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Abstract

We study language generation in the limit – in-
troduced by Kleinberg & Mullainathan (2024) –
building on classical works of Gold (1967) and
Angluin (1979). (Kleinberg & Mullainathan,
2024)’s main result is an algorithm for generat-
ing from any countable language collection in
the limit. While their algorithm eventually gener-
ates unseen strings from the target language K, it
sacrifices coverage or breadth, i.e., its ability to
generate a rich set of strings. Recent work intro-
duces different notions of breadth and explores
when generation with breadth is possible, leav-
ing a full characterization of these notions open.
Our first set of results settles this by characteriz-
ing generation for existing notions of breadth and
their natural extensions. Interestingly, our lower
bounds are very flexible and hold for many per-
formance metrics beyond breadth – for instance,
showing that, in general, it is impossible to train
generators which achieve a higher perplexity or
lower hallucination rate for K compared to other
languages. Next, we study language generation
with breadth and stable generators – algorithms
that eventually stop changing after seeing an ar-
bitrary but finite number of strings – and prove
unconditional lower bounds for such generators,
strengthening the results of Kalavasis et al. (2025)
and demonstrating that generation with many ex-
isting notions of breadth becomes equally hard,
when stability is required. This gives a separation
for generation with approximate breadth, between
stable and unstable generators, highlighting the
rich interplay between breadth, stability, and con-
sistency in language generation.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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1. Introduction
Language generation has a rich history in computer science,
dating back to the seminal work of (Shannon, 1951), cul-
minating in today’s Large Language Models (LLMs) that
have revolutionized natural language processing and, more
broadly, machine learning (ML). Although the problem at
the core of generation – generate new and unseen strings
given a sequence of examples from a target language K –
is easy to state, a theoretical understanding of why LLMs
are able to produce coherent text remains elusive. Recently,
Kleinberg & Mullainathan (2024) formalized this problem
under a simple yet elegant model of language generation in
the limit: given a stream of strings from an unknown target
language K (belonging to a known collection of languages
L = {L1, L2, . . . }), learn to generate new, previously un-
seen, strings also belonging to this target language.

Their model is reminiscent of online learning (Littlestone,
1988); there are two players, the generator and the adversary
who play the following game: First, the adversary fixes a
target language K 2 L and an enumeration of K.1 Then,
at any round n � 1, it presents the n-th element xn of
the enumeration to the generator. The generator, given
the strings Sn = {x1, . . . , xn} seen so far, outputs a new
string wn /2 Sn – its guess for an unseen string in K. The
generator wins the game if eventually it learns “to generate
from K.” Formally, the generator G is said to generate from
L in the limit if for all K 2 L and any enumeration of K,
there is a finite time n? such that, for any subsequent round

n � n?, wn is an unseen element of K, i.e., wn 2 K \ Sn.

This model has deep connections to the classical works of
Gold (1967) and Angluin (1979; 1980), which studied the
problem of language identification in the limit. In the Gold–
Angluin model, like the above model, an algorithm observes
an adversarially chosen enumeration of strings from some
unknown target language K = Li? . The only difference
is that in the Gold–Angluin model the goal is to eventually
identify the index i? of the correct language, whereas in the
Kleinberg–Mullainathan (KM) model the goal is the simpler
task of generation – i.e., of outputting unseen strings from
K.

1An enumeration of K is an infinite sequence of elements
(potentially including duplicates) which does not contain elements
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Language identification turns out to be hard for essen-
tially all infinite collections of languages. Indeed, An-
gluin showed that it is intractable for most interesting lan-
guage collections, including regular languages. Surprisingly,
(Kleinberg & Mullainathan, 2024) proved, in stark contrast,
that language generation is tractable for all countable collec-
tions of languages. They provided an elegant algorithm that,
given any stream of input strings from a target language
K in a countable collection L = {L1, L2, . . .}, generates
a sequence of previously unseen strings such that beyond
a finite time step, all generated strings belong to the target
language K.

Main Questions. The KM algorithm eventually stops hal-
lucinating, as it ceases outputting elements outside of K
after a finite time. However, this property comes at a cost:
the KM algorithm sacrifices breadth – i.e., the ability to
generate diverse strings from the target language. As the
algorithm eliminates hallucinations, it generates from an in-
creasingly smaller subset of the target language, resembling
mode collapse in generative adversarial networks (Arjovsky
& Bottou, 2017). This observation raises a fundamental
question, left open by Kleinberg & Mullainathan (2024):

Question #1. Is the trade-off between consistency and
breadth inherent for generation? In other words, must

any algorithm that eventually generates only valid
strings from the target language necessarily sacrifice
the ability to generate a broad subset of the language?

To formalize this question, recent work (Kalavasis et al.,
2025; Charikar & Pabbaraju, 2024a) relaxed the require-
ment that the learner outputs one element at a time and
allowed it to output a whole set of elements. This also
allows for the case where, at some finite point, one can
stop training and generate a rich set of responses. With
this change, Kalavasis, Mehrotra, and Velegkas (2025) pro-
posed three distinct notions of breadth and showed that,
for a large family of generators, language generation with
breadth is as hard as language identification. Adding to this
result, (Charikar & Pabbaraju, 2024a) proved the impos-
sibility of generation with breadth for a specific language
collection (with any generator). While these results suggest
a fundamental tension between consistency and breadth,
a complete characterization of when different notions of
generation with breadth are achievable remains open.

Another intriguing direction initiated by Kalavasis et al.
(2025) concerns the stability of generators: a stable gen-
erator is one that eventually stops changing its “support,”
i.e., the set of elements it outputs, after seeing a finite num-
ber of distinct strings from the target language. Stability
is a central object in online learning and has already been

outside K, and for every element x 2 K there is some position
nx 2 N where x appears.

studied in language identification (Gold, 1967). Kalavasis
et al. (2025) studied generation under stability showing that
certain notions of generation with breadth are “hard” to
achieve if generators (from a specific family) are required to
be stable, but largely left characterizing the effect of stability
on generation with other notions of breadth and with other
generators outside this family open.

Question #2. How does stability interplay with consis-
tency and breadth in language generation?

1.1. Our Contributions and Technical Novelty
Our work is centered around answering Questions 1 and 2
in the model of language generation in the limit (Kleinberg
& Mullainathan, 2024). Next, we describe our main results
and techniques.

Results for Question #1. There are many notions of
breadth in the literature, all attempting to quantify how
much of the target language is covered by a generator. Our
first set of results provides a complete characterization of all
notions of breadth proposed in prior work (Section 3 and Ap-
pendix A). In the main body, we illustrate our results with
two of the simplest notions of breadth: exact breadth and
approximate breadth (Kalavasis et al., 2025). Exact breadth
is the strongest notion, requiring that after sufficiently many
examples, the learner must be able to generate all unseen
elements of the target language K. Approximate breadth
relaxes this condition, requiring generators to output all but
finitely many unseen elements of K after seeing enough
examples. For exact breadth, we show that:
Informal Theorem 1.1 (see Theorem 3.3). A generator G
can generate from a collection L with exact breadth in the
limit if and only if L is identifiable in the limit.

Thus, collections L admitting generators with exact breadth
are exactly those that are identifiable in the Gold–Angluin
model; they have a combinatorial characterization due to
(Angluin, 1979) that we call Angluin’s condition (see Defi-
nition 2.2). This result strengthens Kalavasis et al. (2025)’s
lower bound which only applied to generators with specific
properties; since our result applies to all generators with-
out assumptions, it requires a fundamentally different proof
approach.

The above is essentially a negative result because the classes
L satisfying Angluin’s condition are known to be very lim-
ited (Kleinberg & Mullainathan, 2024). A natural follow-up
question is whether relaxing the requirement to approximate
breadth, where the generator can miss finitely many ele-
ments, might overcome this limitation. For this question,
we show:
Informal Theorem 1.2 (see Theorem 3.8). A genera-
tor G can generate from a collection L with approx-
imate breadth in the limit if and only if L satisfies
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weak Angluin’s Condition (Definition 3.7).

A few remarks are in order. First, the “weak Angluin’s
condition” (Definition 3.7) is a novel relaxation of Angluin’s
classic condition (Definition 2.2) that we introduce in this
work. We prove that this requirement is strictly weaker than
Angluin’s original condition (Appendix F.1), establishing
that approximate breadth is strictly easier to achieve than
exact breadth. Nevertheless, the weak Angluin’s condition
remains highly restrictive – it is not even satisfied by regular
languages, which are far simpler than human languages.
This demonstrates that the trade-off between consistency
and breadth is inherent and largely unavoidable, even when
we weaken our breadth requirement.

Technical Novelty. We view generation with exact or ap-
proximate breadth as special cases of generation properties
relative to the target language. Other such properties might
include having uniquely low perplexity or hallucination rate
for the target language compared to other languages (see Re-
mark 3.6). Our characterizations of generation with breadth
rely on two novel abstractions and also have consequences
for other properties: The first is the uniqueness criterion
(Definition 3.4) which informally states that if generator G
satisfies property P for language L, it cannot satisfy P for
any different language L0. We prove the following implica-
tions:

. Properties P with uniqueness can only be achieved for
collections satisfying Angluin’s condition.

. Exact breadth (like some other notions of breadth) sat-
isfies uniqueness, establishing the necessity direction
of Informal Theorem 1.1. Sufficiency is simpler: if L
satisfies Angluin’s condition, we can identify the tar-
get language and use its index to generate with exact
breadth.

However, approximate breadth (along with some other no-
tions of breadth) does not satisfy uniqueness, and requires
our second abstraction, the finite non-uniqueness criterion
(Definition 3.9). Informally, this weaker condition requires
that if G satisfies a property P for L, then it can also satisfy
P for another language L0 only if L and L0 differ on finitely
many elements. We show that:

. Properties P with finite non-uniqueness can only be
achieved for collections satisfying the weak Angluin’s
condition.

. Approximate breadth satisfies finite non-uniqueness,
establishing the necessity direction of Informal Theo-
rem 1.2. Unlike Informal Theorem 1.1, the sufficiency
direction is also non-trivial: collections satisfying weak
Angluin’s condition are not necessarily identifiable, so
we develope a novel algorithm achieving approximate
breadth for any such collection.

The most technically intricate parts of these constructions
are the lower bounds, which rely on careful diagonalization
arguments. To establish the upper bounds we present sev-
eral algorithms that are inspired by the work of Kleinberg
& Mullainathan (2024) and the seminal work of Angluin
(1980). We elaborate on these techniques in Section 3.3.
In summary, these reductions are the main tools that en-
able us to characterize all existing notions of breadth in the
literature and resolve Question #1.

Implications for Statistical Settings. Using reductions from
prior work, our characterizations extend to statistical set-
tings where examples are drawn from distributions rather
than chosen adversarially. We provide unconditional charac-
terizations of generation with exact and approximate breadth
in the stochastic model, extending the conditional charac-
terizations of Kalavasis et al. (2025) that were limited to a
specific generator family (Remark 3.12 and Appendix D).
Results for Question #2. Next, we investigate how gener-
ation with breadth is affected by stability, where generators
eventually stop changing their support (Definition 3.13), as
defined by (Kalavasis et al., 2025). Our results show that sta-
bility creates a unified landscape across notions of breadth:

Informal Theorem 1.3 (see Theorem 3.14). A stable gen-
erator G can generate from a countable collection L with
exact/approximate breadth in the limit if and only if L is
identifiable in the limit.

This reveals a stark separation between stable and unstable
generators, as certain notions that only require the weak
Angluin’s condition without stability now require the full
condition with stability. We also introduce further weaker
notions of breadth and make significant progress in charac-
terizing when they can be achieved under stability; due to
space constraints, we defer these results to Appendix A.

Technical Novelty. Requiring stability introduces an im-
portant challenge: unlike breadth, which can be verified
at specific steps t, stability requires examining the infinite
future sequence of a generator’s behavior. Even if a gen-
erator appears stable for arbitrarily many steps, we cannot
confirm stability without seeing its entire infinite execution.
This challenge in verification breaks our earlier lower bound
techniques, making the proof significantly more difficult,
and necessitating novel ideas (Section 3.3).

Our results comprehensively map the landscape of language
generation with breadth, pinpointing when various notions
are achievable and revealing the interplay between con-
sistency, stability, and different notions of breadth. Our
abstractions also extend beyond breadth, establishing im-
possibility results for other desirable generation properties
(Remarks 3.6 and 3.11).
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1.2. Related Work
Our work directly builds on the framework of Kleinberg &
Mullainathan (2024), who introduced the model of language
generation in the limit. Since then, a growing line of re-
search has explored various aspects of language generation
with and without breadth (e.g., (Li et al., 2024; Kalavasis
et al., 2025; Charikar & Pabbaraju, 2024a; Raman & Raman,
2025; Peale et al., 2025)). Here, we discuss the most rele-
vant prior works and defer the discussion of the remaining
works to Appendix H.

Language Generation with Breadth. Our work builds
upon Kalavasis et al. (2025); Charikar & Pabbaraju (2024a)
who study language generation with breadth. Kalavasis et al.
(2025) introduced three notions of breadth: exact, approx-
imate, and unambiguous. They explored both Kleinberg
& Mullainathan (2024)’s online setting and its statistical
counterpart – where the strings are sampled from a distribu-
tion instead of being adversarially generated. For specific
generator family and each notion of breadth, they character-
ized which countable collections L enable generation with
breadth (for the last two notions, they also require stabil-
ity). Charikar & Pabbaraju (2024a) introduced exhaustive
generation, another notion of breadth, and provided an un-
conditional lower bound by constructing a specific language
collection for which no algorithm can generate exhaustively.
(They also studied questions beyond breadth, discussed in
Appendix H). Our work unifies and extends both approaches
by providing complete characterizations for all these notions
of breadth without assumptions on the generator family that
hold for all countable language collections.

Independent and Concurrent Work. Independently of
and concurrently to this work, the authors of (Charikar
& Pabbaraju, 2024a) updated their manuscript to in-
clude a characterization of exhaustive generation Charikar
& Pabbaraju (2024b) which is similar to our result
on approximate breadth (Theorem 3.8). Our work
provides several additional contributions beyond this
shared result, including characterizations of all exist-
ing notions of breadth (Section 3.1), lower bounds for
abstract properties of generation – extending beyond
breadth (Section 3.1 and Remarks 3.6 and 3.11), char-
acterizations for stable generation (Section 3.2), and
characterizations for the statistical setting (Remark 3.12).

Subsequent Work. Two papers follow-up on our work
to study more fine-grained notions of breadth. Peale
et al. (2025) introduce “representation,” a weaker notion
of breadth that requires the generator’s outputs to propor-
tionally represent certain groups of (elements in) the domain.
Kleinberg & Wei (2025) weaken approximate breadth by
allowing generators to miss infinitely many elements from
the target language, instead focusing on the output set’s
“density” in the target language. Both of these works ad-

dress natural follow-up questions raised by our results while
being orthogonal.

