrices A and B, and the
fourth equality is due to the fact that tr(·) is a linear operator.
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(2) Berkson model:
Xi = X∗i + e∗i , (C.2)

where e∗i is noise with zero mean and covariance matrix Σ∗i , and is independent of X∗i . Similarly,
the expected squared difference is given by:

Di = E{||X∗i −Xi||22} = E{e∗i
Te∗i } = E{tr(e∗i

Te∗i )} = E{tr(e∗i e∗i
T)} = tr(E{e∗i e∗i

T}) = tr(Σ∗i ).

(3) Multiplicative model: X∗i = Xiei, where ei is a scalar noise term with mean 1 and variance σ2
i

and is independent of Xi.

For i = 1, · · · , n, let µ2i = E(XT
iXi). Then the expected squared difference is

Di = E{||X∗i −Xi||22} = E{(ei − 1)2XT
iXi}

= E{(ei − 1)2}E{XT
iXi}

= σ2
i µ2i,

where the second equality is due to the assumption that ei is independent of Xi.

(4) Berkson-type multiplicative model: Xi = X∗i e
∗
i , where e∗i is a scalar noise term with mean 1 and

variance σ∗i
2 and e∗i is independent of X∗i .

For i = 1, · · · , n, let µ∗2i = E(X∗i
TX∗i ). Then the expected squared difference becomes

Di = E{||X∗i −Xi||22} = E{(e∗i − 1)2X∗i
TX∗i }

= E{(e∗i − 1)2}E{X∗i
TX∗i }

= σ∗i
2µ∗2i,

where the second equality is due to the assumption that e∗i is independent of X∗i .

In each case, the expected error Di quantifies how much the input noise distorts the data, depending on the
model assumption. This formulation covers a range of scenarios, from simple additive noise to multiplicative
distortions, commonly used in the literature (Yi 2017; Yi, Delaigle, and Gustafson 2021).

D IMPLEMENTATION IN MEDICAL IMAGE DATA ANALYSIS

The sensitivity analyses proceed in the following four steps:

1. Image Preprocessing: We apply the codes from Irvin et al. (2019) to process each image into a
3 × 224 × 224 array. This preprocessing includes random rotation, translation, and scaling. Let
X∗i , {X∗ijk ∈ R3 : j, k = 1, · · · , 224} denote the 3 × 224 × 224 array corresponding to the ith
noisy image.

2. Generate Precise Measurements: We create a precisely measured version of the image, Xijk, inde-
pendently using the Berkson model described in Example C.1:

Xijk = X∗ijk + e∗ijk, (D.1)

where e∗ijk is drawn from a normal distribution with mean aijk and an identity matrix as the covari-
ance matrix. Here, we specify aijk as (0.8, 0.7, 0.6)T.
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3. Training Classifiers: We train the true classifier from the generated precisely measured inputs and
their corresponding outputs, as described in Section 2. The true classifier, denoted as f̂ϕ, is obtained
by solving the optimization problem (12) in the main text. In contrast, the naive and the proposed
corrected classifiers are trained using the noisy inputs and the outputs, as described in Section 3.
The naive classifier, f̂∗ϕ, is obtained by solving the optimization problems (18) in the main text.
For the proposed correction method, we randomly select 200− ñ noisy images from a total of 200
noisy images along with their corresponding outputs to create the observed data D∗. The precisely
measured versions of the remaining noisy images and their outputs serve as the historical dataset
D. We set ñ = 160. We use Adam (Kingma and Ba 2015), a widely used stochastic optimization
method for training neural networks, with a batch size of 10.

4. Evaluation Metrics: Finally, for each of the five selected diseases, we calculate the accuracy, preci-
sion, recall, and F1-score for the true, naive, and the proposed corrected classifiers across the 200
generated precisely measured inputs, respectively.

E ADDITIONAL SYNTHETIC EXPERIMENTS

In Section 4.2 of the main text, we conduct synthetic experiments. In addition to those experiments, we
want to evaluate how the performance of the proposed correction method may change with the size ñ of
the dataset D. In Tables E.1 and E.2, we report the results for the additive and Berkson models (C.1) and
(C.2), respectively, where we examine ñ = 5000, 10000, 20000, 30000, and 40000. The results show that
the proposed correction method maintain stable performance with varying values of ñ, although we observe
some variations in the performance.
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Table E.3: Results of synthetic experiment results assessing the sensitivity of the proposed correction method
to misspecification of the input noise model: Average values of accuracy (%), precision (%), recall (%), and
F1-score (%), with the additive input noise model (C.1) being the true model.

