OPTIMIZING BACKWARD POLICIES IN GFLOWNETS VIA TRAJECTORY LIKELIHOOD MAXIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) are a family of generative models that learn to sample objects with probabilities proportional to a given reward function. The key concept behind GFlowNets is the use of two stochastic policies: a forward policy, which incrementally constructs compositional objects, and a backward policy, which sequentially deconstructs them. Recent results show a close relationship between GFlowNet training and entropy-regularized reinforcement learning (RL) problems with a particular reward design. However, this connection applies only in the setting of a fixed backward policy, which might be a significant limitation. As a remedy to this problem, we introduce a simple backward policy optimization algorithm that involves direct maximization of the value function in an entropy-regularized Markov Decision Process (MDP) over intermediate rewards. We provide an extensive experimental evaluation of the proposed approach across various benchmarks in combination with both RL and GFlowNet algorithms and demonstrate its faster convergence and mode discovery in complex environments.

1 Introduction

Generative Flow Networks (GFlowNets, Bengio et al., 2021) are models designed to sample compositional discrete objects, such as graphs, from distributions defined by unnormalized probability mass functions. They operate by constructing an object through a sequence of stochastic transitions defined by a *forward policy*. This policy is trained to match the marginal distribution over constructed objects with the target distribution of interest. Since this marginal distribution is generally intractable, an auxiliary *backward policy* is introduced, and a problem is reduced to the one of matching distributions over complete trajectories, bearing similarities with variational inference (Malkin et al., 2023).

GFlowNets have found success in various areas, such as biological sequence design (Jain et al., 2022), molecular optimization (Zhu et al., 2024), recommender systems (Liu et al., 2024), large language model (LLM) and diffusion model fine-tuning (Hu et al., 2023; Venkatraman et al., 2024; Uehara et al., 2024), neural architecture search (Chen & Mauch, 2023), combinatorial optimization (Zhang et al., 2023), and causal discovery (Atanackovic et al., 2024).

Theoretical foundations of GFlowNets have been laid out in seminal works of Bengio et al. (2021; 2023). Most of the literature has since focused on practical applications of these models, so their theoretical properties have remained largely unexplored, except for a few examples (Krichel et al., 2024; Silva et al., 2024). However, a recent line of works has brought attention to connections between GFlowNets and reinforcement learning (Tiapkin et al., 2024; Mohammadpour et al., 2024; Deleu et al., 2024; He et al., 2024a), showing that the GFlowNet learning problem is equivalent to a specific RL problem with entropy regularization (also called soft RL, Neu et al. (2017); Geist et al. (2019)). This opened a new perspective for understanding GFlowNets. The importance of these findings is supported by empirical evidence, as various RL algorithms have proven useful for improving GFlowNets (Tiapkin et al., 2024; Lau et al., 2024; Morozov et al., 2024).

However, these connections still carry a limitation related to GFlowNet backward policies. While GFlowNets can be trained with a fixed backward policy, standard GFlowNet algorithms allow to train the backward policy together with the forward policy (Bengio et al., 2023; Malkin et al., 2022; Madan et al., 2023), resulting in faster convergence of the optimization process. Other algorithms for optimizing backward policies have been proposed in the literature as well (Mohammadpour et al., 2024; Jang et al., 2024), showing benefits for GFlowNet performance. The theory connecting

GFlowNets and entropy-regularized RL is based on using the backward policy to add a "correction" to GFlowNet rewards and shows the equivalence between two problems only when the backward policy is fixed. Thus, understanding the backward policy optimization remains a missing piece of this puzzle. Moreover, Tiapkin et al. (2024) demonstrated that this theoretical gap has practical relevance, as optimizing the backward policy using the same RL objective as the forward policy can either fail to improve or even slow down convergence, highlighting the need for a more refined approach.

In this study, we introduce *the trajectory likelihood maximization* (TLM) approach for backward policy optimization, which can be integrated with any existing GFlowNet method, including entropy-regularized RL approaches.

To develop this method, we first formulate the GFlowNet training problem as a unified objective involving both forward and backward policies. We then propose an alternating minimization procedure consisting of two steps: (1) maximizing the backward policy likelihood of trajectories sampled from the forward policy and (2) optimizing the forward policy within an entropy-regularized Markov decision process that corresponds to the updated backward policy. The latter step can be achieved by any existing GFlowNet or soft RL algorithm, as it was outlined by Deleu et al. (2024). By approximating these two steps through a single stochastic gradient update, we derive an adaptive approach for combining backward policy optimization with any GFlowNet method, *including soft RL methods*.

Our main contributions are as follows:

- We derive the trajectory likelihood maximization (TLM) method for backward policy optimization;
- The proposed method represents the first unified approach for adaptive backward policy optimization in soft RL-based GFlowNet methods. The method is easy to implement and can be integrated with any existing GFlowNet training algorithm.
- We provide extensive experimental evaluation of TLM in four tasks, confirming the findings of Mohammadpour et al. (2024), which emphasize the benefits of training the backward policy in complex environment with less structure.

2 BACKGROUND

2.1 GFLOWNETS

We aim at sampling from a probability distribution over a finite discrete space \mathcal{X} that is given as an unnormalized probability mass function $\mathcal{R} \colon \mathcal{X} \to \mathbb{R}_{\geq 0}$, which we call the *GFlowNet reward*. We denote $Z = \sum_{x \in \mathcal{X}} \mathcal{R}(x)$ to be an (unknown) normalizing constant.

To formally define a generation process in GFlowNets, we introduce a directed acyclic graph (DAG) $\mathcal{G}=(\mathcal{S},\mathcal{E})$, where \mathcal{S} is a state space and $\mathcal{E}\subseteq\mathcal{S}\times\mathcal{S}$ is a set of edges (or transitions). There is exactly one state, s_0 , with no incoming edges, which we refer to as the *initial state*. All other states can be reached from s_0 , and the set of *terminal states* with no outgoing edges coincides with the space of interest \mathcal{X} . Non-terminal states $s\notin\mathcal{X}$ correspond to "incomplete" objects, and edges $s\to s'$ represent adding "new components" to such objects, transforming s into s'. Let \mathcal{T} denote the set of all complete trajectories $\tau=(s_0,s_1,\ldots,s_{n_\tau})$ in the graph, where τ is a sequence of states such that $(s_i\to s_{i+1})\in\mathcal{E}$ and that starts at s_0 and finishes at some terminal state $s_{n_\tau}\in\mathcal{X}$. As a result, any complete trajectory can be viewed as a sequence of actions that constructs the object corresponding to s_{n_τ} starting from the "empty object" s_0 .

We say that a state s' is a child of a state s, if there is an edge $(s \to s') \in \mathcal{E}$. In this case we also say that s is a parent of s'. Next, for any state s, we introduce the *forward policy*, denoted by $\mathcal{P}_{F}(s'|s)$ for $(s \to s') \in \mathcal{E}$, as an arbitrary probability distribution over the set of children of the state s. In a similar fashion, we define the *backward policy* as an arbitrary probability distribution over the parents of a state s and denote it as $\mathcal{P}_{B}(s'|s)$, where $(s' \to s) \in \mathcal{E}$.

Given these two definitions, the main goal of GFlowNet training is a search for a pair of policies such that the induced distributions over complete trajectories in the forward and backward directions coincide:

$$\prod_{t=1}^{n_{\tau}} \mathcal{P}_{F}(s_{t} \mid s_{t-1}) = \frac{\mathcal{R}(s_{n_{\tau}})}{Z} \prod_{t=1}^{n_{\tau}} \mathcal{P}_{B}(s_{t-1} \mid s_{t}), \quad \forall \tau \in \mathcal{T}.$$

$$(1)$$

The relation (1) is known as the *trajectory balance constraint* (Malkin et al., 2022). We refer to the left and right-hand sides of (1) as to the forward and backward trajectory distributions and denote them as

$$\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}}(\tau) := \prod_{i=1}^{n_{\tau}} \mathcal{P}_{\mathrm{F}}(s_{i}|s_{i-1}), \qquad \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}}(\tau) := \frac{\mathcal{R}(s_{n_{\tau}})}{Z} \cdot \prod_{i=1}^{n_{\tau}} \mathcal{P}_{\mathrm{B}}(s_{i-1}|s_{i}), \tag{2}$$

where $\tau = (s_0, s_1, \dots, s_{n_\tau}) \in \mathcal{T}$. If the condition (1) is satisfied for all complete trajectories, sampling a trajectory in the forward direction using \mathcal{P}_F will result in a terminal state being sampled with probability $\mathcal{R}(x)/Z$.

