On Characterizations for Language Generation: Interplay of Hallucinations,
Breadth, and Stability

Anonymous Authors'

Abstract

We study language generation in the limit — in-
troduced by Kleinberg & Mullainathan (2024) —
building on classical works of Gold (1967) and
Angluin (1979). (Kleinberg & Mullainathan,
2024)’s main result is an algorithm for generat-
ing from any countable language collection in
the limit. While their algorithm eventually gener-
ates unseen strings from the target language K, it
sacrifices coverage or breadth, i.e., its ability to
generate a rich set of strings. Recent work intro-
duces different notions of breadth and explores
when generation with breadth is possible, leav-
ing a full characterization of these notions open.
Our first set of results settles this by characteriz-
ing generation for existing notions of breadth and
their natural extensions. Interestingly, our lower
bounds are very flexible and hold for many per-
formance metrics beyond breadth — for instance,
showing that, in general, it is impossible to train
generators which achieve a higher perplexity or
lower hallucination rate for K compared to other
languages. Next, we study language generation
with breadth and stable generators — algorithms
that eventually stop changing after seeing an ar-
bitrary but finite number of strings — and prove
unconditional lower bounds for such generators,
strengthening the results of Kalavasis et al. (2025)
and demonstrating that generation with many ex-
isting notions of breadth becomes equally hard,
when stability is required. This gives a separation
for generation with approximate breadth, between
stable and unstable generators, highlighting the
rich interplay between breadth, stability, and con-
sistency in language generation.

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

1. Introduction

Language generation has a rich history in computer science,
dating back to the seminal work of (Shannon, 1951), cul-
minating in today’s Large Language Models (LLMs) that
have revolutionized natural language processing and, more
broadly, machine learning (ML). Although the problem at
the core of generation — generate new and unseen strings
given a sequence of examples from a target language K —
is easy to state, a theoretical understanding of why LLMs
are able to produce coherent text remains elusive. Recently,
Kleinberg & Mullainathan (2024) formalized this problem
under a simple yet elegant model of language generation in
the limit: given a stream of strings from an unknown target
language K (belonging to a known collection of languages
L ={Ly,Ls,...}), learn to generate new, previously un-
seen, strings also belonging to this target language.

Their model is reminiscent of online learning (Littlestone,
1988); there are two players, the generator and the adversary
who play the following game: First, the adversary fixes a
target language K € £ and an enumeration of K.! Then,
at any round n > 1, it presents the n-th element x,, of
the enumeration to the generator. The generator, given
the strings S,, = {1,...,2,} seen so far, outputs a new
string w,, ¢ S,, — its guess for an unseen string in K. The
generator wins the game if eventually it learns “to generate
from K.” Formally, the generator § is said to generate from
L in the limit if for all K’ € £ and any enumeration of K,
there is a finite time n* such that, for any subsequent round

n > n*, w, is an unseen element of K, i.e., w, € K \ S,.

This model has deep connections to the classical works of
Gold (1967) and Angluin (1979; 1980), which studied the
problem of language identification in the limit. In the Gold—
Angluin model, like the above model, an algorithm observes
an adversarially chosen enumeration of strings from some
unknown target language K = L;«. The only difference
is that in the Gold—Angluin model the goal is to eventually
identify the index ¢* of the correct language, whereas in the
Kleinberg—Mullainathan (KM) model the goal is the simpler
task of generation — i.e., of outputting unseen strings from
K.

'An enumeration of K is an infinite sequence of elements
(potentially including duplicates) which does not contain elements

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Language identification turns out to be hard for essen-
tially all infinite collections of languages. Indeed, An-
gluin showed that it is intractable for most interesting lan-
guage collections, including regular languages. Surprisingly,
(Kleinberg & Mullainathan, 2024) proved, in stark contrast,
that language generation is tractable for all countable collec-
tions of languages. They provided an elegant algorithm that,
given any stream of input strings from a target language
K in a countable collection £ = {L1, Lo, ...}, generates
a sequence of previously unseen strings such that beyond
a finite time step, all generated strings belong to the target
language K.

Main Questions. The KM algorithm eventually stops hal-
lucinating, as it ceases outputting elements outside of K
after a finite time. However, this property comes at a cost:
the KM algorithm sacrifices breadth — i.e., the ability to
generate diverse strings from the target language. As the
algorithm eliminates hallucinations, it generates from an in-
creasingly smaller subset of the target language, resembling
mode collapse in generative adversarial networks (Arjovsky
& Bottou, 2017). This observation raises a fundamental
question, left open by Kleinberg & Mullainathan (2024):

Question #1. Is the trade-off between consistency and
breadth inherent for generation? In other words, must
any algorithm that eventually generates only valid
strings from the target language necessarily sacrifice
the ability to generate a broad subset of the language?

To formalize this question, recent work (Kalavasis et al.,
2025; Charikar & Pabbaraju, 2024a) relaxed the require-
ment that the learner outputs one element at a time and
allowed it to output a whole set of elements. This also
allows for the case where, at some finite point, one can
stop training and generate a rich set of responses. With
this change, Kalavasis, Mehrotra, and Velegkas (2025) pro-
posed three distinct notions of breadth and showed that,
for a large family of generators, language generation with
breadth is as hard as language identification. Adding to this
result, (Charikar & Pabbaraju, 2024a) proved the impos-
sibility of generation with breadth for a specific language
collection (with any generator). While these results suggest
a fundamental tension between consistency and breadth,
a complete characterization of when different notions of
generation with breadth are achievable remains open.

Another intriguing direction initiated by Kalavasis et al.
(2025) concerns the stability of generators: a stable gen-
erator is one that eventually stops changing its “support,”
i.e., the set of elements it outputs, after seeing a finite num-
ber of distinct strings from the target language. Stability
is a central object in online learning and has already been

outside K, and for every element © € K there is some position
ne € N where x appears.

studied in language identification (Gold, 1967). Kalavasis
et al. (2025) studied generation under stability showing that
certain notions of generation with breadth are “hard” to
achieve if generators (from a specific family) are required to
be stable, but largely left characterizing the effect of stability
on generation with other notions of breadth and with other
generators outside this family open.

Question #2. How does stability interplay with consis-
tency and breadth in language generation?

1.1. Our Contributions and Technical Novelty

Our work is centered around answering Questions 1 and 2
in the model of language generation in the limit (Kleinberg
& Mullainathan, 2024). Next, we describe our main results
and techniques.

Results for Question #1. There are many notions of
breadth in the literature, all attempting to quantify how
much of the target language is covered by a generator. Our
first set of results provides a complete characterization of all
notions of breadth proposed in prior work (Section 3 and Ap-
pendix A). In the main body, we illustrate our results with
two of the simplest notions of breadth: exact breadth and
approximate breadth (Kalavasis et al., 2025). Exact breadth
is the strongest notion, requiring that after sufficiently many
examples, the learner must be able to generate all unseen
elements of the target language K. Approximate breadth
relaxes this condition, requiring generators to output all but
finitely many unseen elements of K after seeing enough
examples. For exact breadth, we show that:

Informal Theorem 1.1 (see Theorem 3.3). A generator G
can generate from a collection £ with exact breadth in the
limit if and only if £ is identifiable in the limit.

Thus, collections £ admitting generators with exact breadth
are exactly those that are identifiable in the Gold—Angluin
model; they have a combinatorial characterization due to
(Angluin, 1979) that we call Angluin’s condition (see Defi-
nition 2.2). This result strengthens Kalavasis et al. (2025)’s
lower bound which only applied to generators with specific
properties; since our result applies to all generators with-
out assumptions, it requires a fundamentally different proof
approach.

The above is essentially a negative result because the classes
L satisfying Angluin’s condition are known to be very lim-
ited (Kleinberg & Mullainathan, 2024). A natural follow-up
question is whether relaxing the requirement to approximate
breadth, where the generator can miss finitely many ele-
ments, might overcome this limitation. For this question,
we show:

Informal Theorem 1.2 (see Theorem 3.8). A genera-
tor G can generate from a collection L with approx-
imate breadth in the limit if and only if L satisfies

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

weak Angluin’s Condition (Definition 3.7).

A few remarks are in order. First, the “weak Angluin’s
condition” (Definition 3.7) is a novel relaxation of Angluin’s
classic condition (Definition 2.2) that we introduce in this
work. We prove that this requirement is strictly weaker than
Angluin’s original condition (Appendix F.1), establishing
that approximate breadth is strictly easier to achieve than
exact breadth. Nevertheless, the weak Angluin’s condition
remains highly restrictive — it is not even satisfied by regular
languages, which are far simpler than human languages.
This demonstrates that the trade-off between consistency
and breadth is inherent and largely unavoidable, even when
we weaken our breadth requirement.

Technical Novelty. We view generation with exact or ap-
proximate breadth as special cases of generation properties
relative to the target language. Other such properties might
include having uniquely low perplexity or hallucination rate
for the target language compared to other languages (see Re-
mark 3.6). Our characterizations of generation with breadth
rely on two novel abstractions and also have consequences
for other properties: The first is the uniqueness criterion
(Definition 3.4) which informally states that if generator G
satisfies property P for language L, it cannot satisfy P for
any different language L’. We prove the following implica-
tions:

> Properties P with uniqueness can only be achieved for
collections satisfying Angluin’s condition.

> Exact breadth (like some other notions of breadth) sat-
isfies uniqueness, establishing the necessity direction
of Informal Theorem 1.1. Sufficiency is simpler: if £
satisfies Angluin’s condition, we can identify the tar-
get language and use its index to generate with exact
breadth.

However, approximate breadth (along with some other no-
tions of breadth) does not satisfy uniqueness, and requires
our second abstraction, the finite non-uniqueness criterion
(Definition 3.9). Informally, this weaker condition requires
that if G satisfies a property P for L, then it can also satisfy
P for another language L’ only if L and L’ differ on finitely
many elements. We show that:

> Properties P with finite non-uniqueness can only be
achieved for collections satisfying the weak Angluin’s
condition.

> Approximate breadth satisfies finite non-uniqueness,
establishing the necessity direction of Informal Theo-
rem 1.2. Unlike Informal Theorem 1.1, the sufficiency
direction is also non-trivial: collections satisfying weak
Angluin’s condition are not necessarily identifiable, so
we develope a novel algorithm achieving approximate
breadth for any such collection.

The most technically intricate parts of these constructions
are the lower bounds, which rely on careful diagonalization
arguments. To establish the upper bounds we present sev-
eral algorithms that are inspired by the work of Kleinberg
& Mullainathan (2024) and the seminal work of Angluin
(1980). We elaborate on these techniques in Section 3.3.
In summary, these reductions are the main tools that en-
able us to characterize all existing notions of breadth in the
literature and resolve Question #1.

Implications for Statistical Settings. Using reductions from
prior work, our characterizations extend to statistical set-
tings where examples are drawn from distributions rather
than chosen adversarially. We provide unconditional charac-
terizations of generation with exact and approximate breadth
in the stochastic model, extending the conditional charac-
terizations of Kalavasis et al. (2025) that were limited to a
specific generator family (Remark 3.12 and Appendix D).

Results for Question #2. Next, we investigate how gener-
ation with breadth is affected by stability, where generators
eventually stop changing their support (Definition 3.13), as
defined by (Kalavasis et al., 2025). Our results show that sta-
bility creates a unified landscape across notions of breadth:

Informal Theorem 1.3 (see Theorem 3.14). A stable gen-
erator G can generate from a countable collection L with
exact/approximate breadth in the limit if and only if L is
identifiable in the limit.

This reveals a stark separation between stable and unstable
generators, as certain notions that only require the weak
Angluin’s condition without stability now require the full
condition with stability. We also introduce further weaker
notions of breadth and make significant progress in charac-
terizing when they can be achieved under stability; due to
space constraints, we defer these results to Appendix A.

Technical Novelty. Requiring stability introduces an im-
portant challenge: unlike breadth, which can be verified
at specific steps t, stability requires examining the infinite
future sequence of a generator’s behavior. Even if a gen-
erator appears stable for arbitrarily many steps, we cannot
confirm stability without seeing its entire infinite execution.
This challenge in verification breaks our earlier lower bound
techniques, making the proof significantly more difficult,
and necessitating novel ideas (Section 3.3).

Our results comprehensively map the landscape of language
generation with breadth, pinpointing when various notions
are achievable and revealing the interplay between con-
sistency, stability, and different notions of breadth. Our
abstractions also extend beyond breadth, establishing im-
possibility results for other desirable generation properties
(Remarks 3.6 and 3.11).

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

1.2. Related Work

Our work directly builds on the framework of Kleinberg &
Mullainathan (2024), who introduced the model of language
generation in the limit. Since then, a growing line of re-
search has explored various aspects of language generation
with and without breadth (e.g., (Li et al., 2024; Kalavasis
et al., 2025; Charikar & Pabbaraju, 2024a; Raman & Raman,
2025; Peale et al., 2025)). Here, we discuss the most rele-
vant prior works and defer the discussion of the remaining
works to Appendix H.

Language Generation with Breadth. Our work builds
upon Kalavasis et al. (2025); Charikar & Pabbaraju (2024a)
who study language generation with breadth. Kalavasis et al.
(2025) introduced three notions of breadth: exact, approx-
imate, and unambiguous. They explored both Kleinberg
& Mullainathan (2024)’s online setting and its statistical
counterpart — where the strings are sampled from a distribu-
tion instead of being adversarially generated. For specific
generator family and each notion of breadth, they character-
ized which countable collections £ enable generation with
breadth (for the last two notions, they also require stabil-
ity). Charikar & Pabbaraju (2024a) introduced exhaustive
generation, another notion of breadth, and provided an un-
conditional lower bound by constructing a specific language
collection for which no algorithm can generate exhaustively.
(They also studied questions beyond breadth, discussed in
Appendix H). Our work unifies and extends both approaches
by providing complete characterizations for all these notions
of breadth without assumptions on the generator family that
hold for all countable language collections.

Independent and Concurrent Work. Independently of
and concurrently to this work, the authors of (Charikar
& Pabbaraju, 2024a) updated their manuscript to in-
clude a characterization of exhaustive generation Charikar
& Pabbaraju (2024b) which is similar to our result
on approximate breadth (Theorem 3.8). Our work
provides several additional contributions beyond this
shared result, including characterizations of all exist-
ing notions of breadth (Section 3.1), lower bounds for
abstract properties of generation — extending beyond
breadth (Section 3.1 and Remarks 3.6 and 3.11), char-
acterizations for stable generation (Section 3.2), and
characterizations for the statistical setting (Remark 3.12).

Subsequent Work. Two papers follow-up on our work
to study more fine-grained notions of breadth. Peale
et al. (2025) introduce “representation,” a weaker notion
of breadth that requires the generator’s outputs to propor-
tionally represent certain groups of (elements in) the domain.
Kleinberg & Wei (2025) weaken approximate breadth by
allowing generators to miss infinitely many elements from
the target language, instead focusing on the output set’s
“density” in the target language. Both of these works ad-

dress natural follow-up questions raised by our results while
being orthogonal.

2. Preliminaries

In this section, we present some background on language
identification and generation in the limit.

Notation. Let X be a finite alphabet (e.g., {a,b,...,z})
and X* the set of all finite-length strings formed by con-
catenating symbols from Y. We define a language L as an
infinite subset of ¥*. A countable collection of languages
is denoted by £ = {Li,Lo,...}. We define a generat-
ing algorithm G = (G)nen as a sequence of mappings
Gn: ()™ — 2" parametrized by the input size n. In
words, the generator maps a finite training set to a (poten-
tially infinite) set of elements.