2. Preliminaries
In this section, we present some background on language
identification and generation in the limit.

Notation. Let ⌃ be a finite alphabet (e.g., {a, b, . . . , z})
and ⌃⇤ the set of all finite-length strings formed by con-
catenating symbols from ⌃. We define a language L as an
infinite subset of ⌃⇤. A countable collection of languages
is denoted by L = {L1, L2, . . .}. We define a generat-
ing algorithm G = (Gn)n2N as a sequence of mappings
Gn : (⌃⇤)n ! 2⌃

⇤
parametrized by the input size n. In

words, the generator maps a finite training set to a (poten-
tially infinite) set of elements.

Language Generation in the Limit. We now formally
define language generation in the limit.

Definition 2.1 (Language Generation in the Limit (Klein-
berg & Mullainathan, 2024)). Let L = {L1, L2, . . . } be
a collection of languages, G = (Gn) be a generating algo-
rithm, and K 2 L be some target language. The algorithm
G is said to generate from K in the limit if, for all enumer-
ations of K, there is some n⇤ 2 N such that for all steps
n � n⇤, the algorithm’s output Gn(Sn) is a subset of K\Sn,
where Sn are the first n elements of the enumeration. The
collection L allows for generation in the limit if there is
an algorithm G that generates from K in the limit for any
K 2 L.

To gain some intuition about this definition, consider the
collection L = {Z, L1, L�1, L2, L�2, . . . } of thresholds
over integers where, for each i 2 Z, Li = {i, i + 1, i +
2, . . . }. Suppose the target language is some K 2 L
and the adversary first enumerates string x1. The gen-
erator can deduce that K = Lz for some z  x1, i.e.,
K 2 {Z, Lx1 , Lx1�1, . . . }. Since the intersection of all
of these languages is non-empty and is a strict superset
of the strings enumerated so far (namely, the intersection
is {x1 + 1, x1 + 2, . . . }), the generator can generate an el-
ement that is guaranteed to be in K: for instance, it is
sufficient to output {x1 + 1}. More generally, after seeing
strings x1, x2, . . . , xi, the generator can output a singleton
containing any integer larger than maxi xi.

For the problem to be interesting, Kleinberg & Mullainathan
(2024) assumed throughout that each language in the col-
lection has infinite cardinality, i.e., |Li| = 1 for all i.
(Otherwise, K \ Sn eventually becomes empty.) They
showed that language generation in the limit is possible
for all countable collections of languages – starkly contrast-
ing results in language identification, discussed next. The
KM algorithm is a key starting point for our algorithms,
and we discuss it in Section 3.3.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Language Identification in the Limit. Language identi-
fication in the limit was introduced by Gold (1967) and
has, since, been widely studied in learning theory. The
model is slightly different from that of generation: while
generation only requires producing valid examples from
the target language K = Li⇤ , identification requires the
learner to eventually determine the exact identity i⇤ (in-
dex) of the target language in the collection. Despite
this seemingly minor difference, identification is dramati-
cally harder than generation: indeed, generation is possible
for any countable collection (Kleinberg & Mullainathan,
2024), but identification is only possible for very limited
collections (Angluin, 1979; 1980), which satisfy a certain
structural property that we explain next. A formal defi-
nition of language identification appears in Appendix G
but is not essential for understanding this paper.

Angluin’s Condition. A key concept in our analysis is
Angluin’s condition – a structural property of language col-
lections L that characterizes identifiability: L is identifiable
if and only if it satisfies Angluin’s condition (Angluin, 1980).
Informally, a collection satisfies Angluin’s condition if for
any language L 2 L, there exists a finite subset TL (called
a tell-tale set) that serves as a finite “fingerprint” allowing
one to distinguish L from any other language that contains
TL.

Definition 2.2 (Angluin’s Condition (Angluin, 1980)). Fix
a language collection L = {L1, L2, . . . }. The collection L
is said to satisfy Angluin’s condition if for any index i, there
is a tell-tale, i.e., a finite set of strings Ti such that Ti is a
subset of Li, i.e., Ti ✓ Li, and the following holds:

For all j � 1, if Lj ◆ Ti, then Lj is not a proper subset of
Li.

Roughly, this condition ensures that after observing enough
examples from the target language, one can rule out all
incorrect languages. We refer to Figure 1 for a visualization
of the condition.

3. Our Results and Techniques
In this section, we present our main results. We begin with
two notions of generation with breadth from prior work,
provide characterizations of generation with breadth (Sec-
tion 3.1) and their implications (Remark 3.12), examine
stable generation (Section 3.2), and overview our proof
techniques (Section 3.3). While we focus on exact and
approximate breadth in the main body, our techniques ex-
tend to all existing notions and their natural combinations;
we present these extensions in Appendix A.

Notions of Breadth. Recent works have introduced vari-
ous notions of breadth, capturing different aspects of how
generators cover a target language. The first notion, exact
breadth (introduced by Kalavasis et al. (2025) and studied

by Charikar & Pabbaraju (2024b)). Given samples S, a gen-
erator G has exact breadth for K if G(S) = K \S, meaning
it generates all unseen strings in K.
Definition 3.1. Generator G has exact breadth for language
K given samples S if G(S) = K \ S.

In words, language generation in the limit with exact breadth
requires that, for any target language K 2 L and any enu-
meration of K, there is an n⇤ � 1, such that for all n � n⇤,
after seeing n elements of the enumeration Sn, G achieves
exact breadth for language K.

Recognizing that this is a strong requirement, Kalavasis et al.
(2025) also introduced a natural relaxation, approximate
breadth, which allows the generator to miss a finite number
of elements.
Definition 3.2. Generator G has approximate breadth
for language K given samples S if G(S) ✓ K and
|K \ G(S)| < 1.

Again, one can naturally define language generation in the
limit with approximate breadth as above. Next, we present
our results for these two notions of breadth. We mention
that we also characterize generation under all other notions
of breadth introduced in prior work (see Appendix A).

3.1. Results on Generation with Breadth
Our first result characterizes language generation with exact
breadth.
Theorem 3.3 (Exact Breadth () Angluin’s Condition).
For any countable collection of languages L, there is a
generator G = (Gn) that generates with exact breadth from
L in the limit if and only if L satisfies Angluin’s condition.

This result establishes that generation with exact breadth is
as hard as language identification in the limit, which is a
much more challenging problem than generation in the limit
without breadth constraints. Our characterization general-
izes previous work in several ways: it removes technical con-
ditions on the generators needed by Kalavasis et al. (2025)
and extends the unconditional lower bound of Charikar &
Pabbaraju (2024a), which only held for a specific language
collection.

Generalization to Any “Unique” Property. One side of
this result, the upper bound, is simple: at a high level, if
Angluin’s condition holds, then language identification is
possible (i.e., one can find i? such that K = Li? ), and then,
one can generate with exact breadth by outputting the first
unseen string from K. (That said, there are some difficulties
because we do not know when we have found i?, and we
handle this in our proofs.) The other side, the lower bound,
is non-trivial and is actually a corollary of a much more
general result concerning a property we call uniqueness.
Definition 3.4 (Uniqueness). A property P of generation
satisfies the uniqueness criterion for a collection L if no
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generator G can simultaneously satisfy that property for
two different languages L 6= L0 in L, i.e., if G has property
P for L, then it cannot have P for L0 6= L and vice versa.

We prove the following lower bound for any property satis-
fying the uniqueness criterion.
Theorem 3.5 (Lower bound with Uniqueness). Let P be
any property of generation that satisfies the uniqueness
criterion. For a countable collection of languages L, there
exists an algorithm that generates with property P from L
in the limit only if L satisfies Angluin’s Condition.

To gain some intuition, note that exact breadth satisfies this
uniqueness criterion: if a generator G generates a language
L with exact breadth (i.e., G(S) = L\S), then it necessar-
ily cannot generate any other language L0 6= L with exact
breadth. In contrast, approximate breadth does not satisfy
uniqueness: for collections containing languages L1 ✓ L2

that differ on only finitely many elements, a generator with
support L1 can simultaneously generate with approximate
breadth from L1 and L2. Like exact breadth, other notions
of breadth in the literature also satisfy the uniqueness condi-
tion and Theorem 3.5 is a powerful tool for proving lower
bounds for such notions.
Remark 3.6 (Implications Beyond Generation with Breadth).
The theorem also has implications well beyond breadth.
Assume we require only that a generator’s evaluation metric
– e.g., lower perplexity or hallucination rate – is strictly
better on a target language K than on every other L 6=
K. Even this weaker “metric-separation” goal is attainable
only when the language collection L satisfies Angluin’s
condition; if not, then no generator can perform strictly
better for the target K than the rest. This fundamental limit
applies regardless of the specific metric.

Characterization of Approximate Breadth. Next, we
move to approximate breadth. Since approximate breadth
does not satisfy the uniqueness criteria introduced above,
we cannot show a lower bound for approximate breadth
based on Angluin’s condition, and need new ideas. In fact,
the reason why approximate breadth does not satisfy it hints
towards the required relaxation that we need to impose on
Angluin’s condition: languages that differ on finitely many
elements need to be treated differently from languages that
differ on infinitely many elements. Motivated by this, we
introduce a variant of Angluin’s condition we call the weak
Angluin’s condition:
Definition 3.7 (Weak Angluin’s Condition). Fix a language
collection L = {L1, L2, . . . }. The collection L is said to
satisfy the weak Angluin’s condition if for any index i, there
is a tell-tale, i.e., a finite set of strings Ti such that Ti is a
subset of Li, i.e., Ti ✓ Li, and the following holds:

For all j � 1 such that Lj ◆ Ti, one of the following
holds.

• Either Lj is not a proper subset of Li; or

• Lj is a proper subset and misses finitely many
elements of Li, i.e., |Li \ Lj | < 1.

The tell-tale oracle is a primitive that, given an index i,
outputs an enumeration of the set Ti.

For a visualization of this condition, we refer to Figure 1.
This condition relaxes Angluin’s condition by allowing lan-
guage Lj containing the tell-tale set Ti of language Li to
be a proper subset of Li provided Lj misses only finitely
many elements (see Figure 1). We remark that this is a strict
weakening of Angluin’s condition (see Appendix F.1).

(a) (b)

Figure 1: Figure 1a visualizes Angluin’s condition: any
language L0 containing language L’s tell-tale set TL cannot
be a strict subset of L. Our weak Angluin’s condition relaxes
this by allowing an additional case (Figure 1b): a language
L0 containing TL can be a strict subset of L provided L0

only misses finitely many elements of L (i.e., |L\L0| < 1).

Our next result characterizes approximate breadth via the
Weak Angluin’s Condition.
Theorem 3.8 (Approximate Breadth () Weak Angluin’s
Condition). For any countable collection of languages L,
there is a generator G = (Gn) that generates with approx-
imate breadth from L in the limit if and only if L satisfies
the weak Angluin’s condition (Definition 3.7).

Since approximate breadth is characterized by the weak An-
gluin’s condition, which is strictly weaker than Angluin’s
condition, approximate breadth is a strictly weaker require-
ment than exact breadth.

Unlike the characterization of exact breadth, the upper
bound side of this result is not simple. This is because
if a language collection L satisfies the weak Angluin’s con-
dition, it may not be identifiable, and hence we need a
different algorithm for generation that achieves approximate
breadth. We design a new algorithm based on the weak An-
gluin’s condition and overview it in Section 3.3. Like with
characterization of exact-breadth, the lower-bound side of
this argument is non-trivial and a corollary of a more general
result concerning a property of finite non-uniqueness.

Generalization to Any “Finitely Non-Unique” Property.
Roughly speaking, finite non-uniqueness relaxes uniqueness
by allowing properties that can hold for two languages L
and L0 simultaneously but only when L and L0 differ on
finitely many elements.
Definition 3.9 (Finite Non-Uniqueness). A property P of
generation satisfies the finite non-uniqueness criterion for
a collection L if no generator G can simultaneously satisfy
that property for two languages L,L0 2 L that differ in
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infinitely many elements (i.e., when |L4L0| = 1), i.e., if G
has property P for L and L0 both, then |L04L| < 1.

To gain some intuition, note that approximate breadth sat-
isfies this finite non-uniqueness criterion: if a generator
generates with approximate breadth from two different lan-
guages L and L0, then these languages can only differ on
finitely many elements. This follows because the genera-
tor’s support must be largely contained in both languages
(with only finitely many elements missing), which is only
possible when |L4L0| < 1.

Our next result shows that achieving any property which
satisfies finite non-uniqueness is already impossible for any
collection that does not satisfy the weak Angluin’s condition.

Theorem 3.10 (Lower bound with Finite Non-Uniqueness).
Let P be any property of generation satisfying the finite non-
uniqueness criterion. For a countable collection L, there
exists an algorithm that generates with property P from L
in the limit only if L satisfies the weak Angluin’s Condition.

This lets us characterize every breadth notion in the litera-
ture, including approximate breadth.
Remark 3.11 (Implications Beyond Generation with
Breadth). The same reasoning as in Remark 3.6 yields lower
bounds for an even milder objective: achieving optimal
(rather than uniquely optimal) performance on K together
with finitely many other languages. If L fails the weak
Angluin condition, then no generator can attain the best
possible perplexity – or any analogous metric – on a finite
set of languages L0 ✓ L (with |L0| < 1) which includes
the target language K (i.e., K 2 L0).
Remark 3.12 (Implications for Statistical Setting). Using
Kalavasis et al. (2025)’s framework, our results extend to
statistical settings where strings are sampled from distri-
butions rather than adversarially chosen. Concretely, we
provide unconditional characterizations for generation with
both exact and approximate breadth in stochastic models –
improving upon the earlier conditional results that applied
only to a specific generator family (Kalavasis et al., 2025).
See Appendix D for details.

3.2. Results on Stable Generation with Breadth
Our next set of results focuses on stable generators – those
whose support eventually stops changing – a requirement
motivated by practical algorithms that converge to a model
and by Gold’s original work, which also required stability.
Under stability, the landscape changes dramatically:
Definition 3.13 (Stable Generating Algorithm (Kalavasis
et al., 2025)). A generating algorithm G = (Gn) is stable
for a language collection L if for any target language K 2
L and for any enumeration of K, there is some finite n⇤ 2
N such that for all n, n0 � n⇤, it holds that Gn(Sn) =
Gn0(Sn0).

Theorem 3.14 (Characterization for Stable Generation). Fix
any countable collection of languages L. L satisfies An-
gluin’s condition if and only if one of the following two
equivalent conditions hold

. There is a stable algorithm that generates with approx-
imate breadth from L.

. There is a stable algorithm that generates with exact
breadth from L.

Hence, exact and approximate breadth are equivalent under
stability, both requiring the (full) Angluin’s condition – con-
trasting with our earlier result where approximate breadth
only requires the weak Angluin’s condition. In fact, a
stronger result holds: all notions of breadth proposed in
prior work collapse to this same characterization under sta-
bility. In Appendix E, we prove this and also present addi-
tional results that allow hallucinations and introduce weaker
breadth notions.

3.3. Technical Overview
We now outline our proof techniques and their novelty, be-
ginning with our lower bound results.

Lower Bounds. Our goal is to show that if a collection L
lacks a certain property (e.g., Angluin’s condition), then no
generator can achieve the corresponding notion of breadth
(e.g., exact breadth) for L. The full proofs appear in Ap-
pendix B. First, we overview techniques in existing works.