In practice, we train a model (usually a neural network) that parameterizes the forward policy (and possibly other auxiliary functions) to minimize an objective function that enforces the constraint (1) or its equivalent. The main existing objectives are *Trajectory Balance* (TB, Malkin et al., 2022), *Detailed Balance* (DB, Bengio et al., 2023) and *Subtrajectory Balance* (SubTB, Madan et al., 2023). The SubTB objective is defined as

$$\mathcal{L}_{\text{SubTB}}(\theta; \tau) = \sum_{0 \le j < k \le n_{\tau}} w_{jk} \left(\log \frac{F_{\theta}(s_j) \prod_{t=j+1}^{k} \mathcal{P}_{F}(s_t | s_{t-1}, \theta)}{F_{\theta}(s_k) \prod_{t=j+1}^{k} \mathcal{P}_{B}(s_{t-1} | s_{t, \theta})} \right)^2, \tag{3}$$

where $F_{\theta}(s)$ is a neural network that approximates the *flow* function of the state s, see (Bengio et al., 2023; Madan et al., 2023) for more details on the flow-based formalization of the GFlowNet problem. Here $F_{\theta}(s)$ is substituted with $\mathcal{R}(s)$ for terminal states s, and w_{jk} is usually taken to be λ^{k-j} and then normalized to sum to 1. TB and DB objectives can be viewed as special cases of (3), which are obtained by only taking the term corresponding to the full trajectory or individual transitions, respectively. All objectives allow either training the model in an on-policy regime using the trajectories sampled from \mathcal{P}_F or in an off-policy mode using the replay buffer or some exploration techniques. In addition, it is possible to either optimize \mathcal{P}_B along with \mathcal{P}_F or to use a fixed \mathcal{P}_B , e.g., the uniform distribution over parents of each state. One can show that given any fixed \mathcal{P}_B , there exists a unique \mathcal{P}_F that satisfies (1); see, e.g., (Malkin et al., 2022).

2.2 GFLOWNETS AS SOFT RL

In reinforcement learning (Sutton & Barto, 2018), a typical performance measure of an agent is a *value function*, that is defined as an expected discounted sum of rewards when acting via a given policy. Entropy-regularized RL (or soft RL, Neu et al. 2017; Geist et al. 2019; Haarnoja et al. 2017) adds Shannon entropy \mathcal{H} to the value function definition, promoting the optimal policy to be more exploratory:

$$V_{\lambda}^{\mathcal{P}_{F}}(s;r) \triangleq \mathbb{E}_{\mathcal{P}_{F}} \left[\sum_{t=0}^{\infty} \gamma^{t} (r(s_{t}, a_{t}) + \lambda \mathcal{H}(\mathcal{P}_{F}(\cdot|s_{t}))) | s_{0} = s \right], \tag{4}$$

where $\lambda \geq 0$ is a regularization coefficient. Similarly, regularized Q-values $Q_{\lambda}^{\mathcal{P}_{F}}(s,a)$ are defined as an expected (discounted) sum of rewards augmented by Shannon entropy given a fixed state $s_{0} = s$ and action $a_{0} = a$. A regularized optimal policy $\mathcal{P}_{F,\lambda}^{\star}$ is a policy that maximizes $V_{\lambda}^{\mathcal{P}_{F}}(s)$ for any state s.

Note. In usual RL notation, policy is denoted as π . We opt for using \mathcal{P}_F as in GFlowNets to avoid cluttering notation.

It was proven by Tiapkin et al. (2024) that the problem of training GFlowNet \mathcal{P}_F given a fixed \mathcal{P}_B can be formulated as a soft RL task. GFlowNet DAG \mathcal{G} is transformed into a deterministic MDP, where states coincide with DAG states and actions correspond to DAG edges (transitions). For transitions $s \to x$ that lead to terminal states, RL rewards are defined as $r^{\mathcal{P}_B}(s,x) = \log \mathcal{P}_B(s \mid x) + \log \mathcal{R}(x)$, and for intermediate transitions $s \to s'$ they are defined as $r^{\mathcal{P}_B}(s,s') = \log \mathcal{P}_B(s \mid s')$. Then, by taking $\lambda = 1$ and $\gamma = 1$, one can show that the optimal policy $\mathcal{P}_{F,\lambda=1}(\cdot \mid s)$ in this regularized MDP coincides with a unique GFlowNet forward policy $\mathcal{P}_F(\cdot \mid s)$ that is defined by \mathcal{P}_B and \mathcal{R} (Theorem 1, Tiapkin et al., 2024).

In addition, Proposition 1 of Tiapkin et al. (2024) provides a connection between the corresponding regularized value function at the initial state s_0 for any forward policy \mathcal{P}_F and KL-divergence between the induced trajectory distributions:

$$V_{\lambda=1}^{\mathcal{P}_{\mathrm{F}}}(s_0; r^{\mathcal{P}_{\mathrm{B}}}) = \log \mathrm{Z} - \mathrm{KL}(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}} || \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}}).$$

The main practical corollary of this result is the fact that any RL algorithm that works with entropy regularization can be utilized to train GFlowNets when \mathcal{P}_B is fixed. For example, Tiapkin et al. (2024) demonstrated the efficiency of the classical SoftDQN algorithm (Haarnoja et al., 2017) and its modified variant called MunchausenDQN (Vieillard et al., 2020). Moreover, it turns out that, under this framework, the existing GFlowNet training algorithms can be derived from existing RL algorithms. Tiapkin et al. (2024) showed the on-policy TB corresponds to policy gradient algorithms, as well as DB corresponds to a dueling variant of SoftDQN. At the same time, Deleu et al. (2024) showed that TB, DB and SubTB algorithms can be derived from path consistency learning (PCL, Nachum et al., 2017) under the assumption of a fixed backward policy.

2.3 BACKWARD POLICIES IN GFLOWNETS

The idea of backward policy optimization is an essential element of understanding the GFlowNets training procedure. In particular, the most straightforward approach used in GFlowNet literature Malkin et al. (2022); Bengio et al. (2023) proposes to optimize the forward and backward policies directly through the same GFlowNet objective (e.g., (3)). This approach can accelerate the speed of convergence Malkin et al. (2022), at the same time potentially leading to less stable training Zhang et al. (2022).

This phenomenon motivates studying the backward policy optimization in the recent works Mohammadpour et al. (2024) and Jang et al. (2024). Mohammadpour et al. (2024) suggested using the backward policy with maximum possible trajectory entropy, thus focusing on the *exploration* challenges of GFlowNets. Such policy is proven to be $\mathcal{P}_{\rm B}(s\mid s')=n(s)/n(s')$, where n(s) is the number of trajectories which starts at s_0 and end at s. It corresponds to the uniform one if the number of paths to all parent nodes is equal. When n(s) cannot be computed analytically, Mohammadpour et al. (2024) propose to learn $\log n(s)$, $s \in \mathcal{S}$ alongside the forward policy using its relation to the value function of the soft Bellman equation in the *inverted MDP* (see Definition 2 in Mohammadpour et al. (2024)). Mohammadpour et al. (2024) utilize RL as a tool to find the maximum entropy backward policy and make the connection to RL solely for such policies. In contrast, our work theoretically considers the simultaneous optimization of the forward and the backward policy from the RL perspective, and develops an optimization algorithm grounded in it.

The approach of Mohammadpour et al. (2024) showed consistently better results in less structured tasks, like QM9 generation (see Section 4.3 for a detailed description). At the same time, more structured environments with a less challenging exploration counterpart do not show advances of the proposed backward training approach.