Language Generation in the Limit. We now formally
define language generation in the limit.

Definition 2.1 (Language Generation in the Limit (Klein-
berg & Mullainathan, 2024)). Let L = {L1, Lo,...} be
a collection of languages, G = (G,) be a generating algo-
rithm, and K € L be some target language. The algorithm
G is said to generate from K in the limit if, for all enumer-
ations of K, there is some n* € N such that for all steps
n > n*, the algorithm’s output G, (Sy,) is a subset of K\ /S,
where Sy, are the first n elements of the enumeration. The
collection L allows for generation in the limit if there is
an algorithm G that generates from K in the limit for any
Kel.

To gain some intuition about this definition, consider the
collection £ = {Z,Ly,L_1,La,L_o,...} of thresholds
over integers where, for each i € Z, L, = {i,i + 1,i +
2,...}. Suppose the target language is some K € [
and the adversary first enumerates string x;. The gen-
erator can deduce that K = L, for some z < z1, ie.,
K € {Z,L;,,Ly,—1,...}. Since the intersection of all
of these languages is non-empty and is a strict superset
of the strings enumerated so far (namely, the intersection
is {x1 + 1,21 + 2,...}), the generator can generate an el-
ement that is guaranteed to be in K: for instance, it is
sufficient to output {21 + 1}. More generally, after seeing
strings x1, x2, . . . , ;, the generator can output a singleton
containing any integer larger than max; z;.

For the problem to be interesting, Kleinberg & Mullainathan
(2024) assumed throughout that each language in the col-
lection has infinite cardinality, i.e., |L;| = oo for all i.
(Otherwise, K \ S,, eventually becomes empty.) They
showed that language generation in the limit is possible
for all countable collections of languages — starkly contrast-
ing results in language identification, discussed next. The
KM algorithm is a key starting point for our algorithms,
and we discuss it in Section 3.3.

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Language Identification in the Limit. Language identi-
fication in the limit was introduced by Gold (1967) and
has, since, been widely studied in learning theory. The
model is slightly different from that of generation: while
generation only requires producing valid examples from
the target language K = L;«, identification requires the
learner to eventually determine the exact identity +* (in-
dex) of the target language in the collection. Despite
this seemingly minor difference, identification is dramati-
cally harder than generation: indeed, generation is possible
for any countable collection (Kleinberg & Mullainathan,
2024), but identification is only possible for very limited
collections (Angluin, 1979; 1980), which satisfy a certain
structural property that we explain next. A formal defi-
nition of language identification appears in Appendix G
but is not essential for understanding this paper.

Angluin’s Condition. A key concept in our analysis is
Angluin’s condition — a structural property of language col-
lections £ that characterizes identifiability: £ is identifiable
if and only if it satisfies Angluin’s condition (Angluin, 1980).
Informally, a collection satisfies Angluin’s condition if for
any language L € £, there exists a finite subset 77, (called
a tell-tale set) that serves as a finite “fingerprint” allowing
one to distinguish L from any other language that contains
Tr.

Definition 2.2 (Angluin’s Condition (Angluin, 1980)). Fix
a language collection L = {L1, Lo, ... }. The collection L
is said to satisfy Angluin’s condition if for any index 1, there
is a tell-tale, i.e., a finite set of strings T; such that T} is a
subset of L;, i.e., T; C L;, and the following holds:

Forall j > 1, if Ly O T}, then L; is not a proper subset of
L;.

Roughly, this condition ensures that after observing enough
examples from the target language, one can rule out all
incorrect languages. We refer to Figure 1 for a visualization
of the condition.

3. Our Results and Techniques

In this section, we present our main results. We begin with
two notions of generation with breadth from prior work,
provide characterizations of generation with breadth (Sec-
tion 3.1) and their implications (Remark 3.12), examine
stable generation (Section 3.2), and overview our proof
techniques (Section 3.3). While we focus on exact and
approximate breadth in the main body, our techniques ex-
tend to all existing notions and their natural combinations;
we present these extensions in Appendix A.

Notions of Breadth. Recent works have introduced vari-
ous notions of breadth, capturing different aspects of how
generators cover a target language. The first notion, exact
breadth (introduced by Kalavasis et al. (2025) and studied

by Charikar & Pabbaraju (2024b)). Given samples S, a gen-
erator G has exact breadth for K if G(S) = K \ S, meaning
it generates all unseen strings in K.

Definition 3.1. Generator G has exact breadth for language
K given samples S if G(S) = K \ S.

In words, language generation in the limit with exact breadth
requires that, for any target language K € £ and any enu-
meration of K, there is an n* > 1, such that for all n > n*,
after seeing n elements of the enumeration S,,, G achieves
exact breadth for language K.

Recognizing that this is a strong requirement, Kalavasis et al.
(2025) also introduced a natural relaxation, approximate
breadth, which allows the generator to miss a finite number
of elements.

Definition 3.2. Generator G has approximate breadth
for language K given samples S if G(S) C K and
[K\ 6(9)] < oc.

Again, one can naturally define language generation in the
limit with approximate breadth as above. Next, we present
our results for these two notions of breadth. We mention
that we also characterize generation under all other notions
of breadth introduced in prior work (see Appendix A).

3.1. Results on Generation with Breadth

Our first result characterizes language generation with exact
breadth.

Theorem 3.3 (Exact Breadth <= Angluin’s Condition).
For any countable collection of languages L, there is a
generator G = (Gy,) that generates with exact breadth from
L in the limit if and only if £ satisfies Angluin’s condition.

This result establishes that generation with exact breadth is
as hard as language identification in the limit, which is a
much more challenging problem than generation in the limit
without breadth constraints. Our characterization general-
izes previous work in several ways: it removes technical con-
ditions on the generators needed by Kalavasis et al. (2025)
and extends the unconditional lower bound of Charikar &
Pabbaraju (2024a), which only held for a specific language
collection.

Generalization to Any “Unique” Property. One side of
this result, the upper bound, is simple: at a high level, if
Angluin’s condition holds, then language identification is
possible (i.e., one can find ¢* such that K = L;+), and then,
one can generate with exact breadth by outputting the first
unseen string from K. (That said, there are some difficulties
because we do not know when we have found 7*, and we
handle this in our proofs.) The other side, the lower bound,
is non-trivial and is actually a corollary of a much more
general result concerning a property we call unigueness.

Definition 3.4 (Uniqueness). A property P of generation
satisfies the uniqueness criterion for a collection L if no

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

generator G can simultaneously satisfy that property for
two different languages L # L' in L, i.e., if G has property
P for L, then it cannot have P for L' # L and vice versa.

We prove the following lower bound for any property satis-
fying the uniqueness criterion.

Theorem 3.5 (Lower bound with Uniqueness). Let P be
any property of generation that satisfies the uniqueness
criterion. For a countable collection of languages L, there
exists an algorithm that generates with property P from L
in the limit only if £ satisfies Angluin’s Condition.

To gain some intuition, note that exact breadth satisfies this
uniqueness criterion: if a generator G generates a language
L with exact breadth (i.e., G(S) = L\S), then it necessar-
ily cannot generate any other language L’ # L with exact
breadth. In contrast, approximate breadth does not satisfy
uniqueness: for collections containing languages L1 C Lo
that differ on only finitely many elements, a generator with
support L; can simultaneously generate with approximate
breadth from L and L. Like exact breadth, other notions
of breadth in the literature also satisfy the uniqueness condi-
tion and Theorem 3.5 is a powerful tool for proving lower
bounds for such notions.

Remark 3.6 (Implications Beyond Generation with Breadth).
The theorem also has implications well beyond breadth.
Assume we require only that a generator’s evaluation metric
— e.g., lower perplexity or hallucination rate — is strictly
better on a target language K than on every other L #
K. Even this weaker “metric-separation” goal is attainable
only when the language collection £ satisfies Angluin’s
condition; if not, then no generator can perform strictly
better for the target K than the rest. This fundamental limit
applies regardless of the specific metric.

Characterization of Approximate Breadth. Next, we
move to approximate breadth. Since approximate breadth
does not satisfy the uniqueness criteria introduced above,
we cannot show a lower bound for approximate breadth
based on Angluin’s condition, and need new ideas. In fact,
the reason why approximate breadth does not satisfy it hints
towards the required relaxation that we need to impose on
Angluin’s condition: languages that differ on finitely many
elements need to be treated differently from languages that
differ on infinitely many elements. Motivated by this, we
introduce a variant of Angluin’s condition we call the weak
Angluin’s condition:
Definition 3.7 (Weak Angluin’s Condition). Fix a language
collection L = {L1, La, ... }. The collection L is said to
satisfy the weak Angluin’s condition if for any index 1, there
is a tell-tale, i.e., a finite set of strings T; such that T} is a
subset of L;, i.e., T; C L;, and the following holds:

For all j > 1 such that L; O T;, one of the following
holds.

* Either L; is not a proper subset of L;; or

* L; is a proper subset and misses finitely many
elements of L;, i.e., |L; \ Lj| < oo.

The tell-tale oracle is a primitive that, given an index 1,
outputs an enumeration of the set T;.

For a visualization of this condition, we refer to Figure 1.
This condition relaxes Angluin’s condition by allowing lan-
guage L; containing the tell-tale set T; of language L; to
be a proper subset of L; provided L; misses only finitely
many elements (see Figure 1). We remark that this is a strict
weakening of Angluin’s condition (see Appendix F.1).

©

Figure 1: Figure la visualizes Angluin’s condition: any
language L’ containing language L’s tell-tale set T, cannot
be a strict subset of L. Our weak Angluin’s condition relaxes
this by allowing an additional case (Figure 1b): a language
L’ containing T, can be a strict subset of L provided L'
only misses finitely many elements of L (i.e., |L\ L'| < 00).

() (b)

Our next result characterizes approximate breadth via the
Weak Angluin’s Condition.

Theorem 3.8 (Approximate Breadth <= Weak Angluin’s
Condition). For any countable collection of languages L,
there is a generator G = (Gy,) that generates with approx-
imate breadth from L in the limit if and only if L satisfies
the weak Angluin’s condition (Definition 3.7).

Since approximate breadth is characterized by the weak An-
gluin’s condition, which is strictly weaker than Angluin’s
condition, approximate breadth is a strictly weaker require-
ment than exact breadth.

Unlike the characterization of exact breadth, the upper
bound side of this result is not simple. This is because
if a language collection £ satisfies the weak Angluin’s con-
dition, it may not be identifiable, and hence we need a
different algorithm for generation that achieves approximate
breadth. We design a new algorithm based on the weak An-
gluin’s condition and overview it in Section 3.3. Like with
characterization of exact-breadth, the lower-bound side of
this argument is non-trivial and a corollary of a more general
result concerning a property of finite non-uniqueness.

Generalization to Any “Finitely Non-Unique’ Property.
Roughly speaking, finite non-uniqueness relaxes uniqueness
by allowing properties that can hold for two languages L
and L' simultaneously but only when L and L’ differ on
finitely many elements.

Definition 3.9 (Finite Non-Uniqueness). A property P of
generation satisfies the finite non-uniqueness criterion for
a collection L if no generator G can simultaneously satisfy
that property for two languages L, L' € L that differ in

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

infinitely many elements (i.e., when |LAL'| = 00), i.e., if G
has property P for L and L' both, then |L' AL| < co.

To gain some intuition, note that approximate breadth sat-
isfies this finite non-uniqueness criterion: if a generator
generates with approximate breadth from two different lan-
guages L and L', then these languages can only differ on
finitely many elements. This follows because the genera-
tor’s support must be largely contained in both languages
(with only finitely many elements missing), which is only
possible when |[LAL'| < .

Our next result shows that achieving any property which
satisfies finite non-uniqueness is already impossible for any
collection that does not satisfy the weak Angluin’s condition.

Theorem 3.10 (Lower bound with Finite Non-Uniqueness).
Let P be any property of generation satisfying the finite non-
uniqueness criterion. For a countable collection L, there
exists an algorithm that generates with property P from L
in the limit only if £ satisfies the weak Angluin’s Condition.

This lets us characterize every breadth notion in the litera-
ture, including approximate breadth.

Remark 3.11 (Implications Beyond Generation with
Breadth). The same reasoning as in Remark 3.6 yields lower
bounds for an even milder objective: achieving optimal
(rather than uniquely optimal) performance on K together
with finitely many other languages. If £ fails the weak
Angluin condition, then no generator can attain the best
possible perplexity — or any analogous metric — on a finite
set of languages £’ C £ (with |£’| < co) which includes
the target language K (i.e., K € L').

Remark 3.12 (Implications for Statistical Setting). Using
Kalavasis et al. (2025)’s framework, our results extend to
statistical settings where strings are sampled from distri-
butions rather than adversarially chosen. Concretely, we
provide unconditional characterizations for generation with
both exact and approximate breadth in stochastic models —
improving upon the earlier conditional results that applied
only to a specific generator family (Kalavasis et al., 2025).
See Appendix D for details.

3.2. Results on Stable Generation with Breadth

Our next set of results focuses on stable generators — those
whose support eventually stops changing — a requirement
motivated by practical algorithms that converge to a model
and by Gold’s original work, which also required stability.
Under stability, the landscape changes dramatically:

Definition 3.13 (Stable Generating Algorithm (Kalavasis
et al., 2025)). A generating algorithm G = (G,,) is stable
for a language collection £ if for any target language K €
L and for any enumeration of K, there is some finite n* €
N such that for all n,n' > n*, it holds that G,(S,) =

gn’(sn’)-

Theorem 3.14 (Characterization for Stable Generation). Fix
any countable collection of languages L. L satisfies An-
gluin’s condition if and only if one of the following two
equivalent conditions hold

> There is a stable algorithm that generates with approx-
imate breadth from L.

> There is a stable algorithm that generates with exact
breadth from L.

Hence, exact and approximate breadth are equivalent under
stability, both requiring the (full) Angluin’s condition — con-
trasting with our earlier result where approximate breadth
only requires the weak Angluin’s condition. In fact, a
stronger result holds: all notions of breadth proposed in
prior work collapse to this same characterization under sta-
bility. In Appendix E, we prove this and also present addi-
tional results that allow hallucinations and introduce weaker
breadth notions.

3.3. Technical Overview

We now outline our proof techniques and their novelty, be-
ginning with our lower bound results.

Lower Bounds. Our goal is to show that if a collection £
lacks a certain property (e.g., Angluin’s condition), then no
generator can achieve the corresponding notion of breadth
(e.g., exact breadth) for £. The full proofs appear in Ap-
pendix B. First, we overview techniques in existing works.

> Technique I: Generator-Specific Bounds. (Kalavasis
et al., 2025)’s approach require generators satisfy a tech-
nical condition (Appendix G.2) that, roughly, enables
access to their “support,” or the set of their outputs, allow-
ing a reduction from language identification to generation
with breadth. This, however, fails for unconditional
lower bounds which make no assumptions on generators.

> Technique II: Diagonalization for Identification. For
the related problem of language identification, the stan-
dard and only technique for proving unconditional lower
bounds is diagonalization (e.g., (Gold, 1967)). At a high
level, it constructs an algorithm-dependent enumeration
of target language K in phases: in the ¢-th phase, it enu-
merates L;, and either the algorithm A fails to identify
L; or A guesses the index as 7, at which point the enumer-
ation advances to phase ¢ + 1. This creates a dilemma:
either a phase continues indefinitely (causing infinitely
many identification errors) or infinitely many phases oc-
cur (meaning A misidentifies the language K = L.
infinitely often).