. Technique I: Generator-Specific Bounds. (Kalavasis
et al., 2025)’s approach require generators satisfy a tech-
nical condition (Appendix G.2) that, roughly, enables
access to their “support,” or the set of their outputs, allow-
ing a reduction from language identification to generation
with breadth. This, however, fails for unconditional
lower bounds which make no assumptions on generators.

. Technique II: Diagonalization for Identification. For
the related problem of language identification, the stan-
dard and only technique for proving unconditional lower
bounds is diagonalization (e.g., (Gold, 1967)). At a high
level, it constructs an algorithm-dependent enumeration
of target language K in phases: in the i-th phase, it enu-
merates Li, and either the algorithm A fails to identify
Li or A guesses the index as i, at which point the enumer-
ation advances to phase i + 1. This creates a dilemma:
either a phase continues indefinitely (causing infinitely
many identification errors) or infinitely many phases oc-
cur (meaning A misidentifies the language K = L1
infinitely often).

. Technique III: Collection-Specific Bounds. (Charikar
& Pabbaraju, 2024a) adapted the above diagonalization
technique to prove generation with breadth is impossible
for a specific “hard” collection L⇤ – yielding the first
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unconditional lower bound for generation with breadth,
albeit one limited to just one collection.

The complementary limitations of prior work raise a natural
question: Can we prove lower bounds for language genera-
tion with breadth that simultaneously apply to all generators
and for all collections for which generation with breadth is
fundamentally impossible?

Idea 1: Universal Diagonalization. We generalize Charikar
and Pabbaraju’s diagonalization from a specific “hard” col-
lection L⇤ to all collections violating Angluin’s condition
– which is a tight result since Kalavasis et al. (2025) give a
generator with exact breadth for collections satisfying this
condition. Here, the key insight is leveraging the structure
of collections that violate Angluin’s condition: Specifically,
we set L1 to be the language witnessing this violation, and
index the remaining languages L1, L2, . . . with finite sub-
sets of L1: for each finite T ✓ L1, LT is the language
containing T and satisfying LT ( L1 (guaranteed by the
violation of Angluin’s condition).

Idea 2: Weak Angluin’s Condition. This approach fails for
approximate breadth because a generator can simultaneously
achieve approximate breadth for multiple languages. We
address this by introducing the weak Angluin’s condition, a
relaxation of the original, and proving it enables diagonal-
ization for approximate breadth. This lower bound is also
tight: we provide a novel algorithm achieving approximate
breadth for any collection satisfying this weaker condition.

Challenge: Diagonalization against Stable Generators.
While our previous (unconditional) lower bounds apply to
stable generators, they do not yield tight characterizations
for notions like approximate breadth. The core issue is that
unlike breadth – which can be verified at specific steps t
– verifying stability requires examining the generator’s be-
havior over infinitely many steps. As even if a generator is
stable for many steps, we cannot confirm its stabile without
seeing its future behaviour.

Idea 3: Lazy Analysis of Diagonalization. To address this
challenge, we introduce a “lazy analysis” of diagonalization,
loosely inspired by techniques in computational complexity
(Arora & Barak, 2009). Unlike the standard analysis of
diagonalization where the adversary forces the generator
to make “mistakes” at the end of each phase, here the ad-
versary cannot force a mistake every round. Instead, this
lazy analysis uses the fact that after waiting for sufficiently
many rounds, the generator “exhausts all possibilities” and
must make a mistake. Proving this requires a sophisticated
technical construction which shows that a generator must
either be unstable or generate without approximate breadth
infinitely often. We believe this technique is of independent
interest and can have further applications in the analysis of
natural properties of stable generators beyond breadth.

Upper Bounds. Our upper bounds construct algorithms
for generation with (different notions of) breadth that work
whenever collection L satisfies properties like Angluin’s
condition. For exact breadth, one already exists in prior
work (Kalavasis et al., 2025). Here, we focus on approx-
imate breadth; we develop two algorithms for it with dif-
ferent access models of L: one with unrestricted access
and another with only membership access (ability to query
“is w 2 Li?”). The membership-only algorithm is a novel
adaptation of Angluin (1980)’s seminal algorithm and is
presented in Appendix C.2 due to space constraints. Here,
we overview the simpler unrestricted-access algorithm.

KM24’s Algorithm. Kleinberg & Mullainathan (2024)’s
algorithm, in every round t, creates a chain of critical lan-
guages C1 ) C2 ) · · · ) Ct with the property that, for
large enough t, the target language K enters this chain and
remains in it. Now their algorithm is simple: it outputs
(unseen strings from) the last critical language. Unfortu-
nately, this algorithm loses breadth as t increases, as it keeps
generating from the last element of a constantly decreasing
chain.

New Analysis of KM24’s Algorithm. If L satisfies Angluin’s
condition, then Kalavasis et al. (2025) have already shown
that this algorithm achieves exact breadth. To achieve
approximate breadth, we show that when L satisfies
weak Angluin’s condition, the last critical language,
Ct, misses at most finitely many elements of K (i.e.,
|K \ Ct| < 1) for large enough t. This shows that
the above algorithm achieves approximate breadth for
such L. This reveals an interesting best-of-three-worlds
property: if L satisfies Angluin’s condition it achieves
exact breadth, if it satisfies weak Angluin’s condition
it achieves approximate breadth, otherwise it achieves
consistent generation. This is particularly appealing as these
conditions might be challenging to verify given limited
access to L. Finally, to obtain algorithms for other existing
notions of breadth, we use this as a building block (Appendix C.3).

4. Concluding Remarks
In this work, we continue the study of language generation,
a nascent area introduced by Kleinberg & Mullainathan
(2024). On a conceptual level, our results – building on
prior work – offer a resolution to the main open question
of Kleinberg and Mullainathan showing that, indeed, a ten-
sion between validity and breadth is inherent in language
generation, at least under all the formal notions of breadth
considered in prior work (Kalavasis et al., 2025; Charikar
& Pabbaraju, 2024a). On a technical level, we introduce
novel diagonalization-based lower bound techniques and
new algorithms that achieve generation with breadth when-
ever possible. Though we focus on the prompt-less setting,
our techniques extend to the prompted generation setting
as well (Kleinberg & Mullainathan, 2024). Our work sug-
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gests several promising directions for future work: inves-
tigating weaker notions of breadth, completing the charac-
terizations for certain novel variants of stable generation
(Appendix A.3), and identifying what additional informa-
tion beyond positive examples could help generators achieve
both validity and breadth – an intriguing challenge given
our impossibility results.
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A. Summary Characterizations with Language Generation
In this section, we summarize our characterizations for language generation with all existing notions of breadth, with
additional results for new notions presented in Appendix E.

Outline. We first define two additional notions of breadth from prior work (Appendix A.1), completing all definitions of
breadth in prior works, alongside exact breadth (Definition 3.1) and approximate breadth (Definition 3.2) from the main
body. We then provide characterizations for each notion (Appendix A.2), extending Theorems 3.3 and 3.8. Finally, we
examine stable generation with breadth (Appendix A.3), extending Theorem 3.14, and consider settings allowing some
hallucinations, both for unstable (Appendix A.4) and stable generators (Appendix A.5).

A.1. Remaining Notions of Breadth in Prior Work

In this section, we introduce two additional notions of breadth, unambiguous generation and exhaustive generation,
completing all definitions of breadth in prior works, alongside exact breadth (Definition 3.1) and approximate breadth
(Definition 3.2) from the main body.

Unambiguous Generation. This relaxation of exact breadth by Kalavasis et al. (2025) allows hallucination (outputting
strings outside target language K) provided the generator performs “better” for K than for any other language in the
collection.
Definition A.1 (Unambiguous Generation in the Limit (Kalavasis et al., 2025)). Generator G unambiguously generates
from language K given samples S if

|G(S)4K| < minL2L : L 6=K |G(S)4L| , (1)

where A4B := (A \B) [ (B \A) for sets A and B.

While unambiguous generation is seemingly weaker than exact breadth and incomparable to approximate breadth, our
characterization (Theorem A.3) reveals that it is as hard to achieve as exact breadth.

Exhaustive Generation. (Charikar & Pabbaraju, 2024a) proposed exhaustive generation.2 Their formulation treats
generators as mappings from domain sequences to domain enumerations. For i, n 2 N, let Gn(i) be the i-th element in the
enumeration output in round n.
Definition A.2 (Exhaustive Generation in the Limit (Charikar & Pabbaraju, 2024b)). Generator G exhaustively generates
from language K in round n if

|
S1

i=1 Gn(i) \K| < 1 and Sn [
Sn�1

j=1 Gj(1) [
S1

i=1 Gn(i) ◆ K , (2)

where Sn is the set of elements enumerated until round n.

Exhaustive generation is strictly weaker than exact breadth but seems incomparable to approximate breadth: it permits
finite hallucinations (which approximate breadth forbids) but requires covering K using potentially all past outputs (which
approximate breadth does not require). Our characterization (Theorem A.3) reveals that it is as hard to achieve as approximate
breadth.

A.2. Generation with Breadth (Extension of Theorems 3.3 and 3.8 and Proof Sketch)

Our next result characterizes generation with all four existing notions of breadth in the literature.
Theorem A.3 (Characterizations of Language Generation with Breadth). For any countable collection of languages L the
following hold:

1. The following are equivalent:
. There is an algorithm that generates with (exact) breadth from L in the limit.
. There is an algorithm that generates unambiguously from L in the limit.

2The definition in (Charikar & Pabbaraju, 2024a) differs slightly from (Charikar & Pabbaraju, 2024b). We use the updated version,
though our techniques also show that both properties are characterized by the same condition.
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. L satisfies Angluin’s condition (Definition 2.2).

2. The following are equivalent:

. There is an algorithm that generates with approximate breadth from L in the limit.

. There is an algorithm that generates exhaustively from L in the limit.

. L satisfies the weak Angluin’s condition (Definition 3.7).

This results generalizes Theorems 3.3 and 3.8 from the main body. Like Theorems 3.3 and 3.8, this result is unconditional,
requiring no particular structure on the generator. Hence, it strengthens the conditional lower bounds of (Kalavasis et al.,
2025). It also applies to all countable language collections, strengthening the collection-specific results of Charikar &
Pabbaraju (2024a).

Proof Sketch of Theorem A.3. We outline four key components:

• Upper bound when L satisfies Angluin’s condition: Since L is identifiable (by Angluin’s result), we can convert any
identification algorithm to an exact generator, as established by Kalavasis et al. (2025). Unambiguous generation
follows since it is weaker than exact breadth.

• Lower bound when L violates Angluin’s condition: In Appendix B.1, we prove that properties satisfying uniqueness
are unachievable for collections violating Angluin’s condition (see Section 3.3 for a discussion). Given this, the present
result follows since exact breadth and unambiguous generation both satisfy uniqueness.

• Upper bound when L satisfies weak Angluin’s condition: Since weak Angluin’s condition is strictly weaker than
Angluin’s condition, L is generally not identifiable and so we cannot use algorithms from the above upper bound. We
present new algorithms for this case in Appendix C.

• Lower bound when L violates weak Angluin’s condition: In Appendix B.2, we prove that properties satisfying finite non-
uniqueness are unachievable for collections violating weak Angluin’s condition (see Section 3.3 for some discussion).
The result follows from this since approximate breadth and exhaustive generation both satisfy finite non-uniqueness.

A.3. Generation with Breadth and Stability (Extension of Theorem 3.14 and Proof Sketch)

In this section, we provide characterizations for generation with stable generators, those whose support eventually stops
changing and stabilizes (Definition 3.13).
Remark A.4 (Discussion on Stability). This notion of stability stems from the original work of (Gold, 1967) on language
identification in the limit, where Gold requires the learner to stabilize to a specific guess for the target language L in the
above sense (see Appendix G). It is also closely related to the question of whether the algorithm can verify that it has
“learned” to generate with the required notion of breadth; if the algorithm can verify that it has learned, then it can stabilize.
Further, any generator that is consistent and achieves exact breadth is also stable, since after some finite point its support
must become identical to the target language K and remain so.3

Landscape with Stable Generators. Under the stability requirement, the landscape for generation with breadth changes
(compared to the one in the previous section).

Theorem A.5 (Characterizations of Stable Language Generation with Breadth). For any countable collection of languages
L, the following are equivalent:

• There is a stable algorithm that generates with approximate breadth from L in the limit.
• There is a stable algorithm that generates exhaustively from L in the limit.
• There is a stable algorithm that generates with (exact) breadth from L in the limit.
• There is a stable algorithm that generates unambiguously from L in the limit.
• L satisfies Angluin’s condition (Definition 2.2).

3Here, we use an equivalent notion of generation with exact breadth that allows for inclusion of the training set in the support: the
equivalence holds because any generator G that generates with breadth without repeating training examples can be converted to one G 0

that generates with breadth and repeats the training examples and vice versa.
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This result extends Theorem 3.14. Like Theorem 3.14, it shows that the requirement of stability makes the problem of
generation with approximate breadth strictly harder (see Figure 2): there exist stable generators with this property if and
only if the collection satisfies Angluin’s condition for identifiability whereas before, when unstable generators were also
allowed, one only required the weak Angluin’s condition. As another example of the stark change in the landscape, we also
show that there exists a collection that satisfies the weak Angluin’s condition (hence admits a non-stable generator with
approximate breadth), but for which no stable generator can achieve a much weaker requirement, which we term infinite
coverage (Theorem E.7).

Proof Sketch of Theorem A.5. We outline two main components:

• Upper bound when L satisfies Angluin’s condition: This follows by observing that Theorem A.3’s upper bound for
collections satisfying Angluin’s condition constructs stable generators.

• Lower bound when L violates Angluin’s condition: For exact breadth and unambiguous generation, this follows from
Theorem A.3. The key technical challenge is establishing lower bounds for approximate breadth and exhaustive
generation, requiring a certain “lazy analysis” of diagonalization as discussed in Section 3.3. The proof appears in
Appendix B.3.

(a) Unconditional Characterizations (b) Characterization With Stable Generators

Figure 2: Comparison of Generation in the Limit with and without Requiring Stability. Each containment illustrated
by a border is strict, i.e., for each border there is a language collection that satisfies the outer containment but not the
inner containment. Concretely, in the figure on the left, there are (1) language collections that do not satisfy the Weak
Angluin’s Condition (Definition 3.7) (see Example E.12), (2) language collections that satisfy the Weak Angluin’s Condition,
but not Angluin’s condition (see Example E.6), and (3) there are language collections which satisfy Angluin’s Condition
(Definition 2.2) (e.g., all finite collections). The figure on the right depicts the characterization for stable generators. In
addition to what is depicted there, there are (1) language collections that satisfy the weak Angluin’s condition and for which
infinite coverage is not achievable (see Theorem E.7) and (2) language collections for which infinite coverage is achievable
but that do not satisfy the weak Angluin’s Condition (Definition 3.7) (see Example E.12). We note that (1) and (2) are not
depicted in the right figure.