At the same time, Jang et al. (2024) claim that the existing GFlowNets training procedures tend to under-exploit the high-reward objects and propose a Pessimistic Backward Policy approach. Thus, the primary aim of Jang et al. (2024) is to focus on the *exploitation* of the current information about high-reward trajectories. Towards this aim, they focus on maximizing the observed backward flow $P_{\mathcal{T}}^{\mathcal{P}_B}(\tau)$ (see (2)) for trajectories leading to high-reward objects. Unfortunately, Jang et al. (2024) do not provide enough specific details about choosing/sampling trajectories that are stored in their replay buffer, which limits the reproducibility of the results.

As an additional limitation of both Mohammadpour et al. (2024) and Jang et al. (2024), we mention the fact that only a single GFlowNet training objective is used in both papers (SubTB and TB respectively) to evaluate approaches for backward policy optimization, while we carry out experimental evaluation with various GFlowNet training objectives.

3 Trajectory Likelihood Maximization

The objective of our method is to formalize the optimization process for the backward policy for reinforcement learning-based approaches. It is worth mentioning that soft RL methods cannot address the changing of the reward function, except for reward shaping schemes (Ng et al., 1999) that preserve the total reward of any trajectory. Therefore, we need to return to the underlying GFlowNet problem. Let us look at the following optimization problem:

$$\min_{\mathcal{P}_{F} \in \Pi_{F}, \mathcal{P}_{B} \in \Pi_{B}} KL(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{F}} \| \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{B}}), \tag{5}$$

where Π_F and Π_B represent the spaces of forward and backward policies, respectively, and $P_T^{\mathcal{P}_F}$ and $P_T^{\mathcal{P}_B}$ are defined in (2). It is easy to see that any solution to the problem (5) satisfies the trajectory

217

218

219

220

221

222

223

224 225

226

227 228

229 230

231

232

233

234 235

236

237

238

239 240

241

242

243

244 245

246

247

248

249 250

251

252

253

254

255

256

257

258 259

260

261

262

263

264

265 266

267 268 balance constraint (1) and thus induces a valid GFlowNet sampling policy. Additionally, it is worth mentioning that for any fixed $\mathcal{P}_{\rm B}$ the problem (5) is equivalent to maximizing value

$$V_{\lambda=1}^{\mathcal{P}_{\mathrm{F}}}(s_0; r^{\mathcal{P}_{\mathrm{B}}}) = \log \mathrm{Z} - \mathrm{KL}(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}} || \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}})$$

over $\mathcal{P}_F \in \Pi_F$ in an entropy-regularized MDP, as established in Tiapkin et al. (2024, Proposition 1). Thus, the joint optimization resembles the RL formulation with non-stationary rewards. To leverage the problem's block structure, we propose a meta-algorithm consisting of two iterative steps, repeated until convergence:

$$\mathcal{P}_{\mathrm{B}}^{t+1} \approx \arg\min_{\mathcal{P}_{\mathrm{B}}} \mathrm{KL}\left(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{t}} \middle\| \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}}\right), \qquad \mathcal{P}_{\mathrm{F}}^{t+1} \approx \arg\min_{\mathcal{P}_{\mathrm{F}}} \mathrm{KL}\left(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}} \middle\| \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{t+1}}\right). \tag{6}$$

It is worth noting that if these optimization problems are solved exactly, the algorithm converges after the first iteration. This occurs because, for every fixed backward policy \mathcal{P}_{B} , there is a unique forward policy \mathcal{P}_F , such that $\mathsf{P}_\mathcal{T}^{\mathcal{P}_F} = \mathsf{P}_\mathcal{T}^{\mathcal{P}_B}$, see, e.g., (Malkin et al., 2022), ensuring that the loss function reaches its global minimum. In the following sections, we provide implementation details on approximating these two steps.

First Step: Trajectory Likelihood Maximization. Using the connection between forward KL divergence minimization and maximum likelihood estimation (MLE), we formulate the following trajectory likelihood maximization objective:

$$\theta_{\mathrm{B}}^{t+1} \approx \arg\min_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_{\mathrm{D}}^{t}} [\mathcal{L}_{\mathrm{TLM}}(\theta; \tau)], \qquad \mathcal{L}_{\mathrm{TLM}}(\theta; \tau) := -\sum_{i=1}^{n_{\tau}} \log \mathcal{P}_{\mathrm{B}}(s_{i-1}|s_{i}, \theta).$$
 (7)

 $\theta_{\rm B}^{t+1} \approx \arg\min_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_{\rm F}^t}[\mathcal{L}_{\rm TLM}(\theta;\tau)], \qquad \mathcal{L}_{\rm TLM}(\theta;\tau) := -\sum_{i=1}^{n_\tau} \log \mathcal{P}_{\rm B}(s_{i-1}|s_i,\theta) \,. \tag{7}$ In this formulation, $\tau = (s_0, s_1, \ldots, s_{n_\tau})$ denotes a trajectory generated by the forward policy $\mathcal{P}_{\mathrm{F}}^{t}$. This step seeks to update the backward policy by minimizing the negative log-likelihood of trajectories generated from the forward policy. Additionally, instead of solving (7) for exact arg min for every t, we perform one stochastic gradient update

$$\theta_{\mathrm{B}}^{t+1} = \theta_{\mathrm{B}}^{t} - \gamma \nabla_{\theta} \mathcal{L}_{\mathtt{TLM}}(\theta_{\mathrm{B}}^{t}; \tau)$$
.

Second Step: Non-Stationary Soft RL Problem. To approximate the second step of (6), we exploit the equivalence between the GFlowNet framework and the entropy-regularized RL problem. This leads to the following expression:

$$\mathcal{P}_{\mathbf{F}}^{t+1} \approx \arg\min_{\mathcal{P}_{\mathbf{F}} \in \Pi_{\mathbf{F}}} \mathrm{KL}\left(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathbf{B}}^{t}} \middle\| \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathbf{B}}^{t+1}}\right) \iff \mathcal{P}_{\mathbf{F}}^{t+1} \approx \arg\max_{\mathcal{P}_{\mathbf{F}} \in \Pi_{\mathbf{F}}} V_{\lambda=1}^{\mathcal{P}_{\mathbf{F}}}\left(s_{0}; r^{\mathcal{P}_{\mathbf{B}}^{t+1}}\right), \tag{8}$$

where $r^{\mathcal{P}_B}$ is the RL reward function corresponding to the backward policy \mathcal{P}_B . This step can be solved using any soft RL method, such as SoftDQN (Haarnoja et al., 2018). Additionally, it is noteworthy that all existing GFlowNet algorithms with a fixed backward policy can be viewed as variations of existing RL methods, see, e.g., (Deleu et al., 2024). Thus, they can be used to solve the optimization problem in (8).

To mitigate the computational overhead of searching for exact arg min in (8), we also propose to perform a single stochastic gradient update in the corresponding GFlowNet training algorithm

$$\theta_{\mathrm{F}}^{t+1} = \theta_{\mathrm{F}}^{t} - \eta \nabla_{\theta} \mathcal{L}_{\mathtt{Alg}}(\theta_{\mathrm{F}}^{t}; \tau, \mathcal{P}_{\mathrm{B}}^{t+1}),$$

where $\mathcal{L}_{\mathtt{Alg}}$ represents the loss function associated with a GFlowNet or soft RL method, such as SubTB or SoftDQN. Here, τ denotes a (possibly off-policy) trajectory.

The complete procedure can be interpreted as a soft RL method with changing rewards. Our suggested method is summarized in Algorithm 1 and can be paired with any GFlowNet training method Alg (e.g., DB, TB, SubTB, or SoftDQN).