> Technique III: Collection-Specific Bounds. (Charikar
& Pabbaraju, 2024a) adapted the above diagonalization
technique to prove generation with breadth is impossible
for a specific “hard” collection £* — yielding the first

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

unconditional lower bound for generation with breadth,
albeit one limited to just one collection.

The complementary limitations of prior work raise a natural
question: Can we prove lower bounds for language genera-
tion with breadth that simultaneously apply to all generators
and for all collections for which generation with breadth is
fundamentally impossible?

Idea 1: Universal Diagonalization. We generalize Charikar
and Pabbaraju’s diagonalization from a specific “hard” col-
lection £* to all collections violating Angluin’s condition
— which is a tight result since Kalavasis et al. (2025) give a
generator with exact breadth for collections satisfying this
condition. Here, the key insight is leveraging the structure
of collections that violate Angluin’s condition: Specifically,
we set L to be the language witnessing this violation, and
index the remaining languages L1, Lo, ... with finite sub-
sets of Lo,: for each finite 7' C L., Ly is the language
containing 7" and satisfying Lt C L., (guaranteed by the
violation of Angluin’s condition).

Idea 2: Weak Angluin’s Condition. This approach fails for
approximate breadth because a generator can simultaneously
achieve approximate breadth for multiple languages. We
address this by introducing the weak Angluin’s condition, a
relaxation of the original, and proving it enables diagonal-
ization for approximate breadth. This lower bound is also
tight: we provide a novel algorithm achieving approximate
breadth for any collection satisfying this weaker condition.

Challenge: Diagonalization against Stable Generators.
While our previous (unconditional) lower bounds apply to
stable generators, they do not yield tight characterizations
for notions like approximate breadth. The core issue is that
unlike breadth — which can be verified at specific steps ¢
— verifying stability requires examining the generator’s be-
havior over infinitely many steps. As even if a generator is
stable for many steps, we cannot confirm its stabile without
seeing its future behaviour.

Idea 3: Lazy Analysis of Diagonalization. To address this
challenge, we introduce a “lazy analysis” of diagonalization,
loosely inspired by techniques in computational complexity
(Arora & Barak, 2009). Unlike the standard analysis of
diagonalization where the adversary forces the generator
to make “mistakes” at the end of each phase, here the ad-
versary cannot force a mistake every round. Instead, this
lazy analysis uses the fact that after waiting for sufficiently
many rounds, the generator “exhausts all possibilities” and
must make a mistake. Proving this requires a sophisticated
technical construction which shows that a generator must
either be unstable or generate without approximate breadth
infinitely often. We believe this technique is of independent
interest and can have further applications in the analysis of
natural properties of stable generators beyond breadth.

Upper Bounds. Our upper bounds construct algorithms
for generation with (different notions of) breadth that work
whenever collection £ satisfies properties like Angluin’s
condition. For exact breadth, one already exists in prior
work (Kalavasis et al., 2025). Here, we focus on approx-
imate breadth; we develop two algorithms for it with dif-
ferent access models of £: one with unrestricted access
and another with only membership access (ability to query
“is w € L;?’). The membership-only algorithm is a novel
adaptation of Angluin (1980)’s seminal algorithm and is
presented in Appendix C.2 due to space constraints. Here,
we overview the simpler unrestricted-access algorithm.

KM24’s Algorithm. Kleinberg & Mullainathan (2024)’s
algorithm, in every round ¢, creates a chain of critical lan-
guages C; 2 Gy 2 --- 2 C; with the property that, for
large enough t, the target language K enters this chain and
remains in it. Now their algorithm is simple: it outputs
(unseen strings from) the last critical language. Unfortu-
nately, this algorithm loses breadth as ¢ increases, as it keeps
generating from the last element of a constantly decreasing
chain.

New Analysis of KM24’s Algorithm. If £ satisfies Angluin’s
condition, then Kalavasis et al. (2025) have already shown
that this algorithm achieves exact breadth. To achieve
approximate breadth, we show that when £ satisfies
weak Angluin’s condition, the last critical language,
C¢, misses at most finitely many elements of K (i.e.,
|K\ C < o0) for large enough ¢. This shows that
the above algorithm achieves approximate breadth for
such £. This reveals an interesting best-of-three-worlds
property: if £ satisfies Angluin’s condition it achieves
exact breadth, if it satisfies weak Angluin’s condition
it achieves approximate breadth, otherwise it achieves
consistent generation. This is particularly appealing as these
conditions might be challenging to verify given limited
access to £. Finally, to obtain algorithms for other existing

notions of breadth, we use this as a building block (Appendix C.3).

4. Concluding Remarks

In this work, we continue the study of language generation,
a nascent area introduced by Kleinberg & Mullainathan
(2024). On a conceptual level, our results — building on
prior work — offer a resolution to the main open question
of Kleinberg and Mullainathan showing that, indeed, a ten-
sion between validity and breadth is inherent in language
generation, at least under all the formal notions of breadth
considered in prior work (Kalavasis et al., 2025; Charikar
& Pabbaraju, 2024a). On a technical level, we introduce
novel diagonalization-based lower bound techniques and
new algorithms that achieve generation with breadth when-
ever possible. Though we focus on the prompt-less setting,
our techniques extend to the prompted generation setting
as well (Kleinberg & Mullainathan, 2024). Our work sug-

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

gests several promising directions for future work: inves-
tigating weaker notions of breadth, completing the charac-
terizations for certain novel variants of stable generation
(Appendix A.3), and identifying what additional informa-
tion beyond positive examples could help generators achieve
both validity and breadth — an intriguing challenge given
our impossibility results.

References

Angluin, D. Finding patterns common to a set of strings (ex-
tended abstract). In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, STOC 79,
pp. 130-141, New York, NY, USA, 1979. Association
for Computing Machinery. ISBN 9781450374385. doi:
10.1145/800135.804406. URL https://doi.org/
10.1145/800135.804406.

Angluin, D. Inductive inference of formal languages
from positive data. Information and Control,
45(2):117-135, 1980. ISSN 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(80)90285-5.

URL https://www.sciencedirect.com/
science/article/pii/S0019995880902855.

Angluin, D. Identifying Languages From Stochastic Ex-
amples. Yale University. Department of Computer
Science, 1988. URL http://www.cs.yale.edu/
publications/techreports/tr614.pdf.

Arjovsky, M. and Bottou, L. Towards principled meth-
ods for training generative adversarial networks. In
International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=Hk4_qgwbxe.

Arora, S. and Barak, B. Computational Complexity: A
Modern Approach. Cambridge University Press, 2009.

Bousquet, O., Hanneke, S., Moran, S., van Handel, R.,
and Yehudayoff, A. A theory of universal learning. In
Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2021, pp. 532-541,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450380539. doi: 10.1145/
3406325.3451087. URL https://doi.org/10.
1145/3406325.3451087.

Charikar, M. and Pabbaraju, C. Exploring facets of language
generation in the limit, 2024a. URL https://arxiv.
org/pdf/2411.15364v1.

Charikar, M. and Pabbaraju, C. Exploring facets of language
generation in the limit, 2024b. URL https://arxiv.
org/pdf/2411.15364v2.

Gold, E. M. Language identification in the limit. Informa-
tion and Control, 10(5):447-474, 1967. ISSN 0019-9958.
doi: https://doi.org/10.1016/S0019-9958(67)91165-5.
URL https://www.sciencedirect.com/
science/article/pii/S00199958679116565.

Kalavasis, A., Mehrotra, A., and Velegkas, G. On the limits
of language generation: Trade-offs between hallucination
and mode collapse. In Proceedings of the 57th Annual
ACM Symposium on Theory of Computing (STOC’25),
New York, NY, USA, 2025. Association for Comput-
ing Machinery. URL https://arxiv.org/abs/
2411.09642.

Karbasi, A., Montasser, O., Sous, J., and Velegkas, G.
(im)possibility of automated hallucination detection in
large language models, 2025. URL https://arxiv.
org/abs/2504.17004.

Kleinberg, J. and Mullainathan, S. Language generation in
the limit. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=FGTDe6EAQB.

Kleinberg, J. and Wei, F. Density measures for language
generation, 2025. URL https://arxiv.org/abs/
2504.14370.

Li, J., Raman, V., and Tewari, A. Generation through the
lens of learning theory, 2024. URL https://arxiv.
org/abs/2410.13714.

Littlestone, N. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm. Ma-
chine Learning, 2(4):285-318, 1988. doi: 10.1007/
BF00116827. URL https://doi.org/10.1007/
BF00116827.

Peale, C., Raman, V., and Reingold, O. Representative
language generation. In Forty-second International Con-
ference on Machine Learning, 2025.

Raman, A. and Raman, V. Generation from noisy examples.
In Forty-second International Conference on Machine
Learning, 2025.

Shannon, C. E. The redundancy of english. In Cybernetics;
Transactions of the 7th Conference, New York: Josiah
Macy, Jr. Foundation, pp. 248-272, 1951. URL https:
//jontalle.web.engr.illinois.edu/
uploads/537.F18/Papers/Shannon50b.pdf.

https://doi.org/10.1145/800135.804406
https://doi.org/10.1145/800135.804406
https://www.sciencedirect.com/science/article/pii/S0019995880902855
https://www.sciencedirect.com/science/article/pii/S0019995880902855
http://www.cs.yale.edu/publications/techreports/tr614.pdf
http://www.cs.yale.edu/publications/techreports/tr614.pdf
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://arxiv.org/pdf/2411.15364v1
https://arxiv.org/pdf/2411.15364v1
https://arxiv.org/pdf/2411.15364v2
https://arxiv.org/pdf/2411.15364v2
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2504.17004
https://arxiv.org/abs/2504.17004
https://openreview.net/forum?id=FGTDe6EA0B
https://openreview.net/forum?id=FGTDe6EA0B
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2410.13714
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827
https://jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf
https://jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf
https://jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

A. Summary Characterizations with Language Generation

In this section, we summarize our characterizations for language generation with all existing notions of breadth, with
additional results for new notions presented in Appendix E.

Outline. We first define two additional notions of breadth from prior work (Appendix A.1), completing all definitions of
breadth in prior works, alongside exact breadth (Definition 3.1) and approximate breadth (Definition 3.2) from the main
body. We then provide characterizations for each notion (Appendix A.2), extending Theorems 3.3 and 3.8. Finally, we
examine stable generation with breadth (Appendix A.3), extending Theorem 3.14, and consider settings allowing some
hallucinations, both for unstable (Appendix A.4) and stable generators (Appendix A.5).

A.1. Remaining Notions of Breadth in Prior Work

In this section, we introduce two additional notions of breadth, unambiguous generation and exhaustive generation,
completing all definitions of breadth in prior works, alongside exact breadth (Definition 3.1) and approximate breadth
(Definition 3.2) from the main body.

Unambiguous Generation. This relaxation of exact breadth by Kalavasis et al. (2025) allows hallucination (outputting
strings outside target language K') provided the generator performs “better” for K than for any other language in the
collection.

Definition A.1 (Unambiguous Generation in the Limit (Kalavasis et al., 2025)). Generator G unambiguously generates
from language K given samples S if

‘G(S)AK| < mingeg. L#K |g(S)AL| s (1)
where AAB := (A\ B)U (B\ A) for sets A and B.

While unambiguous generation is seemingly weaker than exact breadth and incomparable to approximate breadth, our
characterization (Theorem A.3) reveals that it is as hard to achieve as exact breadth.

Exhaustive Generation. (Charikar & Pabbaraju, 2024a) proposed exhaustive generation.> Their formulation treats

generators as mappings from domain sequences to domain enumerations. For i,n € N, let G, (i) be the i-th element in the
enumeration output in round n.

Definition A.2 (Exhaustive Generation in the Limit (Charikar & Pabbaraju, 2024b)). Generator G exhaustively generates
from language K in round n if

0o . n—1 0o .
UiZ1 Gn() \ K| <00 and S, Uy Gi(1H) UUZ, Ga(i) 2 K, @
where S,, is the set of elements enumerated until round n.

Exhaustive generation is strictly weaker than exact breadth but seems incomparable to approximate breadth: it permits
finite hallucinations (which approximate breadth forbids) but requires covering K using potentially all past outputs (which
approximate breadth does not require). Our characterization (Theorem A.3) reveals that it is as hard to achieve as approximate
breadth.

A.2. Generation with Breadth (Extension of Theorems 3.3 and 3.8 and Proof Sketch)

Our next result characterizes generation with all four existing notions of breadth in the literature.
Theorem A.3 (Characterizations of Language Generation with Breadth). For any countable collection of languages L the
following hold:

1. The following are equivalent:
> There is an algorithm that generates with (exact) breadth from £ in the limit.
> There is an algorithm that generates unambiguously from L in the limit.

2The definition in (Charikar & Pabbaraju, 2024a) differs slightly from (Charikar & Pabbaraju, 2024b). We use the updated version,
though our techniques also show that both properties are characterized by the same condition.

11

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

> L satisfies Angluin’s condition (Definition 2.2).

2. The following are equivalent:

> There is an algorithm that generates with approximate breadth from L in the limit.
> There is an algorithm that generates exhaustively from L in the limit.
> L satisfies the weak Angluin’s condition (Definition 3.7).

This results generalizes Theorems 3.3 and 3.8 from the main body. Like Theorems 3.3 and 3.8, this result is unconditional,
requiring no particular structure on the generator. Hence, it strengthens the conditional lower bounds of (Kalavasis et al.,
2025). It also applies to all countable language collections, strengthening the collection-specific results of Charikar &
Pabbaraju (2024a).

Proof Sketch of Theorem A.3. We outline four key components:

e Upper bound when (satisfies Angluin’s condition: Since £ is identifiable (by Angluin’s result), we can convert any
identification algorithm to an exact generator, as established by Kalavasis et al. (2025). Unambiguous generation
follows since it is weaker than exact breadth.

e Lower bound when L violates Angluin’s condition: In Appendix B.1, we prove that properties satisfying uniqueness
are unachievable for collections violating Angluin’s condition (see Section 3.3 for a discussion). Given this, the present
result follows since exact breadth and unambiguous generation both satisfy uniqueness.

* Upper bound when L satisfies weak Angluin’s condition: Since weak Angluin’s condition is strictly weaker than
Angluin’s condition, £ is generally not identifiable and so we cannot use algorithms from the above upper bound. We
present new algorithms for this case in Appendix C.

* Lower bound when L violates weak Angluin’s condition: In Appendix B.2, we prove that properties satisfying finite non-

uniqueness are unachievable for collections violating weak Angluin’s condition (see Section 3.3 for some discussion).

The result follows from this since approximate breadth and exhaustive generation both satisfy finite non-uniqueness.
O

A.3. Generation with Breadth and Stability (Extension of Theorem 3.14 and Proof Sketch)

In this section, we provide characterizations for generation with stable generators, those whose support eventually stops
changing and stabilizes (Definition 3.13).

Remark A.4 (Discussion on Stability). This notion of stability stems from the original work of (Gold, 1967) on language
identification in the limit, where Gold requires the learner to stabilize to a specific guess for the target language L in the
above sense (see Appendix G). It is also closely related to the question of whether the algorithm can verify that it has
“learned” to generate with the required notion of breadth; if the algorithm can verify that it has learned, then it can stabilize.
Further, any generator that is consistent and achieves exact breadth is also stable, since after some finite point its support
must become identical to the target language K and remain so.