A.4. Generation with Breadth and Hallucinations

To illustrate the generality of our techniques, we use them to obtain characterizations for several new notions of generation.
In particular, we obtain characterizations for generation with breadth where we relax the requirement that the generation
becomes consistent (i.e., it has no hallucinations) in the limit. Instead, we allow for two cases:

. Finite Hallucinations: Generator G has finite hallucinations for language K if |G(S) \K| < 1

. Infinite Hallucinations: Generator G has infinite hallucinations for K if |G(S) \K| = 1.
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On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Figure 3 summarizes our characterizations for different notions of breadth (along rows: exact breadth, approximate breadth,
no breadth) and different amoungs of hallucinations (along columns: no hallucinations, finite hallucinations, and infinite
hallucinations).

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition 
(i.e., Exact Breadth)

Weak Angluin’s Condition All Countable Collections

Finite Missing Elements Weak Angluin’s Condition 
(i.e., Approximate Breadth)

Weak Angluin’s Condition All Countable Collections

Infinite Present Elements All Countable Collections
(i.e., Infinite Coverage)

All Countable Collections All Countable Collections

|supp(G)∖K | = 0 |supp(G)∖K | < � |supp(G)∖K | = �

|K∖supp(G) | = 0

|K∖supp(G) | < �

|K � supp(G) | = �

Figure 3: Characterizations of All Possible Notions of Generation: This figure lists all possible notions of language
generation (at a certain granularity) and their characterizing conditions. Rows capture breadth (i.e., how many elements are
missed from the target language). Columns capture the extent of hallucinations (i.e., how many elements outside of the
target language are included). Generation becomes easier when moving down rows and/or right along columns. The notion
of infinite coverage requires |K \ supp(G)| = 1 (Definition E.3).

Proof Sketch for Results in Figure 3. To achieve notions in the last column, one can generate the whole domain (i.e., ensure
supp(G) = X). To achieve notions in the last row, one can use an extension of (Kleinberg & Mullainathan, 2024)’s algorithm
from Proposition E.4. It remains to explain the results in the top 2⇥ 2 cells. Among these the two results in the first column
are from Theorem A.3. For the remaining two results (the first two in the second column): the lower bound follows from
Appendix B.2 since both of these notions satisfy finite non-uniqueness (Definition 3.9). The upper bounds are presented in
Appendix C.

A.5. Generation with Breadth, Stability, and Hallucinations

Next, as in the previous section, to illustrate the generality of our techniques. For stable generators, we use them to give
necessary and/or sufficient conditions for several new notions of generation with stable generators. Figure 4 summarizes our
results for different notions of breadth with stable generators (along rows: exact breadth, approximate breadth, no breadth)
and different amoungs of hallucinations (along columns: no hallucinations, finite hallucinations, and infinite hallucinations).
Interestingly, our results also show that if we allow for finitely many hallucinations while missing no elements from the
target language, stable generation is still characterized by the weak Angluin’s condition.

Unlike the case of unstable generation, we do not have a complete characterization for every cell of Figure 4. It is an
interesting direction to characterize all the remaining cells.

Proof Sketch for Results in Figure 4. To achieve any notion in the last column, it is sufficient to generate the whole domain
(i.e., ensure supp(G) = X). Unlike the case of unstable generators, achieving the notions in the last row is non-trivial. In
particular, we show that there exists a collection for which no stable algorithm can achieve infinite coverage (Theorem E.7).
It remains to overview the results in the top left 2 ⇥ 2 cells. Among these, the two results in the first column are from
Theorem A.5. For the remaining two results: the lower bound follows from Appendix B.2 since both notions satisfy finite
non-uniqueness (Definition 3.9) and the upper bound algorithms is as below:

The algorithm that achieves these notions is straightforward adaptation of Lemma C.3
that does not drop the elements St [ {x1, . . . , xt} from the set it outputs.
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Stable Generators No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition 
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Angluin’s Condition
[Ang 80] 

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements Characterization ?
(Not all countable 

collections)
Characterization ? All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < � |G(St)∖K | = �

|K∖G(St) | = 0

|K∖G(St) | < �

|K � G(St) | = �

Figure 4: Stability Under All Possible Notions of Generation: This figure lists all possible notions of language generation
(at a certain granularity). Rows capture the extent of breadth (i.e., how many elements are missed from the target language).
Columns capture the extent of hallucinations (i.e., how many elements outside of the target language are included).
Generation becomes easier as one moves down the rows and/or to the right along columns. For the yellow cell, we have
shown that not all countable collections admit a stable generator that satisfies this notion of breadth, but we do not have a
condition that characterizes it. For the gray cell, we do not know whether all collections satisfy this notion, and we do not
have a characterization. The notion of infinite coverage refers to a generator whose support satisfies |K \ supp(G)| = 1
(see also Definition E.3).

B. Proofs of Lower Bounds
In this section, we prove our lower bound results.

B.1. Lower Bound with Uniqueness (Proof of Theorem 3.5)

In this section, we prove Theorem 3.5. Recall that this requires to prove that the following: if a collection L violates
Angluin’s condition, then no generator can achieve a property P satisfying uniqueness in the limit for L.

Proof of Theorem 3.5. For any enumeration E, we use the notation E(i) to denote its i-th element, E(1 : i) to denote its
first i elements, and E(i : 1) to denote all but the first i� 1 elements. Since L is not identifiable in the limit, it does not
satisfy Angluin’s condition (Definition 2.2). Hence, there exists a language L⇤ 2 L such that the following holds:

for all finite subsets T ✓ L⇤ , there exists a language LT 2 L , T ✓ LT and LT ( L⇤ . (3)

Fix L⇤ 2 L to be any language for which this holds. Let E1
⇤ be an arbitrary enumeration of L⇤, without repetitions. Let K

and E1
K respectively denote the target language and its enumeration that we will construct to show the impossibility result.

We will show that for any generating algorithm G = (Gn) there exists a choice of the target language K in L (which may be
different from L⇤) and an enumeration of it such that if K is the target language and the adversary provides enumeration
E1

K to G , then the algorithm G cannot generate with breadth in the limit.

We will construct the enumeration iteratively and select K based on the generating algorithm. The construction of the
enumeration proceeds in multiple (possibly infinite) phases. At any point t 2 N of the interaction, we denote by St the set
of elements enumerated so far.

Phase 1 of Construction. To construct the first phase, we present the generator with the first element of the enumeration
of L⇤, i.e., xi1 := E1

⇤ (1). Let Lj1 be some language such that xi1 2 Lj1 and Lj1 ( L⇤, i.e., it is a proper subset of L⇤.
Notice that such a language is guaranteed to exist by picking T = {xi1} in the violation of Angluin’s condition (3).

• Subphase A (Enumerate Lj1 Until Generator Generates with Breadth from Lj1 ): Consider an enumeration E1
1

of the language Lj1 that is constructed by traversing E1
⇤ and using the elements of Lj1 that appear in it, in the same
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Figure 5: Illustration of the Construction in the Proof of Theorem 3.5. Fix any enumeration a, b, c, d, e, f, g, . . . of the
language L⇤, depicted in the first row. The enumeration of K is initially empty in the construction and this is depicted in
the second row. To begin the construction, we apply the contrapositive to Angluin’s condition with T = {a} (i.e., with
the set highlighted in blue in the first row). This results in a language L1 that contains T and is a subset of L⇤. For this
illustration, suppose that the enumeration of L1 is as presented in the fourth row. The elements shared between L1 and L⇤

are highlighted in red in the third row. From the fourth row, we can see that the strings in L1’s enumeration, E⇤
1 , follow the

same relative order as in E1
⇤ . Further, note that c, d, and f are skipped from the enumeration since they do not belong to L1

(i.e., they are not highlighted in red). Now, the algorithm in the proof is trained on the enumeration E1
1 (Subphase A), and

we consider two cases: Case (i): Assume that after seeing element e, the algorithm achieves property P . Then we update
E1

K by adding all elements of E1
1 until e and then add all the elements that we skipped from E1

⇤ ; this is shown in the fifth
row where we added c and d. This scenario corresponds to Subphase B.1 in the proof since at least one element from the
enumeration of E1

⇤ was skipped during Subphase A. Next, we again apply the contrapositive to Angluin’s condition. This
time, we set T = {a, b, e, c, d} (denoted in blue in the sixth row), and, then repeat the process. Case (ii): Assume that the
algorithm achieves property P after seeing b. Then, we update E1

K by adding a, b and then the first element that is not in
L1, i.e., c. This is depicted in the seventh row. This scenario corresponds to Subphase B.2 in the proof since no strings from
E1

⇤ were skipped during Subphase A. Next, we again apply the contrapositive to Angluin’s condition. This time, we use
T = {a, b, c} (denoted in blue in the last row) and repeat the process.

order as they appear, i.e., for every i 2 N it holds that E1
1 (i) is the i-th element of Lj1 that appears in E1

⇤ . Notice
that this is indeed a valid enumeration of Lj1 as Lj1 is a subset of L⇤. At any round t of the first phase, the adversary
presents the element E1

1 (t) to the generator.

Consider two cases: i) either there is some finite t1 2 N such that Gt1 achieves property P for Lj1 or ii) there is no such
t1 2 N. In the latter case, we pick the target language K = Lj1 and the target enumeration E1

K = E1
1 , and the lower

bound follows since we have found a pair of K and E1
K for which the generator never achieves property P . Hence,

assume that we are in the former case, and let bx1 be the first element of E1
1 for which the condition holds. Note that,

at this point, Gt1 does not achieve property P for L⇤ since P satisfies the uniqueness criterion and Lj1 6= L⇤. Further,
note that St1 is the set of strings shown to the generating algorithm after which it starts to generate with breadth from
Lj1 .
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Let bS1 be the set of elements of E1
⇤ that appear before bx1 in E1

⇤ and have not appeared in St1 . If cS1 6= ;, we go to
Subphase B.1 and, otherwise if cS1 = ;, we go to Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use the set bS1 to extend the construction of the target
enumeration E1

K . To do this, we enumerate the elements from bS1 in an arbitrary order and we fix the prefix of the
target enumeration E1

K to be (St1 , bS1). Notice that this step is well-defined since we are only adding to the already
constructed enumeration. Let bt1 be the total number of elements enumerated so far. Notice that bt1 = 1 if and only if
Case i) (from Subphase A) holds, in which case the lower bound already follows. Hence, assume for the continuation
of the proof that bt1 < 1. Now we terminate the first phase (without going to Subphase B.2).

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Lj1 ): Notice that bS1 = ; if and only if we did
not skip any element of E1

⇤ during the traversal in Subphase A. If we indeed did not skip elements of E1
⇤ we continue

traversing it and adding elements to E1
K in the same order as we see them in E1

⇤ until we find some element that
does not belong to Lj1 . We also include this element in the enumeration E1

K , we fix bt1 to be the number of elements
enumerated so far and we terminate the first phase.

Notice that so far in our construction, we have enumerated the first bt1 elements of E1
⇤ .

Now we continue our construction inductively for phases ` = 2, 3, . . . . Consider any ` � 2. Suppose our construction
continued from Phase 1 until Phase `. Then, Phase `+ 1 of our construction is as follows.

Phase `+ 1 of Construction. For the (`+ 1)-th phase, consider the set E1
⇤ (1 : bt`) that has been enumerated so far. By

construction,
E1

⇤ (1 : bt`) 6✓ Lj` , E1
⇤ (1 : bt`) ✓ L⇤ , and E1

⇤ (1 : bt`) is finite .

We will now apply the violation of Angluin’s condition (3) with T = E1
⇤ (1 : bt`). This means that there must exist some

j`+1 62 {j1, j2, . . . , j`} such that

Lj`+1 2 L , Lj`+1 ( L⇤ , and E1
⇤ (1 : bt`) ✓ Lj`+1 .

We now perform analogs of each subphase in Phase 1.

• Subphase A (Enumerate Lj`+1 Until Generator Generates with Breadth from Lj`+1 ): Consider an enumeration
E1

`+1 of Lj`+1 whose first bt` strings are E1
⇤ (1 : bt`) and whose remaining strings are constructed by traversing

E1
⇤ (bt` + 1 : 1) and selecting strings that belong to Lj`+1 , in the same order as they appear in E1

⇤ . Notice that this is
indeed a valid enumeration of Lj`+1 as Lj`+1 is a subset of L⇤. At any round t of this phase, the adversary presents the
element E1

`+1(t+ bt`) to the generator.

Consider two cases: i) either there is some finite t`+1 � bt` + 1 such that Gt`+1 achieves property P for Lj`+1 or ii)
there is no such t`+1 2 N. In the latter case, we pick the target language K = Lj`+1 and the enumeration E1

K = E1
`+1,

and the lower bound follows since we have found a pair of K and E1
K for which the generator never achieves property

P . Hence, assume that we are in the former case, and let bx`+1 be the first element of E1
`+1 for which the condition

holds. Note that, at this point, Gt`+1 does not achieve property P for L⇤ since P satisfies the uniqueness criterion and
Lj`+1 6= L⇤. Further, note that St`+1 is the set of strings shown to the generating algorithm after which it starts to
generate with breadth from Lj`+1 .

Let bS`+1 be the set of strings of E1
⇤ that appear before bx`+1 in E1

⇤ and have not appeared in the enumeration St`+1 . If
bS`+1 6= ;, we go to Subphase B.1 and, otherwise if bS`+1 = ;, we go to Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use bS`+1 to extend the construction of the target enumeration
E1

K . To do this, we enumerate the elements from bS`+1 in an arbitrary order and we fix the prefix of the target
enumeration E1

K to be (St`+1 , bS`+1). Notice that this step is well-defined since we are only adding to the already
constructed enumeration. Let bt`+1 be the set of elements enumerated so far. Notice that bt`+1 = 1 if and only if Case
i) (from Subphase A) holds, in which case the lower bound already follows. Hence, assume for the continuation of the
proof that bt`+1 < 1. Now we terminate the (`+ 1)-th phase without going to Subphase B.2.
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• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Lj`+1): Notice that bS`+1 = ; if and only if
we did not skip any element of E1

⇤ during the traversal in Subphase A. If we indeed did not skip elements of E1
⇤ we

continue traversing it and adding elements to E1
K in the same order as we see them in E1

⇤ until we find some element
that does not belong to Lj`+1 . We also include this element in the enumeration E1

K , we set bt`+1 to be the number of
elements enumerated so far and we terminate Phase `+ 1.

Notice that so far we have enumerated the first bt`+1 > bt` + 1 elements of E1
⇤ .

Inductive Argument. As explained, we continue the construction of the target enumeration inductively. If there is some
phase ` such that Case ii) (in Subphase A) is activated, then the lower bound follows. Let us now assume that Case ii)
is not activated for any phase ` 2 N. Then, we have constructed an enumeration of L⇤ (by construction of the sets St`

and bS` for each ` 2 N) such that Gt does not achieve property P for L⇤ for infinitely many t 2 N. Now, the lower bound
follows by setting the target language K = L⇤ and the target enumeration to the one we have constructed inductively over
all phases.

B.2. Lower Bound with Finite Non-Uniqueness (Proof of Theorem 3.10)

In this section, we prove Theorem 3.10.