Algorithm 1 Trajectory Likelihood Maximization

- 1: **Input:** Forward and backward parameters $\theta_{\rm F}^1$, $\theta_{\rm B}^1$, any GFlowNet loss function $\mathcal{L}_{\rm Alg}$, (optional) experience replay buffer \mathcal{B} ;
- 2: for t = 1 to N_{iters} do
- Sample a batch of trajectories $\{\tau_k^{(t)}\}_{k=1}^K$ from the forward policy $\mathcal{P}_F(\cdot|\cdot,\theta_F^t)$;
- (optional) Update \mathcal{B} with $\{\tau_k^{(t)}\}_{k=1}^K$; Update $\theta_{\mathrm{B}}^{t+1} = \theta_{\mathrm{B}}^t \gamma_t \cdot \frac{1}{K} \sum_{k=1}^K \nabla \mathcal{L}_{\mathtt{TLM}}(\theta_{\mathrm{B}}^t; \tau_k^{(t)})$, see (7);
- (optional) Resample a batch of trajectories $\{\tau_k^{(t)}\}_{k=1}^K$ from \mathcal{B} ; Update $\theta_{\mathrm{F}}^{t+1} = \theta_{\mathrm{F}}^t \eta_t \cdot \frac{1}{K} \sum_{k=1}^K \nabla \mathcal{L}_{\mathtt{Alg}}(\theta_{\mathrm{F}}^t; \tau_k^{(t)}, \mathcal{P}_{\mathtt{B}}(\cdot|\cdot, \theta_{\mathtt{B}}^{t+1}));$ 7:
- 8: end for

Convergence of the method In the following, we show why this method indeed solves the GFlowNet learning problem. First, we introduce a *non-stationary soft reinforcement learning problem* of minimizing the worst-case dynamic average regret

$$\overline{\mathfrak{R}}^{T} := \frac{1}{T} \sum_{t=1}^{T} V_{\lambda=1}^{\mathcal{P}_{F}^{\star}}(s_{0}; r^{t}) - V_{\lambda=1}^{\mathcal{P}_{F}^{t}}(s_{0}; r^{t}),$$
(9)

where $\{r^t\}_{t\in[T]}$ is a sequence of reward functions, and r^t is revealed to a learner before selecting a policy $\mathcal{P}_{\mathrm{F}}^t$. Following Zahavy et al. (2021), we conjecture that existing RL algorithms are adaptive to the setting of known but non-stationary reward sequences. The implementation of Sampler player of EntGame algorithm by Tiapkin et al. (2023) is an example of such a regret minimization algorithm. Additionally, we notice that the optimization of dynamic regret is well-studied in the online learning literature, even in a more challenging setting of revealing the corresponding reward function *after* playing a policy (Zinkevich, 2003; Besbes et al., 2015).

Next, we provide the convergence result for our two-step procedure, using a stability argument for the first step. The proof is given in Appendix A.1.

Theorem 3.1. Assume that (1) the backward updates are stable: $\sup_{t\geq 0} \|\mathcal{P}_{\mathrm{B}}^T - \mathcal{P}_{\mathrm{B}}^{T+t}\|_1 \to 0$ as $T \to \infty$, and (2) the forward updates are given by non-stationary regret minimization algorithm: $\overline{\mathfrak{R}}^T \to 0$ as $T \to \infty$. Then there exists a valid GFlowNet sampling policy $\mathcal{P}_{\mathrm{F}}^{\star}$ such that $\frac{1}{T} \sum_{t=1}^{T} \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{t}} \to \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{\star}}$.

During numerical experiments, we observed that enforcing stability in backward updates, in particular by using a decaying learning rate, significantly improves convergence in practice. Furthermore, as the theorem shows, this stability is essential for theoretical convergence. We discuss stability techniques that we utilize alongside our algorithm in Appendix A.2.

Discussion. We underline our approach's similarity with a celebrated EM-algorithm (Dempster et al., 1977) and Hinton's Wake-Sleep algorithm (Hinton et al., 1995). Both these methods also attempt to address the minimization problem using the block structure and alternating minimization approaches. Additionally, our approach can be connected to cooperative game theory. Indeed, one may interpret \mathcal{P}_F as a Forward player and \mathcal{P}_B as a Backward player, and both players attempt to minimize KL-divergence between corresponding trajectory distributions.

4 EXPERIMENTS

We carry out experimental evaluation on hypergrid (Bengio et al., 2021) and bit sequence (Malkin et al., 2022) environments, as well as two molecule design environments: sEH (Bengio et al., 2021) and QM9 (Jain et al., 2023). For additional experimental details and hyperparameter choices, we refer the reader to Appendix A.3.

We use 4 GFlowNet training methods for evaluation: MunchausenDQN (following the framework of Tiapkin et al. (2024)), DB (Bengio et al., 2023), TB (Malkin et al., 2022), and SubTB (Madan et al., 2023), which we will further refer to as *GFlowNet algorithms* (referred to as \mathcal{L}_{Alg} in the previous section). On hypergrids, we additionally provide results for SoftDQN (Tiapkin et al., 2024). In combination with them, we consider 4 strategies for learning/choosing the backward policy:

- our approach (TLM);
- fixed uniform backward (uniform);
- learning backward simultaneously with the \mathcal{P}_F via the same objective (naive);
- maximum entropy (maxent, Mohammadpour et al., 2024).

We will further refer to them as *backward approaches*. In this section, we denote a distribution induced by a forward policy \mathcal{P}_F over the terminal states as $P_{\theta}(x)$ for $x \in \mathcal{X}$, which corresponds to the probability of sampling x from our GFlowNet.

4.1 HYPERGRID

We start experiments with synthetic hypergrid environments introduced by Bengio et al. (2021). These environments are sufficiently small to compute target distribution in the closed form, allowing us to directly examine the convergence of $P_{\theta}(x)$ to $\mathcal{R}(x)/Z$.

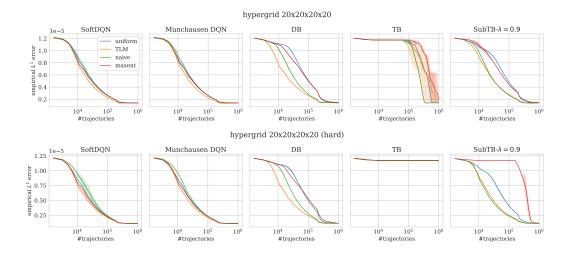


Figure 1: L^1 distance between target and empirical sample distributions over the course of training on the standard (**top row**) and hard (**bottom row**) hypergrid environments for each method. Lower values indicate better performance.

The environment is a d-dimensional hypercube with a side length equal to H. The state space is represented as d-dimensional vectors $(s_1,\ldots,s_d)^{\mathsf{T}}\in\{0,\ldots,H-1\}^d$ with the initial state being $(0,\ldots,0)^{\mathsf{T}}$. For each state (s_1,\ldots,s_{d-1}) , there are at most d+1 actions. The first action always corresponds to an exit action that transfers the state to its terminal copy, and the rest of d actions correspond to incrementing one coordinate by 1 without leaving the grid. The number of terminal states here is $|\mathcal{X}|=H^d$. There are 2^d regions with high rewards near the corners of the grid, while states outside have much lower rewards. The exact expression for the rewards is given in Appendix A.3.2.

We explore environments with the reward parameters taken from Malkin et al. (2022), referred to as "standard case", and with the reward parameters from Madan et al. (2023), referred to as a "hard case". In the second case, background rewards are lower, which makes mode exploration more challenging. We conduct experiments on a 4-dimensional hypercube with a side length of 20. As an evaluation metric, we use L^1 distance between the true reward distribution and the empirical distribution of the last $2 \cdot 10^5$ terminal states sampled during training.

Figure 1 presents the results. For SoftDQN, MunchausenDQN, and DB, TLM shows the fastest convergence for both "standard" and "hard" reward designs. For the SubTB algorithm, TLM shows similar performance to naive and outperforms uniform and maxent. TB is known to have difficulties in this environment (Madan et al., 2023), all approaches fail to converge under the "hard" reward design. At the same time, with the "standard" one, naive backward shows the best convergence. An important note is that our results reproduce the findings of Tiapkin et al. (2024): for SoftDQN and MunchausenDQN training with uniform backward converges faster than with naive algorithm, while TLM shows stable improvement over uniform. The results and the ranking of algorithms are almost the same for SoftDQN and MunchausenDQN, so we leave only MunchausenDQN out of two for further experiments.

4.2 BIT SEQUENCES

In this section, we consider the bit sequence generation task introduced by Malkin et al. (2022). Following the experimental setup of (Tiapkin et al., 2024), we modify the state and action spaces to create a non-tree DAG structure, similar to the approach introduced in Zhang et al. (2022).