Landscape with Stable Generators. Under the stability requirement, the landscape for generation with breadth changes
(compared to the one in the previous section).

Theorem A.S (Characterizations of Stable Language Generation with Breadth). For any countable collection of languages
L, the following are equivalent:

* There is a stable algorithm that generates with approximate breadth from L in the limit.

e There is a stable algorithm that generates exhaustively from L in the limit.

e There is a stable algorithm that generates with (exact) breadth from C in the limit.

e There is a stable algorithm that generates unambiguously from £ in the limit.

o [satisfies Angluin’s condition (Definition 2.2).

3Here, we use an equivalent notion of generation with exact breadth that allows for inclusion of the training set in the support: the

equivalence holds because any generator G that generates with breadth without repeating training examples can be converted to one G’
that generates with breadth and repeats the training examples and vice versa.

12

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

This result extends Theorem 3.14. Like Theorem 3.14, it shows that the requirement of stability makes the problem of
generation with approximate breadth strictly harder (see Figure 2): there exist stable generators with this property if and
only if the collection satisfies Angluin’s condition for identifiability whereas before, when unstable generators were also
allowed, one only required the weak Angluin’s condition. As another example of the stark change in the landscape, we also
show that there exists a collection that satisfies the weak Angluin’s condition (hence admits a non-stable generator with
approximate breadth), but for which no stable generator can achieve a much weaker requirement, which we term infinite
coverage (Theorem E.7).

Proof Sketch of Theorem A.5. We outline two main components:

* Upper bound when L satisfies Angluin’s condition: This follows by observing that Theorem A.3’s upper bound for
collections satisfying Angluin’s condition constructs stable generators.

* Lower bound when L violates Angluin’s condition: For exact breadth and unambiguous generation, this follows from
Theorem A.3. The key technical challenge is establishing lower bounds for approximate breadth and exhaustive
generation, requiring a certain “lazy analysis” of diagonalization as discussed in Section 3.3. The proof appears in
Appendix B.3.

Generation (Without Breadth)
< Infinite Coverage

< All Countable Collections
Approximate Breadth Infinite Coverage
Exhaustive Generation

& Weak Angluin’s Condition Exact Blteadth)

Unambiguous Generation

Exact Breadth Approximate Breadth

< Unambiguous Generation Exhaustive Generation

< Angluin’s Condition Angluin’s Condition

& Identification Identification

(a) Unconditional Characterizations (b) Characterization With Stable Generators

All Countable Collections

0

IR

Figure 2: Comparison of Generation in the Limit with and without Requiring Stability. Each containment illustrated
by a border is strict, i.e., for each border there is a language collection that satisfies the outer containment but not the
inner containment. Concretely, in the figure on the left, there are (1) language collections that do not satisfy the Weak
Angluin’s Condition (Definition 3.7) (see Example E.12), (2) language collections that satisfy the Weak Angluin’s Condition,
but not Angluin’s condition (see Example E.6), and (3) there are language collections which satisfy Angluin’s Condition
(Definition 2.2) (e.g., all finite collections). The figure on the right depicts the characterization for stable generators. In
addition to what is depicted there, there are (1) language collections that satisfy the weak Angluin’s condition and for which
infinite coverage is not achievable (see Theorem E.7) and (2) language collections for which infinite coverage is achievable
but that do not satisfy the weak Angluin’s Condition (Definition 3.7) (see Example E.12). We note that (1) and (2) are not
depicted in the right figure.

A.4. Generation with Breadth and Hallucinations

To illustrate the generality of our techniques, we use them to obtain characterizations for several new notions of generation.
In particular, we obtain characterizations for generation with breadth where we relax the requirement that the generation
becomes consistent (i.e., it has no hallucinations) in the limit. Instead, we allow for two cases:

> Finite Hallucinations: Generator G has finite hallucinations for language K if |G(S) \ K| < 0o

> Infinite Hallucinations: Generator G has infinite hallucinations for K if |G(S) \ K| = cc.

13

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Figure 3 summarizes our characterizations for different notions of breadth (along rows: exact breadth, approximate breadth,
no breadth) and different amoungs of hallucinations (along columns: no hallucinations, finite hallucinations, and infinite
hallucinations).

No Hallucinations Finite Hallucinations Infinite Hallucinations
[supp(G\K| =0 [supp(G\K| < o0 [supp(G)\K| = oo
Zero Missing Elements Angluin’s Condition

. Weak Angluin’s Condition ~ All Countable Collections
| K\supp(G) | = 0 (i.e., Exact Breadth)

Finite Missing Elements =~ Weak Angluin’s Condition

] . Weak Angluin’s Condition All Countable Collections
| K\supp(G)| < oo (i.e., Approximate Breadth)

Infinite Present Elements All Countable Collections

. . All Countable Collections All Countable Collections
(i.e., Infinite Coverage)

| KN supp(G)| = o

Figure 3: Characterizations of All Possible Notions of Generation: This figure lists all possible notions of language
generation (at a certain granularity) and their characterizing conditions. Rows capture breadth (i.e., how many elements are
missed from the target language). Columns capture the extent of hallucinations (i.e., how many elements outside of the
target language are included). Generation becomes easier when moving down rows and/or right along columns. The notion
of infinite coverage requires | N supp(G)| = oo (Definition E.3).

Proof Sketch for Results in Figure 3. To achieve notions in the last column, one can generate the whole domain (i.e., ensure
supp(G) = X). To achieve notions in the last row, one can use an extension of (Kleinberg & Mullainathan, 2024)’s algorithm
from Proposition E.4. It remains to explain the results in the top 2 x 2 cells. Among these the two results in the first column
are from Theorem A.3. For the remaining two results (the first two in the second column): the lower bound follows from
Appendix B.2 since both of these notions satisfy finite non-uniqueness (Definition 3.9). The upper bounds are presented in
Appendix C. O

A.5. Generation with Breadth, Stability, and Hallucinations

Next, as in the previous section, to illustrate the generality of our techniques. For stable generators, we use them to give
necessary and/or sufficient conditions for several new notions of generation with stable generators. Figure 4 summarizes our
results for different notions of breadth with stable generators (along rows: exact breadth, approximate breadth, no breadth)
and different amoungs of hallucinations (along columns: no hallucinations, finite hallucinations, and infinite hallucinations).
Interestingly, our results also show that if we allow for finitely many hallucinations while missing no elements from the
target language, stable generation is still characterized by the weak Angluin’s condition.

Unlike the case of unstable generation, we do not have a complete characterization for every cell of Figure 4. It is an
interesting direction to characterize all the remaining cells.

Proof Sketch for Results in Figure 4. To achieve any notion in the last column, it is sufficient to generate the whole domain
(i.e., ensure supp(G) = X). Unlike the case of unstable generators, achieving the notions in the last row is non-trivial. In
particular, we show that there exists a collection for which no stable algorithm can achieve infinite coverage (Theorem E.7).
It remains to overview the results in the top left 2 x 2 cells. Among these, the two results in the first column are from
Theorem A.5. For the remaining two results: the lower bound follows from Appendix B.2 since both notions satisty finite
non-uniqueness (Definition 3.9) and the upper bound algorithms is as below:

The algorithm that achieves these notions is straightforward adaptation of Lemma C.3
that does not drop the elements Sy U {x1, ..., z;} from the set it outputs.

14

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

No Hallucinations Finite Hallucinations Infinite Hallucinations

Stable Generators |GS)\K| =0 [GS)\K| < oo |G(S)\K| = oo

Angluin’s Condition
[Ang 80]
[K\G(S)| =0 (i.e., Exact Breadth)

Zero Missing Elements Weak Angluin’s Condition

[KMV 24b, CP 24] All Countable Collections

Angluin’s Condition
[Ang 80]
[K\G(S)| < o0 (i.e., Approximate Breadth)

Finite Missing Elements Weak Angluin’s Condition

[KMV 24b, CP 24] All Countable Collections

Characterization ?
] (Not all countable Characterization ? All Countable Collections
[KNG(S)| = o0 collections)

Infinite Present Elements

Figure 4: Stability Under All Possible Notions of Generation: This figure lists all possible notions of language generation
(at a certain granularity). Rows capture the extent of breadth (i.e., how many elements are missed from the target language).
Columns capture the extent of hallucinations (i.e., how many elements outside of the target language are included).
Generation becomes easier as one moves down the rows and/or to the right along columns. For the yellow cell, we have
shown that not all countable collections admit a stable generator that satisfies this notion of breadth, but we do not have a
condition that characterizes it. For the gray cell, we do not know whether all collections satisfy this notion, and we do not
have a characterization. The notion of infinite coverage refers to a generator whose support satisfies | KX N supp(G)| = oo
(see also Definition E.3).

B. Proofs of Lower Bounds

In this section, we prove our lower bound results.

B.1. Lower Bound with Uniqueness (Proof of Theorem 3.5)

In this section, we prove Theorem 3.5. Recall that this requires to prove that the following: if a collection £ violates
Angluin’s condition, then no generator can achieve a property P satisfying uniqueness in the limit for £.

Proof of Theorem 3.5. For any enumeration E, we use the notation F(7) to denote its i-th element, E(1 :) to denote its
first ¢ elements, and E(i : 0o) to denote all but the first ¢ — 1 elements. Since £ is not identifiable in the limit, it does not
satisfy Angluin’s condition (Definition 2.2). Hence, there exists a language L* € £ such that the following holds:

for all finite subsets 7" C L* , there exists a language L+ € £, T'C Ly and Ly C L*. 3)

Fix L* € £ to be any language for which this holds. Let E2° be an arbitrary enumeration of L*, without repetitions. Let K
and E7¢ respectively denote the target language and its enumeration that we will construct to show the impossibility result.

We will show that for any generating algorithm G = (G,,) there exists a choice of the target language K in £ (which may be
different from L*) and an enumeration of it such that if K is the target language and the adversary provides enumeration
E% to G, then the algorithm G cannot generate with breadth in the limit.

We will construct the enumeration iteratively and select K based on the generating algorithm. The construction of the
enumeration proceeds in multiple (possibly infinite) phases. At any point ¢t € N of the interaction, we denote by S; the set
of elements enumerated so far.

Phase 1 of Construction. To construct the first phase, we present the generator with the first element of the enumeration
of L*, i.e., z;, = E2°(1). Let L;, be some language such that z;, € L;, and L;, C L*, i.e., it is a proper subset of L*.
Notice that such a language is guaranteed to exist by picking 7' = {x;, } in the violation of Angluin’s condition (3).

* Subphase A (Enumerate L;, Until Generator Generates with Breadth from L;): Consider an enumeration E{°
of the language L;, that is constructed by traversing £/7° and using the elements of L;, that appear in it, in the same

15

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

EXlal|b | c|d|le]|f| g]-

EXlal|b | c|d|e]|f| g]-

Figure 5: llustration of the Construction in the Proof of Theorem 3.5. Fix any enumeration a, b, ¢,d, e, f,g,... of the
language L*, depicted in the first row. The enumeration of K is initially empty in the construction and this is depicted in
the second row. To begin the construction, we apply the contrapositive to Angluin’s condition with 7' = {a} (i.e., with
the set highlighted in blue in the first row). This results in a language L; that contains 7" and is a subset of L*. For this
illustration, suppose that the enumeration of L is as presented in the fourth row. The elements shared between L, and L*
are highlighted in red in the third row. From the fourth row, we can see that the strings in L;’s enumeration, E7, follow the
same relative order as in £2°. Further, note that ¢, d, and f are skipped from the enumeration since they do not belong to L
(i.e., they are not highlighted in red). Now, the algorithm in the proof is trained on the enumeration £7° (Subphase A), and
we consider two cases: Case (i): Assume that after seeing element e, the algorithm achieves property P. Then we update
E% by adding all elements of E7° until e and then add all the elements that we skipped from E2°; this is shown in the fifth
row where we added c and d. This scenario corresponds to Subphase B.1 in the proof since at least one element from the
enumeration of E° was skipped during Subphase A. Next, we again apply the contrapositive to Angluin’s condition. This
time, we set T = {a, b, e, ¢, d} (denoted in blue in the sixth row), and, then repeat the process. Case (ii): Assume that the
algorithm achieves property P after seeing b. Then, we update E%° by adding a, b and then the first element that is not in
L1, i.e., c. This is depicted in the seventh row. This scenario corresponds to Subphase B.2 in the proof since no strings from
E2° were skipped during Subphase A. Next, we again apply the contrapositive to Angluin’s condition. This time, we use
T = {a,b, ¢} (denoted in blue in the last row) and repeat the process.

order as they appear, i.e., for every ¢ € N it holds that E°(7) is the i-th element of L;, that appears in E°. Notice
that this is indeed a valid enumeration of L;, as L;, is a subset of L*. At any round ¢ of the first phase, the adversary
presents the element E$°(t) to the generator.

Consider two cases: 1) either there is some finite ; € N such that G;, achieves property P for L;, or ii) there is no such
t1 € N. In the latter case, we pick the target language K = L;, and the target enumeration £ = E7°, and the lower
bound follows since we have found a pair of K and E# for which the generator never achieves property P. Hence,
assume that we are in the former case, and let Z; be the first element of E$° for which the condition holds. Note that,
at this point, G, does not achieve property P for L* since P satisfies the uniqueness criterion and L;, # L*. Further,
note that Sy, is the set of strings shown to the generating algorithm after which it starts to generate with breadth from
L

Ji

16

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Let §1 be the set of elements of E2° that appear before Z; in E$° and have not appeared in Sy, . If 3‘; # 0, we go to
Subphase B.1 and, otherwise if S; = @), we go to Subphase B.2.

* Subphase B.1 (Add Any Skipped Elements): We will use the set §1 to extend the construction of the target
enumeration E3. To do this, we enumerate the elements from S in an arbitrary order and we fix the prefix of the

target enumeration E¢° to be (S, , §1) Notice that this step is well-defined since we are only adding to the already
constructed enumeration. Let ¢; be the total number of elements enumerated so far. Notice that ¢; = oo if and only if
Case i) (from Subphase A) holds, in which case the lower bound already follows. Hence, assume for the continuation

of the proof that t1 < co. Now we terminate the first phase (without going to Subphase B.2).

* Subphase B.2 (If Nothing Skipped Enumerate An Element Outside L;): Notice that S 1 = 0 if and only if we did
not skip any element of EJ° during the traversal in Subphase A. If we indeed did not skip elements of E'2° we continue
traversing it and adding elements to E3° in the same order as we see them in £2° until we find some element that
does not belong to L;, . We also include this element in the enumeration EF?, we fix tAl to be the number of elements
enumerated so far and we terminate the first phase.

Notice that so far in our construction, we have enumerated the first tAl elements of F2°.

Now we continue our construction inductively for phases ¢ = 2,3, Consider any ¢ > 2. Suppose our construction
continued from Phase 1 until Phase ¢. Then, Phase ¢ + 1 of our construction is as follows.

Phase ¢ + 1 of Construction. For the (¢ + 1)-th phase, consider the set F2°(1 : ;) that has been enumerated so far. By
construction,
EX(1:t) € Lj,, EX(1:t,)CL*, and EX(1:1%,)Iis finite.