Proof of Theorem 3.10. The proof of this lower bound uses the construction in the proof of Theorem 3.5 with one change:
now the language LT (introduced at the start of the proof) is the language determined by the contrapositive to the weak
Angluin’s criterion (Definition 3.7) and not the contrapositive to the (usual) Angluin’s criterion (Definition 2.2). Concretely,
the contrapositive to the weak Angluin’s criterion implies that there exists a language L⇤ 2 L such that the following holds:

8T ✓ L⇤ , 9LT 2 L , such that T ✓ LT , LT ( L⇤ , and |L⇤ \ LT | = 1 . (4)

We will use this language L⇤ and proceed with the construction without change.

Having completed the construction, we proceed to the proof. The only place in which the proof uses a property of the
criterion for breadth is when it invokes the uniqueness criterion with respect to the pair of languages LT and L⇤ (once in
Subphase A of each phase). Here, T is the set E1

⇤ (1) in the first phase and E1
⇤ (1 : bt`) in the `-th phase. Now, we cannot

directly invoke the uniqueness criterion since P does not satisfy it. However, since |L⇤ \ LT | = 1 and since property P
satisfies the finite non-uniqueness criterion, we can conclude that no generator can achieve property P for both L⇤ and LT

simultaneously, as desired. Hence, we can use the finite non-uniqueness criterion in analyzing each phase of the construction
and the result follows as in the proof of Theorem 3.5.

B.3. Lower Bound for Approximate Breadth with Stability

In this section, we prove the lower bound in Theorem 3.14: we show that if a collection L violates Angluin’s condition, then
no generator can generate with approximate breadth from L. (Note that this as a corollary implies that no generator can
generate with exact breadth.)

Proof of lower bound in Theorem 3.14. We will use the following corollary of the construction in the previous section.

Corollary B.1. Let L be a countable collection of languages that is not identifiable in the limit. Let G = (Gn) be a generating
algorithm. If G generates with approximate breadth from L in the limit, then there is a language L⇤ 2 L, an enumeration
E⇤ of L⇤, a sequence of distinct languages L`1 , L`2 , · · · 2 L, and a strictly increasing sequence t(1), t(2), · · · 2 N, such
that the following holds.

• For each i 2 N, L`i is a proper subset of L⇤, i.e., L`i ( L⇤; and

• Given strings from E⇤ as input, for each i 2 N, Gt(i) generates with approximate breadth from L`i .

Consider the construction in in the above corollary. Let K = L⇤ and suppose that the adversary follows the enumeration E⇤.

Let CB , CS : N ! N be two counters: for each t, CB(t) counts the number of values 1  i  t for which Gi does not
generate with approximate breadth from L⇤ and CS(t) counts the number of values 2  i  t for which supp(Gi) 6=
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supp(Gi�1). In other words, CB(t) is the number of times G does not generate with approximate breadth from L⇤ in the
first t-steps and CS(t) is the number of times G changes its support in the first t-steps.

Toward a contradiction suppose that G is stable and generates with approximate breadth from K in the limit (when given the
enumeration E⇤). This, by definition, implies that

lim
t!1

CB(t) < 1 and lim
t!1

CS(t) < 1 . (5)

The former implies that there are only finitely many values of i 2 N such that Gt(i) does not generate with approximate
breadth from L⇤ (where t(i) are from Corollary B.1). Thus, after discarding a sufficiently large finite prefix of t(i), i 2 N,
and re-indexing we see that there are infinitely many values, say, ⌧(1) < ⌧(2) < · · · 2 N, such that, for each i, G⌧(i)

generates with approximate breadth from L⇤ and L`i . Since G⌧(i) generates with approximate breadth from both L⇤ and
L`i and L`i ( L⇤, it follows that: for each i 2 N,

L`i = supp(G⌧(i)) [R where R ✓ L⇤ \ supp(G⌧(i)) . (6)

Fix any i. Let
s(i) :=

��L⇤ \ supp(G⌧(i))
�� .

Since G⌧(i) generates with approximate breadth from L⇤, s(i) < 1. We claim that

supp(G⌧(i)) 6= supp(G⌧(i+j)) for some 1  j  S(i) := 2s(i) + 1 . (7)

Proof of Equation (7). To see this, toward a contradiction, suppose that

supp(G⌧(i)) = supp(G⌧(i+1)) = · · · = supp(G⌧i+S(i)
) .

This combined with Equation (6) implies that, for each 1  j  S(i), L`(i+j)
= supp(G⌧(i)) [ Rj for some finite set

Rj ✓ L⇤ \ supp(G⌧(i)). Since all of L`1 , L`2 , . . . are different, it must hold that all of R1, R2, . . . , RS(i) are different. This
is a contradiction since each Ri is a subset of Ri ✓ L⇤ \ supp(G⌧(i)) and there are only S(i)� 1 = 2s(i) such subsets.

Completing the Proof. Equation (7) shows that, for each i 2 N, starting from the ⌧(i)-th step, the support of the generator
changes after finitely many steps. Since ⌧1, ⌧2, . . . ,2 N is a strictly increasing and infinite sequence, this implies that the
support of the generator changes infinitely often as it is provided more and more examples and, hence, limt!1 CS(t) = 1
which contradicts the fact that G is stable (5). Hence, our assumption that G is stable and generates with approximate
breadth from L in the limit must be false. Therefore, no stable generator can generate with approximate breadth from any
non-identifiable collection.

C. Proofs of Upper Bounds
In this section, we present new algorithms for generation required in our results (Theorems 3.8, A.3 and A.5 and Figures 3
and 4).

C.1. Functional Upper Bound for Generation with Approximate Breadth

In this section, we present a function4 that generates with approximate breadth from any countable collection L satisfying
weak Angluin’s condition. This establishes the upper bound in Theorem 3.8.
Lemma C.1 (Function for Generation with Approximate Breadth). Let L be a countable collection of languages that
satisfies Definition 3.7. Then, there exists a generating algorithm that, given access to a membership oracle for L and a
subset oracle for L (that given indices i, j outputs Yes if Li ✓ Lj and No otherwise), generates from L with approximate
breadth in the limit.

This proof is inspired by the proof of Theorem B.2 in (Kalavasis et al., 2025), the difference is that, instead of using
Angluin’s condition (Definition 2.2), we use its weakening (Definition 3.7).

4Using the terminology of Kleinberg & Mullainathan (2024), we refer to algorithms that have access to certain oracles (beyond
membership oracle) specific to the collection L as functions; reserving the term algorithm for algorithms which only require membership
access to languages in L (i.e., answer to questions of the form “is s 2 Li?”).
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Proof of Lemma C.1. The algorithm A is illustrated below. This algorithm follows the steps of the generation algorithm
of (Kleinberg & Mullainathan, 2024) (see Steps 1 to 5). The only change is in its last Step 6 where it generates a random
sample from the set of interest.

for t 2 {1, 2, . . . } do:

1. Observe element xt and let St be the set of all elements observed so far.

2. Construct a version space Vt consisting of all languages in Lt consistent with St, i.e.,

Vt := {Lj : 1  j  t , Lj ◆ St} .

# Define a language Li 2 Vt to be critical if Li is the smallest-index language in Vt or Li is a subset of all
languages preceding it in Vt, i.e., Li ✓ Lj for all 1  j < i.

3. If Vt = ;, output an arbitrary element of X and go to the next iteration.

4. Construct the set Ct ✓ Vt of all critical languages.

# To construct the set of critical languages Ct the algorithm needs access to the subset oracle.

5. Let Li be the largest-indexed language in the set of critical languages Ct.

6. output a sample from any distribution whose support is Li \ St. This can be done in a computable fashion by first
sampling a natural number n from (e.g., the geometric distribution on N) and then outputting the n-th string from
Li \ St.

Let z be the first index such that K = Lz . The proposed algorithm generates with approximate breadth from K when after
some finite time t⇤, and for t > t⇤, the last language in the set of critical languages Ct, Li = Li(t), satisfies that

Li ✓ K and |K \ Li| < 1 .

This condition is implied by the following two conditions.

(A) K is eventually included in set of critical languages Ct and is never removed after that.

(B) Eventually all the languages Lj with j > z that are in Ct satisfy Lj ✓ K and |K \ Lj | < 1.

Result (4.3) of (Kleinberg & Mullainathan, 2024) shows that there is a finite time tA after which Condition (A) holds. We
will show that there is also a finite time tB after which Condition (B) holds. This shows that, for any t � max {tA, tB}, A
generates with approximate breadth from K.

Condition (B) holds after a finite time. Since L satisfies the weakening of Angluin’s condition (Definition 3.7), K = Lz

has a finite tell-tale set Tz , such that, any language L 2 L containing the tell-take Tz satisfies one of the following:

• Either L is not a proper subset of K;

• Or L is a proper subset of K and satisfies |K \ L| < 1.

(Recall that Tz is not known to us; our proof will not need this.) Fix any j > z and any time tB � tA after which K is
guaranteed to be a critical language and after which St ◆ Tz (which happens at a finite time since Tz is finite and, so, all
elements of Tz appear in the enumeration of K at some finite time). Our goal is to show that for any t � tB , and any j > z
for which Lj is in Ct, it holds that

Lj ✓ K and |K \ Lj | < 1 .

By the definition of critical languages and the fact that Lj appears after K = Lz in the set of critical languages (as j > z), it
follows that Lj ✓ K. Hence, it remains to show that |K \ Lj | < 1. To see this, observe that since Lj 2 Ct and Ct ✓ Vt,
Lj is in the version space Vt and, hence, by the definition of Vt, Lj ◆ St. Therefore, in particular, Lj ◆ Tz (as St ◆ Tz).
Now, Definition 3.7 combined with the observation that Lj ✓ K implies that |K \ Lj | < 1 as required.
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Building on the result of (Kalavasis et al., 2025) (Corollary B.2 in their paper), the previous result shows that the function5

of (Kleinberg & Mullainathan, 2024) with access to a subset query oracle achieves the “best-of-three” worlds for generation,
without requiring any prior information about L, only subset and membership oracle access.

Corollary C.2. Let L be a countable collection of languages. Exactly one of the following holds for the subset-oracle-based
function of (Kleinberg & Mullainathan, 2024).

• If L satisfies Angluin’s condition, the function generates with exact breadth in the limit.

• If L does not satisfy Angluin’s condition but satisfies the weak Angluin’s condition, the function generates with
approximate breadth in the limit.

• If L does not satisfy the weak Angluin’s condition, the function generates with infinite coverage in the limit.

C.2. Algorithmic Upper Bound for Generation with Approximate Breadth

Next, we give an algorithm that generates with approximate breadth without requiring access to a subset oracle. This
establishes an alternate proof of the upper bound in Theorem 3.8.

Lemma C.3 (Algorithm for Generation with Approximate Breadth). Let L be a countable collection of languages that
satisfies Definition 3.7. Then, there exists a generating algorithm that, given access to a membership oracle for L and the
tell-tale oracle from Definition 3.7, generates from L with approximate breadth in the limit.

Proof of Lemma C.3. Let Sn be the set of elements the adversary has enumerated up to round n 2 N. For every i, n 2 N,
let T i

n be the first n elements enumerated from the tell-tale oracle when called on language Li. Let also x1, x2, . . . , be an
enumeration of the domain X. Our proof is reminiscent of Angluin’s approach (Angluin, 1980), and the generating algorithm
requires only one extra step, namely removing the elements x1, . . . , xn from the support of the outputted distribution.
However, due to the relaxed condition we are using, our analysis is more technically involved.

For every round n 2 N, the generating algorithm constructs the sets T i
n using the tell-tale oracle for all languages Li

with 1  i  n. Let gn 2 N, 1  gn  n, be the smallest number (if any) such that Sn ✓ Lgn and T gn
n ✓ Sn.

If no such number exists, let Gn be some arbitrary distribution. Otherwise, let Gn be a distribution with supp(Gn) =
Lgn \ (Sn [ {x1, . . . , xn}).6

Fix a canonical enumeration x1, x2, . . . of X.

for n 2 {1, 2, . . . } do:

1. Let Sn be the set of all elements observed so far.

2. Create the list Ln = {L1, . . . , Ln}.

3. For each language Li in Ln, let T i = TellTaleOracle(Li), i 2 [n].

4. Truncate the outputs of the oracle and keep only their first n elements

T i
n = (T i(1), . . . , T i(n)), i 2 [n] .

5. Find smallest index gn 2 {1, . . . , n} such that Sn ✓ Lgn and T gn
n ✓ Sn.

# This is the minimum indexed language in Ln that is consistent and its truncated tell-tale is contained in the
observed elements.

6. If no such gn exists, output an arbitrary point from X and go to the next iteration.

5To be precise, the function is that of (Kleinberg & Mullainathan, 2024) together with a process to sample from a language given
membership access to it; see e.g., Step 6 in the Algorithm of Lemma C.1.

6One can sample from this distribution in a computable fashion.
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7. Otherwise, define a distribution Gn with supp(Gn) = Lgn \ (Sn [ {x1, . . . , xn}).

# The intuition for removing the first n elements x1, . . . , xn of the canonical enumeration of X is as follows. A
bad scenario for our algorithm is that there exists some language Lgn in the enumeration of L before Lz = K
such Step 5 will be stuck on Lgn . Then we can guarantee that |Lgn \K| < 1. Since this set is finite, by removing
parts of the enumeration of X of increasing but finite size, we will eventually remove |Lgn \K|, and obtain a
sampler that (i) is consistent and (ii) misses only finitely many elements from K.

8. Output a sample from the distribution Gn.

We will show that this algorithm generates with approximate breadth in the limit. Let K be the target language and z 2 N
be the smallest number such that Lz = K. We consider two cases.

Case A (z = 1): Sn ✓ L1, 8n 2 N and since the tell-tale set T 1 of L1 is finite and the adversary presents a complete
presentation of K, it holds that T 1

n ✓ Sn for sufficiently large n. Thus, in the limit, it holds that gn = 1, thus supp(Gn) =
L1 \ (Sn [ {x1, . . . , xn}), and the proof is concluded by noting that supp(Gn) ✓ K and |Sn [ {x1, . . . , xn}| < 1, for all
sufficiently large n.

Case B (z > 1): We now move on to the case z > 1. Then, for every language Li, 1  i  z � 1, that precedes Lz,
exactly one of the following holds:

(i) either there exists some xji 2 Lz but xji /2 Li, or

(ii) Lz ( Li.

If Case (i) holds, then there exists some ni 2 N such that Sni 6✓ Li. Thus, since there are finitely many languages before z
for which Case (i) holds, after finitely many n 2 N all of them will have been contradicted by Sn. Thus, we consider some
n0 2 N large enough so that for all n � n0 every language Li, 1  i  z � 1, for which Sn ✓ Li satisfies Lz ( Li.

Let I = {i1, . . . , i`} be the set of the indices for which the previous holds. For every j 2 I, and for all j0 2 N for which
the tell-tale set of Lj is a subset of Lj0 , i.e., T j ✓ Lj0 , one of the following two cases hold by the definition of the weak
Angluin’s condition: (a) either Lj0 is not a proper subset of Lj or (b) |Lj \ Lj0 | < 1.