This task is to generate binary sequences of a fixed length n, using a vocabulary of k-bit blocks. The state space of this environment corresponds to sequences of n/k words, and each word in these sequences is either an empty word \oslash or one of 2^k possible k-bit words. The initial state s_0 corresponds to a sequence of empty words. The possible actions in each state are to replace an existing empty word \oslash with one of 2^k non-empty words in the vocabulary. The set of terminal states

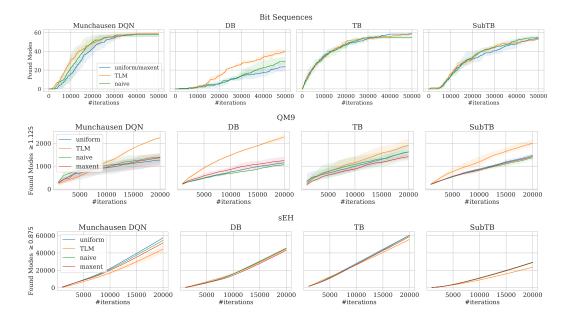


Figure 2: **Top row:** Bit Sequences, the number of discovered modes out of total 60 modes for different methods with learning rate 10^{-3} . **Center row:** QM9, the number of Tanimoto-separated modes with reward higher or equal to 1.125 for different methods with learning rate $5 \cdot 10^{-4}$. **Bottom row:** sEH, the number of Tanimoto-separated modes with reward higher or equal to 0.875 for different methods with learning rate $5 \cdot 10^{-4}$. *Higher values indicate better performance*.

 \mathcal{X} consists of sequences without empty words and correspond to binary strings of length n. The reward function is defined as $\mathcal{R}(x) = \exp(-2 \cdot \min_{x' \in \mathcal{M}} d(x, x'))$, where \mathcal{M} is a set of modes and d is Hamming distance. We fix n = 120 and k = 8 for our experiments. The terminal state space size is $|\mathcal{X}| = 2^{120}$. Importantly, for this environment, the uniform backward coincides with maxent, see Proposition 1 of Zhang et al. (2022) and Remark 3 of Theorem 3 of Mohammadpour et al. (2024).

To evaluate the performance, we use the same metrics as in Malkin et al. (2022) and Tiapkin et al. (2024): the number of modes found during training (number of sequences from \mathcal{M} for which a terminal state within a distance of 30 has been sampled) and Spearman correlation on the test set between $\mathcal{R}(x)$ and an estimate of P_{θ} . Since computing the exact probability of sampling a terminal state is intractable due to a large number of paths leading to it, we use a Monte Carlo estimate following the approach of Zhang et al. (2022). We train all models with various choices of the learning rate, treating it as a hyperparameter, and provide the results depending on its value, similarly to Madan et al. (2023).

Figure 2 shows the number of modes for different GFlowNet algorithms and backward approaches found over the course of training. We observe that TLM shows a significant improvement for DB and a minor one for MunchausenDQN in comparison to other backward approaches, where in the later case we find all 60 modes. TB and SubTB also find almost all modes, and TLM does not affect the results much. Full plots for modes across varying learning rates are presented in Figure 5 in Appendix. Figure 3 (top) presents Spearman correlation between $\mathcal R$ and P_θ on the test set for the same GFlowNet algorithms and varying learning rates. TLM shows better or similar performance to the baselines across all GFlowNet algorithms if the optimal learning rate is chosen. Moreover, for DB and SubTB, TLM shows steady improvement over the baselines for all learning rates.

4.3 Molecule Design, sEH and QM9

Our final experiments are carried out on molecule design tasks of sEH (Bengio et al., 2021) and QM9 (Jain et al., 2023).

In both tasks, the goal is to generate molecular graphs, with reward emphasizing some desirable property. For both problems, we use pre-trained reward proxy neural networks. For the sEH task, the

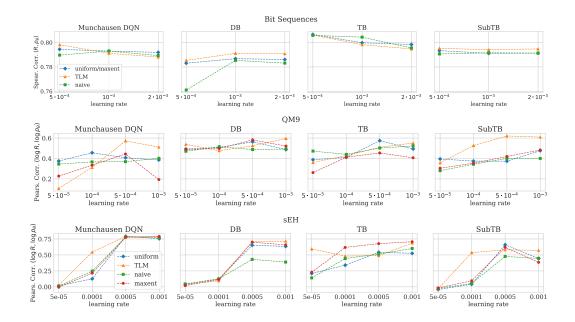


Figure 3: **Top row:** Bit Sequences, Spearman correlation between \mathcal{R} and P_{θ} on a test set for different methods and varying learning rate $\in \{5 \cdot 10^{-4}, 10^{-3}, 2 \cdot 10^{-3}\}$. **Center row:** QM9, Pearson correlation between $\log \mathcal{R}$ and $\log P_{\theta}$ on the fixed subset of the QM9 dataset (Ramakrishnan et al., 2014) for different methods and varying learning rate $\in \{5 \cdot 10^{-5}, 10^{-4}, 5 \cdot 10^{-4}, 10^{-3}\}$. **Bottom row:** sEH, Pearson correlation between $\log \mathcal{R}$ and $\log P_{\theta}$ on the test set from Bengio et al. (2021) for different methods and varying learning rate $\in \{5 \cdot 10^{-5}, 10^{-4}, 5 \cdot 10^{-4}, 10^{-3}\}$. *Higher values indicate better performance.*

model is trained to predict the binding energy of a molecule to a particular protein target (soluble epoxide hydrolase) (Bengio et al., 2021). For the QM9 task, the proxy is trained on the QM9 dataset (Ramakrishnan et al., 2014) to predict the HOMO-LUMO gap (Zhang et al., 2020).

For the sEH task, we follow the framework proposed by Jin et al. (2020) and generate molecules using a predefined vocabulary of 72 fragments, the same as in Bengio et al. (2021). It is essential to mention that these fragments are explicitly selected for the sEH task to simplify high-quality object generation. The states are represented as trees of fragments. The actions correspond to choosing a new fragment, then choosing an atom to which the fragment will be attached. There is also a special stop action that moves the state to its terminal copy and stops the generation process.

For QM9 task, molecules are generated atom-by-atom and bond-by-bond. Every state is a connected graph, and actions either add a new node and edge or set the attribute on edge. Thus, the graph-building environment is much more expressive than the tree-building environment, but it results in a more complex generation task and can lead to construction of invalid molecules.

We use the same evaluation metrics for both tasks as proposed in previous works (Madan et al., 2023; Tiapkin et al., 2024). We track the number of Tanimoto-separated modes above a certain reward threshold captured over the course of training, and Pearson correlation on the test set between $\log \mathcal{R}(x)$ and $\log P_{\theta}(x)$. For sEH task we use the same test set as in Bengio et al. (2021), and for QM9 we use a subset of the dataset introduced in Ramakrishnan et al. (2014). We train all models with various choices of the learning rate, treating it as a hyperparameter, and provide the results depending on its value, similarly to Madan et al. (2023).

Figure 2 (center and bottom) shows the number of modes for different GFlowNet algorithms and backward approaches found over the course of training. Overall, TLM greatly speeds up mode discovery on QM9 for all GFlowNet algorithms, but shows similar or worse performance when compared to other backward approaches on sEH. However, we note that on sEH no backward approach shows significant improvement over uniform in terms of mode discovery. Full plots for modes across varying learning rates are presented in Figure 6 in Appendix. It is worth noting

that on QM9 TLM shows robust improvement over the baselines across most learning rates for all GFlowNet algorithms. Figure 3 (center and bottom) shows Pearson correlation between $\log \mathcal{R}$ and $\log P_{\theta}$ estimate measured on the test set for various learning rates. TLM results in better correlations when paired with MunchausenDQN and SubTB, and shows similar results to the baselines when paired with DB and TB.

4.4 DISCUSSION

From the plots above, one can see that across all GFlowNet algorithms (forward policy training objectives), TLM generally shows performance that is better or comparable to other backward approaches. The sole exception is the number of discovered modes in sEH environment, where TLM can fall behind other backward approaches. To explain this shortcoming, as well as provide more intuition on why TLM gives more improvements when paired with some of the GFlowNet algorithms than with the others, we discuss two hypotheses.