We will now apply the violation of Angluin’s condition (3) with T' = E2°(1 : tAg) This means that there must exist some
jé-‘rl ¢ {j17j27 s 7jf} such that

L crL

€L, Lj,,CL", and EX(1:1)CL

Je+1 Jet1

We now perform analogs of each subphase in Phase 1.

* Subphase A (Enumerate L;, , Until Generator Generates with Breadth from L;,,): Consider an enumeration

Eﬁlef Lj,., whose first te strings are F2°(1 : tAp) and whose remaining strings are constructed by traversing
E2°(ty + 1 : 00) and selecting strings that belong to L; in the same order as they appear in E/2°. Notice that this is

Je+1o
indeed a valid enumeration of Lj,, , as Lj,, , is a subset of L*. Atany round ¢ of this phase, the adversary presents the

element E75 (t + 1;) to the generator.

Consider two cases: i) either there is some finite t;41 > ty + 1 such that Gt,,, achieves property P for Lj, , or ii)

there is no such ¢,1 € N. In the latter case, we pick the target language K = Lj, , and the enumeration £ = E77 |,
and the lower bound follows since we have found a pair of K and E'%¢ for which the generator never achieves property
P. Hence, assume that we are in the former case, and let Ty, 1 be the first element of Egjl for which the condition
holds. Note that, at this point, G, , does not achieve property P for L* since P satisfies the uniqueness criterion and
Lj,., # L*. Further, note that Sy, , is the set of strings shown to the generating algorithm after which it starts to

generate with breadth from L;, .
Let S, 141 be the set of strings of £2° that appear before 2,y in E2° and have not appeared in the enumeration Sy, . If
Sp41 # 0, we go to Subphase B.1 and, otherwise if Sy 1 = 0, we go to Subphase B.2.

¢ Subphase B.1 (Add Any Skipped Elements): We will use §4+1 to extend the construction of the target enumeration
E%. To do this, we enumerate the elements from S,y in an arbitrary order and we fix the prefix of the target
enumeration E% to be (Sy,, ,, Seq1). Notice that this step is well-defined since we are only adding to the already

constructed enumeration. Let %\Hl be the set of elements enumerated so far. Notice that %\24-1 = oo if and only if Case
i) (from Subphase A) holds, in which case the lower bound already follows. Hence, assume for the continuation of the
proof that ¢,; < co. Now we terminate the (¢ 4 1)-th phase without going to Subphase B.2.

17

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

* Subphase B.2 (If Nothing Skipped Enumerate An Element Outside L;, ,): Notice that §g+1 = () if and only if
we did not skip any element of E2° during the traversal in Subphase A. If we indeed did not skip elements of £2° we
continue traversing it and adding elements to E'% in the same order as we see them in /7° until we find some element
that does not belong to L;, . We also include this element in the enumeration E3F, we set ty41 to be the number of
elements enumerated so far and we terminate Phase £ + 1.

Notice that so far we have enumerated the first tAgH > %\4 + 1 elements of E2°.

Inductive Argument. As explained, we continue the construction of the target enumeration inductively. If there is some
phase ¢ such that Case ii) (in Subphase A) is activated, then the lower bound follows. Let us now assume that Case ii)
is not activated for any phase ¢ € N. Then, we have constructed an enumeration of L* (by construction of the sets S,
and §g for each ¢ € N) such that G; does not achieve property P for L* for infinitely many ¢t € N. Now, the lower bound
follows by setting the target language K = L* and the target enumeration to the one we have constructed inductively over
all phases. O

B.2. Lower Bound with Finite Non-Uniqueness (Proof of Theorem 3.10)

In this section, we prove Theorem 3.10.

Proof of Theorem 3.10. The proof of this lower bound uses the construction in the proof of Theorem 3.5 with one change:
now the language Lp (introduced at the start of the proof) is the language determined by the contrapositive to the weak

Angluin’s criterion (Definition 3.7) and not the contrapositive to the (usual) Angluin’s criterion (Definition 2.2). Concretely,
the contrapositive to the weak Angluin’s criterion implies that there exists a language L* € £ such that the following holds:

VI CL*, 3Lpel, suchthat TC Ly, Ly CL*, and |L*\ Lp|=oc.)

We will use this language L* and proceed with the construction without change.

Having completed the construction, we proceed to the proof. The only place in which the proof uses a property of the
criterion for breadth is when it invokes the uniqueness criterion with respect to the pair of languages Ly and L* (once in
Subphase A of each phase). Here, T is the set £°°(1) in the first phase and E2°(1 : Z;) in the ¢-th phase. Now, we cannot
directly invoke the uniqueness criterion since P does not satisfy it. However, since |L* \ Lr| = oo and since property P
satisfies the finite non-uniqueness criterion, we can conclude that no generator can achieve property P for both L* and Lo
simultaneously, as desired. Hence, we can use the finite non-uniqueness criterion in analyzing each phase of the construction
and the result follows as in the proof of Theorem 3.5. O

B.3. Lower Bound for Approximate Breadth with Stability

In this section, we prove the lower bound in Theorem 3.14: we show that if a collection £ violates Angluin’s condition, then
no generator can generate with approximate breadth from £. (Note that this as a corollary implies that no generator can
generate with exact breadth.)

Proof of lower bound in Theorem 3.14. We will use the following corollary of the construction in the previous section.

Corollary B.1. Let £ be a countable collection of languages that is not identifiable in the limit. Let G = (G,) be a generating
algorithm. If G generates with approximate breadth from L in the limit, then there is a language L* € L, an enumeration
E* of L*, a sequence of distinct languages Ly, , Ly,, - - - € L, and a strictly increasing sequence t(1),t(2),--- € N, such
that the following holds.

e Foreachi € N, Ly, is a proper subset of L*, i.e., Ly, C L*; and

* Given strings from E* as input, for each i € N, Gy(;) generates with approximate breadth from Ly,.

Consider the construction in in the above corollary. Let K = L* and suppose that the adversary follows the enumeration £™*.

Let Cp,Cs: N — N be two counters: for each ¢, Cg(t) counts the number of values 1 < i < ¢ for which G; does not
generate with approximate breadth from L* and Cs(t) counts the number of values 2 < ¢ < t for which supp(G;) #

18

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

supp(Gi—1). In other words, Cg(t) is the number of times G does not generate with approximate breadth from L* in the
first ¢-steps and C's(t) is the number of times G changes its support in the first ¢-steps.

Toward a contradiction suppose that G is stable and generates with approximate breadth from K in the limit (when given the
enumeration £*). This, by definition, implies that

tlggc Cp(t) < oo and tlgxolo Cs(t) < 0. ®)
The former implies that there are only finitely many values of 7 € N such that G,(;) does not generate with approximate
breadth from L* (where (i) are from Corollary B.1). Thus, after discarding a sufficiently large finite prefix of #(i),i € N,
and re-indexing we see that there are infinitely many values, say, 7(1) < 7(2) < --- € N, such that, for each i, G, ;

generates with approximate breadth from L* and Ly, . Since G.(;) generates with approximate breadth from both L* and
Ly, and Ly, C L™, it follows that: for each i € N,

Ly, = supp(Gri)) UR where R C L™ \ supp(Gr(s)) - (6)

Fix any 7. Let
s(i) = |L* \ supp(Gr(5))] -

Since G.(;) generates with approximate breadth from L*, s(i) < oo. We claim that

supp(Gr(i)) 7 sSuppP(Gr(i+j)) for some 1<j<8@)=2""41. @)

Proof of Equation (7). To see this, toward a contradiction, suppose that

supp(Gr(i)) = supp(Gr(it1)) = - = supp(Gr,, 5(,)) -

This combined with Equation (6) implies that, for each 1 < j < S(i), Lo, = supp(G-(;)) U R; for some finite set
Rj € L* \ supp(Gy(s))- Since all of Ly, , Ly,, . .. are different, it must hold that all of Ry, Ry, ..., Rg(; are different. This
is a contradiction since each R; is a subset of R; C L* \ supp(G,(;)) and there are only S(i) — 1 = 2°(9) such subsets.

Completing the Proof. Equation (7) shows that, for each ¢ € N, starting from the 7(4)-th step, the support of the generator
changes after finitely many steps. Since 71, 72, ..., € Nis a strictly increasing and infinite sequence, this implies that the
support of the generator changes infinitely often as it is provided more and more examples and, hence, lim;_,, Cs(t) = oo
which contradicts the fact that G is stable (5). Hence, our assumption that G is stable and generates with approximate
breadth from £ in the limit must be false. Therefore, no stable generator can generate with approximate breadth from any
non-identifiable collection. O

C. Proofs of Upper Bounds

In this section, we present new algorithms for generation required in our results (Theorems 3.8, A.3 and A.5 and Figures 3
and 4).

C.1. Functional Upper Bound for Generation with Approximate Breadth

In this section, we present a function* that generates with approximate breadth from any countable collection £ satisfying
weak Angluin’s condition. This establishes the upper bound in Theorem 3.8.

Lemma C.1 (Function for Generation with Approximate Breadth). Let £ be a countable collection of languages that
satisfies Definition 3.7. Then, there exists a generating algorithm that, given access to a membership oracle for L and a
subset oracle for £ (that given indices 1, j outputs Yes if L; C L; and No otherwise), generates from £ with approximate
breadth in the limit.

This proof is inspired by the proof of Theorem B.2 in (Kalavasis et al., 2025), the difference is that, instead of using
Angluin’s condition (Definition 2.2), we use its weakening (Definition 3.7).

4Using the terminology of Kleinberg & Mullainathan (2024), we refer to algorithms that have access to certain oracles (beyond

membership oracle) specific to the collection £ as functions; reserving the term algorithm for algorithms which only require membership
access to languages in £ (i.e., answer to questions of the form “is s € L;?”).

19

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Proof of Lemma C.1. The algorithm 4 is illustrated below. This algorithm follows the steps of the generation algorithm
of (Kleinberg & Mullainathan, 2024) (see Steps 1 to 5). The only change is in its last Step 6 where it generates a random
sample from the set of interest.

fort € {1,2,...} do:

1. Observe element x; and let S; be the set of all elements observed so far.

2. Construct a version space V; consisting of all languages in £<; consistent with S, i.e.,
Vi={L;:1<j<t, L; D5}.
Define a language L; € V; to be critical if L; is the smallest-index language in V; or L; is a subset of all
languages preceding it in Vi, i.e., L; C L; forall1 < j <.
3. If V; = (), output an arbitrary element of X and go to the next iteration.
4. Construct the set Cy C V; of all critical languages.
To construct the set of critical languages C the algorithm needs access to the subset oracle.
5. Let L; be the largest-indexed language in the set of critical languages C;.

6. output a sample from any distribution whose support is L; \ S¢. This can be done in a computable fashion by first
sampling a natural number n from (e.g., the geometric distribution on N) and then outputting the n-th string from

L:\ S..

Let z be the first index such that K = L. The proposed algorithm generates with approximate breadth from K when after
some finite time ¢*, and for ¢ > t*, the last language in the set of critical languages C;, L; = L;(t), satisfies that

L;CK and |K\L;j]<o0.

This condition is implied by the following two conditions.

(A) K is eventually included in set of critical languages C; and is never removed after that.

(B) Eventually all the languages L; with j > z that are in C; satisfy L; C K and |K \ L;| < oo.

Result (4.3) of (Kleinberg & Mullainathan, 2024) shows that there is a finite time ¢ 4 after which Condition (A) holds. We
will show that there is also a finite time ¢ after which Condition (B) holds. This shows that, for any ¢ > max {t4,tp5}, 4
generates with approximate breadth from K.

Condition (B) holds after a finite time. Since £ satisfies the weakening of Angluin’s condition (Definition 3.7), K = L,
has a finite tell-tale set 77, such that, any language L € £ containing the tell-take 7', satisfies one of the following:

* FEither L is not a proper subset of K

* Or L is a proper subset of K and satisfies |[K \ L| < cc.

(Recall that T, is not known to us; our proof will not need this.) Fix any j > z and any time ¢tp > ¢4 after which K is
guaranteed to be a critical language and after which S; O T, (which happens at a finite time since 7, is finite and, so, all
elements of T, appear in the enumeration of K at some finite time). Our goal is to show that for any ¢ > ¢, and any j > 2
for which L; is in C4, it holds that
LJQK and |K\LJ|<OO

By the definition of critical languages and the fact that L; appears after ' = L in the set of critical languages (as j > 2), it
follows that L; C K. Hence, it remains to show that | \ L;| < co. To see this, observe that since L; € Cy and C; C V4,
L; is in the version space V; and, hence, by the definition of V;, L; O S;. Therefore, in particular, L; 2 T, (as S; 2 T).
Now, Definition 3.7 combined with the observation that L; C K implies that | \ L;| < oo as required. O

20

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Building on the result of (Kalavasis et al., 2025) (Corollary B.2 in their paper), the previous result shows that the function’
of (Kleinberg & Mullainathan, 2024) with access to a subset query oracle achieves the “best-of-three” worlds for generation,
without requiring any prior information about £, only subset and membership oracle access.

Corollary C.2. Let £ be a countable collection of languages. Exactly one of the following holds for the subset-oracle-based
function of (Kleinberg & Mullainathan, 2024).

o If L satisfies Angluin’s condition, the function generates with exact breadth in the limit.

e If L does not satisfy Angluin’s condition but satisfies the weak Angluin’s condition, the function generates with
approximate breadth in the limit.

e If £ does not satisfy the weak Angluin’s condition, the function generates with infinite coverage in the limit.

C.2. Algorithmic Upper Bound for Generation with Approximate Breadth

Next, we give an algorithm that generates with approximate breadth without requiring access to a subset oracle. This
establishes an alternate proof of the upper bound in Theorem 3.8.

Lemma C.3 (Algorithm for Generation with Approximate Breadth). Let £ be a countable collection of languages that
satisfies Definition 3.7. Then, there exists a generating algorithm that, given access to a membership oracle for L and the
tell-tale oracle from Definition 3.7, generates from L with approximate breadth in the limit.

Proof of Lemma C.3. Let S, be the set of elements the adversary has enumerated up to round n € N. For every i,n € N,
let Tfl be the first n elements enumerated from the tell-tale oracle when called on language L;. Let also x1, x2, ..., be an
enumeration of the domain X. Our proof is reminiscent of Angluin’s approach (Angluin, 1980), and the generating algorithm
requires only one extra step, namely removing the elements xy, ..., z, from the support of the outputted distribution.
However, due to the relaxed condition we are using, our analysis is more technically involved.

For every round n € N, the generating algorithm constructs the sets 7}’ using the tell-tale oracle for all languages L;
with1 < ¢ < n. Letg, € N,1 < g, < n, be the smallest number (if any) such that S,, C L, and TJ» C S,.
If no such number exists, let G, be some arbitrary distribution. Otherwise, let G,, be a distribution with supp(G,) =

Lg, \ (SnU{z1,...,20}).0

Fix a canonical enumeration x1, zo, ... of X.
forn € {1,2,...} do:

1. Let S,, be the set of all elements observed so far.
2. Create the list £L<,, = {L1,...,Ly}.
3. For each language L; in £<,,, let T = TellTaleOracle(L;), i € [n].

4. Truncate the outputs of the oracle and keep only their first n elements

Ti = (T'(1),...,T(n)), i € [n].

5. Find smallest index g, € {1,...,n} suchthat S,, C L, and T9" C S,.

This is the minimum indexed language in £<,, that is consistent and its truncated tell-tale is contained in the
observed elements.