Consider j0 = z and any j 2 I. Since, by construction, Lz ( Lj , the previous argument shows that either (I) T j 6✓ Lz or
(II) |Lj \ Lz| < 1.

If j falls into Case (I) then for large enough n it holds that T j
n 6✓ Lz , thus T j

n 6✓ Sn, and due to the way we have defined gn,
gn 6= j.7 Thus, we let I0 be the set of indices j 2 N, 1  j  z � 1, such that T j ✓ Lz and Lz ( Lj and, hence, since we
fall into Case (II) the previous argument implies that |Lj \ Lz| < 1 for each j 2 I0.

We consider again two cases: if I0 = ;, then for large enough n it holds that gn = z. Hence, the correctness follows from
the previous arguments.

We now handle the more complicated case I0 6= ;. Let j⇤ be the first element of I0. For large enough n, the choice of
gn will stabilize to j⇤. To see this, notice that Sn ✓ Lj⇤ for all n 2 N, T j⇤

n = T j⇤ for sufficiently large n (since T j⇤ is
finite), and since T j⇤ ✓ Lz (and the adversary presents a complete presentation of Lz), for large enough n it holds that
T j⇤
n ✓ Sn. Thus, indeed for all sufficiently large n it holds that gn = j⇤. By definition of I0, it holds that |Lj⇤ \ Lz| < 1.

Let x`j⇤ be the largest element of the enumeration of X for which x`j⇤ 2 Lj⇤ but x`j⇤ /2 Lz (this always exists as j⇤ 2 I0

and, hence, Lz ( Lj⇤ and |Lj⇤ \ Lz| < 1.). For n � `j⇤ it holds that Lj⇤ \ {x1, . . . , xn} ✓ Lz . This shows that, indeed,
supp(Gn) ✓ K, for large enough n, since we set supp(Gn) = Lj⇤ \ (Sn [ {x1, . . . , xn}). Moreover, since Lz ( Lj⇤ , and
|{x1, . . . , xn}| < 1, it holds that |Lz \ (Lj⇤ \ {x1, . . . , xn})| < 1, for all n 2 N. Hence, the generator generates with
approximate breadth from K in the limit.

Remark C.4. The generating algorithm that achieves approximate breadth in the limit for languages that satisfy the weak
version of Angluin’s condition has the property that the Membership Oracle Problem is decidable. Hence, by the results of
(Kalavasis et al., 2025), it cannot be stable, and, indeed, it is not since its support changes at each iteration.

7Observe that if we had assumed the stronger Definition 2.2 (Angluin’s condition), then this step implies that we can identify Lz in the
limit, since only Case (I) is valid. This is exactly how the tell-tale-based algorithm of (Angluin, 1980) works.
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C.3. Extensions to Other Notions of Breadth

In this section, we generalize the results from the previous two sections to give algorithms that achieve exhaustive generation
for countable collections satisfying weak Angluin’s condition.

We first give a function that achieves exhaustive generation.
Lemma C.5 (Function for Exhaustive Generation). Let L be a countable collection of languages that satisfies Definition 3.7.
Then, there exists a generating algorithm that, exhaustively generates from L (and is consistent with the target language) in
the limit. The algorithm uses access to the following oracles:

. a membership oracle for L,

. a subset oracle for L (that given indices i, j outputs Yes if Li ✓ Lj and No otherwise),

. a finite difference oracle for L (that given indices i, j with Li ⇢ Lj outputs Yes if |Lj \ Li| < 1 and No otherwise).

The generation in the above result satisfies a property stronger than Definition A.2:
Remark C.6. In addition to achieving exhaustive generation, the generator is consistent with the target language and, hence,
does not have any hallucinations.

The generator in Lemma C.5 is as follows.

Fix the following: a special character x0 /2 X and a canonical enumeration x1, x2, . . . of X.
Initialize `0 = 0.
for t 2 {1, 2, . . . } do:

1. Observe element xt and let St be the set of all elements observed so far.

2. Construct a version space Vt consisting of all languages in Lt consistent with St, i.e.,

Vt := {Lj : 1  j  t , Lj ◆ St} .

3. If Vt = ;, output an arbitrary element of X and go to the next iteration.

# Define a language Li 2 Vt to be critical if Li is the smallest-indexed language in Vt or Li is a subset of all
languages preceding it in Vt, i.e., Li ✓ Lj for all 1  j < i.

4. Construct the set Ct = {Lit1
◆ Lit2

◆ · · · ◆ Litj
} ✓ Vt of critical languages for some j  t.

# To construct the set of critical languages Ct the algorithm needs access to the subset oracle.

5. Find the smallest indexed language L = L(t) in Ct such that |L \ Litj
| < 1. Create the set C 0

t by removing all
the languages in Ct before L.

# To perform this filtering, the algorithm needs access to the finite difference oracle.

6. If C 0
t = ;, output an arbitrary element of X and go to the next iteration.

7. Let Li = Li(t) be the minimum indexed language in the set of filtered critical languages C 0
t.

8. If i(t) 6= i(t� 1), set `t = 0; else `t = `t�1 + 1.

9. output the enumeration of Li \ {x0, . . . , x`t} induced by the canonical enumeration of X fixed at the start.

Proof of Lemma C.5. We will show that the above function exhaustively generates and is consistent with the true language
in the limit. Let K be the target language and z 2 N be the smallest number such that Lz = K. We will use the case analysis
of Lemma C.3. Fix some symbol x0 /2 X.

Case A (z = 1): Since z = 1, the true language is the first critical language and is never filtered from C 0
t. Moreover, the

counters `t will never be reset (in Step 8) and, in fact, satisfy `t = t. Hence, for each t 2 N, the algorithm Gt enumerates
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the set K \ (St [ {x0, . . . , xt}) induced by the canonical enumeration of X. It follows that, for each removed xi, there is
some t where it is the first element of the output enumeration. Further, the output enumeration is always consistent with K.
Hence, the resulting generator exhaustively generates K. In fact, it has the stronger property that it never hallucinates.

Case B (z > 1): Consider the languages before Lz in the enumeration of L. There are two cases: For any i < z, either
there exists an element that belongs to Lz but not Li or Lz ✓ Li. If the first case holds, then eventually the distinguishing
element will appear in the enumeration of K and make Li inconsistent. Hence, let us assume that for all i < z, we only care
about indices i for which Li ) Lz . We claim that eventually the index of Step 5 stabilizes in the limit. In particular, we will
show that it stabilizes to the smallest index i⇤ such that Li⇤ ◆ Lz and |Li⇤ \ Lz| < 1; note that if there is no language
Li ) Lz , then i⇤ must be z. Before proving this claim, we show that it implies the result. Let 1  i⇤  z be the index that
Step 5 eventually stabilizes on. We know that Li⇤ ◆ K (by our earlier argument that any index 1  i  z not satisfying this
property is eliminated after a finite time) and |Li⇤ \K| < 1 (by construction). We now show how to exhaustively generate
K in the limit, this corresponds to Steps 8 and 9 of the above function. To see this, observe that as |Li⇤ \K| < 1, after a
finite number of steps Li⇤ \ {x0, . . . , x`t} ✓ K (and, hence, the algorithm eventually stops hallucinating). Further, since at
step t (for large enough t), we output the enumeration of Li⇤ \ {x0, . . . , x`t} induced by the canonical enumeration of X, it
follows, for each removed xi, there is some t where it is the first element of the output enumeration. Hence, the resulting
generator exhaustively generates K. In fact, it has the stronger property that it eventually stops making any hallucinations.

Proof of the claim. It remains to prove our claim that the index of Step 5 stabilizes in the limit. Since L satisfies the weak
Angluin’s condition, then K has a finite tell-tale set TK . We condition on the following events: (A) K is a critical language,
and (B) St � TK . Condition (A) is satisfied for any t � z and (B) is satisfied after a finite time since TK is finite and all its
elements appear at a finite point in the enumeration of K. Conditioned on these events the critical list Ct is of the form

Lit1
◆ Lit2

◆ · · · ◆ K ◆ Ljt1
◆ . . .

First, observe that there are finitely many languages before K in this list: this is because K appears at a finite point in this
list. Next, we claim that conditioned on the above events the indices it1, it2, . . . of the languages appearing before K in the
list never change. The proof is via induction.

• Base Case: First, consider the first index it1. It is defined as the smallest index language consistent with St. Moreover,
due to the structure above it has the property that Lit1

◆ K and, hence, it never becomes inconsistent with St0 for t0 � t.
Therefore, the index it1 never changes in subsequent steps.

• Induction Step: Next, we complete the induction argument, suppose indices it1, it2, . . . , itr never change in subsequent
steps, then we claim that the index itr+1 (if it exists) also never changes in subsequent steps. This is because itr+1 is
defined as the smallest indexed language that is (1) consistent with St and (2) has the property that Litr+1

✓ Litr . The
former always holds for all subsequent t0 � t since Litr+1

◆ St ◆ TK and the latter holds for all subsequent t0 � t

since itr never changes.

Now we are ready to prove that the index i(t) selected in Step 5 stabilizes. Recall that i(t) is the smallest index satisfying
that (1) Li(t) appears before K in the critical list and (2) |Li(t) \ Litj

| = |Li(t) \ K| + |K \ Litj
| < 1. Observe that

|Li(t) \ Litj
| = |Li(t) \K|+ |K \ Litj

| and, by construction, |K \ Litj
| < 1 and, therefore, Condition (2) is equivalent to

|Li(t) \K| < 1. Fix any t satisfying Conditions A and B above and the corresponding i(t). For all subsequent t0 � t, Li(t)

continues to appear before K in the critical list since we proved that all indices before K in the critical list stabilize. Further,
|Li(t) \K| < 1 since it is independent of t0. Therefore, i(t) = i(t0) since i(t) satisfies both properties that determine i(t0).
It follows that for t0 � t, the index selected in Step 5 never changes.

Moreover, a small adaptation of the proof of Lemma C.3 gives a generator that generates exhaustively (Definition A.2) in
the limit provided one has access to the tell-tale oracle from Definition 3.7.
Lemma C.7 (Algorithm for Exhaustive Generation). Let L be a countable collection of languages that satisfies Definition 3.7.
Then, there exists a generating algorithm that, given access to a membership oracle for L and the tell-tale oracle from
Definition 3.7, exhaustively generates from L in the limit.

Proof of Lemma C.7. The argument in the proof of Lemma C.3 shows that the choice of the index gn stabilizes in the limit.
Moreover, K ✓ Lgn and |Lgn \K| < 1. To achieve exhaustive generation, the only modification needed is that we keep
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track of another index `n which is initialized at 0, increases by 1 in every round, and every time the choice of gn changes,
we reset `n = 0. The enumeration we output is Lgn \ {x0, . . . , x`n} , where we use the notational convention that x0 is
some special element that does not appear in X. Moreover, the sequence in which the element appears in the enumeration is
the natural order induced by (some canonical) enumeration of X. Assume that n is large enough so that gn has stabilized. It
is easy to see two things: for every element bx of Lgn , there exists some finite round bn 2 N such that bx is the first element
in the enumeration we have outputted. Moreover, since Lz ✓ Lgn and |Lgn \ Lz| < 1, after some finite n 2 N it holds
that Lgn \ {x0, . . . , x`n} ✓ Lz. Moreover, every time an element xi is omitted from the enumeration we output, there has
been some prior iteration where it has been the first element in the enumeration. These arguments show that the modified
generator is an exhaustive generator for L.

D. Implication for the Statistical Setting
In this section, we discuss the implications of our results in the statistical setting.

In this setting, there is a countable language collection L, a “valid” distribution P supported on a language K 2 L, and the
generating algorithm takes as input string drawn i.i.d. from P. For every different notion of breadth, one can define an error
function for the generating algorithm (Gn)n2N as

er (Gn) = 1 {¬P (Gn)} , (8)

where P (·) is a predicate defined based on the underlying notion of breadth and its value is True if the breadth property is
achieved by Gn and False, otherwise.

Given this definition (8), (Kalavasis et al., 2025) define the error rate for generation with breadth via the universal rates
framework of Bousquet et al. (2021).

Definition D.1 (Error Rate (Bousquet et al., 2021)). Let L be a countable collection of languages, er be an error function
defined in Equation (8), and R : N ! [0, 1] be a rate function such that limn!1 R(n) = 0. We say that rate R(·) is
achievable for L if there exists a generating algorithm G = (Gn) such that

8 P 2 Val(L) 9 C, c > 0 such that E [er(Gn)]  C ·R(c · n) 8n 2 N ,

where Val(L) the set of all valid distributions with respect to L. Conversely, we say that no rate faster than R(·) is
achievable for L if for any generating algorithm G = (Gn) there exists a valid distribution P and c, C > 0 such that
E [er (Gn)] � C ·R(c ·n), for infinitely many n 2 N. We say that no rate is achievable for L if for any generating algorithm
G = (Gn) there exists a valid distribution P such that lim supn!1 E [er (Gn)] > 0.

(Kalavasis et al., 2025) proved bounds in this statistical setting for language identification, generation with exact breadth
for algorithms for which the MOP is decidable,8 and generation with approximate breadth for algorithms that are stable in
the limit,9 and for which the MOP is decidable. To get these results, (Kalavasis et al., 2025) showed connections between
the online setting considered in the previous sections and the statistical setting. Using the new results in this work, and the
results of (Kalavasis et al., 2025), we can get characterizations for the statistical rates under these two notions of breadth
removing the requirement for decidability of the MOP oracle and stability of the generating algorithm.

Theorem D.2 (Rates for Generation with Exact Breadth). For any non-trivial collection of languages L no rate faster than
e�n is achievable for generation with exact breadth. Moreover, For any collection that is identifiable in the limit, there exists
an algorithm that achieves generation with exact breadth at rate e�n. Conversely, for any non-identifiable collection, no
rate is achievable for generation with exact breadth.

For the non-triviality requirement, we refer the interested reader to (Kalavasis et al., 2025). The e�n lower bound and
upper bound follow immediately from their results. The lower bound for no rates achievable follows from the approach of
(Kalavasis et al., 2025) (with a few modifications in their construction) and Theorem 3.5. For brevity, we only sketch the
modifications here:

8Recall this is a mild technical condition that requires that the generating algorithm can answer queries about whether a string x is in
its support.

9Roughly speaking, stability means that after finitely many steps, the support of the distribution outputted by the generating algorithm
does not change. For the formal definition, see Definition 3.13.
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• (Kalavasis et al., 2025) make use of a construction of (Angluin, 1988) which connects the adversarial setting “in-the-
limit” to the statistical setting “in-the-limit” (Theorem 5.6 in their paper) for language identification. A similar result
can be shown for generation with exact breadth.