First of all, we hypothesise that TLM is beneficial in less structured tasks, which is supported by the major improvements to mode exploration that it obtains on QM9, while sometimes even degrading the same metric on sEH. Indeed, molecules in the sEH task are constructed from the predefined set of blocks, while in the QM9 task they are created from atoms. This manually predefined set adds much more structure into the environment, leading to creating a junction tree from these blocks instead of creating an arbitrary graph of atoms, which can even represent an invalid molecule in some cases. We suppose that strong methodological bias is a possible reason why it is of little utility to consider non-trivial backward approaches in the sEH task, and why the uniform backward approach often has the best or at least comparable performance according to Figure 6. This is exactly the hypothesis that was initially put forward by Mohammadpour et al. (2024), and our results align with it well.

Next, we put forward our "local-global optimization" hypothesis, which states that TLM shows more improvements when paired with "local" GFlowNet algorithms that optimize some objective over individual transitions, e.g. DB, while the improvements are less pronounced when it is paired with "global" GFlowNet algorithms that optimize some objective over whole trajectories, e.g. TB. Indeed, by examining the convergence speed on hypergrids and mode discovery on bit sequences, one can note that TLM offers improvements when paired with DB and MunchausenDQN, while performing comparably to other backward approaches when paired with TB and SubTB. Similarly, one can note that TLM offers the biggest mode discovery speedup on QM9 when paired with DB and MunchausenDQN. We believe that such behavior could be explained by the fact that TLM propagates information over whole trajectories to train backward policy, matching flows over trajectories. This can result in a good synergy if the forward policy objective on the other hand uses local information, matching flows over individual transitions. One can argue that SubTB already considers both local and global information by construction, while TLM does improve reward correlations on various environments and mode discovery on QM9 when paired with it. However, local-global information ratio in SubTB heavily depends on the subtrajectory weighting, thus considering other ways to weigh them could be an interesting further research direction by itself. Overall, if we rank the GFlowNet algorithms by the amount of improvement we get on average when using TLM on top of them, the order will be DB > MunchausenDQN > SubTB > TB, which does align well with our hypothesis.

5 CONCLUSION

In this work, we propose a new method for backward policy optimization that enhances mode exploration and accelerates convergence in complex GFlowNet environments. TLM represents the first principled method for learning a backward policy in soft reinforcement learning-based GFlowNet algorithms, such as SoftDQN and MunchausenDQN. We provide an extensive experimental evaluation, demonstrating benefits of TLM when it is paired with various forward policy training methods, and analyze its shortcomings, arguing that our results support the hypothesis of Mohammadpour et al. (2024) about benefits of backward policy optimization in environments with less structure. In addition, we put forward our "local-global optimization" hypothesis, which states that TLM-like approaches show the most benefit when paired with local forward policy training objectives.

A promising further work direction is using backward policy for exploration as proposed in Kim et al. (2024), He et al. (2024b). Indeed, the ability to sample trajectories that start from high-reward terminal states via \mathcal{P}_B provides an opportunity to improve mode exploration. We expect that combining such methods with TLM-like approaches will additionally improve their performance.

REFERENCES

- Lazar Atanackovic, Alexander Tong, Bo Wang, Leo J Lee, Yoshua Bengio, and Jason S Hartford. Dyngfn: Towards bayesian inference of gene regulatory networks with gflownets. *Advances in Neural Information Processing Systems*, 36, 2024.
- Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network based generative models for non-iterative diverse candidate generation. *Advances in Neural Information Processing Systems*, 34:27381–27394, 2021.
- Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet foundations. *Journal of Machine Learning Research*, 24(210):1–55, 2023. URL http://jmlr.org/papers/v24/22-0364.html.
- Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. *Operations research*, 63(5):1227–1244, 2015.
- Yihang Chen and Lukas Mauch. Order-preserving gflownets. In *The Twelfth International Conference on Learning Representations*, 2023.
- Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete probabilistic inference as control in multi-path environments. In *The 40th Conference on Uncertainty in Artificial Intelligence*, 2024. URL https://openreview.net/forum?id=3C69sU1YkK.
- Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1): 1–22, 1977.
- Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision processes. In *International Conference on Machine Learning*, pp. 2160–2169. PMLR, 2019.
- Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361. PMLR, 2017.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.
- Haoran He, Emmanuel Bengio, Qingpeng Cai, and Ling Pan. Rectifying reinforcement learning for reward matching. *arXiv preprint arXiv:2406.02213*, 2024a.
- Haoran He, Can Chang, Huazhe Xu, and Ling Pan. Looking backward: Retrospective backward synthesis for goal-conditioned gflownets, 2024b. URL https://arxiv.org/abs/2406.01150.
- Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The "wake-sleep" algorithm for unsupervised neural networks. *Science*, 268(5214):1158–1161, 1995.
- Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, and Nikolay Malkin. Amortizing intractable inference in large language models. In *The Twelfth International Conference on Learning Representations*, 2023.
- Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence design with gflownets. In *International Conference on Machine Learning*, pp. 9786–9801. PMLR, 2022.
 - Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcia, Jarrid Rector-Brooks, Yoshua Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In *International Conference on Machine Learning*, pp. 14631–14653. PMLR, 2023.

- Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward policy for gflownets. *arXiv preprint arXiv:2405.16012*, 2024.
 - Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph generation. In *Artificial Intelligence in Drug Discovery*, pp. 228–249. The Royal Society of Chemistry, 2020.
 - Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and Jinkyoo Park. Local search gflownets, 2024. URL https://arxiv.org/abs/2310.02710.
 - Anas Krichel, Nikolay Malkin, Salem Lahlou, and Yoshua Bengio. On generalization for generative flow networks. *arXiv preprint arXiv:2407.03105*, 2024.
 - Elaine Lau, Stephen Zhewen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable greediness with action values. *arXiv preprint arXiv:2402.05234*, 2024.
 - Ziru Liu, Shuchang Liu, Bin Yang, Zhenghai Xue, Qingpeng Cai, Xiangyu Zhao, Zijian Zhang, Lantao Hu, Han Li, and Peng Jiang. Modeling user retention through generative flow networks. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5497–5508, 2024.
 - Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial episodes for improved convergence and stability. In *International Conference on Machine Learning*, pp. 23467–23483. PMLR, 2023.
 - Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Improved credit assignment in gflownets. *Advances in Neural Information Processing Systems*, 35: 5955–5967, 2022.
 - Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai Zhang, and Yoshua Bengio. GFlownets and variational inference. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=uKiE0VIluA-.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
 - Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum entropy gflownets with soft q-learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 2593–2601. PMLR, 2024.
 - Nikita Morozov, Daniil Tiapkin, Sergey Samsonov, Alexey Naumov, and Dmitry Vetrov. Improving gflownets with monte carlo tree search. *arXiv preprint arXiv:2406.13655*, 2024.
 - Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between value and policy based reinforcement learning. *Advances in neural information processing systems*, 30, 2017.
 - Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov decision processes. *arXiv preprint arXiv:1705.07798*, 2017.
 - Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Icml*, volume 99, pp. 278–287, 1999.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 - Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1(1):140022, 2014.

- Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.05952.
 - Tiago Silva, Eliezer de Souza da Silva, Rodrigo Barreto Alves, Luiz Max Carvalho, Amauri H Souza, Samuel Kaski, Vikas Garg, and Diego Mesquita. Analyzing gflownets: Stability, expressiveness, and assessment. In *ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling*, 2024.
 - David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In *International conference on machine learning*, pp. 387–395. Pmlr, 2014.
 - Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
 - Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Éric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Yunhao Tang, Micha Valko, and Pierre Ménard. Fast rates for maximum entropy exploration. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
 - Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks as entropy-regularized rl. In *International Conference on Artificial Intelligence and Statistics*, pp. 4213–4221. PMLR, 2024.
 - Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding reinforcement learning-based fine-tuning of diffusion models: A tutorial and review. *arXiv preprint arXiv:2407.13734*, 2024.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in diffusion models for vision, language, and control. *arXiv preprint arXiv:2405.20971*, 2024.
 - Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. *Advances in Neural Information Processing Systems*, 33:4235–4246, 2020.
 - Tom Zahavy, Brendan O'Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough for convex mdps. *Advances in Neural Information Processing Systems*, 34:25746–25759, 2021.
 - Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua Bengio. Generative flow networks for discrete probabilistic modeling. In *International Conference on Machine Learning*, pp. 26412–26428. PMLR, 2022.
 - Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. In *Advances in Neural Information Processing Systems*, volume 36, pp. 11952–11969, 2023.
 - Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multiplex graph for molecular structures, 2020. URL https://arxiv.org/abs/2011.07457.
 - Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient multi-objective molecular optimization with gflownets. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the 20th international conference on machine learning (icml-03)*, pp. 928–936, 2003.