6. If no such g, exists, output an arbitrary point from X and go to the next iteration.

5To be precise, the function is that of (Kleinberg & Mullainathan, 2024) together with a process to sample from a language given
membership access to it; see e.g., Step 6 in the Algorithm of Lemma C.1.
®One can sample from this distribution in a computable fashion.

21

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

7. Otherwise, define a distribution G,, with supp(G,) = Ly, \ (Sp U{z1,...,2,}).

The intuition for removing the first n elements 1, . . ., x, of the canonical enumeration of X is as follows. A
bad scenario for our algorithm is that there exists some language L, in the enumeration of £ before L, = K
such Step 5 will be stuck on Ly, . Then we can guarantee that |L,, \ K| < oo. Since this set is finite, by removing
parts of the enumeration of X of increasing but finite size, we will eventually remove |L,, \ K|, and obtain a
sampler that (i) is consistent and (ii) misses only finitely many elements from K.

8. Output a sample from the distribution G,,.

We will show that this algorithm generates with approximate breadth in the limit. Let K be the target language and z € N
be the smallest number such that L, = K. We consider two cases.

Case A (z = 1): S, C Li,Vn € N and since the tell-tale set T of L, is finite and the adversary presents a complete
presentation of K, it holds that 7} C S,, for sufficiently large n. Thus, in the limit, it holds that g,, = 1, thus supp(G,) =

L1\ (Sp U{z1,...,z,}), and the proof is concluded by noting that supp(G,) C K and |S, U {z1,...,2,}| < oo, for all
sufficiently large n.

Case B (z > 1): We now move on to the case z > 1. Then, for every language L;,1 < ¢ < z — 1, that precedes L.,
exactly one of the following holds:

(i) either there exists some x;, € L, butz;, ¢ L;, or

(i) L. C L;.

If Case (i) holds, then there exists some n; € N such that S,,, L,. Thus, since there are finitely many languages before z
for which Case (i) holds, after finitely many n € N all of them will have been contradicted by S,,. Thus, we consider some
no € N large enough so that for all n > ng every language L;,1 < i < z — 1, for which S,, C L; satisfies L, C L;.

LetJ = {i1, ..., i} be the set of the indices for which the previous holds. For every j € J, and for all j' € N for which
the tell-tale set of L; is a subset of L/, i.e., T7 C L;/, one of the following two cases hold by the definition of the weak
Angluin’s condition: (a) either L/ is not a proper subset of L; or (b) |L; \ Lj/| < co.

Consider j/ = z and any j € J. Since, by construction, L, C Lj;, the previous argument shows that either (I) 77 ¢ L or
D |L; \ L.| < .

If j falls into Case (I) then for large enough n it holds that 77 ¢ L., thus T? Z S,,, and due to the way we have defined g,,,
gn # 4.7 Thus, we let 7’ be the set of indices j € N, 1 < j <z —1, such that TJ C L,and L, C L; and, hence, since we
fall into Case (II) the previous argument implies that |L; \ L.| < oo for each j € J'.

We consider again two cases: if I = (), then for large enough n it holds that g,, = z. Hence, the correctness follows from
the previous arguments.

We now handle the more complicated case I’ # (). Let j* be the first element of J’. For large enough n, the choice of
g, will stabilize to j*. To see this, notice that S,, C L;- foralln € N, TJ" = T7" for sufficiently large n (since 77" is
finite), and since 79" C L, (and the adversary presents a complete presentation of L), for large enough n it holds that
TJ" C S,,. Thus, indeed for all sufficiently large 7 it holds that g, = j*. By definition of 7', it holds that |Lj«\ L.| < oo.
Let Ty be the largest element of the enumeration of X for which Ty € L~ but Ty ¢ L., (this always exists as j* € J/
and, hence, L, C L;- and |L;- \ L,| < 00.). Forn > ¢;« it holds that L;- \ {z1,...,z,} C L,. This shows that, indeed,
supp(G,) C K, for large enough n, since we set supp(G,) = L;- \ (S, U{z1,...,x,}). Moreover, since L, C L+, and
H{z1,...,2n}| < oo, itholds that |L, \ (L;- \ {z1,...,2,})| < oo, forall n € N. Hence, the generator generates with
approximate breadth from K in the limit. O

Remark C.4. The generating algorithm that achieves approximate breadth in the limit for languages that satisfy the weak
version of Angluin’s condition has the property that the Membership Oracle Problem is decidable. Hence, by the results of
(Kalavasis et al., 2025), it cannot be stable, and, indeed, it is not since its support changes at each iteration.

"Observe that if we had assumed the stronger Definition 2.2 (Angluin’s condition), then this step implies that we can identify L. in the
limit, since only Case (I) is valid. This is exactly how the tell-tale-based algorithm of (Angluin, 1980) works.

22

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

C.3. Extensions to Other Notions of Breadth

In this section, we generalize the results from the previous two sections to give algorithms that achieve exhaustive generation
for countable collections satisfying weak Angluin’s condition.
We first give a function that achieves exhaustive generation.

Lemma C.5 (Function for Exhaustive Generation). Let £ be a countable collection of languages that satisfies Definition 3.7.
Then, there exists a generating algorithm that, exhaustively generates from L (and is consistent with the target language) in
the limit. The algorithm uses access to the following oracles:

> a membership oracle for C,
> a subset oracle for £ (that given indices i, j outputs Yes if L; C L; and No otherwise),
> a finite difference oracle for L (that given indices i, j with L; C L; outputs Yes if |L; \ L;| < oo and No otherwise).

The generation in the above result satisfies a property stronger than Definition A.2:
Remark C.6. In addition to achieving exhaustive generation, the generator is consistent with the target language and, hence,
does not have any hallucinations.

The generator in Lemma C.5 is as follows.

Fix the following: a special character xg ¢ X and a canonical enumeration x1, xa, ... of X.
Initialize g() =0.
fort e {1,2,...} do:

1. Observe element x; and let S; be the set of all elements observed so far.

2. Construct a version space V; consisting of all languages in £<; consistent with S, i.e.,

3. If V; = (), output an arbitrary element of X and go to the next iteration.

Define a language L; € V, to be critical if L; is the smallest-indexed language in V; or L; is a subset of all
languages preceding it in Vi, i.e., L; C Lj forall 1 < j <.

4. Construct the set C; = {Lii 2L 22 Ly } C V; of critical languages for some j < t.
J
To construct the set of critical languages Cy the algorithm needs access to the subset oracle.

5. Find the smallest indexed language L = L(t) in C such that |L \ Lyt | < oo. Create the set C by removing all
the languages in C'; before L.

To perform this filtering, the algorithm needs access to the finite difference oracle.
6. If C; = 0, output an arbitrary element of X and go to the next iteration.
7. Let L; = L;() be the minimum indexed language in the set of filtered critical languages Cy.
8. Ifi(t) #i(t—1),setly = 0;else by = £, + 1.

9. output the enumeration of L; \ {zo, ...,z } induced by the canonical enumeration of X fixed at the start.

Proof of Lemma C.5. We will show that the above function exhaustively generates and is consistent with the true language
in the limit. Let K be the target language and z € N be the smallest number such that L, = K. We will use the case analysis
of Lemma C.3. Fix some symbol zy ¢ X.

Case A (z = 1): Since z = 1, the true language is the first critical language and is never filtered from C. Moreover, the
counters ¢; will never be reset (in Step 8) and, in fact, satisfy ¢, = t. Hence, for each ¢ € N, the algorithm G; enumerates

23

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

the set K\ (S U {zo,...,x:+}) induced by the canonical enumeration of X. It follows that, for each removed z;, there is
some t where it is the first element of the output enumeration. Further, the output enumeration is always consistent with K.
Hence, the resulting generator exhaustively generates K. In fact, it has the stronger property that it never hallucinates.

Case B (z > 1): Consider the languages before L, in the enumeration of £. There are two cases: For any 7 < z, either
there exists an element that belongs to L, but not L; or L, C L,. If the first case holds, then eventually the distinguishing
element will appear in the enumeration of K and make L; inconsistent. Hence, let us assume that for all ¢ < z, we only care
about indices ¢ for which L; 2 L,. We claim that eventually the index of Step 5 stabilizes in the limit. In particular, we will
show that it stabilizes to the smallest index ¢* such that L;» O L, and |L;« \ L,| < co; note that if there is no language
L; 2 L., then ¢* must be z. Before proving this claim, we show that it implies the result. Let 1 < ¢* < z be the index that
Step 5 eventually stabilizes on. We know that L;« O K (by our earlier argument that any index 1 < ¢ < z not satisfying this
property is eliminated after a finite time) and |L;- \ K| < oo (by construction). We now show how to exhaustively generate
K in the limit, this corresponds to Steps 8 and 9 of the above function. To see this, observe that as |L;« \ K| < oo, after a
finite number of steps L;» \ {zo, ..., 2, } C K (and, hence, the algorithm eventually stops hallucinating). Further, since at
step ¢ (for large enough t), we output the enumeration of L;« \ {zo, ..., zy, } induced by the canonical enumeration of X, it
follows, for each removed z;, there is some ¢ where it is the first element of the output enumeration. Hence, the resulting
generator exhaustively generates K. In fact, it has the stronger property that it eventually stops making any hallucinations.

Proof of the claim. It remains to prove our claim that the index of Step 5 stabilizes in the limit. Since £ satisfies the weak
Angluin’s condition, then K has a finite tell-tale set 7. We condition on the following events: (A) K is a critical language,
and (B) S; D Tk. Condition (A) is satisfied for any ¢ > z and (B) is satisfied after a finite time since T’k is finite and all its
elements appear at a finite point in the enumeration of K. Conditioned on these events the critical list C} is of the form

Li DLy D --DKDLyD...
1 2 J1

First, observe that there are finitely many languages before K in this list: this is because K appears at a finite point in this
list. Next, we claim that conditioned on the above events the indices ¢, 7%, ... of the languages appearing before K in the
list never change. The proof is via induction.

* Base Case: First, consider the first index ¢. It is defined as the smallest index language consistent with S;. Moreover,
due to the structure above it has the property that L;; 2 K and, hence, it never becomes inconsistent with Sy fort’ > t.

Therefore, the index i never changes in subsequent steps.

e Induction Step: Next, we complete the induction argument, suppose indices it, 7%, ..., il never change in subsequent

steps, then we claim that the index i’. 41 (if it exists) also never changes in subsequent steps. This is because it IERE
defined as the smallest indexed language that is (1) consistent with .S; and (2) has the property that L;: e L;:. The
former always holds for all subsequent ¢’ > ¢ since Litﬂ D S; D Tk and the latter holds for all subsequent ¢’ > ¢

since i’. never changes.

Now we are ready to prove that the index i(¢) selected in Step 5 stabilizes. Recall that i(¢) is the smallest index satisfying
that (1) L;() appears before K in the critical list and (2) [L;() \ Lig\ = Ly \ K| + K\ Li;| < o0. Observe that
|Li) \Li§| =Ly \ K|+ K\ Li§| and, by construction, | K \ Ly | < oo and, therefore, Condition (2) is equivalent to
|Li+) \ K| < oc. Fix any ¢ satisfying Conditions A and B above and the corresponding i(¢). For all subsequent ¢’ > ¢, L;
continues to appear before K in the critical list since we proved that all indices before K in the critical list stabilize. Further,
| L) \ K| < oo since it is independent of #'. Therefore, i(t) = i(t) since i(t) satisfies both properties that determine i(t").
It follows that for ¢’ > ¢, the index selected in Step 5 never changes. O

Moreover, a small adaptation of the proof of Lemma C.3 gives a generator that generates exhaustively (Definition A.2) in
the limit provided one has access to the tell-tale oracle from Definition 3.7.

Lemma C.7 (Algorithm for Exhaustive Generation). Let £ be a countable collection of languages that satisfies Definition 3.7.
Then, there exists a generating algorithm that, given access to a membership oracle for L and the tell-tale oracle from
Definition 3.7, exhaustively generates from L in the limit.

Proof of Lemma C.7. The argument in the proof of Lemma C.3 shows that the choice of the index g,, stabilizes in the limit.
Moreover, K C Ly, and |L,, \ K| < co. To achieve exhaustive generation, the only modification needed is that we keep

24

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

track of another index ¢,, which is initialized at 0, increases by 1 in every round, and every time the choice of g,, changes,
we reset £,, = 0. The enumeration we output is Ly, \ {zo,..., 2, } , where we use the notational convention that z is
some special element that does not appear in X. Moreover, the sequence in which the element appears in the enumeration is
the natural order induced by (some canonical) enumeration of X. Assume that n is large enough so that g,, has stabilized. It
is easy to see two things: for every element Z of L, , there exists some finite round 72 € N such that 7 is the first element
in the enumeration we have outputted. Moreover, since L, C L, and |L,, \ L.| < oo, after some finite n € N it holds
that L, \ {xo,...,2¢,} C L. Moreover, every time an element z; is omitted from the enumeration we output, there has
been some prior iteration where it has been the first element in the enumeration. These arguments show that the modified
generator is an exhaustive generator for £. O

D. Implication for the Statistical Setting
In this section, we discuss the implications of our results in the statistical setting.

In this setting, there is a countable language collection £, a “valid” distribution P supported on a language K € £, and the
generating algorithm takes as input string drawn i.i.d. from P. For every different notion of breadth, one can define an error
function for the generating algorithm (G,),,c\y as

er (Gn) = 1{=P(Gn)} , ®)

where P(-) is a predicate defined based on the underlying notion of breadth and its value is True if the breadth property is
achieved by G,, and False, otherwise.

Given this definition (8), (Kalavasis et al., 2025) define the error rate for generation with breadth via the universal rates
framework of Bousquet et al. (2021).

Definition D.1 (Error Rate (Bousquet et al., 2021)). Let £ be a countable collection of languages, er be an error function
defined in Equation (8), and R: N — [0, 1] be a rate function such that lim,,_,. R(n) = 0. We say that rate R(-) is
achievable for L if there exists a generating algorithm G = (G,,) such that

VPeVal(L) 3C,¢>0 suchthat Eler(G,)] <C-R(c-n) VneN,

where Val(L) the set of all valid distributions with respect to L. Conversely, we say that no rate faster than R(-) is
achievable for L if for any generating algorithm G = (G,,) there exists a valid distribution P and ¢,C > 0 such that
Eler (Gn)] > C - R(c-n), for infinitely many n € N. We say that no rate is achievable for L if for any generating algorithm
G = (Gn) there exists a valid distribution P such that limsup,,_, . E [er (G,)] > 0.

(Kalavasis et al., 2025) proved bounds in this statistical setting for language identification, generation with exact breadth
for algorithms for which the MOP is decidable,® and generation with approximate breadth for algorithms that are stable in
the limit,° and for which the MOP is decidable. To get these results, (Kalavasis et al., 2025) showed connections between
the online setting considered in the previous sections and the statistical setting. Using the new results in this work, and the
results of (Kalavasis et al., 2025), we can get characterizations for the statistical rates under these two notions of breadth
removing the requirement for decidability of the MOP oracle and stability of the generating algorithm.

Theorem D.2 (Rates for Generation with Exact Breadth). For any non-trivial collection of languages L no rate faster than
e~ ™ is achievable for generation with exact breadth. Moreover, For any collection that is identifiable in the limit, there exists
an algorithm that achieves generation with exact breadth at rate e~". Conversely, for any non-identifiable collection, no
rate is achievable for generation with exact breadth.