• (Kalavasis et al., 2025) make use of majority votes over learners that identify the target language. In Lemma 5.8 they
use the voting scheme, (a modification of) Angluin’s result (Angluin, 1988), and the Borel-Cantelli lemma to show that
no rate is achievable for language identification, for collections that do not satisfy Angluin’s criterion (Definition 2.2).
The same approach can be used to derive the lower bound for generation with exact breadth, by using a slightly different
majority voting scheme. At a very high level, following (Kalavasis et al., 2025)10 we split the dataset into different
batches and train the generating algorithm, and we can show that for large enough n, a c-fraction of these generators
satisfies the generation with exact breadth property (for, e.g., c > 2/3). In order to combine their outputs, we define an
(implicit) distribution as follows: we keep sampling from all the batches until a c-fraction of them outputs the same
element. It is not hard to see that (i) this process terminates in finite time,11 (ii) only elements of K have positive
probability of being outputted, (iii) every element of K has a positive probability of being outputted.

A similar result can be obtained for language generation with approximate breadth, using the criterion from Definition 3.7.

Theorem D.3 (Rates for Generation with Approximate Breadth). For any non-trivial collection of languages L no rate
faster than e�n is achievable for generation with approximate breadth. For any collection that satisfies Definition 3.7, there
exists an algorithm that achieves generation with approximate breadth at rate e�n. Conversely, for any collection that does
not Definition 3.7, no rate is achievable for generation with exact breadth.

The above pair of results provides statistical rates for language generation with exact and approximate breadth. Obtaining
statistical rates for unambiguous generation is an interesting direction.

E. Further Results
In this section, we give results for language generation with new notions of breadth and stability.

Outline. In Appendix E.1, we introduce a notion of infinite coverage which weakens approximate breadth and show
that it is achievable for all countable collections. In Appendix E.2, we study generation with infinite coverage with stable
generators: (1) we show that it cannot be achieved for all countable collections (Appendix E.2.1), and (2) we give a sufficient
condition to achieve it (Appendix E.2.2). In Appendix E.3, we present a strengthening of stability, which we call increasing
coverage, and show that it can be achieved for certain collections.
Remark E.1 (Characterizations for Existing Notions of Breadth with Stability). We present the characterizations of existing
notions of breadth with stability in Appendix A.3. In this section, we discuss characterizations for new notions of breadth
and a strengthening of stability.
Remark E.2 (Results allowing for Hallucinations). We refer the reader to Appendices A.4 and A.5 for results on language
generation with breadth when some amount of hallucination is allowed.

E.1. Generation with Infinite Coverage

In this section, we provide further motivation behind Definition 3.2, generation with approximate breadth. An immediate
modification of the algorithm of (Kleinberg & Mullainathan, 2024) can achieve finite coverage of the target language, for
any finite number. More concretely, for any function f : N ! N and any countable collection of languages L there exists a
generating algorithm (Gn)n2N such that, for any target language K 2 L and any enumeration of K the algorithm achieves
in the limit

supp(Gn) ✓ K , supp(Gn) \ Sn = ; , and |supp(Gn)| = f(n) ,

where Sn is the set of elements enumerated until round n. In fact, their algorithm can achieve the stronger property of
infinite coverage defined below.

10The same approach has been used extensively in the universal rates literature, starting from (Bousquet et al., 2021).
11One small complication is that if a c-fraction does not satisfy the desired property, the algorithm might not terminate. To fix that, in

every step we either terminate with probability 1/2 or we do the sampling strategy we described with probability 1/2. If we terminate, we
run the algorithm from (Kleinberg & Mullainathan, 2024) to generate a valid string from K.
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Definition E.3 (Language Generation with Infinite Coverage in the Limit). A generating algorithm G = (Gn) is said to
generate with infinite coverage in the limit for a language collection L = {L1, L2, . . . } if, for any K 2 L and enumeration
of K, there is an n⇤ � 1, such that for all n � n⇤, after seeing n elements of the enumeration (corresponding to the set Sn

in round n),
supp(Gn) ✓ K , supp(Gn) \ Sn = ; , and |supp(Gn)| = 1 ,

Given the above notion of infinite coverage, a simple modification to the generating algorithm of (Kleinberg & Mullainathan,
2024) gives the following result.

Proposition E.4 (Modification of (Kleinberg & Mullainathan, 2024)). There is a generating algorithm with the property
that for any countable collection of languages L = {L1, L2, . . . }, any target language K 2 L, and any enumeration of K,
the algorithm generates with infinite coverage from K in the limit.

Thus, the aforementioned modification of the algorithm of (Kleinberg & Mullainathan, 2024) has the property that it does
not hallucinate (i.e., it does not include any elements outside of K in its support) and covers infinitely many (unseen)
elements of the target language, but might, potentially, not cover infinitely many elements as well. Thus, a natural question
is whether there exists an algorithm that does not hallucinate, can cover infinitely many elements of K, and also miss only
finitely many elements of it. This is precisely the requirement of generation with approximate breadth (Definition 3.2).

Proof Sketch of Proposition E.4. We discuss a sketch of the proof for the version of the algorithm of (Kleinberg & Mul-
lainathan, 2024) that uses a subset oracle for L, i.e., for any Li, Lj 2 L it can ask “Is Li ✓ Lj?”. Let us first give a
high-level description of their algorithm. For large enough n 2 N, it creates a (potentially infinite) sequence of languages
L0 = {Li1 , Li2 , . . .} ✓ L such that the following hold.

(i) For every language L 2 L0 it holds that L is consistent, i.e., Sn ✓ L, where Sn is the set of elements enumerated until
round n,

(ii) The sequence of languages in L0 satisfies the inclusion: Li1 ◆ Li2 ◆ . . . , and

(iii) K 2 L0.

Then, it outputs an arbitrary string x such that x /2 Sn and x 2 Li` , where i` 2 N is the largest number such that Li` 2 L0

and i`  n. The immediate modification is to output a distribution Gn such that supp(Gn) = Li` \ Sn. Notice that this can
be done in a computable way: in order to sample from this distribution, we first sample a natural number bn (e.g., from a
geometric distribution on N), and then we check if xbn 2 Li` \ Sn.

An analogous modification can be made to the algorithm of (Kleinberg & Mullainathan, 2024) that only has access to a
membership oracle for L. For brevity, we omit the modifications to this algorithm.
Remark E.5 (Oracle Access for Results in Figure 3). Following the phrasing of (Kleinberg & Mullainathan, 2024), we
provide both functions and algorithms that generate in the limit. An algorithm only accesses L via a membership oracle
(and potentially a tell-tale oracle). When a generator uses other types of oracles (e.g., subset oracle), we call it a function.

E.2. Infinite Coverage with Stable Generators

In this section, we continue the study of infinite coverage, exploring when it can be achieved with stable generators.

E.2.1. A COLLECTION FOR WHICH NO STABLE GENERATOR HAS INFINITE COVERAGE

In this section, we show that there is a language collection L for which there exists an algorithm that achieves approximate
breadth in the limit, but no stable algorithm can achieve the (strictly) weaker notion of generating with infinite coverage
in the limit. The collection L is due to (Charikar & Pabbaraju, 2024a), who observed that a trivial generating algorithm
that does not get any input generates from L exhaustively in the limit. Since exhaustive generation implies, by definition,
generation with approximate breadth, we only need to prove the impossibility result for generation with infinite coverage by
stable generators.

We first provide the collection and then state the result.
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Example E.6 ((Charikar & Pabbaraju, 2024a)). Let X = N, L1 = N, for every i 2 N let Li = N \ {i} , and let
L = {L1, L1, L2, . . .} . Notice that every pair of languages Li, Lj 2 L differ in at most two elements, so it follows that L
satisfies Definition 3.7. To see that it does not satisfy Angluin’s condition (Definition 2.2), consider the language L1. Then,
for every finite subset T ✓ L1 there is some language LT such that T ✓ LT and LT ( L1.

We continue with the statement of the theorem.

Theorem E.7. There exists a countable collection of languages L that satisfies the weak Angluin’s condition (Definition 3.7),
and for which no stable generating algorithm can achieve generation with infinite coverage in the limit (Definition E.3).

Proof. Consider the collection defined in Example E.6. Since it satisfies the weak Angluin’s condition (Definition 3.7),
by Theorem 3.8, it follows that there exists an algorithm that achieves generation with approximate breadth in the limit.12

Assume towards contradiction that there exists a stable generating algorithm G = (Gn)n2N that achieves generation with
infinite coverage in the limit. We will pick a target language and an enumeration of it that witnesses the lower bound based
on the given algorithm G . We denote the target language by K and the target enumeration by E1

K . Like in the previous
proofs, for any enumeration E, we use the notation E(i) to denote its i-th element, E(1 : i) to denote its first i elements,
and E(i : 1) to denote all but the first i� 1 elements.

As in the previous proofs of the impossibility results, we consider several phases for our construction. First, we start with
the enumeration E1

N = (1, 2, 3, . . .). Notice that this is a valid enumeration for L1. We consider two cases: (I) either there
is some n 2 N such that |supp(Gn)| = 1, or (II) if there is no such n the lower bound follows immediately by picking
K = N and the hard enumeration E1

K = E1
N . For the continuation of the proof, assume that the former case holds and let

n1 denote the first timestep for which this holds. Notice that up to that point we have enumerated (1, . . . , n1). Let bn1 2 N
be the smallest number strictly greater than n1 that is in the support of Gn1 . Notice that such a number must exist because
|supp(Gn1)| = 1.

We now extend the target enumeration E1
K (1 : bn1 � 1) = (1, 2, . . . , bn1 � 1). Notice that this is well-defined since we only

add elements to the already constructed enumeration. We continue building the target enumeration by skipping the element
bn1 and including the element bn1+1 to it, i.e., the bn1-th element of the constructed enumeration is bn1+1. We continue adding
consecutive elements to the enumeration E1

K until the first timestep n > bn1 + 1 such that supp(Gn) 6= supp(Gn1) and
|supp(Gn)| = 1. Notice that if no such n exists the lower bound already follows by picking the target language K = Lbn1

and the constructed target enumeration. This is because in every timestep either supp(Gn) = supp(Gn1) (and therefore
supp(Gn) 6✓ K because bn1 2 supp(Gn)) or |supp(Gn)| < 1, hence the algorithm does not achieve generation with infinite
coverage in the limit. For the continuation of the proof, let n2 denote the first timestep for which supp(Gn2) 6= supp(Gn1)
and |supp(Gn2)| = 1. We then add the element bn1 to the constructed prefix of the enumeration E1

K and terminate the first
phase.

Notice that at the end of the first phase we have enumerated all the elements {1, 2, . . . , n2 � 1} and the support of the
generating algorithm has changed at least once or we have the desired lower bound. We continue inductively in exactly the
same way until (I) either some phase cannot be terminated in which case the lower bound follows because the property
of infinite coverage in the limit is not achieved or (II) we construct infinitely many phases which witness infinitely many
changes in the support of the generating algorithm, hence showing it cannot be stable. This concludes the proof.

E.2.2. SUFFICIENT CONDITION FOR STABLE GENERATION WITH INFINITE COVERAGE

In this section, we provide a sufficient condition on the language collection L that guarantees the existence of a stable
generating algorithm that generates with infinite coverage in the limit. In particular, we can show that if a collection has
finite closure dimension (Li et al., 2024), then there exists a stable generating algorithm that achieves infinite coverage in the
limit. First, we give the definition of the closure dimension (Li et al., 2024), which is inspired by a result of (Kleinberg &
Mullainathan, 2024) on uniform generation13 from finite sets of languages.

Definition E.8 (Closure Dimension (Li et al., 2024)). The closure dimension of L, denoted by d(L), is the largest natural
12As we explained, this also follows from the work of (Charikar & Pabbaraju, 2024a).
13The exact definition of uniform generation is not important for our work. At a high level, this condition asks whether there exists

some d 2 N such that after the generator observes d different strings from any target language of L, then it can generate unseen strings
that belong to K.
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number ` 2 N for which there exist distinct x1, . . . , x` 2 X such that

V (x1, . . . , x`) := {L 2 L : {x1, . . . , x`} ✓ L} 6= ; and

������

\

L2V (x1,...,x`)

L

������
< 1 .

If for every ` 2 N there exists a set of distinct elements that satisfies this condition we say that d(L) = 1.

In general the closure dimension can be 1, but due to a result of (Kleinberg & Mullainathan, 2024), we know that all
collections of languages with finitely many languages have finite closure dimension. In order to design an algorithm that
achieves stable infinite coverage for any collection L that has a finite closure dimension, we will make use of a stronger
oracle for L than just the membership oracle to it. Namely, we define the version space intersection (VSI) membership
oracle as follows.
Definition E.9 (Membership Oracle to Version Space Intersection (VSI)). The membership oracle to VSI is a primitive that,
given a set of distinct elements x1, . . . , xn 2 X and a target element x 2 X, returns

1
�
x 2 \L2V (x1,...,xn)L

 
.

We remark that for finite collections L this oracle can be computed just with membership oracle to L, but for countable
collections this oracle might not be computable.
Proposition E.10 (Adaptation of Lemma 3.2 in (Li et al., 2024)). Let L be a collection of languages with d(L) < 1
(Definition E.8). There exists a stable (Definition 3.13) generating algorithm G = (Gn) for L that, given the value of d(L),
achieves infinite coverage (Definition E.3) using access to a VSI membership oracle for L, after taking as input d(L) + 1
distinct elements.

In particular, since the closure dimension of any finite collection of languages is finite (Kleinberg & Mullainathan, 2024),
for any finite collection of languages, there exists a stable generating algorithm that achieves infinite coverage. It is not hard
to see that for such collections, the VSI oracle can be implemented using only membership oracle to languages in L.

Corollary E.11 (Stable Generation for Finite Collections). For every finite collection of languages L, the following hold:

1. There exists a stable generating algorithm that achieves generation with exact breadth in the limit, using only
membership oracle access to L.

2. There exists a stable generating algorithm that achieves generation with infinite coverage after taking as input d(L)+1
distinct strings, using only membership oracle access to L.

Moreover, for finite collections, a stronger property is possible: the results of (Kalavasis et al., 2025) (see Proposition 3.9 in
their work) show that for finite collections there exists a stable generating algorithm that achieves exact breadth in the limit
(and, hence, also infinite coverage), but there might not be an upper bound on the elements needed to achieve this property.14

Finally, we prove Proposition E.10.

Proof of Proposition E.10. Our proof is inspired by the Lemma 3.2 from (Li et al., 2024). The only modification is that now
the algorithm stops using new elements beyond the d(L) + 1 elements required to achieve infinite coverage. Moreover, we
discuss the type of access to L needed that is sufficient to achieve this property, which was not the focus of (Li et al., 2024).
Let K 2 L be any target language and x1, . . . , xd(L)+1 2 K be any d(L) + 1 distinct elements of the target language.
First, notice that since x1, . . . , xd(L)+1 2 K, V (x1, . . . , xd(L)+1) 6= ;, as K 2 V (x1, . . . , xd(L)+1). By the definition of
the closure dimension (Definition E.8) and since |K| = 1 (recall that language generation is not meaningful with finite
languages and, hence, throughout this work, we consider all languages are infinite),

������

\

L2V (x1,...,xd(L)+1)

L

������
= 1 and

\

L2V (x1,...,xd(L)+1)

L ✓ K .