A APPENDIX

A.1 OMITTED PROOFS

Proof of Theorem 3.1. From the stability of backward updates, the Cauchy criterion implies that there is $\mathcal{P}_{\mathrm{B}}^{\star} \in \Pi_{\mathrm{B}}$ such that $\mathcal{P}_{\mathrm{B}}^{T} \to \mathcal{P}_{\mathrm{B}}^{\star}$. At the same time, by the choice or rewards $r^{t} = r^{\mathcal{P}_{\mathrm{B}}^{t}}$, Proposition 1 by Tiapkin et al. (2024) and joint convexity of KL-divergence

$$\overline{\mathfrak{R}}^T = \frac{1}{T} \sum_{t=1}^T \mathrm{KL} \Big(\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^t} \Big\| \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^t} \Big) \geq \mathrm{KL} \Bigg(\frac{1}{T} \sum_{t=1}^T \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^t} \Big\| \frac{1}{T} \sum_{t=1}^T \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^t} \Bigg) \,.$$

Notice that a mapping $\mathcal{P}_B \mapsto \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_B}$ is continuous, thus $\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_B^T} \to \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_B^*}$, and, as a result, averages of $\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_B^t}$ also converge to $\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_B^*}$. Finally, applying Pinkser's inequality, we have

$$\left\| \frac{1}{T} \sum_{t=1}^{T} \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{t}} - \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{t}} \right\|_{1} \leq \sqrt{2\overline{\mathfrak{R}}^{T}} + \left\| \frac{1}{T} \sum_{t=1}^{T} \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{t}} - \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{t}} \right\|_{1}.$$

The right-hand side of the inequality tends to zero as $T \to +\infty$, thus $\frac{1}{T} \sum_{t=1}^{T} \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{t}} \to \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{t}}$. Finally, since for any $\mathcal{P}_{\mathrm{B}}^{\star}$ there is $\mathcal{P}_{\mathrm{F}}^{\star}$ such that $\mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{B}}^{\star}} = \mathsf{P}_{\mathcal{T}}^{\mathcal{P}_{\mathrm{F}}^{\star}}$, we conclude the statement. \square

A.2 STABILITY TECHNIQUES

In this section, we highlight important practical techniques and design choices motivated by Theorem 3.1 that we use alongside our TLM algorithm to enforce stability into the training of \mathcal{P}_B .

First, we found it beneficial to either use a lower learning rate for the backward policy or decay it over the course of training (see the next sections for detailed descriptions).

Second, akin to how the Deep Q-Network algorithm (Mnih et al., 2015) utilizes a target network to estimate the value of the next state, we utilize target networks for the backward policy when calculating the loss for the forward policy. For example, (3) transforms into

$$\mathcal{L}_{\text{SubTB}}(\theta; \tau) = \sum_{0 \le j < k \le n_{\tau}} w_{jk} \left(\log \frac{F_{\theta}(s_j) \prod_{t=j+1}^{k} \mathcal{P}_{\text{F}}(s_t | s_{t-1}, \theta)}{F_{\theta}(s_k) \prod_{t=j+1}^{k} \mathcal{P}_{\text{B}}(s_{t-1} | s_t, \overline{\theta})} \right)^2$$
(10)

where the parameters $\bar{\theta}$ of $\mathcal{P}_{\mathrm{B}}(s_{t-1}|s_t,\bar{\theta})$ are updated via exponential moving average (EMA) of the online parameters θ of $\mathcal{P}_{\mathrm{B}}(s_{t-1}|s_t,\theta)$. So the loss for the backward policy $\mathcal{L}_{\mathsf{TLM}}$ is computed using an online backward policy $\mathcal{P}_{\mathrm{B}}(s_{t-1}|s_t,\theta)$, and the loss for the forward policy $\mathcal{L}_{\mathsf{Alg}}$ is computed using a target backward policy $\mathcal{P}_{\mathrm{B}}(s_{t-1}|s_t,\bar{\theta})$, which is frozen during the gradient update of \mathcal{P}_{F} .

Finally, we find it helpful to initialise \mathcal{P}_B to the uniform distribution at the beggining of training, which is done by zero-initialization of the last linear layer weight and bias.

We ablate the impact of the proposed techniques on QM9, where we try to separately turn off each of the three. Results are presented in Figure 4. We observe that using target model and lower learning rate is crucial, whereas disabling uniform initialization increases variance and shows slightly worse results. For this experiment, we choose DB as the base algorithm because TLM overall shows the greatest impact when applied with it compared to TB, SubTB, and MunchausenDQN.

A.3 EXPERIMENTAL DETAILS

We utilize PyTorch (Paszke et al., 2019) in our experiments. For hypergrid and bit sequence environments, we base our implementation upon the published code of Tiapkin et al. (2024). For molecule design experiments, our implementations are based on the open source library by Recursion Pharma. In all our experiments, \mathcal{P}_F and \mathcal{P}_B share the same neural network backbone, predicting the logits via two separate linear heads.

¹https://github.com/recursionpharma/gflownet

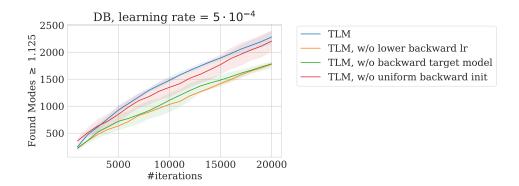


Figure 4: Ablation study of stability techniques on QM9. The number of Tanimoto-separated modes with a reward at least 1.125 is shown. As a base algorithm we use DB with a learning rate of $5 \cdot 10^{-4}$.

A.3.1 HYPERGRID

The reward at a terminal state s with coordinates (s^1, \ldots, s^D) is defined as

$$\mathcal{R}(s) = R_0 + R_1 \cdot \prod_{i=1}^{D} \mathbb{I}\left[0.25 < \left| \frac{s^i}{H-1} - 0.5 \right| \right] + R_2 \cdot \prod_{i=1}^{D} \mathbb{I}\left[0.3 < \left| \frac{s^i}{H-1} - 0.5 \right| < 0.4 \right].$$

Standard reward uses parameters $(R_0 = 10^{-3}, R_1 = 0.5, R_2 = 2.0)$ and hard reward uses $(R_0 = 10^{-4}, R_1 = 1.0, R_2 = 3.0)$, taken from Bengio et al. (2021) and Madan et al. (2023) respectively.

All models are parameterized by MLP with 2 hidden layers and 256 hidden units. We use Adam optimizer with a learning rate of 10^{-3} and a batch size of 16 trajectories. For backward policy we use the same initial learning rate and utilize exponential scheduler, where γ is tuned from $\{0.999, 0.9999\}$. For SubTB we use $\lambda = 0.9$ following Madan et al. (2023). For SoftDQN and MunchausenDQN we use prioritized replay buffer (Schaul et al., 2016) and take the same hyperparameters as in Tiapkin et al. (2024). Backward policy target network uses soft updates with a parameter $\tau = 0.25$ (Silver et al., 2014). Since the environment is small enough, we precompute n(s) for all states, allowing to obtain the maxent backward exactly. For all experiments mean and std values are computed over 3 random seeds.

A.3.2 BIT SEQUENCES

The set of modes M is defined as in Malkin et al. (2022), and we choose the same size, |M|=60. We set $H=\{'00000000', '111111111', '11110000', '00001111', '00111100'\}$. Each sequence in M is generated by randomly selecting n/8 elements from H with replacement, and then concatenating them. The test set for evaluating reward correlations is generated by taking a mode and flipping i random bits in it, where this is repeated for every mode and for each $0 \le i < n$.