For the non-triviality requirement, we refer the interested reader to (Kalavasis et al., 2025). The e~" lower bound and
upper bound follow immediately from their results. The lower bound for no rates achievable follows from the approach of
(Kalavasis et al., 2025) (with a few modifications in their construction) and Theorem 3.5. For brevity, we only sketch the
modifications here:

8Recall this is a mild technical condition that requires that the generating algorithm can answer queries about whether a string z is in
its support.

“Roughly speaking, stability means that after finitely many steps, the support of the distribution outputted by the generating algorithm
does not change. For the formal definition, see Definition 3.13.

25

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

* (Kalavasis et al., 2025) make use of a construction of (Angluin, 1988) which connects the adversarial setting “in-the-
limit” to the statistical setting “in-the-limit” (Theorem 5.6 in their paper) for language identification. A similar result
can be shown for generation with exact breadth.

 (Kalavasis et al., 2025) make use of majority votes over learners that identify the target language. In Lemma 5.8 they
use the voting scheme, (a modification of) Angluin’s result (Angluin, 1988), and the Borel-Cantelli lemma to show that
no rate is achievable for language identification, for collections that do not satisfy Angluin’s criterion (Definition 2.2).
The same approach can be used to derive the lower bound for generation with exact breadth, by using a slightly different
majority voting scheme. At a very high level, following (Kalavasis et al., 2025)'" we split the dataset into different
batches and train the generating algorithm, and we can show that for large enough n, a c-fraction of these generators
satisfies the generation with exact breadth property (for, e.g., ¢ > 2/3). In order to combine their outputs, we define an
(implicit) distribution as follows: we keep sampling from all the batches until a c-fraction of them outputs the same
element. It is not hard to see that (i) this process terminates in finite time,'! (ii) only elements of K have positive
probability of being outputted, (iii) every element of K has a positive probability of being outputted.

A similar result can be obtained for language generation with approximate breadth, using the criterion from Definition 3.7.

Theorem D.3 (Rates for Generation with Approximate Breadth). For any non-trivial collection of languages £ no rate
faster than e™" is achievable for generation with approximate breadth. For any collection that satisfies Definition 3.7, there
exists an algorithm that achieves generation with approximate breadth at rate e~ ". Conversely, for any collection that does
not Definition 3.7, no rate is achievable for generation with exact breadth.

The above pair of results provides statistical rates for language generation with exact and approximate breadth. Obtaining
statistical rates for unambiguous generation is an interesting direction.

E. Further Results

In this section, we give results for language generation with new notions of breadth and stability.

Outline. In Appendix E.1, we introduce a notion of infinite coverage which weakens approximate breadth and show
that it is achievable for all countable collections. In Appendix E.2, we study generation with infinite coverage with stable
generators: (1) we show that it cannot be achieved for all countable collections (Appendix E.2.1), and (2) we give a sufficient
condition to achieve it (Appendix E.2.2). In Appendix E.3, we present a strengthening of stability, which we call increasing
coverage, and show that it can be achieved for certain collections.

Remark E.1 (Characterizations for Existing Notions of Breadth with Stability). We present the characterizations of existing
notions of breadth with stability in Appendix A.3. In this section, we discuss characterizations for new notions of breadth
and a strengthening of stability.

Remark E.2 (Results allowing for Hallucinations). We refer the reader to Appendices A.4 and A.5 for results on language
generation with breadth when some amount of hallucination is allowed.

E.1. Generation with Infinite Coverage

In this section, we provide further motivation behind Definition 3.2, generation with approximate breadth. An immediate
modification of the algorithm of (Kleinberg & Mullainathan, 2024) can achieve finite coverage of the target language, for
any finite number. More concretely, for any function f: N — N and any countable collection of languages £ there exists a
generating algorithm (Gy), .\ such that, for any target language K € £ and any enumeration of K the algorithm achieves
in the limit

supp(Gn) € K, supp(Gn) N Sy =0, and lsupp(Gn)| = f(n),

where 5, is the set of elements enumerated until round n. In fact, their algorithm can achieve the stronger property of
infinite coverage defined below.

!9The same approach has been used extensively in the universal rates literature, starting from (Bousquet et al., 2021).

""One small complication is that if a c-fraction does not satisfy the desired property, the algorithm might not terminate. To fix that, in
every step we either terminate with probability /2 or we do the sampling strategy we described with probability 1/2. If we terminate, we
run the algorithm from (Kleinberg & Mullainathan, 2024) to generate a valid string from K.

26

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Definition E.3 (Language Generation with Infinite Coverage in the Limit). A generating algorithm G = (Gy,) is said to
generate with infinite coverage in the limit for a language collection L = {L1, Lo, ... } if, for any K € £ and enumeration
of K, there is ann* > 1, such that for all n > n*, after seeing n elements of the enumeration (corresponding to the set Sy,
in round n),

supp(Gn) € K, supp(Gn) NS, =0, and |supp(G,)| =0,

Given the above notion of infinite coverage, a simple modification to the generating algorithm of (Kleinberg & Mullainathan,
2024) gives the following result.

Proposition E.4 (Modification of (Kleinberg & Mullainathan, 2024)). There is a generating algorithm with the property
that for any countable collection of languages L = {L1, Lo, . .. }, any target language K € L, and any enumeration of K,
the algorithm generates with infinite coverage from K in the limit.

Thus, the aforementioned modification of the algorithm of (Kleinberg & Mullainathan, 2024) has the property that it does
not hallucinate (i.e., it does not include any elements outside of K in its support) and covers infinitely many (unseen)
elements of the target language, but might, potentially, not cover infinitely many elements as well. Thus, a natural question
is whether there exists an algorithm that does not hallucinate, can cover infinitely many elements of K, and also miss only
finitely many elements of it. This is precisely the requirement of generation with approximate breadth (Definition 3.2).

Proof Sketch of Proposition E.4. We discuss a sketch of the proof for the version of the algorithm of (Kleinberg & Mul-
lainathan, 2024) that uses a subset oracle for £, i.e., for any L;, L; € £ it can ask “Is L; € L;?”. Let us first give a
high-level description of their algorithm. For large enough n € N, it creates a (potentially infinite) sequence of languages
L' ={L;,,L;,,...} C XL such that the following hold.

(i) For every language L € £’ it holds that L is consistent, i.e., S,, C L, where S, is the set of elements enumerated until
round n,

(ii) The sequence of languages in £’ satisfies the inclusion: L;; 2 L;, 2 ..., and

(i) K € £'.

Then, it outputs an arbitrary string = such that x ¢ S,, and « € L;,, where iy € N is the largest number such that L;, € £’
and 4, < n. The immediate modification is to output a distribution G, such that supp(G,) = L;, \ S,,. Notice that this can
be done in a computable way: in order to sample from this distribution, we first sample a natural number 72 (e.g., from a
geometric distribution on N), and then we check if 5 € L;, \ S,. O

An analogous modification can be made to the algorithm of (Kleinberg & Mullainathan, 2024) that only has access to a
membership oracle for £. For brevity, we omit the modifications to this algorithm.

Remark E.5 (Oracle Access for Results in Figure 3). Following the phrasing of (Kleinberg & Mullainathan, 2024), we
provide both functions and algorithms that generate in the limit. An algorithm only accesses £ via a membership oracle
(and potentially a tell-tale oracle). When a generator uses other types of oracles (e.g., subset oracle), we call it a function.

E.2. Infinite Coverage with Stable Generators

In this section, we continue the study of infinite coverage, exploring when it can be achieved with stable generators.

E.2.1. A COLLECTION FOR WHICH NO STABLE GENERATOR HAS INFINITE COVERAGE

In this section, we show that there is a language collection £ for which there exists an algorithm that achieves approximate
breadth in the limit, but no stable algorithm can achieve the (strictly) weaker notion of generating with infinite coverage
in the limit. The collection £ is due to (Charikar & Pabbaraju, 2024a), who observed that a trivial generating algorithm
that does not get any input generates from £ exhaustively in the limit. Since exhaustive generation implies, by definition,
generation with approximate breadth, we only need to prove the impossibility result for generation with infinite coverage by
stable generators.

We first provide the collection and then state the result.

27

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Example E.6 ((Charikar & Pabbaraju, 2024a)). Let X = N, L., = N, for every i € Nlet L; = N\ {i}, and let
L ={Ls, L1, Lo,...}. Notice that every pair of languages L;, L; € £ differ in at most two elements, so it follows that £
satisfies Definition 3.7. To see that it does not satisfy Angluin’s condition (Definition 2.2), consider the language L. Then,
for every finite subset ' C L, there is some language Lz suchthat 7' C Ly and Ly C L.

We continue with the statement of the theorem.

Theorem E.7. There exists a countable collection of languages L that satisfies the weak Angluin’s condition (Definition 3.7),
and for which no stable generating algorithm can achieve generation with infinite coverage in the limit (Definition E.3).

Proof. Consider the collection defined in Example E.6. Since it satisfies the weak Angluin’s condition (Definition 3.7),
by Theorem 3.8, it follows that there exists an algorithm that achieves generation with approximate breadth in the limit.'?
Assume towards contradiction that there exists a stable generating algorithm G = (G,),, oy that achieves generation with
infinite coverage in the limit. We will pick a target language and an enumeration of it that witnesses the lower bound based
on the given algorithm G. We denote the target language by K and the target enumeration by E%°. Like in the previous
proofs, for any enumeration E, we use the notation (i) to denote its i-th element, E(1 : 7) to denote its first ¢ elements,
and E(i : 00) to denote all but the first ¢ — 1 elements.

As in the previous proofs of the impossibility results, we consider several phases for our construction. First, we start with
the enumeration Eg° = (1,2, 3,...). Notice that this is a valid enumeration for L..,. We consider two cases: (I) either there
is some n € N such that [supp(G,)| = oo, or (I) if there is no such n the lower bound follows immediately by picking
K = N and the hard enumeration E3® = Eg°. For the continuation of the proof, assume that the former case holds and let
n denote the first timestep for which this holds. Notice that up to that point we have enumerated (1,...,n;). Letn; € N
be the smallest number strictly greater than 7 that is in the support of G,,. Notice that such a number must exist because
supp(Gy,)| = oo.

We now extend the target enumeration E°(1 : 3 — 1) = (1,2,...,77 — 1). Notice that this is well-defined since we only
add elements to the already constructed enumeration. We continue building the target enumeration by skipping the element
n1 and including the element 721 + 1 to it, i.e., the 711 -th element of the constructed enumeration is 721 + 1. We continue adding
consecutive elements to the enumeration E%¢ until the first timestep n > 71 + 1 such that supp(G,,) # supp(Gn,) and
|[supp(Gn)| = oo. Notice that if no such n exists the lower bound already follows by picking the target language K = Lz,
and the constructed target enumeration. This is because in every timestep either supp(G,) = supp(Gn,) (and therefore
supp(G,) € K because 1 € supp(Gy)) or |supp(Gy)| < oo, hence the algorithm does not achieve generation with infinite
coverage in the limit. For the continuation of the proof, let ny denote the first timestep for which supp(G,,) # supp(Gn,)
and |supp(Gn,)| = co. We then add the element 7, to the constructed prefix of the enumeration £ and terminate the first
phase.

Notice that at the end of the first phase we have enumerated all the elements {1,2,...,ns — 1} and the support of the
generating algorithm has changed at least once or we have the desired lower bound. We continue inductively in exactly the
same way until (I) either some phase cannot be terminated in which case the lower bound follows because the property
of infinite coverage in the limit is not achieved or (II) we construct infinitely many phases which witness infinitely many
changes in the support of the generating algorithm, hence showing it cannot be stable. This concludes the proof. O

E.2.2. SUFFICIENT CONDITION FOR STABLE GENERATION WITH INFINITE COVERAGE

In this section, we provide a sufficient condition on the language collection £ that guarantees the existence of a stable
generating algorithm that generates with infinite coverage in the limit. In particular, we can show that if a collection has
finite closure dimension (Li et al., 2024), then there exists a stable generating algorithm that achieves infinite coverage in the
limit. First, we give the definition of the closure dimension (Li et al., 2024), which is inspired by a result of (Kleinberg &
Mullainathan, 2024) on uniform generation'® from finite sets of languages.

Definition E.8 (Closure Dimension (Li et al., 2024)). The closure dimension of £, denoted by d(L), is the largest natural

12As we explained, this also follows from the work of (Charikar & Pabbaraju, 2024a).

BThe exact definition of uniform generation is not important for our work. At a high level, this condition asks whether there exists
some d € N such that after the generator observes d different strings from any target language of £, then it can generate unseen strings
that belong to K.

28

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

number { € N for which there exist distinct x1, ..., xy € X such that

V(x,...,x0) ={Lel: {z,...,x¢} CL}#0 and ﬂ L| < o0.
LEV (z1,...,x¢)

If for every € € N there exists a set of distinct elements that satisfies this condition we say that d(L) = oco.

In general the closure dimension can be co, but due to a result of (Kleinberg & Mullainathan, 2024), we know that all
collections of languages with finitely many languages have finite closure dimension. In order to design an algorithm that
achieves stable infinite coverage for any collection £ that has a finite closure dimension, we will make use of a stronger
oracle for £ than just the membership oracle to it. Namely, we define the version space intersection (VSI) membership
oracle as follows.

Definition E.9 (Membership Oracle to Version Space Intersection (VSI)). The membership oracle to VSI is a primitive that,
given a set of distinct elements x1, . .., x, € X and a target element x € X, returns

1 {x € ﬂLev(zl,...,wn)L} :

We remark that for finite collections £ this oracle can be computed just with membership oracle to £, but for countable
collections this oracle might not be computable.

Proposition E.10 (Adaptation of Lemma 3.2 in (Li et al., 2024)). Let £ be a collection of languages with d(£) < oo
(Definition E.8). There exists a stable (Definition 3.13) generating algorithm G = (G,) for L that, given the value of d(L),
achieves infinite coverage (Definition E.3) using access to a VSI membership oracle for L, after taking as input d(£) + 1
distinct elements.

In particular, since the closure dimension of any finite collection of languages is finite (Kleinberg & Mullainathan, 2024),
for any finite collection of languages, there exists a stable generating algorithm that achieves infinite coverage. It is not hard
to see that for such collections, the VSI oracle can be implemented using only membership oracle to languages in £.

Corollary E.11 (Stable Generation for Finite Collections). For every finite collection of languages L, the following hold:

1. There exists a stable generating algorithm that achieves generation with exact breadth in the limit, using only
membership oracle access to L.

2. There exists a stable generating algorithm that achieves generation with infinite coverage after taking as input d(£) + 1
distinct strings, using only membership oracle access to L.

Moreover, for finite collections, a stronger property is possible: the results of (Kalavasis et al., 2025) (see Proposition 3.9 in
their work) show that for finite collections there exists a stable generating algorithm that achieves exact breadth in the limit
(and, hence, also infinite coverage), but there might not be an upper bound on the elements needed to achieve this property.'*

Finally, we prove Proposition E.10.