14To be precise, Proposition 3.9 in (Kalavasis et al., 2025) gives an algorithm to identify finite collections in the limit. This algorithm
immediately gives an algorithm for generation with exact breadth: once we know an index z such that K = Lz , we can sample a natural
number (from, e.g., an exponential distribution on N) and output the i-th element of Lz . The latter, in turn, can be found using the
membership oracle to Lz .
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Thus, the generating algorithm can stabilize its support to be T :=
T

L2V (x1,...,xd(L)+1)
L and never change it from this

point on during the interaction with the adversary. Notice that given access to a VSI membership oracle for L the learner
can indeed sample from a distribution supported on T as follows: first sample a natural number bn (e.g., from a geometric
distribution on N) and then query the VSI membership oracle with the set of elements x1, . . . , xd(L)+1 and the target
element xbn.15 Repeat the process until the oracle returns Yes. Notice that this process terminates with probability 1, and the
support of the induced distribution is exactly T .

As a final note on our discussion on stability, it is worth pointing out that there are collections that do not satisfy the weak
Angluin’s condition, nevertheless there is a stable generating algorithm that achieves infinite coverage after observing one
example from the target language. The example is due to (Charikar & Pabbaraju, 2024a).
Example E.12 (Stable Infinite Coverage 6=) Weak Angluin’s Condition). Define the domain X and the language collection
L as follows

X = Z and L = {L1 := Z, La := {a+ i, i 2 N} : a 2 Z} ,

where Z is the set of integer numbers. Notice that both X and L are countable, and each L 2 L is also countable. Consider
the language L1 and any finite T ✓ L1. Let iT be the smallest element of the subset T. Then, T ✓ LiT , LiT ( L1, and
|L1 \ LiT | = 1. Hence, this collection does not satisfy the weak Angluin’s condition. Consider the generating algorithm
G which in every round n outputs a distribution with supp (Gn) = N \ S1, where S1 is the input in round 1. It is not hard to
see that for any target language K, this generating algorithm achieves infinite coverage, and is, by definition, stable.

E.3. Generation with Increasing Coverage: A Strengthening of Stability

In this section, we introduce new property of generation – increasing coverage, which is a strengthening of stable generation.

A key observation in (Kleinberg & Mullainathan, 2024) is that their generator’s support can decrease when it sees new
strings from the target K and, in fact, for many language collections the number of valid strings omitted from its support
can grow without bound, which is an extreme form of mode collapse. In this light, one can view stability as a property
that avoids such extreme mode collapse: any stable generator can only change its support finitely many times. A natural
question is whether we can achieve something stronger than stability and, yet, more tractable than breadth. To capture this
phenomenon, we introduce the following notion of generation with strictly increasing coverage.
Definition E.13 (Generation with Strictly Increasing Coverage). Let L be a countable collection of languages. A generating
algorithm G = (Gn) is said to have strictly increasing coverage for L in the limit if, for any K 2 L and enumeration of K,
there is an n⇤ � 1 such that for all n � n⇤, after seeing n elements of the enumeration, the following hold

• supp (Gn) ✓ supp (Gn+1) , and

• either supp (Gn) = K or there exists some n0 > n such that supp (Gn) ( supp (Gn0) .

Intuitively, if a generator satisfies this property of strictly increasing coverage, then, at a high level, one may gather that it
learns something new about the target language each time it sees a new string from it.

To gain intuition about when increasing coverage is achievable, let us consider two extremes. On the one hand, it is not
hard to see that achieving approximate breadth along with strictly increasing coverage is significantly harder than achieving
approximate breadth along: This is because if a generator has approximate breadth, then after seeing sufficiently many
strings from K, its support only misses a finite number of strings from K and, then, if it further has strictly increasing
coverage, its support eventually becomes equal to K implying exact breadth which is only achievable for collections
satisfying Angluin’s condition (Theorem 3.3). On the other hand, if one is not required to have infinite coverage16 (a
requirement already weaker than any notion of breadth), then it is easy to achieve strictly increasing coverage: consider the
generator G in Proposition E.4, which achieves infinite coverage for any collection L, and post-process the algorithm to
have a support of size at most t on round t. Since eventually G’s support has infinitely many elements (as it achieves infinite
coverage), it follows that the support of the above post-processed variant increases infinitely many times, implying that the
post-processed variant achieves strictly increasing coverage.

15To be formal, we need to use a different enumeration of the strings of X and the strings that define the target version space. We
overload the notation for simplicity.

16For the subsequent discussion, we use the equivalent version of the definition of infinite coverage (Definition E.3) which allows the
support of the generator to contain strings from the set Sn, which is the set of all strings enumerated so far.
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Thus, the most interesting question is whether there is a generator that achieves infinite coverage – a property between
breadth and consistent generation – while also having strictly increasing coverage. Our next result shows that there are
collections for which this is indeed possible. The collection we use to show this result does not satisfy the weak Angluin’s
condition, so one cannot achieve even the weakest notion of breadth (namely, approximate breadth or equivalently exhaustive
generation) for this collection.
Proposition E.14. There exists a countable collection of languages L that does not satisfy the weak Angluin’s condition
(Definition 3.7) and for which there exists a generating algorithm G = (Gn) that can achieve infinite coverage (Definition E.3)
and has strictly increasing coverage in the limit (Definition E.13).

Proof. Consider the collection of arithmetic progressions used in Example E.12. As we discussed, this collection does not
satisfy the weak Angluin’s condition. Let Sn be the set of elements enumerated up to round n and let btn denote the smallest
element of Sn. Then, it is immediate that the generating algorithm that outputs a distribution supported on

�btn,btn + 1, . . .
 

achieves infinite coverage and has strictly increasing coverage in the limit.

We remark that the generating strategy in the above result uses information about the structure of L, and not just membership
access to it.

F. Additional Remarks and Discussion
In this section, we present additional remarks and discussions.

F.1. Separation between weak Angluin and Angluin’s condition.

In Remark F.1, we give a collection L, taken from (Charikar & Pabbaraju, 2024a), which witnesses that the above
modification of Angluin’s condition is a strict weakening of Definition 2.2.
Remark F.1 (Separation Between Definition 2.2 and Definition 3.7 (Charikar & Pabbaraju, 2024a)). We highlight that
there is a separation between the collections of languages that satisfy Definition 2.2 and Definition 3.7, which is taken
from (Charikar & Pabbaraju, 2024a). Let X = N, Li = N \ {i}, and L = {N, L1, L2, . . .} . Then, L does not satisfy
Definition 2.2 but satisfies Definition 3.7. Thus, Definition 3.7 is a strictly weaker condition than Definition 2.2.

F.2. Overview of Kleinberg and Mullainathan’s Algorithm

In this section, we give a high-level description of the algorithm of Kleinberg & Mullainathan (2024). Consider some fixed
language collection L = {L1, L2, . . .}. Now consider any enumeration the adversary gives as input to the generator. In
every round n 2 N, the generation algorithm of Kleinberg & Mullainathan (2024) creates a (potentially infinite) sequence of
languages L0 = {Li1 , Li2 , . . .} ✓ L such that the following holds:

(i) For every language L 2 L0 it holds that L is consistent, i.e., Sn ✓ L, where Sn is the set of elements enumerated until
round n,

(ii) For every language Lij 2 L0 it holds that Lij ✓ Lij0 , 8j
0  j.

Then, it outputs an arbitrary string x such that x /2 Sn and x 2 Li` , where i` 2 N is the largest number such that Li` 2 L0

and i`  n. The main ingredient of the proof is that for all n sufficiently large the target language K will be part of L0.
Moreover, languages that come after it are subsets of K. Thus, it is safe to be generating elements from these languages.

F.3. Unambiguous Generation Satisfies Uniqueness

In this section, we show that unambiguous generation satisfies the uniqueness criterion. To see this, consider any distinct
languages L 6= L0. Suppose a generator G unambiguously generates from L. This implies that

|supp(G)4L| < min
L002L, L00 6=L

|supp(G)4L00| .

However, setting L00 = L0 implies that |supp(G)4L| < |supp(G)4L0| which shows that G does not unambiguously
generate from L0. This proves the following result.
Observation F.2. Unambiguous generation (Definition A.1) satisfies the uniqueness criterion.
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F.4. Exhaustive Generation Satisfies Finite Non-Uniqueness

In this section, we show that exhaustive generation satisfies the finite non-uniqueness criterion.

Recall that in the formulation of exhaustive generation, the generating algorithm is a sequence of mappings from sequences
of the domain to enumerations of the domain. Let G(1 : 1) be the set containing all the items G enumerates.

To see the claim, consider any pair of languages L and L0 that differ in infinitely many elements, i.e., |L4L0| = 1. Now, if
a generator G generates exhaustively generates both L and L0, then, by definition

|L \ G(1 : 1)| , |L0 \ G(1 : 1)| , |G(1 : 1) \ L| , |G(1 : 1) \ L0| < 1 . (9)

This contradicts the fact that |L4L0| = 1 since

|L4L0| = |L \ L0|+ |L0 \ L|
 (|(1 : 1)4L0|+ |L \ G(1 : 1)|) + (|G(1 : 1)4L|+ |L0 \ G(1 : 1)|)
 3 · (|L \ G(1 : 1)|+ |G(1 : 1) \ L|+ |L0 \ G(1 : 1)|+ |G(1 : 1) \ L0|)
(9)
< 1 .

Observation F.3. Exhaustive generation (Definition A.2) satisfies the finite non-uniqueness criterion.
Remark F.4 (Exhaustive Generation Does Not Satisfy the Uniqueness Criterion). Note that the above proof can be made
constructing – there is a generator which generates exhaustively from both L and L0 provided L and L0 differ in finitely
many elements. This implies that exhaustive generation does not satisfy the uniqueness criteria.

G. Formal Definition of Language Identification in the Limit
In this section, we provide the formal definition of language identification in the limit.

For a fixed collection L, an adversary and an identifier play the following game: The adversary chooses a language K from
L without revealing it to the identifier, and it begins enumerating the strings of K (potentially with repetitions) x1, x2, . . .
over a sequence of time steps n = 1, 2, 3, . . . . The adversary can repeat strings in its enumeration, but the crucial point is
that for every string x 2 K, there must be at least one time step n at which it appears. At each time n, the identification
algorithm I , given the previous examples x1, x2, . . . , xn, outputs an index in that corresponds to its guess for the index of
the true language K. Language identification in the limit is then defined as follows.
Definition G.1 (Language Identification in the Limit (Gold, 1967)). Fix some K from the language collection L =
{L1, L2, . . . }. The identification algorithm I = (In) identifies K in the limit if there is some n⇤ 2 N such that for all steps
n > n⇤, the identifier’s guess in satisfies in = in�1 and Lin = K. The language collection L is identifiable in the limit if
there is an identifier that identifies in the limit any K 2 L, for any enumeration of K. In this case, we say that the identifier
identifies the collection L in the limit.

It is important to note that the above definition imposes some stability to the algorithm: since there can be multiple
appearances of K in the enumeration of L, an algorithm identifies K in the limit only if it eventually stabilizes (i.e.,
in = in�1 for n larger than some n⇤) to a correct index (i.e., Lin = K). A natural question is which collections of
languages are identifiable in the limit. Angluin (Angluin, 1980) provided a condition that characterizes such collections (see
Definition 2.2).
Theorem G.2 (Characterization of Identification in the Limit (Angluin, 1980)). The following holds for any countable
collection of languages L.

1. L is identifiable in the limit if it satisfies Angluin’s condition and one has access to the tell-tale oracle.

2. If there is an algorithm that identifies L in the limit, then Angluin’s condition is true and the tell-tale oracle can be
implemented.

The above tight characterization shows that language identification is information-theoretically impossible even for simple
collections of languages, such as the collection of all regular languages. Crucially, access to the tell-tale oracle is necessary
for identification in the limit (its existence alone is not sufficient) (Angluin, 1980).
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G.1. Representation of Generators

Remark G.3 (Representation of the Generators). The astute reader might observe that the previous definitions allow for
generating algorithms that output infinite-sized objects. However, all our generating algorithms have succinct representations
and this allows for computable algorithms that sample (i.e., generate) a new element, enumerate the support of all generatable
elements, and, given an element, decide whether it belongs to the support (i.e., whether it is part of the enumeration). On the
other hand, our lower bounds are stronger, they hold for functions that might not be computable.

G.2. Membership Oracle Problem

In this section, we define the Membership Oracle Problem (MOP), which is required for the impossibility results of
(Kalavasis et al., 2025), but not required for the characterizations in our work. For more details, we refer to Definitions 5
and 6 in (Kalavasis et al., 2025).

Definition G.4 (Membership Oracle Problem (Kalavasis et al., 2025)). Given a generator G , the membership oracle problem
for G , denoted as MOP(G), is defined as follows: given the description of G and a string x, output Yes if x 2 supp(G) and
output No otherwise.

H. Detailed Related Work
Since the work of (Kleinberg & Mullainathan, 2024), a growing line of research has explored various aspects of language
generation with and without breadth (e.g., (Li et al., 2024; Kalavasis et al., 2025; Charikar & Pabbaraju, 2024a; Raman &
Raman, 2025)). We already overview the work studying generation with breadth in the main body (Section 1.2). Here, we
discuss the other lines of work and present a map between the results of (Charikar & Pabbaraju, 2024b) and some of our
results.

Other Directions in Language Generation. Beyond breadth, recent work has explored other aspects of language
generation. Li, Raman, and Tewari (2024) studied language generation with uncountable collections and analyzed sample
complexity for generation. Raman & Raman (2025) investigated language generation in a model where an adversary
can introduce errors in the inputs, developing a robust framework for noisy settings. (Karbasi et al., 2025) explored the
complexity of determining if a specific generator G is hallucinating.

Comparison to (Charikar & Pabbaraju, 2024b). See Section 1.2 for a timeline of the works Charikar & Pabbaraju
(2024a), Charikar & Pabbaraju (2024b), and the present work. In the following, we map the relevant results of Charikar &
Pabbaraju (2024b) to some of our results.

• Characterization of Generation with Exact Breadth: Their result showing that Weak Angluin’s Condition with
Existence (Proposition 6.1 in their work) is necessary for exhaustive generation is comparable to the lower bound
for exhaustive generation in Theorem A.3. Their result showing the sufficiency of Weak Angluin’s Condition with
Existence (Proposition 6.2 in their work) for exhaustive generation is comparable to the upper bound for exhaustive
generation in Lemma C.5. Their result showing the sufficiency of Weak Angluin’s Condition with Enumeration
(Proposition 6.2 in their work) for exhaustive generation with only membership queries is comparable to Lemma C.7.

• Characterization of Exhaustive Generation: Their result showing that Angluin’s Condition is necessary for generation
with exact breadth (Proposition 5.3 in their work) is comparable to the upper bound in Theorem 3.3.

Finally, as mentioned in Section 1.2, our work provides several additional contributions for existing notions of
breadth/stability beyond these shared results (see Sections 3.1 to 3.2 and Remarks 3.6, 3.11 and 3.12). Further, our
work also introduces new notions of breadth/stability and provides results for them (see Appendices A.4, A.5 and E).
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