We utilize the same Monte Carlo estimate for P_{θ} as presented in Tiapkin et al. (2024) with N=10:

$$P_{\theta}(x) = \mathbb{E}_{\mathcal{P}_{\mathrm{B}}(\tau\mid x)} \frac{\mathcal{P}_{\mathrm{F}}(\tau\mid \theta)}{\mathcal{P}_{\mathrm{B}}(\tau\mid x)} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\mathcal{P}_{\mathrm{F}}(\tau^{i}\mid \theta)}{\mathcal{P}_{\mathrm{B}}(\tau^{i}\mid x)}, \quad \tau^{i} \sim \mathcal{P}_{\mathrm{B}}(\tau\mid x).$$

Notice that any valid \mathcal{P}_B can be used here, but for each model we take the \mathcal{P}_B that was fixed/trained alongside the corresponding \mathcal{P}_F since such choice will lead to lower estimate variance. However, we note that the metric is still very noisy, so for each training run we compute the metric for all model checkpoints and use the maximum value.

All models are parameterized as Transformers Vaswani et al. (2017) with 3 hidden layers, 8 attention heads, and a hidden dimension of 64. Each model is trained for 50,000 iterations and a batch size of 16 with Adam optimizer. We provide results for learning rates from $\{5 \cdot 10^{-4}, 10^{-3}, 2 \cdot 10^{-3}\}$. For backward policy we use the same initial learning rate as for the forward policy and utilize exponential scheduler, where γ is tuned from $\{0.9997, 0.9999\}$. For SubTB we use $\lambda = 0.9$. For MunchausenDQN we use prioritized replay buffer (Schaul et al., 2016) and take the same

hyperparameters as in Tiapkin et al. (2024). Backward policy target network uses soft updates with a parameter $\tau=0.25$ (Silver et al., 2014). For all experiments mean and std values are computed over 3 random seeds.

To closely follow the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin et al., 2024), we use ε -uniform exploration with $\varepsilon = 10^{-3}$. We note that this can introduce a small bias into the gradient estimate of $\nabla_{\theta} \mathcal{L}_{TLM}(\theta_{B}^{t}; \tau)$ since τ will not be sampled exactly from \mathcal{P}_{F} .

A.3.3 MOLECULES

 For sEH we use the test set from Bengio et al. (2021). For QM9 we choose a subset of 773 molecules from the QM9 dataset (Ramakrishnan et al., 2014) with number of atoms between 3 and 8. The subset is constructed to contain approximately equal number of molecules between different molecule sizes. To compute correlation we utilize the same Monte Carlo estimate as in bit sequence task. We highlight that Mohammadpour et al. (2024) used another evaluation approach and computed correlation on sampled molecules instead of a fixed dataset.

We use graph transformer architecture from Jain et al. (2023) with 8 layers and number of embeddings 256 for both tasks. Each model is trained for 20,000 iterations with Adam optimizer. We provide results for learning rates from $\{5 \cdot 10^{-4}, 10^{-4}, 5 \cdot 10^{-4}, 10^{-3}\}$. Learning rate for \mathcal{P}_B is taken to be 10 times smaller than the one for \mathcal{P}_F at the beginning of the training, and both use the same exponential scheduler. Batch size is 256 and 128 for sEH and QM9 respectively. Backward policy target network uses soft updates with a parameter $\tau = 0.05$ (Silver et al., 2014). For SubTB we use $\lambda = 1.0$ following Madan et al. (2023). For MunchausenDQN we do not use a replay buffer, training the model on-policy, and otherwise use the same hyperparameters as in Tiapkin et al. (2024). To learn $\log n(s)$ for maxent backward we use the same approach as in Mohammadpour et al. (2024).

Following the setting of previous works (Malkin et al., 2022; Madan et al., 2023; Tiapkin et al., 2024), we also use ε -uniform exploration with $\varepsilon = 0.05$. To adjust for the bias this introduces into the gradient estimate of $\nabla_{\theta} \mathcal{L}_{\text{TLM}}(\theta_{\text{R}}^t; \tau)$, we linearly anneal ε to zero over the course of training.

We set $R = \exp(-75.0)$ for invalid molecules in QM9. We set reward exponent to 10. Rewards are divided by constant 8 in sEH task. For QM9, from all rewards we substract 95%-percentile, thus, major part of rewards is distributed from 0 to 1 with 5% of molecules having reward higher than 1.

We track the number of Tanimoto-separated modes as described in Bengio et al. (2023), using a Tanimoto similarity threshold of 0.7. Reward thresholds after normalisation are 0.875 and 1.125 for sEH and QM9 respectively.

A.4 FULL PLOTS

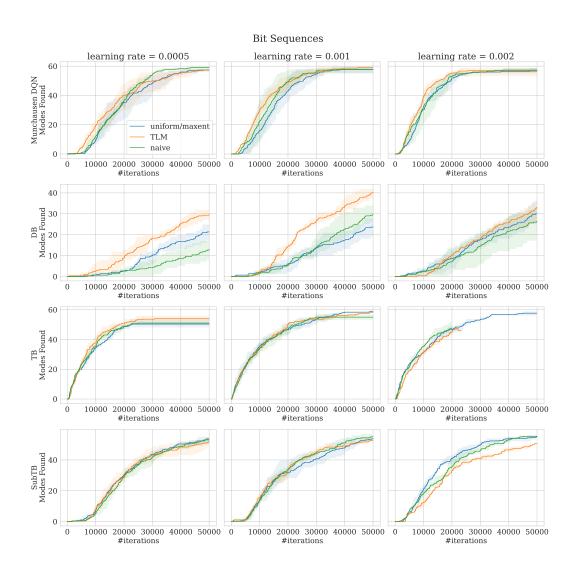


Figure 5: Bit Sequences, the number of modes discovered over the course of training for different methods and a learning rate $\in \{5 \cdot 10^{-4}, 10^{-3}, 2 \cdot 10^{-3}\}$. TB results at the learning rate of $2 \cdot 10^{-3}$ are not full because of exploding gradients at a certain point in training.

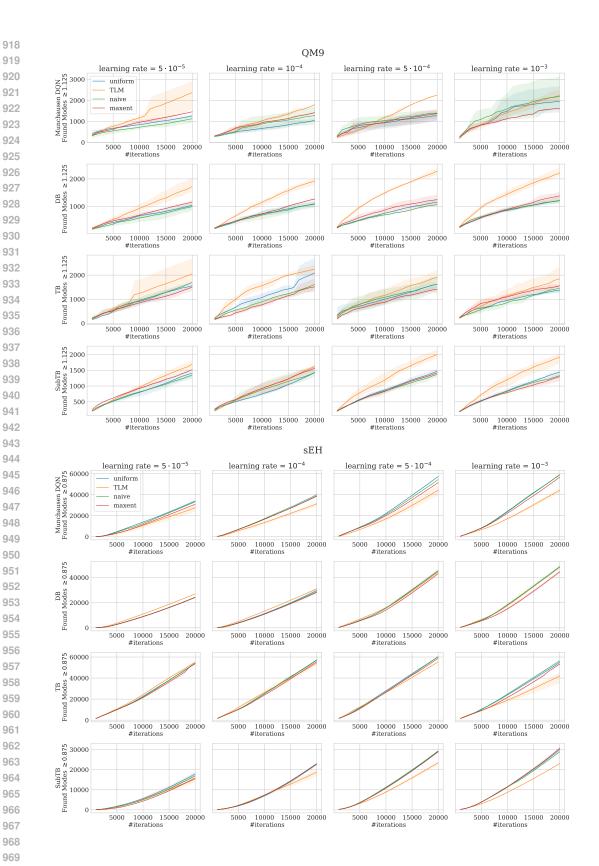


Figure 6: **Top row:** QM9, the number of Tanimoto-separated modes discovered over the course of training with reward higher or equal to 1.125 for different methods and learning rate in $\in \{5 \cdot 10^{-5}, 10^{-4}, 5 \cdot 10^{-4}, 10^{-3}\}$. **Bottom row:** sEH, the number of Tanimoto-separated modes discovered over the course of training with reward higher or equal to 0.875 for different methods and learning rate $\in \{5 \cdot 10^{-5}, 10^{-4}, 5 \cdot 10^{-4}, 10^{-3}\}$.