Proof of Proposition E.10. Our proof is inspired by the Lemma 3.2 from (Li et al., 2024). The only modification is that now
the algorithm stops using new elements beyond the d(£) + 1 elements required to achieve infinite coverage. Moreover, we
discuss the type of access to £ needed that is sufficient to achieve this property, which was not the focus of (Li et al., 2024).
Let K € £ be any target language and x1, ..., 7q(c)4+1 € K be any d(£) + 1 distinct elements of the target language.
First, notice that since 1, ..., zq(¢)41 € K, V(21,...,2q(c)41) # 0, as K € V(x1,...,2q(c)+1)- By the definition of
the closure dimension (Definition E.8) and since | K| = oo (recall that language generation is not meaningful with finite
languages and, hence, throughout this work, we consider all languages are infinite),

N Ll=0c0 and N LCK.
LGV(Il,...,Zd(5)+1) LEV(Il,...,Id(ﬁ)+1)
"To be precise, Proposition 3.9 in (Kalavasis et al., 2025) gives an algorithm to identify finite collections in the limit. This algorithm
immediately gives an algorithm for generation with exact breadth: once we know an index z such that K = L, we can sample a natural

number (from, e.g., an exponential distribution on N) and output the i-th element of L.. The latter, in turn, can be found using the
membership oracle to L.

29

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Thus, the generating algorithm can stabilize its support to be T := [, oy, (21,) L and never change it from this

HTAd(L)+1
point on during the interaction with the adversary. Notice that given access to a VSI membership oracle for £ the learner

can indeed sample from a distribution supported on 7" as follows: first sample a natural number 7 (e.g., from a geometric

distribution on N) and then query the VSI membership oracle with the set of elements x1,...,zq.c)+1 and the target
element 2;.'> Repeat the process until the oracle returns Yes. Notice that this process terminates with probability 1, and the
support of the induced distribution is exactly 7. O

As a final note on our discussion on stability, it is worth pointing out that there are collections that do not satisfy the weak
Angluin’s condition, nevertheless there is a stable generating algorithm that achieves infinite coverage after observing one
example from the target language. The example is due to (Charikar & Pabbaraju, 2024a).
Example E.12 (Stable Infinite Coverage =% Weak Angluin’s Condition). Define the domain X and the language collection
L as follows

X=%Z and L={Ly=272,L, ={a+i,ieN}:a€Z},

where Z is the set of integer numbers. Notice that both X and £ are countable, and each L € £ is also countable. Consider
the language L., and any finite ' C L. Let ¢7 be the smallest element of the subset I". Then, ' C L;,., L;, € L, and
|Loo \ L;,.| = co. Hence, this collection does not satisfy the weak Angluin’s condition. Consider the generating algorithm
G which in every round n outputs a distribution with supp (G,) = N\ S;, where S; is the input in round 1. It is not hard to

see that for any target language K, this generating algorithm achieves infinite coverage, and is, by definition, stable.

E.3. Generation with Increasing Coverage: A Strengthening of Stability
In this section, we introduce new property of generation — increasing coverage, which is a strengthening of stable generation.

A key observation in (Kleinberg & Mullainathan, 2024) is that their generator’s support can decrease when it sees new
strings from the target K and, in fact, for many language collections the number of valid strings omitted from its support
can grow without bound, which is an extreme form of mode collapse. In this light, one can view stability as a property
that avoids such extreme mode collapse: any stable generator can only change its support finitely many times. A natural
question is whether we can achieve something stronger than stability and, yet, more tractable than breadth. To capture this
phenomenon, we introduce the following notion of generation with strictly increasing coverage.

Definition E.13 (Generation with Strictly Increasing Coverage). Let £ be a countable collection of languages. A generating
algorithm G = (G,,) is said to have strictly increasing coverage for L in the limit if, for any K € L and enumeration of K,
there is an n* > 1 such that for all n > n*, after seeing n elements of the enumeration, the following hold

* supp (Gn) € supp (Gn+1) , and

o either supp (Gn) = K or there exists some n' > n such that supp (G,) C supp (Gn/) -

Intuitively, if a generator satisfies this property of strictly increasing coverage, then, at a high level, one may gather that it
learns something new about the target language each time it sees a new string from it.

To gain intuition about when increasing coverage is achievable, let us consider two extremes. On the one hand, it is not
hard to see that achieving approximate breadth along with strictly increasing coverage is significantly harder than achieving
approximate breadth along: This is because if a generator has approximate breadth, then after seeing sufficiently many
strings from K, its support only misses a finite number of strings from K and, then, if it further has strictly increasing
coverage, its support eventually becomes equal to K implying exact breadth which is only achievable for collections
satisfying Angluin’s condition (Theorem 3.3). On the other hand, if one is not required to have infinite coverage'® (a
requirement already weaker than any notion of breadth), then it is easy to achieve strictly increasing coverage: consider the
generator G in Proposition E.4, which achieves infinite coverage for any collection £, and post-process the algorithm to
have a support of size at most ¢ on round ¢. Since eventually G’s support has infinitely many elements (as it achieves infinite
coverage), it follows that the support of the above post-processed variant increases infinitely many times, implying that the
post-processed variant achieves strictly increasing coverage.

15To be formal, we need to use a different enumeration of the strings of X and the strings that define the target version space. We
overload the notation for simplicity.

!SFor the subsequent discussion, we use the equivalent version of the definition of infinite coverage (Definition E.3) which allows the
support of the generator to contain strings from the set .S,, which is the set of all strings enumerated so far.

30

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

Thus, the most interesting question is whether there is a generator that achieves infinite coverage — a property between
breadth and consistent generation — while also having strictly increasing coverage. Our next result shows that there are
collections for which this is indeed possible. The collection we use to show this result does not satisfy the weak Angluin’s
condition, so one cannot achieve even the weakest notion of breadth (namely, approximate breadth or equivalently exhaustive
generation) for this collection.

Proposition E.14. There exists a countable collection of languages L that does not satisfy the weak Angluin’s condition

(Definition 3.7) and for which there exists a generating algorithm G = (G,,) that can achieve infinite coverage (Definition E.3)
and has strictly increasing coverage in the limit (Definition E.13).

Proof. Consider the collection of arithmetic progressions used in Example E.12. As we discussed, this collection does not
satisfy the weak Angluin’s condition. Let S,, be the set of elements enumerated up to round n and let t,, denote the smallest
element of S,,. Then, it is immediate that the generating algorithm that outputs a distribution supported on {fm th+1,.. }
achieves infinite coverage and has strictly increasing coverage in the limit. O

We remark that the generating strategy in the above result uses information about the structure of £, and not just membership
access to it.

F. Additional Remarks and Discussion

In this section, we present additional remarks and discussions.

F.1. Separation between weak Angluin and Angluin’s condition.

In Remark F.1, we give a collection £, taken from (Charikar & Pabbaraju, 2024a), which witnesses that the above
modification of Angluin’s condition is a strict weakening of Definition 2.2.

Remark F.1 (Separation Between Definition 2.2 and Definition 3.7 (Charikar & Pabbaraju, 2024a)). We highlight that
there is a separation between the collections of languages that satisfy Definition 2.2 and Definition 3.7, which is taken
from (Charikar & Pabbaraju, 2024a). Let X = N, L; = N\ {i}, and £ = {N, Ly, Lo, ...}. Then, £ does not satisfy
Definition 2.2 but satisfies Definition 3.7. Thus, Definition 3.7 is a strictly weaker condition than Definition 2.2.

F.2. Overview of Kleinberg and Mullainathan’s Algorithm

In this section, we give a high-level description of the algorithm of Kleinberg & Mullainathan (2024). Consider some fixed
language collection £ = {L1, Lo, ...}. Now consider any enumeration the adversary gives as input to the generator. In
every round n € N, the generation algorithm of Kleinberg & Mullainathan (2024) creates a (potentially infinite) sequence of
languages L' = {L;,, L;,, ...} C £ such that the following holds:

(i) For every language L € L' it holds that L is consistent, i.e., S,, C L, where S,, is the set of elements enumerated until
round n,

(ii) For every language L;; € £'itholds that L;; C L;,,Vj’ < j.

15 =

Then, it outputs an arbitrary string = such that z ¢ S,, and = € L;,, where i, € N is the largest number such that L;, € £’
and iy < n. The main ingredient of the proof is that for all n sufficiently large the target language K will be part of L.
Moreover, languages that come after it are subsets of K. Thus, it is safe to be generating elements from these languages.

F.3. Unambiguous Generation Satisfies Uniqueness

In this section, we show that unambiguous generation satisfies the uniqueness criterion. To see this, consider any distinct
languages L # L’. Suppose a generator G unambiguously generates from L. This implies that

AL i AL .
lsupp(G)AL| < L,,eglg,,#lswp(@ |

However, setting L” = L’ implies that |supp(G)AL| < |supp(G)AL’| which shows that G does not unambiguously
generate from L’. This proves the following result.
Observation F.2. Unambiguous generation (Definition A.1) satisfies the uniqueness criterion.

31

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

F.4. Exhaustive Generation Satisfies Finite Non-Uniqueness
In this section, we show that exhaustive generation satisfies the finite non-uniqueness criterion.

Recall that in the formulation of exhaustive generation, the generating algorithm is a sequence of mappings from sequences
of the domain to enumerations of the domain. Let G(1 : co) be the set containing all the items G enumerates.

To see the claim, consider any pair of languages L and L’ that differ in infinitely many elements, i.e., | LAL’| = co. Now, if

a generator G generates exhaustively generates both L and L, then, by definition

[L\G(1:00)], [L'\G(1:o0)], [G(1:00)\L|, [G(L:00)\ L] < o0. ©)
This contradicts the fact that |[LAL’| = oo since
ILAL'] = [L\L'|+ L'\ L|
< (1) AL+ L\ G(1:00)]) + (IG(1: 00) AL+ L'\ G(1 : 00)])
< 3-(ILN G o0)[4 G(Lo0) \ LI+ L7\ G(1:00)] +]G(1:00) \ L))

NG

oo .

Observation F.3. Exhaustive generation (Definition A.2) satisfies the finite non-uniqueness criterion.

Remark F.4 (Exhaustive Generation Does Not Satisfy the Uniqueness Criterion). Note that the above proof can be made
constructing — there is a generator which generates exhaustively from both L and L’ provided L and L’ differ in finitely
many elements. This implies that exhaustive generation does not satisfy the uniqueness criteria.

G. Formal Definition of Language Identification in the Limit
In this section, we provide the formal definition of language identification in the limit.

For a fixed collection £, an adversary and an identifier play the following game: The adversary chooses a language K from
L without revealing it to the identifier, and it begins enumerating the strings of K (potentially with repetitions) z1, 2, . ..
over a sequence of time steps n = 1,2, 3, The adversary can repeat strings in its enumeration, but the crucial point is
that for every string € K, there must be at least one time step n at which it appears. At each time n, the identification
algorithm 1, given the previous examples z1, xs, . . . , T, outputs an index i,, that corresponds to its guess for the index of
the true language K. Language identification in the limit is then defined as follows.

Definition G.1 (Language Identification in the Limit (Gold, 1967)). Fix some K from the language collection L =
{L1, Lo, ...}. The identification algorithm I = (I,,) identifies K in the limit if there is some n* € N such that for all steps
n > n*, the identifier’s guess iy, satisfies i, = in_1 and L; = K. The language collection £ is identifiable in the limit if
there is an identifier that identifies in the limit any K € L, for any enumeration of K. In this case, we say that the identifier
identifies the collection L in the limit.

It is important to note that the above definition imposes some stability to the algorithm: since there can be multiple
appearances of K in the enumeration of £, an algorithm identifies K in the limit only if it eventually stabilizes (i.e.,
in = i,—1 for n larger than some n*) to a correct index (i.e., L, = K). A natural question is which collections of
languages are identifiable in the limit. Angluin (Angluin, 1980) provided a condition that characterizes such collections (see
Definition 2.2).

Theorem G.2 (Characterization of Identification in the Limit (Angluin, 1980)). The following holds for any countable
collection of languages L.

1. L is identifiable in the limit if it satisfies Angluin’s condition and one has access to the tell-tale oracle.

2. If there is an algorithm that identifies L in the limit, then Angluin’s condition is true and the tell-tale oracle can be
implemented.

The above tight characterization shows that language identification is information-theoretically impossible even for simple
collections of languages, such as the collection of all regular languages. Crucially, access to the tell-tale oracle is necessary
for identification in the limit (its existence alone is not sufficient) (Angluin, 1980).

32

On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability

G.1. Representation of Generators

Remark G.3 (Representation of the Generators). The astute reader might observe that the previous definitions allow for
generating algorithms that output infinite-sized objects. However, all our generating algorithms have succinct representations
and this allows for computable algorithms that sample (i.e., generate) a new element, enumerate the support of all generatable
elements, and, given an element, decide whether it belongs to the support (i.e., whether it is part of the enumeration). On the
other hand, our lower bounds are stronger, they hold for functions that might not be computable.

G.2. Membership Oracle Problem

In this section, we define the Membership Oracle Problem (MOP), which is required for the impossibility results of
(Kalavasis et al., 2025), but not required for the characterizations in our work. For more details, we refer to Definitions 5
and 6 in (Kalavasis et al., 2025).

Definition G.4 (Membership Oracle Problem (Kalavasis et al., 2025)). Given a generator G, the membership oracle problem
for G, denoted as MOP(G), is defined as follows: given the description of G and a string x, output Yes if x € supp(G) and
output No otherwise.

H. Detailed Related Work

Since the work of (Kleinberg & Mullainathan, 2024), a growing line of research has explored various aspects of language
generation with and without breadth (e.g., (Li et al., 2024; Kalavasis et al., 2025; Charikar & Pabbaraju, 2024a; Raman &
Raman, 2025)). We already overview the work studying generation with breadth in the main body (Section 1.2). Here, we
discuss the other lines of work and present a map between the results of (Charikar & Pabbaraju, 2024b) and some of our
results.

Other Directions in Language Generation. Beyond breadth, recent work has explored other aspects of language
generation. Li, Raman, and Tewari (2024) studied language generation with uncountable collections and analyzed sample
complexity for generation. Raman & Raman (2025) investigated language generation in a model where an adversary
can introduce errors in the inputs, developing a robust framework for noisy settings. (Karbasi et al., 2025) explored the
complexity of determining if a specific generator G is hallucinating.

Comparison to (Charikar & Pabbaraju, 2024b). See Section 1.2 for a timeline of the works Charikar & Pabbaraju
(2024a), Charikar & Pabbaraju (2024b), and the present work. In the following, we map the relevant results of Charikar &
Pabbaraju (2024b) to some of our results.

¢ Characterization of Generation with Exact Breadth: Their result showing that Weak Angluin’s Condition with
Existence (Proposition 6.1 in their work) is necessary for exhaustive generation is comparable to the lower bound
for exhaustive generation in Theorem A.3. Their result showing the sufficiency of Weak Angluin’s Condition with
Existence (Proposition 6.2 in their work) for exhaustive generation is comparable to the upper bound for exhaustive
generation in Lemma C.5. Their result showing the sufficiency of Weak Angluin’s Condition with Enumeration
(Proposition 6.2 in their work) for exhaustive generation with only membership queries is comparable to Lemma C.7.

¢ Characterization of Exhaustive Generation: Their result showing that Angluin’s Condition is necessary for generation
with exact breadth (Proposition 5.3 in their work) is comparable to the upper bound in Theorem 3.3.

Finally, as mentioned in Section 1.2, our work provides several additional contributions for existing notions of
breadth/stability beyond these shared results (see Sections 3.1 to 3.2 and Remarks 3.6, 3.11 and 3.12). Further, our
work also introduces new notions of breadth/stability and provides results for them (see Appendices A.4, A.5 and E).

33