Case

Situation Accuracy Precision

1 2 3 4 1 2 3 4

1 95.10 95.10 95.10 95.10 94.82 94.82 94.82 94.82
2 94.18 94.18 94.18 94.18 93.75 93.75 93.75 93.75
3 93.08 93.08 93.08 93.08 92.57 92.57 92.57 92.57
4 94.93 94.93 94.66 94.93 94.59 94.59 94.28 94.59
5 94.66 94.66 94.66 94.66 94.28 94.28 94.28 94.28
6 94.22 94.22 94.22 94.22 93.80 93.80 93.80 93.80

Case

Situation Recall F1-score

1 2 3 4 1 2 3 4

1 99.74 99.74 99.74 99.74 97.21 97.21 97.21 97.21
2 99.88 99.88 99.88 99.88 96.71 96.71 96.71 96.71
3 99.96 99.96 99.96 99.96 96.11 96.11 96.11 96.11
4 99.80 99.80 99.80 99.80 97.12 97.12 97.12 97.12
5 99.83 99.83 99.83 99.83 96.97 96.97 96.97 96.97
6 99.87 99.87 99.87 99.87 96.73 96.73 96.73 96.73

The effectiveness of the proposed correction methods hinges on the knowledge of the input noise model. To
assess how the proposed methods perform when the model is misspecified, we conduct sensitivity analyses.

We generate two datasets: precise dataset {(Xi, Yi) : i = 1, · · · , n} and the noisy dataset {(X∗i , Yi) :
i = 1, · · · , n} by repeating the data generation procedure described in Section 4.2 of the main text. To
implement the proposed correction method, we intentionally misspecify the mean and variance of ei in the
additive model (C.1) as µ+ a1 and (σ + a2)2, respectively. We consider four scenarios for (a1, a2): (0, 0),
(−0.2, 0.1), (0.2,−0.1), and (−0.2,−0.1), called Situations 1-4, respectively. Similarly, in the Berkson
model (C.2), we misspecify the mean and variance of e∗i as µ∗ + a∗1 and (σ∗ + a∗2)2, respectively. The same
pairs for (a1, a2) are used for (a∗1, a

∗
2), leading to Situations 1∗ − 4∗.

Situation 1 (or 1∗) represents the scenario with no input noise, while the other situations illustrate different
model misspecification scenarios. For the proposed correction method, we set ñ = 10, 000.

Table E.3 presents the average values of accuracy, precision, recall, and F1-score of the proposed correction
method across Cases 1-6 for Situations 1-4 in the additive model. Similarly, Table E.4 displays the results for
the Berkson model. The performance of the proposed correction method is similar across the four selected
different values of (a1, a2) or (a∗1, a

∗
2) in each case, demonstrating the robustness of the proposed correction

method against misspecification of the input noise model.
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Table E.4: Results of synthetic experiment results assessing the sensitivity of the proposed correction method
to misspecification of the input noise model: Average values of accuracy (%), precision (%), recall (%), and
F1-score (%), with the Berkson input noise model (C.2) being the true model.

Case

Situation Accuracy Precision

1 2 3 4 1 2 3 4

1∗ 95.45 95.21 95.62 95.36 98.37 98.55 98.21 98.44
2∗ 95 94.60 95.21 94.71 98.65 98.82 98.42 98.74
3∗ 94.49 94.07 94.86 94.14 98.97 99.17 98.63 99.17
4∗ 94.32 94.19 94.44 94.25 97.07 97.34 96.90 97.27
5∗ 94.7 94.52 94.82 94.61 97.52 97.70 97.35 97.62
6∗ 95.04 94.86 95.19 94.97 97.95 98.08 97.78 98.01

Case

Situation Recall F1-score

1 2 3 4 1 2 3 4

1∗ 92.80 92.15 93.29 92.55 95.48 95.23 95.67 95.39
2∗ 90.54 89.52 91.22 89.82 94.40 93.92 94.66 94.05
3∗ 87.48 86.27 88.71 86.45 92.82 92.22 93.36 92.32
4∗ 92.05 91.53 92.45 91.70 94.47 94.32 94.60 94.38
5∗ 92.30 91.76 92.70 92.29 94.81 94.61 94.94 94.72
6∗ 92.50 92.02 92.96 92.29 95.12 94.92 95.04 95.04
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